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PREFACE

The computational universe surrounding us is clearly quite different from that envi-
sioned by the designers of the large mainframes of half a century ago. Even the sub-
sequent most futuristic visions of supercomputing and of parallel machines, which
have guided the research drive and absorbed the research funding for so many years,
are far from today’s computational realities.

These realities are characterized by the presence of communities of networked
entities communicating with each other, cooperating toward common tasks or the
solution of a shared problem, and acting autonomously and spontaneously. They are
distributed computing environments.

It has been from the fields of network and of communication engineering that the
seeds of what we now experience have germinated. The growth in understanding has
occurred when computer scientists (initially very few) started to become aware of and
study the computational issues connected with these new network-centric realities.
The internet, the web, and the grids are just examples of these environments. Whether
over wired or wireless media, whether by static or nomadic code, computing in such
environments is inherently decentralized and distributed. To compute in distributed
environments one must understand the basic principles, the fundamental properties,
the available tools, and the inherent limitations.

This book focuses on the algorithmics of distributed computing; that is, on how to
solve problems and perform tasks efficiently in a distributed computing environment.
Because of the multiplicity and variety of distributed systems and networked environ-
ments and their widespread differences, this book does not focus on any single one of
them. Rather it describes and employes a distributed computing universe that captures
the nature and basic structure of those systems (e.g., distributed operating systems,
data communication networks, distributed databases, transaction processing systems,
etc.), allowing us to discard or ignore the system-specific details while identifying
the general principles and techniques.

This universe consists of a finite collection of computational entities commu-
nicating by means of messages in order to achieve a common goal; for exam-
ple, to perform a given task, to compute the solution to a problem, to satisfy a
request either from the user (i.e., outside the environment) or from other entities.
Although each entity is capable of performing computations, it is the collection

1 Incredibly, the terms “distributed systems” and “distributed computing” have been for years highjacked
and (ab)used to describe very limited systems and low-level solutions (e.g., client server) that have little
to do with distributed computing.
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xvi PREFACE

of all these entities that together will solve the problem or ensure that the task is
performed.

In this universe, to solve a problem, we must discover and design a distributed
algorithm or protocol for those entities: A set of rules that specify what each entity
has to do. The collective but autonomous execution of those rules, possibly without
any supervision or synchronization, must enable the entities to perform the desired
task to solve the problem.

In the design process, we must ensure both correctness (i.e., the protocol we design
indeed solves the problem) and efficiency (i.e., the protocol we design has a “small”
cost).

As the title says, this book is on the Design and Analysis of Distributed Algorithms.
Its goal is to enable the reader to learn how to design protocols to solve problems in
a distributed computing environment, not by listing the results but rather by teaching
how they can be obtained. In addition to the “how” and “why” (necessary for problem
solution, from basic building blocks to complex protocol design), it focuses on pro-
viding the analytical tools and skills necessary for complexity evaluation of designs.

There are several levels of use of the book. The book is primarily a senior-
undergraduate and graduate textbook; it contains the material for two one-term courses
or alternatively a full-year course on Distributed Algorithms and Protocols, Dis-
tributed Computing, Network Computing, or Special Topics in Algorithms. It covers
the “distributed part” of a graduate course on Parallel and Distributed Computing
(the chapters on Distributed Data, Routing, and Synchronous Computing, in partic-
ular), and it is the theoretical companion book for a course in Distributed Systems,
Advanced Operating Systems, or Distributed Data Processing.

The book is written for the students from the students’ point of view, and it follows
closely a well defined teaching path and method (the “course”) developed over the
years; both the path and the method become apparent while reading and using the
book. It also provides a self-contained, self-directed guide for system-protocol de-
signers and for communication software and engineers and developers, as well as for
researchers wanting to enter or just interested in the area; it enables hands-on, head-
on, and in-depth acquisition of the material. In addition, it is a serious sourcebook
and referencebook for investigators in distributed computing and related areas.

Unlike the other available textbooks on these subjects, the book is based on a very
simple fully reactive computational model. From a learning point of view, this makes
the explanations clearer and readers’ comprehension easier. From a teaching point of
view, this approach provides the instructor with a natural way to present otherwise
difficult material and to guide the students through, step by step. The instructors
themselves, if not already familiar-with the material or with the approach, can achieve
proficiency quickly and easily.

All protocols in the textbook as well as those designed by the students as part
of the exercises are immediately programmable. Hence, the subtleties of actual
implementation can be employed to enhance the understanding of the theoretical

2 An open source Java-based engine, DisJ, provides the execution and visualization environment for our
reactive protocols.
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design principles; furthermore, experimental analysis (e.g., performance evaluation
and comparison) can be easily and usefully integrated in the coursework expanding
the analytical tools.

The book is written so to require no prerequisites other than standard undergrad-
uate knowledge of operating systems and of algorithms. Clearly, concurrent or prior
knowledge of communication networks, distributed operating systems or distributed
transaction systems would help the reader to ground the material of this course into
some practical application context; however, none is necessary.

The book is structured into nine chapters of different lengths. Some are focused on a
single problem, others on a class of problems. The structuring of the written material
into chapters could have easily followed different lines. For example, the material
of election and of mutual exclusion could have been grouped together in a chapter
on Distributed Control. Indeed, these two topics can be taught one after the other:
Although missing an introduction, this “hidden” chapter is present in a distributed way.
An important “hidden” chapter is Chapter 10 on Distributed Graph Algorithms whose
content is distributed throughout the book: Spanning-Tree Construction (Section 2.5),
Depth-First Traversal (Section 2.3.1), Breadth-First Spanning Tree (Section 4.2.5),
Minimum-Cost Spanning Tree (Section 3.8.1), Shortest Paths (Section 4.2.3), Centers
and medians (Section 2.6), Cycle and Knot Detection (Section 8.2).

The suggested prerequisite structure of the chapters is shown in Figure 1. As
suggested by the figure, the first three chapters should be covered sequentially and
before the other material.

There are only two other prerequisite relationships. The relationship between Syn-
chronous Compution (Chapter 6) and Computing in Presence of Faults (Chapter 7)
is particular. The recommended sequencing is in fact the following: Sections 7.1–
7.2 (providing the strong motivation for synchronous computing), Chapter 6 (de-
scribing fault-free synchronous computing) and the rest of Chapter 7 (dealing with
fault-tolerant synchronous computing as well as other issues). The other suggested

Figure 1: Prerequisite structure of the chapters.
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prerequisite structure is that the topic of Stable Properties (Chapter 8) be handled
before that of Continuous Computations (Chapter 9). Other than that, the sections
can be mixed and matched depending on the instructor’s preferences and interests.
An interesting and popular sequence for a one-semester course is given by Chapters
1–6. A more conventional one-semester sequence is provided by Chapters 1–3 and
6–9.

The symbol (�) after a section indicates noncore material. In connection with
Exercises and Problems the symbol (�) denotes difficulty (the more the symbols, the
greater the difficulty).

Several important topics are not included in this edition of the book. In particular,
this edition does not include algorithms on distributed coloring, on minimal inde-
pendent sets, on self-stabilization, as well as on Sense of Direction. By design, this
book does not include distributed computing in the shared memory model, focusing
entirely on the message-passing paradigm.

This book has evolved from the teaching method and the material I have designed
for the fourth-year undergraduate course Introduction to Distributed Computing and
for the graduate course Principles of Distributed Computing at Carleton University
over the last 20 years, and for the advanced graduate courses on Distributed Algorithms
I have taught as part of the Advanced Summer School on Distributed Computing at
the University of Siena over the last 10 years. I am most grateful to all the students of
these courses: through their feedback they have helped me verify what works and what
does not, shaping my teaching and thus the current structure of this book. Their keen
interest and enthusiasm over the years have been the main reason for the existence of
this book.

This book is very much work in progress. I would welcome any feedback that
will make it grow and mature and change. Comments, criticisms, and reports on
personal experience as a lecturer using the book, as a student studying it, or as a
researcher glancing through it, suggestions for changes, and so forth: I am looking
foreward to receiving any. Clearly, reports on typos, errors, and mistakes are very much
appreciated. I tried to be accurate in giving credits; if you know of any omission or
mistake in this regards, please let me know.

My own experience as well as that of my students leads to the inescapable conclu-
sion that

distributed algorithms are fun

both to teach and to learn. I welcome you to share this experience, and I hope you
will reach the same conclusion.

Nicola Santoro



CHAPTER 1

Distributed Computing Environments

The universe in which we will be operating will be called a distributed computing
environment. It consists of a finite collection E of computational entities communi-
cating by means of messages. Entities communicate with other entities to achieve
a common goal; for example, to perform a given task, to compute the solution to a
problem, to satisfy a request either from the user (i.e., outside the environment) or
from other entities. In this chapter, we will examine this universe in some detail.

1.1 ENTITIES

The computational unit of a distributed computing environment is called an entity .
Depending on the system being modeled by the environment, an entity could corre-
spond to a process, a processor, a switch, an agent, and so forth in the system.

Capabilities Each entity x ∈ E is endowed with local (i.e., private and nonshared)
memoryMx . The capabilities of x include access (storage and retrieval) to local mem-
ory, local processing, and communication (preparation, transmission, and reception of
messages). Local memory includes a set of defined registers whose values are always
initially defined; among them are the status register (denoted by status(x)) and the
input value register (denoted by value(x)). The register status(x) takes values from
a finite set of system states S; the examples of such values are “Idle,” “Processing,”
“Waiting,”. . . and so forth.

In addition, each entity x ∈ E has available a local alarm clock cx which it can set
and reset (turn off).

An entity can perform only four types of operations:

� local storage and processing
� transmission of messages
� (re)setting of the alarm clock
� changing the value of the status register

Design and Analysis of Distributed Algorithms, by Nicola Santoro
Copyright © 2007 John Wiley & Sons, Inc.
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2 DISTRIBUTED COMPUTING ENVIRONMENTS

Note that, although setting the alarm clock and updating the status register can be
considered as a part of local processing, because of the special role these operations
play, we will consider them as distinct types of operations.

External Events The behavior of an entity x ∈ E is reactive: x only responds
to external stimuli, which we call external events (or just events); in the absence of
stimuli, x is inert and does nothing. There are three possible external events:

� arrival of a message
� ringing of the alarm clock
� spontaneous impulse

The arrival of a message and the ringing of the alarm clock are the events that are
external to the entity but originate within the system: The message is sent by ano-
ther entity, and the alarm clock is set by the entity itself.

Unlike the other two types of events, a spontaneous impulse is triggered by forces
external to the system and thus outside the universe perceived by the entity. As
an example of event generated by forces external to the system, consider an auto-
mated banking system: its entities are the bank servers where the data is stored, and
the automated teller machine (ATM) machines; the request by a customer for a cash
withdrawal (i.e., update of data stored in the system) is a spontaneous impulse for the
ATM machine (the entity) where the request is made. For another example, consider
a communication subsystem in the open systems interconnection (OSI) Reference
Model: the request from the network layer for a service by the data link layer (the
system) is a spontaneous impulse for the data-link-layer entity where the request is
made. Appearing to entities as “acts of God,” the spontaneous impulses are the events
that start the computation and the communication.

Actions When an external event e occurs, an entity x ∈ E will react to e by per-
forming a finite, indivisible, and terminating sequence of operations called action.

An action is indivisible (or atomic) in the sense that its operations are executed
without interruption; in other words, once an action starts, it will not stop until it is
finished.

An action is terminating in the sense that, once it is started, its execution ends
within finite time. (Programs that do not terminate cannot be termed as actions.)

A special action that an entity may take is the null action nil, where the entity does
not react to the event.

Behavior The nature of the action performed by the entity depends on the nature
of the event e, as well as on which status the entity is in (i.e., the value of status(x))
when the events occur. Thus the specification will take the form

Status × Event −→ Action,
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which will be called a rule (or a method, or a production). In a rule s × e −→ A, we
say that the rule is enabled by (s, e).

The behavioral specification, or simply behavior, of an entity x is the set B(x) of
all the rules that x obeys. This set must be complete and nonambiguous: for every
possible event e and status value s, there is one and only one rule in B(x) enabled
by (s,e). In other words, x must always know exactly what it must do when an event
occurs.

The set of rules B(x) is also called protocol or distributed algorithm of x.
The behavioral specification of the entire distributed computing environment is just

the collection of the individual behaviors of the entities. More precisely, the collective
behavior B(E) of a collection E of entities is the set

B(E) = {B(x): x ∈ E}.

Thus, in an environment with collective behaviorB(E), each entity x will be acting
(behaving) according to its distributed algorithm and protocol (set of rules) B(x).

Homogeneous Behavior A collective behavior is homogeneous if all entities in
the system have the same behavior, that is, ∀x, y ∈ E, B(x) = B(y).

This means that to specify a homogeneous collective behavior, it is sufficient to
specify the behavior of a single entity; in this case, we will indicate the behavior
simply by B. An interesting and important fact is the following:

Property 1.1.1 Every collective behavior can be made homogeneous.

This means that if we are in a system where different entities have different behaviors,
we can write a new set of rules, the same for all of them, which will still make them
behave as before.

Example Consider a system composed of a network of several identical worksta-
tions and a single server; clearly, the set of rules that the server and a workstation obey
is not the same as their functionality differs. Still, a single program can be written
that will run on both entities without modifying their functionality. We need to add
to each entity an input register, my role, which is initialized to either “workstation”
or “server,” depending on the entity; for each status–event pair (s, e) we create a new
rule with the following action:

s × e −→ { if my role = workstation then Aworkstation else Aserver endif },

whereAworkstation (respectively,Aserver) is the original action associated to (s, e) in the
set of rules of the workstation (respectively, server). If (s, e) did not enable any rule for
a workstation (e.g., s was a status defined only for the server), then Aworkstation = nil
in the new rule; analogously for the server.

It is important to stress that in a homogeneous system, although all entities have
the same behavioral description (software), they do not have to act in the same way;
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their difference will depend solely on the initial value of their input registers. An
analogy is the legal system in democratic countries: the law (the set of rules) is the
same for every citizen (entity); still, if you are in the police force, while on duty, you
are allowed to perform actions that are unlawful for most of the other citizens.

An important consequence of the homogeneous behavior property is that we can
concentrate solely on environments where all the entities have the same behavior.
From now on, when we mention behavior we will always mean homogeneous col-
lective behavior.

1.2 COMMUNICATION

In a distributed computing environment, entities communicate by transmitting and
receiving messages. The message is the unit of communication of a distributed envi-
ronment. In its more general definition, a message is just a finite sequence of bits.

An entity communicates by transmitting messages to and receiving messages from
other entities. The set of entities with which an entity can communicate directly is not
necessarily E ; in other words, it is possible that an entity can communicate directly
only with a subset of the other entities. We denote by Nout(x) ⊆ E the set of entities
to which x can transmit a message directly; we shall call them the out-neighbors of
x . Similarly, we denote by Nin(x) ⊆ E the set of entities from which x can receive a
message directly; we shall call them the in-neighbors of x.

The neighborhood relationship defines a directed graph 
G = (V, 
E), where V
is the set of vertices and 
E ⊆ V × V is the set of edges; the vertices correspond to
entities, and (x, y) ∈ 
E if and only if the entity (corresponding to) y is an out-neighbor
of the entity (corresponding to) x.

The directed graph 
G = (V, 
E) describes the communication topology of the envi-
ronment. We shall denote by n( 
G),m( 
G), and d( 
G) the number of vertices, edges, and
the diameter of 
G, respectively. When no ambiguity arises, we will omit the reference
to 
G and use simply n, m, and d.

In the following and unless ambiguity should arise, the terms vertex, node, site,
and entity will be used as having the same meaning; analogously, the terms edge, arc,
and link will be used interchangeably.

In summary, an entity can only receive messages from its in-neighbors and send
messages to its out-neighbors. Messages received at an entity are processed there in
the order they arrive; if more than one message arrive at the same time, they will
be processed in arbitrary order (see Section 1.9). Entities and communication may
fail.

1.3 AXIOMS AND RESTRICTIONS

The definition of distributed computing environment with point-to-point communi-
cation has two basic axioms, one on communication delay, and the other on the local
orientation of the entities in the system.
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Any additional assumption (e.g., property of the network, a priori knowledge by
the entities) will be called a restriction.

1.3.1 Axioms

Communication Delays Communication of a message involves many activities:
preparation, transmission, reception, and processing. In real systems described by
our model, the time required by these activities is unpredictable. For example, in a
communication network a message will be subject to queueing and processing delays,
which change depending on the network traffic at that time; for example, consider
the delay in accessing (i.e., sending a message to and getting a reply from) a popular
web site.

The totality of delays encountered by a message will be called the communication
delay of that message.

Axiom 1.3.1 Finite Communication Delays
In the absence of failures, communication delays are finite.

In other words, in the absence of failures, a message sent to an out-neighbor will
eventually arrive in its integrity and be processed there. Note that the Finite Commu-
nication Delays axiom does not imply the existence of any bound on transmission,
queueing, or processing delays; it only states that in the absence of failure, a message
will arrive after a finite amount of time without corruption.

Local Orientation An entity can communicate directly with a subset of the other
entities: its neighbors. The only other axiom in the model is that an entity can distin-
guish between its neighbors.

Axiom 1.3.2 Local Orientation
An entity can distinguish among its in-neighbors.
An entity can distinguish among its out-neighbors.

In particular, an entity is capable of sending a message only to a specific out-neighbor
(without having to send it also to all other out-neighbors). Also, when processing a
message (i.e., executing the rule enabled by the reception of that message), an entity
can distinguish which of its in-neighbors sent that message.

In other words, each entity x has a local function lx associating labels, also called
port numbers, to its incident links (or ports), and this function is injective. We denote
port numbers by lx(x, y), the label associated by x to the link (x, y). Let us stress that
this label is local to x and in general has no relationship at all with what y might call
this link (or x, or itself). Note that for each edge (x, y)∈ 
E, there are two labels: lx(x,
y) local to x and ly(x, y) local to y (see Figure 1.1).

Because of this axiom, we will always deal with edge-labeled graphs ( 
G, l), where
l = {lx : x ∈ V } is the set of these injective labelings.
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FIGURE 1.1: Every edge has two labels

1.3.2 Restrictions

In general, a distributed computing system might have additional properties or capa-
bilities that can be exploited to solve a problem, to achieve a task, and to provide a
service. This can be achieved by using these properties and capabilities in the set of
rules.

However, any property used in the protocol limits the applicability of the protocol.
In other words, any additional property or capability of the system is actually a
restriction (or submodel) of the general model.

WARNING. When dealing with (e.g., designing, developing, testing, employing) a
distributed computing system or just a protocol, it is crucial and imperative that all
restrictions are made explicit. Failure to do so will invalidate the resulting communi-
cation software.

The restrictions can be varied in nature and type: they might be related to commu-
nication properties, reliability, synchrony, and so forth. In the following section, we
will discuss some of the most common restrictions.

Communication Restrictions The first category of restrictions includes those
relating to communication among entities.

Queueing Policy A link (x, y) can be viewed as a channel or a queue (see Section
1.9): x sending a message to y is equivalent to x inserting the message in the channel.
In general, all kinds of situations are possible; for example, messages in the channel
might overtake each other, and a later message might be received first. Different
restrictions on the model will describe different disciplines employed to manage
the channel; for example, first-in-first-out (FIFO) queues are characterized by the
following restriction.

� Message Ordering: In the absence of failure, the messages transmitted by an
entity to the same out-neighbor will arrive in the same order they are sent.

Note that Message Ordering does not imply the existence of any ordering for
messages transmitted to the same entity from different edges, nor for messages sent
by the same entity on different edges.

Link Property Entities in a communication system are connected by physical links,
which may be very different in capabilities. The examples are simplex and full-duplex
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links. With a fully duplex line it is possible to transmit in both directions. Simplex
lines are already defined within the general model. A duplex line can obviously be
described as two simplex lines, one in each direction; thus, a system where all lines
are fully duplex can be described by the following restriction:

� Reciprocal communication: ∀x ∈ E, Nin(x) = Nout(x). In other words, if
(x, y) ∈ 
E then also (y, x)∈ 
E.

Notice that, however, (x, y) �= (y, x), and in general lx(x, y) �= lx(y, x); furthermore,
x might not know that these two links are connections to and from the same entity. A
system with fully duplex links that offers such a knowledge is defined by the following
restriction.

� Bidirectional links: ∀x ∈ E, Nin(x) = Nout(x) and lx(x, y) = lx(y, x).

IMPORTANT. The case of Bidirectional Links is special. If it holds, we use a
simplified terminology. The network is viewed as an undirected graph G = (V,E)
(i.e., ∀ x,y∈ E , (x,y)= (y, x) ), and the set N(x)= Nin(x)= Nout(x) will just be called
the set of neighbors of x. Note that in this case, m( 
G) = | 
E| = 2 |E| = 2 m(G).

For example, in Figure 1.2 a graph 
G is depicted where the Bidirectional Links
restriction and the corresponding undirected graph G hold.

Reliability Restrictions Other types of restrictions are those related to reliability,
faults, and their detection.
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FIGURE 1.2: In a network with Bidirectional Links we consider the corresponding undirected

graph.
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Detection of Faults Some systems might provide a reliable fault-detection mecha-
nism. Following are two restrictions that describe systems that offer such capabilities
in regard to component failures:

� Edge failure detection: ∀ (x, y) ∈ 
E, both x and y will detect whether (x, y) has
failed and, following its failure, whether it has been reactivated.
� Entity failure detection:∀x ∈ V , all in- and out-neighbors of x can detect whether

x has failed and, following its failure, whether it has recovered.

Restricted Types of Faults In some systems only some types of failures can occur:
for example, messages can be lost but not corrupted. Each situation will give rise to a
corresponding restriction. More general restrictions will describe systems or situations
where there will be no failures:

� Guaranteed delivery: Any message that is sent will be received with its content
uncorrupted.

Under this restriction, protocols do not need to take into account omissions or
corruptions of messages during transmission. Even more general is the following:

� Partial reliability: No failures will occur.

Under this restriction, protocols do not need to take failures into account. Note
that under Partial Reliability, failures might have occurred before the execution of a
computation. A totally fault-free system is defined by the following restriction.

� Total reliability: Neither have any failures occurred nor will they occur.

Clearly, protocols developed under this restriction are not guaranteed to work
correctly if faults occur.

Topological Restrictions In general, an entity is not directly connected to all
other entities; it might still be able to communicate information to a remote entity,
using others as relayer. A system that provides this capability for all entities is char-
acterized by the following restriction:

� Connectivity: The communication topology 
G is strongly connected.

That is, from every vertex in 
G it is possible to reach every other vertex. In case
the restriction “Bidirectional Links” holds as well, connectedness will simply state
that G is connected.
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Time Restrictions An interesting type of restrictions is the one relating to time.
In fact, the general model makes no assumption about delays (except that they are
finite).

� Bounded communication delays: There exists a constant � such that, in the
absence of failures, the communication delay of any message on any link is at
most �.

A special case of bounded delays is the following:

� Unitary communication delays: In the absence of failures, the communication
delay of any message on any link is one unit of time.

The general model also makes no assumptions about the local clocks.

� Synchronized clocks: All local clocks are incremented by one unit simultane-
ously and the interval of time between successive increments is constant.

1.4 COST AND COMPLEXITY

The computing environment we are considering is defined at an abstract level. It
models rather different systems (e.g., communication networks, distributed systems,
data networks, etc.), whose performance is determined by very distinctive factors and
costs.

The efficiency of a protocol in the model must somehow reflect the realistic costs
encountered when executed in those very different systems. In other words, we need
abstract cost measures that are general enough but still meaningful.

We will use two types of measures: the amount of communication activities and
the time required by the execution of a computation. They can be seen as measuring
costs from the system point of view (how much traffic will this computation generate
and how busy will the system be?) and from the user point of view (how long will it
take before I get the results of the computation?).

1.4.1 Amount of Communication Activities

The transmission of a message through an out-port (i.e., to an out-neighbor) is the basic
communication activity in the system; note that the transmission of a message that will
not be received because of failure still constitutes a communication activity. Thus,
to measure the amount of communication activities, the most common function used
is the number of message transmissions M, also called message cost. So in general,
given a protocol, we will measure its communication costs in terms of the number of
transmitted messages.

Other functions of interest are the entity workload Lnode =M/|V |, that is, the
number of messages per entity, and the transmission load Llink =M/|E|, that is,
the number of messages per link.
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Messages are sequences of bits; some protocols might employ messages that are
very short (e.g., O(1) bit signals), others very long (e.g., .gif files). Thus, for a more
accurate assessment of a protocol, or to compare different solutions to the same
problem that use different sizes of messages, it might be necessary to use as a cost
measure the number of transmitted bits B also called bit complexity.

In this case, we may sometimes consider the bit-defined load functions: the en-
tity bit-workload Lbnode = B/|V |, that is, the number of bits per entity, and the
transmission bit-load Lblink = B/|E|, that is, the number of bits per link.

1.4.2 Time

An important measure of efficiency and complexity is the total execution delay, that
is, the delay between the time the first entity starts the execution of a computation and
the time the last entity terminates its execution. Note that “time” is here intended as
the one measured by an observer external to the system and will also be called real
or physical time.

In the general model there is no assumption about time except that communi-
cation delays for a single message are finite in absence of failure (Axiom 1.3.1).
In other words, communication delays are in general unpredictable. Thus, even in
the absence of failures, the total execution delay for a computation is totally un-
predictable; furthermore, two distinct executions of the same protocol might expe-
rience drastically different delays. In other words, we cannot accurately measure
time.

We, however, can measure time assuming particular conditions. The measure usu-
ally employed is the ideal execution delay or ideal time complexity, T: the execution
delay experienced under the restrictions “Unitary Transmission Delays” and “Syn-
chronized Clocks;” that is, when the system is synchronous and (in the absence of
failure) takes one unit of time for a message to arrive and to be processed.

A very different cost measure is the causal time complexity, Tcausal. It is defined
as the length of the longest chain of causally related message transmissions, over
all possible executions. Causal time is seldom used and is very difficult to measure
exactly; we will employ it only once, when dealing with synchronous computations.

1.5 AN EXAMPLE: BROADCASTING

Let us clarify the concepts expressed so far by means of an example. Consider a dis-
tributed computing system where one entity has some important information unknown
to the others and would like to share it with everybody else.

This problem is called broadcasting and it is part of a general class of problems
called information diffusion. To solve this problem means to design a set of rules that,
when executed by the entities, will lead (within finite time) to all entities knowing the
information; the solution must work regardless of which entity had the information
at the beginning.

Let E be the collection of entities and 
G be the communication topology.
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To simplify the discussion, we will make some additional assumptions (i.e.,
restrictions) on the system:

1. Bidirectional links; that is, we consider the undirected graph G. (see Section
1.3.2).

2. Total reliability, that is, we do not have to worry about failures.

Observe that, if G is disconnected, some entities can never receive the information,
and the broadcasting problem will be unsolvable. Thus, a restriction that (unlike the
previous two) we need to make is as follows:

3. Connectivity; that is, G is connected.

Further observe that built in the definition of the problem, there is the assumption that
only the entity with the initial information will start the broadcast. Thus, a restriction
built in the definition is as follows:

4. Unique Initiator, that is, only one entity will start.

A simple strategy for solving the broadcast problem is the following:

“if an entity knows the information, it will share it with its neighbors.”

To construct the set of rules implementing this strategy, we need to define the set S of
status values; from the statement of the problem it is clear that we need to distinguish
between the entity that initially has the information and the others: {initiator, idle} ⊆
S. The process can be started only by the initiator; let I denote the information to be
broadcasted. Here is the set of rules B(x) (the same for all entities):

1. initiator ×ι −→ {send(I) to N (x)}
2. idle × Receiving(I) −→ {Process(I); send(I) to N (x)}
3. initiator × Receiving(I) −→ nil
4. idle ×ι −→ nil

where ι denotes the spontaneous impulse event and nil denotes the null action.
Because of connectivity and total reliability, every entity will eventually receive

the information. Hence, the protocol achieves its goal and solves the broadcasting
problem.

However, there is a serious problem with these rules:

the activities generated by the protocol never terminate.

Consider, for example, the simple system with three entities x, y, z connected to each
other (see Figure 1.3). Let x be the initiator, y and z be idle, and all messages travel at
the same speed; then y and z will be forever sending messages to each other (as well
as to x).
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FIGURE 1.3: An execution of Flooding.

To avoid this unwelcome effect, an entity should send the information to its neigh-
bors only once: the first time it acquires the information. This can be achieved by
introducing a new status done; that is S ={initiator, idle, done}.

1. initiator ×ι −→ {send(I ) to N (x); become done}
2. idle × Receiving(I) −→ {Process(I); become done; send(I) to N (x)}
3. initiator × Receiving(I) −→ nil
4. idle × ι −→ nil
5. done × Receiving(I) −→ nil
6. done × ι −→ nil

where become denotes the operation of changing status.
This time the communication activities of the protocol terminate: Within finite time

all entities become done; since a done entity knows the information, the protocol is
correct (see Exercise 1.12.1 ). Note that depending on transmission delays, different
executions are possible; one such execution in an environment composed of three
entities x, y, z connected to each other, where x is the initiator as depicted in Figure 1.3.

IMPORTANT. Note that entities terminate their execution of the protocol (i.e., be-
come done) at different times; it is actually possible that an entity has terminated while
others have not yet started. This is something very typical of distributed computations:
There is a difference between local termination and global termination.
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IMPORTANT. Notice also that in this protocol nobody ever knows when the entire
process is over. We will examine these issues in details in other chapters, in particular
when discussing the problem of termination detection.

The above set of rules correctly solves the problem of broadcasting. Let us now
calculate the communication costs of the algorithm.

First of all, let us determine the number of message transmissions. Each entity,
whether initiator or not, sends the information to all its neighbors. Hence the total
number of messages transmitted is exactly

∑
x∈E |N (x)| = 2 |E| = 2 m.

We can actually reduce the cost. Currently, when an idle entity receives the mes-
sage, it will broadcast the information to all its neighbors, including the entity from
which it had received the information; this is clearly unnecessary. Recall that, by the
Local Orientation axiom, an entity can distinguish among its neighbors; in particu-
lar, when processing a message, it can identify from which port it was received and
avoid sending a message there. The final protocol is as before with only this small
modification.

Protocol Flooding

1. initiator ×ι −→ {send(I) to N (x); become done}
2. idle × Receiving(I) −→ {Process(I); become done; send(I) to N (x)-sender}
3. initiator × Receiving(I) −→ nil
4. idle ×ι −→ nil
5. done × Receiving(I) −→ nil
6. done ×ι −→ nil

where sender is the neighbor that sent the message currently being processed.
This algorithm is called Flooding as the entire system is “flooded” with the message

during its execution, and it is a basic algorithmic tool for distributed computing. As
for the number of message transmissions required by flooding, because we avoid
transmitting some messages, we know that it is less than 2m; in fact, (Exercise 1.12.2):

M[Flooding] = 2m− n+ 1. (1.1)

Let us examine now the ideal time complexity of flooding.
Let d(x, y) denote the distance (i.e., the length of the shortest path) between x and y

in G. Clearly the message sent by the initiator has to reach every entity in the system,
including the furthermost one from the initiator. So, if x is the initiator, the ideal time
complexity will be r(x) = Max {d(x, y) : y ∈ E}, which is called the eccentricity (or
radius) of x. In other words, the total time depends on which entity is the initiator and
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thus cannot be known precisely beforehand. We can, however, determine exactly the
ideal time complexity in the worst case.

Since any entity could be the initiator, the ideal time complexity in the worst case
will be d(G) = Max {r(x) : x∈ E}, which is the diameter of G. In other words, the
ideal time complexity will be at most the diameter of G:

T[Flooding] ≤ d(G). (1.2)

1.6 STATES AND EVENTS

Once we have defined the behavior of the entities, their communication topology, and
the set of restrictions under which they operate, we must describe the initial conditions
of our environment. This is done first of all by specifying the initial condition of all
the entities. The initial content of all the registers of entity x and the initial value
of its alarm clock cx at time t constitute the initial internal state σ (x, 0) of x. Let∑

(0) = {σ (x, 0) : x ∈ E} denote the set of all the initial internal states.
Once

∑
(0) is defined, we have completed the static specification of the environ-

ment: the description of the system before any event occurs and before any activity
takes place.

We are, however, also interested in describing the system during the computational
activities, as well as after such activities. To do so, we need to be able to describe the
changes that the system undergoes over time. As mentioned before, the entities (and,
thus the environments) are reactive. That is, any activity of the system is determined
entirely by the external events. Let us examine these facts in more detail.

1.6.1 Time and Events

In distributed computing environments, there are only three types of external events:
spontaneous impulse (spontaneously), reception of a message (receiving), and alarm
clock ring (when).

When an external event occurs at an entity, it triggers the execution of an action
(the nature of the action depends on the status of the entity when the event occurs).
The executed action may generate new events: The operation send will generate a
receiving event, and the operation set alarm will generate a when event.

Note first of all that the events so generated might not occur at all. For example, a
link failure may destroy the traveling message, destroying the corresponding receiving
event; in a subsequent action, an entity may turn off the previously set alarm destroying
the when event.

Notice now that if they occur, these events will do so at a later time (i.e., when
the message arrives, when the alarm goes off). This delay might be known precisely in
the case of the alarm clock (because it is set by the entity); it is, however, unpredictable
in the case of message transmission (because it is due to the conditions external to the
entity). Different delays give rise to different executions of the same protocols with
possibly different outcomes.
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Summarizing, each event e is “generated” at some time t(e) and, if it occurs, it will
happen at some time later.

By definition, all spontaneous impulses are already generated before the execution
starts; their set will be called the set of initial events. The execution of the protocol
starts when the first spontaneous impulses actually happen; by convention, this will
be time t = 0.

IMPORTANT. Notice that “time” is here considered as seen by an external ob-
server and is viewed as real time. Each real time instant t separates the axis of time
into three parts: past (i.e., {t ′ < t}), present (i.e., t), and future (i.e., {t ′ > t}). All
events generated before t that will happen after t are called the future at t and de-
noted by Future(t); it represents the set of future events determined by the execution
so far.

An execution is fully described by the sequence of events that have occurred. For small
systems, an execution can be visualized by what is called a Time×Event Diagram
(TED) . Such a diagram is composed of temporal lines, one for each entity in the
system. Each event is represented in such a diagram as follows:

A Receiving event r is represented as an arrow from the point tx(r) in the temporal
line of the entity x generating e (i.e., sending the message) to the point ty(r)
in the temporal line of the entity y where the events occur (i.e., receiving the
message).

A When event w is represented as an arrow from point t ′x(w) to point t ′′x (w) in the
temporal line of the entity setting the clock.

A Spontaneously event ι is represented as a short arrow indicating point tx(ι) in
the temporal line of the entity x where the events occur.

For example, in Figure 1.4 is depicted the TED corresponding to the execution of
Protocol Flooding of Figure 1.3.

x

y

z

FIGURE 1.4: Time×Event Diagram
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1.6.2 States and Configurations

The private memory of each entity, in addition to the behavior, contains a set of
registers, some of them already initialized, others to be initialized during the execution.
The content of all the registers of entity x and the value of its alarm clock cx at time
t constitute what is called the internal state of x at t and is denoted by σ (x, t). We
denote by

∑
(t) the set of the internal states at time t of all entities. Internal states

change with time and the occurrence of events.
There is an important fact about internal states. Consider two different environ-

ments, E1 and E2, where, by accident, the internal state of x at time t is the same.
Then x cannot distinguish between the two environments, that is, x is unable to tell
whether it is in environment E1 or E2.

There is an important consequence. Consider the situation just described: At time t,
the internal state of x is the same in bothE1 andE2. Assume now that also by accident,
exactly the same event occurs at x (e.g., the alarm clock rings or the same message
is received from the same neighbor). Then x will perform exactly the same action in
both cases, and its internal state will continue to be the same in both situations.

Property 1.6.1 Let the same event occur at x at time t in two different executions,
and let σ1 and σ2 be its internal states when this happens. If σ1 = σ2, then the new
internal state of x will be the same in both executions.

Similarly, if two entities have the same internal state, they cannot distinguish between
each other. Furthermore, if by accident, exactly the same event occurs at both of them
(e.g., the alarm clock rings or the same message is received from the same neighbor),
then they will perform exactly the same action in both cases, and their internal state
will continue to be the same in both situations.

Property 1.6.2 Let the same event occur at x and y at time t, and let σ1 and σ2 be
their internal states, respectively, at that time. If σ1 = σ2, then the new internal state
of x and y will be the same.

Remember: Internal states are local and an entity might not be able to infer from
them information about the status of the rest of the system. We have talked about the
internal state of an entity, initially (i.e., at time t= 0) and during an execution. Let us
now focus on the state of the entire system during an execution.

To describe the global state of the environment at time t, we obviously need to
specify the internal state of all entities at that time; that is, the set

∑
(t). However, this

is not enough. In fact, the execution so far might have already generated some events
that will occur after time t; these events, represented by the set Future(t), are integral
part of this execution and must be specified as well. Specifically, the global state,
called configuration, of the system during an execution is specified by the couple

C
(
t
) = (∑(t), Future

(
t
))
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The initial configuration C(0) contains not only the initial set of states
∑

(0) but
also the set Future(0) of the spontaneous impulses. Environments that differ only in
their initial configuration will be called instances of the same system.

The configuration C(t) is like a snapshot of the system at time t.

1.7 PROBLEMS AND SOLUTIONS (�)

The topic of this book is how to design distributed algorithms and analyze their
complexity. A distributed algorithm is the set of rules that will regulate the behaviors
of the entities. The reason why we may need to design the behaviors is to enable
the entities to solve a given problem, perform a defined task, or provide a requested
service.

In general, we will be given a problem, and our task is to design a set of rules that
will always solve the problem in finite time. Let us discuss these concepts in some
details.

Problems To give a problem (or task, or service) P means to give a description of
what the entities must accomplish. This is done by stating what the initial conditions
of the entities are (and thus of the system), and what the final conditions should be;
it should also specify all given restrictions. In other words,

P = 〈PINIT, PFINAL, R〉,

where PINIT and PFINAL are predicates on the values of the registers of the entities,
and R is a set of restrictions. Let wt (x) denote the value of an input register w(x) at
time t and {wt } = {wt (x) : x ∈ E} the values of this register at all entities at that time.
So, for example, {status0} represents the initial value of the status registers of the
entities.

For example, in the problem Broadcasting (I ) described in Section 1.5, the initial
and final conditions are given by the predicates

PINIT(t) ≡ “ only one entity has the information at time t” ≡
∃x ∈ E (valuet (x) = I ∧ ∀y �= x (valuet (y) = ø)),

PFINAL(t) ≡ “ every entity has the information at time t” ≡
∀x ∈ E (valuet (x) = I ).

The restrictions we have imposed on our solution are BL (Bidirectional Links), TR
(Total Reliability), and CN (Connectivity). Implicit in the problem definition there is
also the condition that only the entity with the information will start the execution
of the solution protocol; denote by UI the predicate describing this restriction, called
Unique Initiator. Summarizing, for Broadcasting, the set of restrictions we have made
is {BL, TR, CN, UI}.
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Status A solution protocol B for P = 〈PINIT, PFINAL, R〉 will specify how the
entities will accomplish the required task. Part of the design of the set of rules B(x) is
the definition of the set of status values S, that is, the values that can be held by the
status register status(x).

We call initial status values those values of S that can be held at the start of the
execution of B(x) and we shall denote their set by SINIT. By contrast, terminal status
values are those values that once reached, cannot ever be changed by the protocol;
their set shall be denoted by STERM. All other values in S will be called intermediate
status values.

For example, in the protocol Flooding described in Section 1.5, SINIT={initiator,
idle} and STERM={done}.

Depending on the restrictions of the problem, only entities in specific initial status
values will start the protocol; we shall denote by SSTART ⊆ SINIT the set of those
status values. Typically, SSTART consists of only one status; for example, in Flooding,
SSTART={initiator}. It is possible to rewrite a protocol so that this is always the case
(see Exercise 1.12.5).

Among terminal status values we shall distinguish those in which no further activity
can take place; that is, those where the only action is nil. We shall call such status
values final and we shall denote by SFINAL ⊆ STERM the set of those status values.
For example, in Flooding, SFINAL={done}.

Termination Protocol B terminates if, for all initial configurations C(0) satisfying
PINIT, and for all executions starting from those configurations, the predicate

Terminate (t) ≡ ({statust } ⊆ STERM)∧ (Future(t) = ∅)

holds for some t > 0, that is, all entities enter a terminal status after a finite time and
all generated events have occurred.

We have already remarked on the fact that entities might not be aware that the
termination has occurred. In general, we would like each entity to know at least of its
termination. This situation, called explicit termination, is said to occur if the predicate

Explicit-Terminate (t) ≡ ({statust } ⊆ SFINAL)

holds for some t > 0, that is, all entities enter a final status after a finite time.

Correctness Protocol B is correct if, for all executions starting from initial con-
figurations satisfying PINIT,

∃t > 0 : Correct(t)

holds, where Correct(t) ≡ (∀t ′ ≥ t, PFINAL(t)); that is, the final predicate eventually
holds and does not change.
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Solution Protocol The set of rules B solves problem P if it always correctly
terminates under the problem restrictions R. As there are two types of termination
(simple and explicit), we will have two types of solutions:

Simple Solution[B,P] where the predicate

∃t > 0 (Correct(t)∧ Terminate(t))

holds, under the problem restrictions R, for all executions starting from initial con-
figurations satisfying PINIT; and

Explicit Solution[B,P] where the predicate

∃t > 0 (Correct(t)∧ Explicit-Terminate(t))

holds, under the problem restrictions R, for all executions starting from initial con-
figurations satisfying PINIT.

1.8 KNOWLEDGE

The notions of information and knowledge are fundamental in distributed computing.
Informally, any distributed computation can be viewed as the process of acquiring
information through communication activities; conversely, the reception of a message
can be viewed as the process of transforming the state of knowledge of the processor
receiving the message.

1.8.1 Levels of Knowledge

The content of the local memory of an entity and the information that can be derived
from it constitute the local knowledge of an entity. We denote by

p ∈ LKt [x]

the fact that p is local knowledge at x at the global time instant t. By definition,
lx ∈ LKt [x] for all t, that is, the (labels of the) in- and out-edges of x are time-
invariant local knowledge of x.

Sometimes it is necessary to describe knowledge held by more than one entity at a
given time. Information p is said to be implicit knowledge inW ⊆ E at time t, denoted
by p ∈ IKt [W ], if at least one entity in W knows p at time t, that is,

p ∈ IKt [W ] iff ∃x ∈ W (p ∈ LKt [x]).

A stronger level of knowledge in a group W of entities is held when, at a given
time t, p is known to every entity in the group, denoted by p ∈ EKt [W ], that is

p ∈ EKt [W ] iff ∀x ∈ W (p ∈ LKt [x]).
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In this case, p is said to be explicit knowledge in W ⊆ E at time t.
Consider for example broadcasting discussed in the previous section. Initially, at

time t = 0, only the initiator s knows the information I; in other words, I ∈ LK0[s].
Thus, at that time, I is implicitly known to all entities, that is, I ∈ IK0[E]. At the end
of the broadcast, at time t ′, every entity will know the information; in other words,
I ∈ EKt ′ [E].

Notice that, in the absence of failures, knowledge cannot be lost, only gained,
that is, for all t ′ > t and all W ⊆ E , if no failure occurs, IKt [W ] ⊆ IKt ′ [W ] and
EKt [W ] ⊆ EKt ′ [W ].

Assume that a fact p is explicit knowledge in W at time t. It is possible that some
(maybe all) entities are not aware of this situation. For example, assume that at time
t, entities x and y know the value of a variable of z, say its ID; then the ID of z is
explicit knowledge in W={x, y, z}; however, z might not be aware that x and y know
its ID. In other words, when p ∈ EKt [W ], the fact “p ∈ EKt [W ]" might not be even
locally known to any of the entities in W.

This gives rise to the highest level of knowledge within a group: common knowl-
edge. Information p is said to be common knowledge inW ⊆ E at time t , denoted by
p ∈ CKt [W ], if and only if at time t every entity in W knows p, and knows that every
entity in W knows p, and knows that entity in W knows that every entity in W knows
p, and . . . , etcetera, that is,

p ∈ CKt [W ] iff
∧

1≤i≤∞ Pi,

where the Pi’s are the predicates defined by: P1 = [p ∈ ESt [W ]] and Pi+1 = [Pi ∈
EKt [W ]].

In most distributed problems, it will be necessary for the entities to achieve com-
mon knowledge. Fortunately, we do not always have to go to ∞ to reach common
knowledge, and a finite number of steps might actually do, as indicated by the fol-
lowing example.

Example (muddy forehead): Imagine n perceptive and intelligent school children
playing together during recess. They are forbidden to play in the mud puddles, and
the teacher has told them that if they do, there will be severe consequences. Each
child wants to keep clean, but the temptation to play with mud is too great to resist.
As a result, k of the children get mud on their foreheads. When the teacher arrives,
she says, “I see that some of you have been playing in the mud puddle: the mud
on your foreheads is a dead giveaway !” and then continues, “The guilty ones who
come forward spontaneously will be given a small penalty; those who do not, will
receive a punishment they will not easily forget.” She then adds, “I am going to leave
the room now, and I will return periodically; if you decide to confess, you must all
come forward together when I am in the room. In the meanwhile, everybody must
sit absolutely still and without talking.”

Each child in the room clearly understands that those with mud on their foreheads
are “dead meat,” who will be punished no matter what. Obviously, the children do
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not want to confess if the foreheads are clean, and clearly, if the foreheads are dirty,
they want to go forward so as to avoid their terrible punishment for those who do not
confess. As each child shares the same concern, the collective goal is for the children
with clean foreheads not to confess and for those with muddy foreheads to go forward
simultaneously, and all of this without communication.

Let us examine this goal. The first question is as follows: can a child x find out
whether his/her forehead is dirty or not ? She/he can see how many, say fx , of the
other children are dirty; thus, the question is if x can determine whether k = fx or
k = fx + 1.

The second, more complex question is as follows: can all the children with mud
on their foreheads find out at the same time so that they can go forward together ? In
other words, can the exact value of k become common knowledge ?

The children, being perceptive and intelligent, determine that the answer to both the
questions is positive and find the way to achieve the common goal and thus common
knowledge without communication (Exercise 1.12.6).

IMPORTANT. When working in a submodel, all the restrictions defining the sub-
model are common knowledge to all entities (unless otherwise specified).

1.8.2 Types of Knowledge

We can have various types of knowledge, such as knowledge about the communication
topology, about the labeling of the communication graph, about the input data of the
communicating entities. In general, if we have some knowledge of the system, we
can exploit it to reduce the cost of a protocol, although this may result in making the
applicability of the protocol more limited.

A type of knowledge of particular interest is the one regarding the communication
topology (i.e., the graph 
G). In fact, as will be seen later, the complexity of a com-
putation may vary greatly depending on what the entities know about 
G. Following
are some elements that, if they are common knowledge to the entities, may affect the
complexity.

1. Metric Information: numeric information about the network; for example, num-
ber n = |V | of nodes, number m = |E| of links, diameter, girth, etcetera. This
information can be exact or approximate.

2. Topological Properties: knowledge of some properties of the topology; for
example, “ 
G is a ring network,” “ 
G does not have cycles,” “ 
G is a Cayley
graph,” etcetera.

3. Topological Maps: a map of the neighborhood of the entity up to distance d, a
complete “map” of 
G (e.g., the adjacency matrix of 
G); a complete “map” of
( 
G,l) (i.e., it contains also the labels), etcetera.

Note that some types of knowledge imply other knowledge; for example, if an
entity with k neighbors knows that the network is a complete undirected graph, then
it knows that n = k + 1.
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As a topological map provides all possible metric and structural information, this
type of knowledge is very powerful and important. The strongest form of this type is
full topological knowledge: availability at each entity of a labeled graph isomorphic
to ( 
G,l), the isomorphism, and its own image, that is, every entity has a complete
map of (v, l) with the indication, “You are here.”

Another type of knowledge refers to the labeling l. What is very important is
whether the labeling has some global consistency property.

We can distinguish two other types, depending on whether the knowledge is about
the (input) data or the status of the entities and of the system, and we shall call them
type-D and type-S, respectively.

Examples of type-D knowledge are the following: Unique identifiers: all input
values are distinct; Multiset: input values are not necessarily identical; Size: number
of distinct values.

Examples of type-S knowledge are the following: System with leader: there is
a unique entity in status “leader”; Reset: all nodes are in the same status; Unique
initiator: there is a unique entity in status “initiator.” For example, in the broadcasting
problem we discussed in Section 1.5, this knowledge was assumed as a part of the
problem definition.

1.9 TECHNICAL CONSIDERATIONS

1.9.1 Messages

The content of a message obviously depends on the application; in any case, it consists
of a finite (usually bounded) sequence of bits.

The message is typically divided into subsequences, called fields, with a predefined
meaning (“type”) within the protocol.

The examples of field types are the following: message identifier or header used
to distinguish between different types of messages; originator and destination fields
used to specify the (identity of the) entity originating this message and of the entity
to whom the message is intended for; data fields used to carry information needed in
the computation (the nature of the information obviously depends on the particular
application under consideration).

Thus, in general, a message M will be viewed as a tuple M = 〈f1, f2, . . . fk〉
where k is a (small) predefined constant, and each fi (1 ≤ i ≤ k) is a field of a
specified type, each type of a fixed length.

So, for example, in protocol Flooding, there is only one type of message; it is
composed of two fields M = 〈f1, f2〉 where f1 is a message identifier (containing
the information: “this is a broadcast message”), and f2 is a data field containing the
actual information I being broadcasted.

If (the limit on) the size of a message is a system parameter (i.e., it does not
depend on the particular application), we say that the system has bounded messages.
Such is, for example, the limit imposed on the message length in packet-switching
networks, as well as on the length of control messages in circuit-switching networks
(e.g., telephone networks) and in message-switching networks.
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Bounded messages are also called packets and contain at most µ(G) bits, where
µ(G) is the system-dependent bound called packet size. Notice that, to send a sequence
of K bits in G will require the transmission of at least �K/µ(G)� packets.

1.9.2 Protocol

Notation A protocol B(x) is a set of rules. We have already introduced in Section
1.5 most of the notation for describing those rules. Let us now complete the description
of the notation we will use for protocols. We will employ the following conventions:

1. Rules will be grouped by status.

2. If the action for a (status,event) pair is nil, then, for simplicity, the corresponding
rule will be omitted from the description. As a consequence, if no rule is described
for a (status,event) pair, the default will be that the pair enables the Null action.

WARNING. Although convenient (it simplifies the writing), the use of this conven-
tion must generate extra care in the description: If we forget to write a rule for an
event occurring in a given status, it will be assumed that a rule exists and the action
is nil.

3. If an action contains a change of status, this operation will be the last one before
exiting the action.

4. The set of status values of the protocol, and the set of restrictions under which
the protocol operates will be explicit.

Using these conventions, the protocol Flooding defined in Section 1.5 will be
written as shown in Figure 1.5.

Precedence The external events are as follows: spontaneous impulse (Sponta-
neously), reception of a message (Receiving), and alarm clock ring (When). Different
types of external events can occur simultaneously; for example, the alarm clock might
ring at the same time a message arrives. The simultaneous events will be processed
sequentially. To determine the order in which they will be processed, we will use the
following precedence between external events:

Spontaneously > When > Receiving;

that is, the spontaneous impulse takes precedence over the alarm clock, which has
precedence over the arrival of a message.

At most one spontaneous impulse can always occur at an entity at any one time.
As there is locally only one alarm clock, at any time there will be at most one When
event. By contrast, it is possible that more than one message arrive at the same time
to an entity from different neighbors; should this be the case, these simultaneous
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PROTOCOL Flooding .

� Status Values: S = {INITIATOR, IDLE, DONE};
SINIT = {INITIATOR, IDLE};
STERM = {DONE}.
� Restrictions: Bidirectional Links, Total Reliability, Connectivity, and Unique Initiator.

INITIATOR
Spontaneously
begin

send(M) to N (x);
become DONE;

end

IDLE
Receiving(I)
begin

Process(M);
send(M) to N (x)− {sender};
become DONE;

end

FIGURE 1.5: Flooding Protocol

Receiving events have all the same precedence and will be processed sequentially in
an arbitrary order.

1.9.3 Communication Mechanism

The communication mechanisms of a distributed computing environment must handle
transmissions and arrivals of messages. The mechanisms at an entity can be seen as
a system of queues.

Each link (x, y) ∈ 
E corresponds to a queue, with access at x and exit at y; the
access is called out-port and the exit is called in-port.

Each entity has thus two types of ports: out-ports, one for each out-neighbor (or
out-link), and in-port, one for each in-neighbor (or in-link). At an entity, each out-
port has a distinct label (recall the Local Orientation axiom (Axiom 1.3.2)) called
port number: the out-port corresponding to (x, y) has label lx(x, y); similarly for the
in-ports.

The sets Nin and Nout will in practice consist of the port numbers associated to
those neighbors; this is because an entity has no other information about its neighbors
(unless we add restrictions).

The command “send M to W” will have a copy of the message M sent through
each of the out-ports specified by W.

When a message M is sent through an out-port l, it is inserted in the corresponding
queue. In absence of failures (recall the Finite Communication Delays axiom), the
communication mechanism will eventually remove it from the queue and deliver it
to the other entity through the corresponding in-port, generating the Receiving (M)
event; at that time the variable sender will be set to l.
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1.10 SUMMARY OF DEFINITIONS

Distributed Environment: Collection of communicating computational entities.

Communication: Transmission of message.

Message: Bounded sequence of bits.

Entity’s Capability: Local processing, local storage, access to a local clock, and
communication.

Entity’s Status Register: At any time an entity status register has a value from a
predefined set of status values.

External Events: Arrival of a message, alarm clock ring, and spontaneous impulse.

Entity’s Behavior: Entities react to external events. The behavior is dictated by a set
of rules. Each rule has the form

STATUS × EVENT→ Action

specifying what the entity has to do if a certain external event occurs when the
entity is in a given status. The set of rules must be nonambiguous and complete.

Actions: An action is an indivisible (i.e., uninterruptible) finite sequence of operations
(local processing, message transmission, change of status, and setting of alarm
clock).

Homogeneous System: A system is homogeneous if all the entities have the same
behavior. Every system can be made homogeneous.

Neighbors: The in-neighbors of an entity are those entities from which x can receive
a message directly; the out-neighbors are those to which x can send a message
directly.

Communication Topology: The directed graph G = (V,E) defined by the
neighborhood relation. If the Bidirectional Links restriction holds, then G is
undirected.

Axioms: There are two axioms: local orientation and finite communication delays.

Local Orientation: An entity can distinguish between its out-neighbors and its
in-neighbors.

Finite Communication Delays: In absence of failures, a message eventually arrives.

Restriction: Any additional property.

1.11 BIBLIOGRAPHICAL NOTES

Several attempts have been made to derive formalisms capable of describing both dis-
tributed systems and computations performed in such systems. A significant amount
of study has been devoted to defining formalisms, which would ease the task of
formally proving properties of distributed computation (e.g., absence of deadlock,
liveness, etc.). The models proposed for systems of concurrent processes do provide
both a formalism for describing a distributed computation and a proof system that
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can be employed within the formalism; such is, for example, the Unity model of
Mani Chandi and Jayadev Misra [1]. Other models, whose intended goal is still to
provide a proof system, have been specifically tailored for distributed computations.
In particular, the Input–Output Automata model of Nancy Lynch and Mark Tuttle
[4] provides a powerful tool that has helped discover and fix “bugs” in well-known
existing protocols.

For the investigators involved in the design and analysis of distributed algorithms,
the main concern rests with efficiency and complexity; proving correctness of an
algorithm is a compulsory task, but it is usually accomplished using traditional
mathematical tools (which are generally considered informal techniques) rather than
with formal proof systems. The formal models of computation employed in these
studies, as well as in the one used in this book, mainly focus on those factors
that are directly related to efficiency of a distributed computation and complexity
of a distributed problem: the underlining communication network, the communi-
cation primitives, the amount and type of knowledge available to the processors,
etcetera.

Modal logic, and in particular the notion of common knowledge, is a useful tool to
reason about distributed computing environments in presence of failures. The notion
of knowledge used here was developed independently by Joseph Halpern and Yoram
Moses [2], Daniel J. Lehmann [3], and Stanley Rosenschein [5].

The model we have described and will employ in this book uses reactive enti-
ties (they react to external stimuli). Several formal models (including input–output
Automata) use instead active entities. To understand this fundamental difference, con-
sider a message in transit toward an entity that is expecting it, with no other activity
in the system. In an active model, the entity will attempt to receive the message, even
while it is not there; each attempt is an event; hence, this simple situation can actually
cause an unpredictable number of events. By contrast, in a reactive model, the entity
does nothing; the only event is the arrival of the message that will “wake up” the
entity and trigger its response.

Using the analogy of waiting for the delivery of a pizza, in the active model, you
(the entity) must repeatedly open the door (i.e., act) to see if the person supposed to
deliver the pizza has arrived; in the reactive model, you sit in the living room until
the bell rings and then go and open the door (i.e., react).

The two models are equally powerful; they just represent different ways of looking
at and expressing the world. It is our contention that at least for the description and
the complexity analysis of protocols and distributed algorithms, the reactive model is
more expressive and simpler to understand, to handle, and to use.

1.12 EXERCISES, PROBLEMS, AND ANSWERS

1.12.1 Exercises and Problems

Exercise 1.12.1 Prove that the flooding technique introduced in Section 1.5 is cor-
rect, that is, it terminates within finite time, and all entities will receive the information
held by the initiator.
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Exercise 1.12.2 Determine the exact number of message transmissions required
by the protocol Flooding described in Section 1.5.

Exercise 1.12.3 In Section 1.5 we have solved the broadcasting problem under
the restriction of Bidirectional Links. Solve the problem using the Reciprocal
Communication restriction instead.

Exercise 1.12.4 In Section 1.5 we have solved the broadcasting problem under the
restriction of Bidirectional Links. Solve the problem without this restriction.

Exercise 1.12.5 Show that any protocol B can be rewritten so that SSTART consists
of only one status. (Hint: Introduce a new input variable.)

Exercise 1.12.6 Consider the muddy children problem discussed in Section
1.8.1. Show that, within finite time, all the children with a muddy forehead can
simultaneously determine that they are not clean. (Hint: Use induction on k.)

Exercise 1.12.7 Half-duplex links allow communication to go in both directions, but
not simultaneously. Design a protocol that implements half-duplex communication
between two connected entities, a and b. Prove its correctness and analyze its
complexity.

Exercise 1.12.8 Half-duplex links allow communication to go in both directions, but
not simultaneously. Design a protocol that implements half-duplex communication
between three entities, a, b and c, connected to each other. Prove its correctness and
analyze its complexity.

1.12.2 Answers to Exercises

Answer to Exercise 1.12.1
Let us prove that every entity will indeed receive the message. The proof is by
induction on the distance d of an entity from the initiator s. The result is clearly true
for d = 0. Assume that it is true for all entities at most at distance d. Let x be a process
at distance d + 1 from s. Consider a shortest path s → x1 → . . .→ xd−1 → x

between s and x. As process xd−1 is at distance d − 1 from s, then by the induction
assumption it receives the message. If xd−1 received the message from x, then
this means that x already received the message and the proof is completed. Other-
wise, xd−1 received the message from a different neighbor, and it then sends the
message to all its neighbors, including x. Hence x will eventually receive the message.

Answer to Exercise 1.12.2
The total number of messages sent without the improvement was

∑
x∈E |N (x)| =

2|E| = 2m; in Flooding, every entity (except the initiator) will send one message
less. Hence the total number of messages is 2m− (|V | − 1) = 2m− n+ 1.
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Answer to Exercise 1.12.6 (Basis of Induction only)
Consider first the case k= 1: Only one child, say z, has a dirty forehead. In this case,
z will see that everyone else has a clean forehead; as the teacher has said that at least
one child has a dirty forehead, z knows that he/she must be the one. Thus, when the
teacher arrives, he/she comes forward. Notice that a clean child sees that z is dirty but
finds out that his/her own forehead is clean only when z goes forward.
Consider now the case k = 2: There are two dirty children, a and b; a sees the dirty
forehead of b and the clean one of everybody else. Clearly he/she does not know
about his status; he/she knows that if he/she is clean, b is the only one who is dirty
and will go forward when the teacher arrives. So, when the teacher comes and b does
not go forward, a understands that his/her forehead is also dirty. (A similar reasoning
is carried out by b.) Thus, when the teacher returns the second time, both a and b go
forward.
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CHAPTER 2

Basic Problems and Protocols

The aim of this chapter is to introduce some of the basic, primitive, computational
problems and solution techniques. These problems are basic in the sense that their
solution is commonly (sometimes frequently) required for the functioning of the sys-
tem (e.g., broadcast and wake-up); they are primitive in the sense that their computa-
tion is often a preliminary step or a module of complex computations and protocols
(e.g., traversal and spanning-tree construction).

Some of these problems (e.g., broadcast and traversal), by their nature, are started
by a single entity; in other words, these computational problems have, in their defini-
tion, the restriction unique initiator (UI). Other problems (e.g., wake-up and spanning-
tree construction) have no such restriction. The computational differences created by
the additional assumption of a single initiator can be dramatic.

In this chapter we have also included the discussions on the (multiple-initiators)
computations in tree networks. Their fundamental importance derives from the fact
that most global problems (i.e., problems that, to be solved, require the involvement
of all entities), oftentimes can be correctly, easily, and efficiently solved by designing
a protocol for trees and executing it on a spanning-tree of the network.

All the problems considered here require, for their solution, the Connectivity (CN)
restriction (i.e., every entity must be reachable from every other entity). In general, and
unless otherwise stated, we will also assume Total Reliability (TR) and Bidirectional
Links (BL). These three restrictions are commonly used together, and the set R= {BL,
CN, TR} will be called the set of standard restrictions.

The techniques we introduce in this chapter to solve these problems are basic ones;
once properly understood, they form a powerful and an essential toolset that can be
effectively employed by every designer of distributed algorithms.

2.1 BROADCAST

2.1.1 The Problem

Consider a distributed computing system where only one entity, x, knows some im-
portant information; this entity would like to share this information with all the other
entities in the system; see Figure 2.1. This problem is called broadcasting (Bcast),

Design and Analysis of Distributed Algorithms, by Nicola Santoro
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FIGURE 2.1: Broadcasting Process.

and already we have started its examination in the previous chapter. To solve this
problem means to design a set of rules that, when executed by the entities, will lead
(within finite time) to a configuration where all entities will know the information; the
solution must work regardless of which entity has the information at the beginning.

Built-in the definition of the problem, there is the assumption, Unique Initiator
(UI), that only one entity will start the task. Actually, this assumption is further
restricted, because the unique initiator must be the one with the initial information;
we shall denote this restriction by UI+.

To solve this problem, every entity must clearly be involved in the computation.
Hence, for its solution, broadcasting requires the Connectivity (CN) restriction (i.e.,
every entity must be reachable from every other entity) otherwise some entities will
never receive the information. We have seen a simple solution to this problem, Flood-
ing, under two additional restrictions: Total Reliability (TR) and Bidirectional Links
(BL). Recall that the set R = {BL, CN, TR} is the set of standard restrictions .

2.1.2 Cost of Broadcasting

As we have seen, the solution protocol Flooding uses O(m) messages and, in the worst
case, O(d) ideal time units, where d is the diameter of the network.

The first and natural question is whether these costs could be reduced significantly
(i.e., in order of magnitude) using a different approach or technique, and if so, by how
much. This question is equivalent to ask what is the complexity of the broadcasting
problem. To answer this type of questions we need to establish a lower bound: to
find a bound f (typically, a function of the size of the network) and to prove that the
cost of every solution algorithm is at least f. In other words, a lower bound is needed
irrespective of the protocol, and it depends solely on the problem; hence, it is an
indication of how complex the problem really is.

We will denote byM(Bcast/RI+) and T (Bcast/RI+) the message and the time
complexity of broadcasting under RI+ = R ∪ UI+, respectively.

A lower bound on the amount of ideal time units required to perform a broadcast is
simple to derive: Every entity must receive the information regardless of how distant
they are from the initiator, and any entity could be the initiator. Hence, in the worst
case,

T (Bcast/RI+) ≥ Max{d(x, y) : x, y ∈ V } = d. (2.1)
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The fact that Flooding performs the broadcast in d ideal time units means that the
lower bound is tight (i.e., it can be achieved) and that Flooding is time optimal. In
other words, we know exactly the ideal time complexity of broadcasting:

Property 2.1.1 The ideal time complexity of broadcasting under RI+ is �(d).

Let us now consider the message complexity. An obvious lower bound on the number
of messages is also easy to derive: in the end, every entity must know the information;
thus a message must be received by each of the n−1 entities, which initially did not
have the information. Hence,

M(Bcast/RI+) ≥ n − 1.

With a little extra effort, we can derive a more accurate lower bound:

Theorem 2.1.1 M(Bcast/RI+) ≥ m.

Proof. Assume that there exists a correct broadcasting protocol A which, in each
execution, under RI+ on every G, uses fewer than m(G) messages. This means that
there is at least one link in G where no message is transmitted in any direction during
an execution of the algorithm. Consider an execution of the algorithm on G, and let
e= (x, y) ∈ E be the link where no message is transmitted by A. Now construct a
new graph G′ from G by removing the edge e, and adding a new node z and two new
edges e1 = (x, z) and e2 = (y, z) (see Fig. 2.2). Set z in a noninitiator status. Run
exactly the same execution of A on the new graph G′: since no message was sent
along (x, y), this is possible. But since no message was sent along (x, y) in the original
execution, x and y never send a message to z in the current execution. As a result, z
will never receive the information (i.e., change status). This contradicts the fact that
A is a correct broadcasting protocol. �

FIGURE 2.2: A message must be sent on each link.
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This means that any broadcasting algorithm requires �(m) messages.
Since Flooding solves broadcasting with 2m − n + 1 messages (see Exercise

2.9.1), this impliesM(Bcast/RI+) ≤ 2m − n + 1. Since the upper bound and the
lower bound are of the same order of magnitude, we can summarize

Property 2.1.2 The message complexity of broadcasting under RI+ is �(m).

The immediate consequence is that, in order of magnitude, Flooding is a message-
optimal solution. Thus, if we want to design a new protocol to improve the 2m −
n + 1 cost of Flooding, the best we can hope to achieve is to reduce the constant
2; in any case, because of Theorem 2.1.1, the reduction cannot bring the constant
below 1.

2.1.3 Broadcasting in Special Networks

The results we have obtained so far apply to generic solutions; that is, solutions that
do not depend on G and can thus be applied regardless of the communication topology
(provided it is undirected and connected).

Next, we will consider performing the broadcast in special networks. Throughout
we will assume the standard restrictions plus UI+.

Broadcasting in Trees Consider the case when G is a tree; that is, G is connected
and contains no cycles. In a tree, m = n−1; hence, the use of protocol Flooding for
broadcasting in a tree will cost 2m − (n − 1) = 2(n − 1) − (n − 1) = n − 1
messages.

IMPORTANT. This cost is achieved even if the entities do not know that the network
is a tree.

IMPORTANT. An interesting side effect of broadcasting on a tree is that the tree
becomes rooted in the initiator of the broadcast.

Broadcasting in Oriented Hypercubes A communication topology that is
commonly used as an interconnection network is the (k-dimensional) labeled hyper-
cube, denoted by Hk .

A oriented hypercube H1 of dimension k = 1 is just a pair of nodes called (in
binary) “0” and “1,” connected by a link labeled “1” at both nodes.

A hypercube Hk of dimension k > 1 is obtained by taking two hypercubes of
dimension k − 1–H ′k−1 and Hk−1–and connecting the nodes with the same name
with a link labeled k at both nodes; the name of each node in H ′k−1 (respec-
tively H ′′k−1) is then modified by prefixing it with the bit 0 (respectively, 1); see
Figure 2.3.
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FIGURE 2.3: Oriented Hypercube Networks

So, for example, node “0010” in H ′4 will be connected to node “0010” in H ′′4 by a
link labeled l = 5, and their names will become “00010” and “10010,” respectively.

This labeling l of the links is symmetric (i.e., lx(x, y)= ly(x, y)) and is called the
dimensional labeling of a hypercube.

IMPORTANT. These names are used only for descriptive purposes; they are not
known to the entities. By contrast, the labels of the links (i.e., the port numbers) are
known to the entities by the Local Orientation axiom.

A hypercube of dimension k has n = 2k nodes; each node has k links, labeled
1, 2, . . . , k. Hence the total number of links ism = nk/2 = (n/2) log n = O(n log n).

A straightforward application of Flooding in a hypercube will cost 2m− (n− 1) =
n log n− (n− 1) = n log n/2+ 1 = O(n log n) messages. However, hypercubes are
highly structured networks with many interesting properties. We can exploit these
special properties to construct a more efficient broadcast. Obviously, if we do so, the
protocol cannot be used in other networks.

Consider the following simple strategy.
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Strategy HyperFlood:

1. The initiator sends the message to all its neighbors.

2. A node receiving a message from the link labeled l will send the messages only
to those neighbors with label l′ < l.

NOTE. The only difference between HyperFlood and the normal Flooding is in step
2: Instead of sending the message to all neighbors except the sender, the entity will
forward it only to some of them, which will depend on the label of the port from
where the message is received.

As we will see, this strategy correctly performs the broadcast using only n− 1
messages (instead of O(n log n)). Let us first examine termination and correctness.

Let Hk(x) denote the subgraph of Hk induced by the links where messages are sent
by HyperFlood when x is the initiator. Clearly every node in Hk(x) will receive the
information.

Lemma 2.1.1 HyperFlood correctly terminates.

Proof. Let x be the initiator; starting from x, the messages are sent only on links with
decreasing labels, and if y receives the message from link 4 it will forward it only to
the ports 1, 2, and 3. To prove that every entity will receive the information sent by
x, we need to show that, for every node y, there is a path from x to y such that the
sequence of the labels on the path from x to y is decreasing. (Note that the labels on
the path do not need to be consecutive integers.) To do so we will use the following
property of hypercubes.

Property 2.1.3 In a k-dimensional hypercube Hk , any node x is connected to any
other node y by a path π ∈ ˙[x, y] such that �(π ) is a decreasing sequence.

Proof. Consider the k-bit names of x and of y in Hk: 〈xk, xk−1, . . . , x1, x0〉 and
〈yk, yk−1, . . . , y1, y0〉. If x = y, these two strings will differ in t ≥ 1 positions.
Let j1, j2, . . . , jt be the positions in decreasing order; that is, ji > ji+1. Consider
now the nodes v0, v1, v2, . . . , vt , where v0 = x, and the name of vi differs from the
name of vi+1 only in the ji+1-th position. Thus, there is a link labeled ji+1 con-
necting vi to vi+1, and clearly vt = y. But this means that 〈v0, v1, v2, . . . , vt 〉 is a
path from x to y, and the sequence of labels on this path is 〈j1, j2, . . . , jt 〉, which is
decreasing. �

Thus, Hk(x) is connected and spans (i.e., it contains all the nodes of) Hk , regardless
of x. In other words, within finite time, every entity will have the information. �

Let us now concentrate on the cost of HyperFlood. First of all observe that

M[HyperFlood/Hk] = n− 1. (2.2)
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To prove that only n− 1 messages will be sent during the broadcast, we just need
to show that every entity will receive the information only once. This is true because,
for every x, Hk(x) contains no cycles (see Exercise 2.9.9).

Also as an exercise it is left the proof that for every x, the eccentricity of x in Hk(x)
is k (see Exercise 2.9.10); this implies that the ideal time delay of HyperFlood in Hk

is always k. That is,

T[HyperFlood/Hk] = k (2.3)

These costs are the best that any broadcast algorithm can perform in a hypercube
regardless of how much more knowledge they have. However, they are obtained
here under the additional restriction that the network is a k-dimensional hypercube
with a dimensional labeling; that is, under H = {(G, l) = Hk}. Summarizing, we
have

Property 2.1.4 The ideal time complexity of broadcasting in a k-dimensional
hypercube with a dimensional labeling under RI+ is �(k).

Property 2.1.5 The message complexity of broadcasting in a k-dimensional hyper-
cube with a dimensional labeling under RI+ is �(n).

IMPORTANT. The reason why we are able to “bypass” the �(m) lower bound
expressed by Theorem 2.1.1 is because we are restricting the applicability of the
protocol.

Broadcasting in Complete Graphs Among all network topologies, the com-
plete graph is the one with the most links: Every entity is connected to all others;
thus m = n(n− 1)/2 = O(n2) (recall we are considering bidirectional links), and
d = 1.

The use of a generic protocol will require O(n2) messages. But this is really
unnecessary.

Broadcasting in a complete graph is easily accomplished: Because everybody
is connected to everybody else, the initiator just needs to send the information to
its neighbors (i.e., execute the command “send(I) to N(x)”) and the broadcast is
completed. This uses only n− 1 messages and d = 1 ideal time.

Clearly this protocol, KBcast, works only in a complete graph, that is under the
additional restriction K ≡ “G is a complete graph.” Summarizing

Property 2.1.6 The message and the ideal time complexity of broadcasting
in a complete graph under RI+ is �(k) are M(Bcast/RI+ ;K) = n− 1 and
T (Bcast/RI+ ;K) = 1, respectively.
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FIGURE 2.4: Wake-Up Process.

2.2 WAKE-UP

2.2.1 Generic Wake-Up

Very often, in a distributed environment, we are faced with the following situation:
A task must be performed in which all the entities must be involved; however, only
some of them are independently active (because of a spontaneous event, or having
finished a previous computation) and ready to compute, the others are inactive, not
even aware of the computation that must take place. In these situations, to perform
the task, we must ensure that all the entities become active. Clearly, this preliminary
step can only be started by the entities that are active already; however, they do not
know which other entities (if any) are already active.

This problem is called Wake-up (Wake-Up): An active entity is usually called
awake, an inactive (still) one is called asleep; the task is to wake all entities up; see
Figure 2.4.

It is not difficult to see the relationship between broadcasting and wake-up: Broad-
cast is a wake-up with only one initially awake entity; conversely, wake-up is a broad-
cast with possibly many initiators (i.e., initially more than one entity has the infor-
mation). In other words, broadcast is just a special case of the wake-up problem.

Interestingly, but not surprisingly, the flooding strategy used for broadcasting ac-
tually solves the more general Wake-Up problem. The modified protocol, called
WFlood, is described in Figure 2.5. Initially all entities are asleep; any asleep entity
can become spontaneously awake and start the protocol.

It is not difficult to verify that the protocol correctly terminates under the standard
restrictions (Exercise 2.9.7).

Let us concentrate on the cost of protocol WFlood. The number of messages is at
least equal to that of broadcast; actually, it is not much more (see Exercise 2.9.6):

2m ≥ M[WFlood] ≥ 2m− n+ 1. (2.4)

As broadcast is a special case of wake-up, not much improvement is possible
(except perhaps in the size of the constant):

M(Wake-Up/R) ≥ M(Bcast/RI+) = �(m)

The ideal time will, in general, be smaller than the one for broadcast:

T (Bcast/RI+) ≥ T (Wake-Up/R)
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PROTOCOL WFlood .

� Status Values: S = {ASLEEP,AWAKE};
SINIT = {ASLEEP};
ST ERM = {AWAKE}.
� Restrictions: R.

ASLEEP
Spontaneously
begin

send(W ) to N (x);
become AWAKE;

end

Receiving(W)
begin

send(W) to N (x)− {sender};
become AWAKE;

end

FIGURE 2.5: Wake-Up by Flooding

However, in the case of a single initiator, the two cases coincide. As upper and lower
bounds coincide in order of magnitude, we can conclude that protocol WFlood is both
message and, worst case in the time optimal.

The complexity of Wake-Up is summarized by the following two proper-
ties,

Property 2.2.1 The message complexity of Wake-up under R is �(m).

Property 2.2.2 The worst case ideal time complexity of Wake-up under R is �(d).

2.2.2 Wake-Up in Special Networks

Trees The cost of using protocol WFlood for wake-up will depend on the number
of initiators. In fact, if there is only one initiator, then this is just a broadcast and costs
only n− 1 messages. By contrast, if every entity starts independently, there will be
a total of 2(n− 1) messages. Let k' denote the number of initiators; note that this
number is not a system parameter like n or m, it is, however, bounded by a system
parameter: k' ≤ n. Then the total number of messages when executing WFlood in a
tree will be exactly

M[WFlood/Tree] = n+ k' − 2. (2.5)

Labeled Hypercubes In Section 2.1, by exploiting the properties of the hyper-
cube and of the dimensional labeling, we have been able to construct a broadcast
protocol, which uses only O(n) messages, instead of the �(n log n) messages required
by any generic protocol.
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Let us see if we can achieve a similar result also for the wake-up. In other words, can
we exploit the properties of a labeled hypercube to do better than generic protocols?

The answer is, unfortunately, NO.

Lemma 2.2.1 M(Wake-Up/R ;H ) = �(n log n).

As a consequence, we might as well employ the generic protocol WFlood, which
uses O(n log n) messages. Summarizing,

Property 2.2.3 The message complexity of wake-up under R in a k-dimensional
hypercube with a dimensional labeling is �(n log n).

Complete Graphs Let us focus on wake-up in a complete graph. The use of
the generic protocolWFlood will require O(n2) messages. We can obviously use
the simplified broadcast protocol KBcast we developed for complete graphs. The
number of messages transmitted will be k'(n− 1), where k' denotes the number of
initiators. Even in the worst case (when every entity is independently awake and they
all simultaneously start the protocol) O(n2) messages will be transmitted.

Let us see if, by exploiting the properties of complete graphs, we have been able to
construct a wake-up protocol that uses only O(n) messages, instead of the O(n2) we
have achieved so far. (After all, we have been able to do it in the case of the broadcast
problem.)

Surprisingly, also in this case, the answer is NO.

Lemma 2.2.2 M(Wake-Up/R ; K) = �(n2).

This implies that the use of WFlood for wake-up is a message-optimal solution. In
other words,

Property 2.2.4 The message complexity of wake-up under R in a complete network
is �(n2).

Complete Graphs with ID To reduce the number of messages, a more restricted
environment is required; that is, we need to make additional assumptions.

For example, if we add the restriction that the entities have unique names (re-
striction Initial Distinct values (ID)), then there are protocols capable of performing
wake-up with O(n log n) messages in a complete graph; they are not simple and actu-
ally solve a much more complex problem, Election, which we will discuss at length
in Chapter 3. Strangely, nothing better than that can be accomplished. In fact, let
IR +K = R ∪K; then the worst case message complexity of wake-up in a complete
graph under the standard restrictions R plus ID is as follows:

Property 2.2.5 M(Wake-Up/R; ID;K) ≥ 0.5n log n.
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To see why this is true, we will construct a “bad” but possible case, which any
protocol can encounter, and show that, in such a case, O(n log n) messages will be
exchanged. The lower bound will hold even if there is message ordering. For simplicity
of discussion and calculation, we will assume that n is a power of 2; the results hold
also if this is not the case.

To construct the “bad” case for an (arbitrary) solution protocol A, we will consider a
game between the entities on one side and an adversary on the other: the entities obey
the rules of the protocol; the adversary will try to make the worst possible scenario
occur, so, to force the use of as many messages as possible.

The adversary has the following four powers:

1. it decides the initial values of the entities (they must be distinct);

2. it decides which entities spontaneously start the execution of A, and when;

3. it decides when a transmitted message arrives (it must be within finite time);
and

4. importantly, it decides the matching between links and labels: Let e1, e2, . . . , ek
be the links incident on x, and let l1, l2, . . . , lk be the port labels to be used by x
for those links; during the execution, when x performs a “send to l” command,
and l has not been assigned yet, the adversary will choose which of the unused
links (i.e., through which no messages has been sent nor received) the label l
will be assigned to.

NOTE. Sending a message to more than one port will be treated as sending the
message to each of those ports one at a time (in an arbitrary order).

Whatever the adversary decides, it can happen in a real execution. Let us see how
bad a case can the adversary create for A.

Two sets of entities will be said to be connected at a time t if at least a message
has been transmitted from an entities of one set to an entity of the other.

Adversary’s Strategy.

1. Initially, the adversary will wake up only one entity s, which we will call the
seed, and which will start the execution of the protocol. When s decides to send
a message to port number l, the adversary will wake up another entity y and
assign label l to the edge from s to y. It will then delay the transmission on that
link until also y decides to send a message to some port number l′; the adversary
will then assign label l′ to the link from y to s and let the two messages arrive to
their destination simultaneously. In this way, each message will reach an awake
node, and the two entities are connected.

From now on, the adversary will act in a similar way; always ensure that
messages are sent to already-awake nodes, and that the set of awake nodes is
connected.
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2. Consider an entity x executing a send operation to an unassigned label a.

(a) If x has an unused link (i.e., a link on which no messages have been sent so
far) connecting it to an awake node, the adversary will assign a to that link.
In other words, the adversary will always try to make the awake entities
send messages to other awake entities.

(b) If all links between x and the awake nodes have been used, then the adver-
sary will create another set of awake nodes and connect the two sets.

i. Let x0, . . . , xk−1 be the currently awake nodes, ordered according to
their wake-up time (thus, x0 = s is the seed, and x1 = y). The ad-
versary will perform the following function: choose k inactive nodes
z0, . . . , zk−1; establish a logical correspondence between xj and zj ;
assign initial values to the new entities so that the order among them
is the same as the one among the values of the corresponding entities;
wake up these entities and force them to have the “same” execution
(same scheduling and same delays) as already did the corresponding
ones. (So, z0 will be woken up first, its first message will be sent to z1,
which will be woken up next and will send a message to z0, and so forth)

ii. The adversary will then assign label a to the link connecting x to its
corresponding entity z in the new set; the message will be held in
transit until z (like x did) will need to transmit a message on an unused
link (say, with label b) but all the edges connecting it to its set of
awake entities have already been used.

iii. When this happens, the adversary will assign the label b to the link
from z to x and make the two messages between x and z arrive and be
processed.

Let us summarize the strategy of the adversary: The adversary tries to force the
protocol to send messages only to already-awake entities and awakens new entities
only when it cannot do otherwise; the newly awake entities are equal in number to
the already awake entities; and they are forced by the adversary to have the same
execution between them as did the other entities before any communication takes
place between the two sets. When this happens, we will say that the adversary has
started a new stage.

Let us now examine the situations created by the adversary with this strategy and
analyze the cost of the protocol in the corresponding executions.

Let Active(i) denote the awake entities in stage i and New(i)=Active(i)−
Active(i− 1) the entities that the adversary woke up in this stage; initially, Active(0)
is just the seed. The newly awake entities are equal in number to the already awake
entities; that is, |New(i)| = |Active(i − 1)|).

Let µ(i − 1) denote the total number of messages, which have been exchanged
before the activation of the new entities. The adversary forces the new entities to have
the same execution as did the entities in Active(i − 1), thus exchanging µ(i − 1) of
messages, before allowing the two sets to become connected. Thus, the total number
of messages until the communication between the two sets takes place is 2µ(i − 1).
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Once the communication takes place, how many messages (including those two)
are transmitted before the next stage?

The exact answer will depend on the protocol A, but regardless of which protocol
we are using, the adversary will not start a new stage i + 1 unless it is forced to; this will
happen only if an entity x issues a “send to l” command (where l is an unassigned
label) and all the links connecting x to the other awake entities have already been
used. This means that x must have either sent to or received from all the entities in
Active(i) = Active(i− 1) ∪ New(i). Assume that x ∈ Active(i − 1); then, of all these
messages, the ones between x and New(i) have only occurred in stage i (since those
entities were not active before); this means that at least |New(i)| = |Active(i −1)|
additional messages are sent before stage i + 1. If instead x ∈ New(i), these messages
have all been transmitted in this stage (as x was not awake before); in other words, even
in this case, |New(i)| = |Active(i−1)| additional messages are sent before stage i + 1.

Summarizing, the total cost µ(i − 1) before stage i is thus doubled and at least
additional |Active(i −1)| messages are sent before stage i + 1. In other words,

µ(i) ≥ 2 µ(i − 1)+ |Active(i −1)|.

As the awake entities double in each stage, and initially only the seed is active, then
|Active(i)| = 2i . Hence, observing that µ(0) = 0,

µ(i) ≥ 2 µ(i − 1)+ 2i−1 ≥ i 2i−1.

The total number of stages is exactly log n as the awake processes double every stage.
Hence, with this strategy, the adversary can force any protocol to transmit at least
µ(log n) messages. As

µ(log n) ≥ 0.5 n log n

it follows that any wake-up protocol will transmit �(n log n) messages in the worst
case even if the entities have distinct identifiers (ids).

More efficient wake-up protocols can be derived if we have in our system a “good”
labeling of the links instead.

2.3 TRAVERSAL

Traversal of the network allows every entity in the network to be “visited” sequentially
(one after the other). Its main uses are in the control and management of a shared
resource and in sequential search processes. In abstract terms, the traversal problem
starts with an initial configuration where all entities are in the same state (say unvisited)
except the one that is visited and is the sole initiator; the goal is to render all the entities
visited but sequentially (i.e., one at the time).

A traversal protocol is a distributed algorithm that, starting from the single initiator,
allows a special message called “traversal token” (or simply, token), to reach every
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entity sequentially (i.e., one at the time). Once a node is reached by the token, it
is marked as “visited.” Depending on the traversal strategy employed, we will have
different traversal protocols.

2.3.1 Depth-First Traversal

A well known strategy is the depth-first traversal of a graph. According to this strategy,
the graph is visited (i.e., the token is forwarded) trying to go forward as long as
possible; if it is forwarded to an already visited node, it is sent back to the sender, and
that link is marked as a back-edge; if the token can no longer be forwarded (it is at a
node where all its neighbors have been visited), the algorithm will “backtrack” until
it finds an unvisited node where the token can be forwarded to.

The distributed implementation of depth-first traversal is straightforward.

1. When first visited, an entity remembers who sent the token, creates a list of
all its still unvisited neighbors, forwards the token to one of them (removing it
from the list), and waits for its reply returning the token.

2. When the neighbor receives the token, it will return the token immediately if
it had been visited already by somebody else, notifying that the link is a back-
edge; otherwise, it will first forward the token to each of its unvisited neighbors
sequentially, and then reply returning the token.

3. Upon the reception of the reply, the entity forwards the token to another unvis-
ited neighbor.

4. Should there be no more unvisited neighbors, the entity can no longer forward
the token; it will then send the reply, returning the token to the node from which
it first received it.

NOTE. When the neighbor in step (2) determines that a link is a back-edge , it knows
that the sender of the token is already visited; thus, it will remove it from the list of
unvisited neighbors.

We will use three types of messages: “T” to forward the token in the traversal,
“Backedge” to notify the detection of a back-edge, and “Return” to return the token
upon local termination.

Protocol DF Traversal is shown in Figure 2.6, where the operation of extracting
an element from a set B and assigning it to variable a is denoted by a ⇐ B. Let us
examine its costs.

Focus on a link (x,y)∈ E. What messages can be sent on it? Suppose x sends T
to y; then y will only send to x either Return (if it was idle when the T arrived) or
Backedge (otherwise). In other words, on each link there will be exactly two messages
transmitted. Since the traversal is sequential, T[DF Traversal ] = M[DF Traversal ];
hence

T[DF Traversal] =M[DF Traversal] = 2m. (2.6)
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PROTOCOL DF Traversal.

� Status: S = {INITIATOR,IDLE,VISITED,DONE};
SINIT = {INITIATOR,IDLE}; STERM = {DONE}.
� Restrictions: R ;UI.

INITIATOR
Spontaneously
begin

Unvisited:= N (x);
initiator:= true;
VISIT;

end

IDLE
Receiving (T )
begin

entry: = sender;
Unvisited: = N (x)− {sender};
initiator: = false;
VISIT;

end

VISITED
Receiving (T )
begin

Unvisited: = Unvisited −{sender};
send(Backedge) to {sender};

end

Receiving(Return)
begin

VISIT;
end

Receiving(Backedge)
begin

VISIT;
end

Procedure VISIT
begin

if Unvisited = ∅ then
next ⇐ Unvisited;
send(T) to next;
become VISITED

else
if not(initiator) then send(Return) to entry; endif
become DONE;

endif
end

FIGURE 2.6: DF Traversal

To determine how efficient is the protocol, we are going to determine what is the
complexity of the problem.

Using exactly the same technique we employed in the proof of Theorem 2.1.1, we
have (Exercise 2.9.11):

Theorem 2.3.1 M(DFT/R) ≥ m.
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Therefore, the 2m message cost of protocol DF Traversal is indeed excellent, and the
protocol is message optimal.

Property 2.3.1 The message complexity of depth-first traversal under R is �(m).

The time requirements of a depth-first traversal are quite different from those of a
broadcast. In fact, since each node must be visited sequentially, starting from the sole
initiator, the time complexity is at least the number of nodes:

Theorem 2.3.2 T (DFT/R) ≥ n− 1.

The time complexity of protocol DF Traversal is dreadful. In fact, the upper bound
2m could be several order of magnitude larger than the lower bound n− 1. For
example, in a complete graph, 2m = n2 − n. Some significant improvements in the
time complexity can, however, be made by going into a finer granularity. We will
discuss this topic in greater details next.

2.3.2 Hacking (')

Let us examine protocol Protocol DF Traversal to see if it can be improved, especially
its time cost.

IMPORTANT. When measuring ideal time, we consider only synchronous exe-
cutions; however, when measuring messages and establishing correctness we must
consider every possible schedule of events, especially the nonsynchronous execu-
tions.

Basic Hacking The protocol we have constructed is totally sequential: in a syn-
chronous execution, at each time unit only one message will be sent, and every mes-
sage requires one unit of time. So, to improve the time complexity, we need to (1)
reduce the number of messages and/or (2) introduce some concurrency.

By definition of traversal, each entity must receive the token (message T) at least
once. In the execution of our protocol, however, some entities receive it more than
once; those links from which these other T messages arrive are precisely the back-
edges.

Question. Can we avoid sending T messages on back-edges?

To answer this question we must understand why T messages are sent on back-edges.
When an entity x sends a T message to y, it does not know whether the link is
a back-edge or not; that is, whether y has already been visited by somebody else
or not. If x knew which of its neighbors are already visited, it would not send a
T message to them, there would be no need for Backedge messages from them,
and we would be saving messages and time. Let us examine how to achieve such a
condition.
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Suppose that, whenever a node is visited (i.e., it receives T) for the first time, it
notifies all its (other) neighbors of this event (e.g., sending a “Visited” message) and
waits for an acknowledgment (e.g., receiving an “Ack” message) from them before
forwarding the token.

The consequence of such a simple act is that now an entity ready to forward the
token (i.e., to send a T message) really knows which of its neighbors have already
been visited.

This is exactly what we wanted. The price we have to pay is the transmission of
the Visited and Ack messages.

Notice that now an idle entity (that is an entity that has not yet been involved in the
traversal) might receive a Visited message as its first message. In the revised protocol,
we will make such an entity enter a new status, available.

Let us examine the effects of this change on the overall time cost of the protocol; call
DF+ the resulting protocol. The time is really determined by the number of sequential
messages. There are four types of messages that are sent: T, Return, Visited, and Ack.

Each entity (except the initiator) will receive only one T message and send only
one Return message; the initiator does not receive any T message and does not send
any Return; thus, in total there will be 2(n− 1) such messages. Since all these com-
munications occur sequentially (i.e., without any overlap), the time taken by sending
the T and Return messages will be 2(n− 1).

To determine how many ideal time units are added by the transmission of Visited
and Ack messages, consider an entity: its transmission of all the Visited messages
takes only a single time unit, since they are sent concurrently; the corresponding Ack
messages will also be sent concurrently, adding an additional time unit. Since every
node will do it, the sending of the Visited messages and receiving the Ack messages
will increase the ideal time of the original algorithm by exactly 2n.

This will give us a time cost of

T[DF+] = 4n− 2. (2.7)

It is also easy to compute how many messages this will cost. As mentioned above,
there is a total of 2(n− 1) T and Return messages. In addition, each entity (except
the initiator) sends a Visited message to all its neighbors except the one from which
it received the token; the initiator will send it to all its neighbors. Thus, denoting
by s the initiator, the total number of Visited messages is |N (s)| +∑x =s(|N (x)| −
1) = 2m− (n− 1). Because for each Visited message there will be an Ack, the total
message cost will be

M[DF+] = 4m− 2(n− 1)+ 2(n− 1) = 4m. (2.8)

Summarizing, we have been able to reduce the time costs from O(m) to O(n) that,
because of Theorem 2.3.2, is optimal. The price has been the doubling of the number
of messages.

Property 2.3.2 The ideal time complexity of depth-first traversal under R is �(n).
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Advanced Hacking Let us see if the number of messages can be decreased with-
out significantly increasing the time costs.

Question. Can we avoid sending the Ack messages?

To answer this question we must understand what would happen if we do not send
Ack messages. Consider an entity x that sends Visited to its neighbors; (if we no
longer use Ack) x will proceed immediately with forwarding the token. Assume that,
after some time, the token arrives, for the first time, to a neighbor z of x (see Fig.
2.7); it is possible that the Visited message sent by x to z has not arrived yet (due
to communication delays). In this case, z would not know that x has already been
visited and would send the T message to it. That is, we will again send a T message
on a back-edge undoing what we had accomplished with the previous change to the
protocol.

But the algorithm now is rather different (we are using Visited messages, no longer
Backedge messages) and this situation might not happen all the time.

Still, if it happens, z will eventually receive the Visited message from x (recall
we are operating under total reliability); z can then understand its mistake, pretend
nothing happened (just the waste of a T message), and continue like T message was
never really sent. On its side, x upon receiving the token will also understand that
z made a mistake and ignore the message; x also realizes (if it did not know already)
that z is visited and will remove it from its list of unvisited neighbors.

Although the correctness will not be affected (Exercise 2.9.15), mistakes cost
additional messages. Let us examine what is really the cost of this modified protocol,
which we shall call DF++.

As before, the “correct” T and Return yield a total of 2n− 2 messages, and the
Visited messages are 2m− n+ 1 in total.

Then there are the “mistakes”; each mistake costs one message. The number of
mistakes can be very large. In fact, unfriendly time delays can force mistakes to
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FIGURE 2.7: Slow Visited message : z does not know that x has been visited.
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occur on every back-edge; on some back-edges, there can be two mistakes, one in
each direction. (Exercise 2.9.16). In other words, there will be at most 2(m− n+ 1)
incorrect T messages. Summing up all, this yields

M[DF++] ≤ 4m− n+ 1. (2.9)

Let us consider now the time. We have an improvement in that the Ack messages are
no longer sent, saving n time units.

As there are no more Ack to wait for, an entity can forward the token at the same
time as the transmission of the Visited messages; if it does not have any unvisited
neighbor to send the T to, the entity will send the Return at the same time as the
Visited. Hence, the sending of the Visited is done in overlap with the sending of
either a T or a Return message, saving another n time units.

In other words, without considering the mistakes, the total time will be 2n− 2.
Let us now also consider the mistakes and evaluate the ideal time of the pro-
tocol.

Strange as it might sound, when we attempt to measure the ideal execution time of
this protocol, in the execution no mistakes will ever occur. This is because mistakes
can only occur owing to arbitrarily long communication delays; on the contrary, ideal
time is only measured under unitary delays. But under unitary delays there are no
mistakes. Therefore,

T[DF++] = 2n− 2. (2.10)

IMPORTANT. It is crucial to understand this inherent limit of the cost measure we
call ideal time. Unlike the number of messages, ideal time is not a “neutral” measure;
it influences (thus limiting) the nature of what we want to measure. In other words, it
should be treated and handled with caution. Even greater caution should be employed
in interpreting the results it gives.

Extreme Hacking As we are on a roll, let us observe that we could actually use
the T message as an implicit Visited, saving some additional messages.

This saving will happen at every entity except those that, when they are reached
for the first time by a T message, do not have any unvisited neighbor. Let f' denote
the number of these nodes; thus the number of Visited messages we save is n− f'.
Hence, the total number of messages is 4m− n+ 1− n+ f'.

Summarizing, the cost of the optimized protocol, called DF' and described in
Figures 2.8 and 2.9, is as follows:

T[DF'] = 2n− 2. (2.11)

M[DF'] = 4m− 2n+ f' + 1. (2.12)
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PROTOCOL DF'

� Status: S = {INITIATOR,IDLE,AVAILABLE,VISITED,DONE};
SINIT = {INITIATOR,IDLE}; ST ERM = {DONE}.
� Restrictions: R ;UI.

INITIATOR

Spontaneously
begin

initiator:= true;
Unvisited:= N (x);
next ⇐ Unvisited;
send(T) to next;
send(Visited) to N (x)-{next};
become VISITED

end

IDLE

Receiving(T )
begin

Unvisited:= N (x);
FIRST-VISIT;

end

Receiving(Visited)
begin

Unvisited:= N (x)− {sender};
become AVAILABLE

end

AVAILABLE

Receiving(T)
FIRST-VISIT;

Receiving(Visited)
begin

Unvisited:= Unvisited − {sender};
end

VISITED

Receiving(Visited)
begin

Unvisited:= Unvisited −{sender};
if next = sender then VISIT; endif

end

Receiving(T)
begin

Unvisited:= Unvisited −{sender};
if next = sender then VISIT; endif

end

Receiving(Return)
begin

VISIT;
end

FIGURE 2.8: Protocol DF'
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Procedure FIRST-VISIT
begin

initiator:= false;
entry:=sender;
Unvisited:= Unvisited-{sender};
if Unvisited = ∅ then

next ⇐ Unvisited;
send(T) to next;
send(Visited) to N (x)−{entry,next};
become VISITED;

else
send(Return) to {entry};
send(Visited) to N (x)−{entry};
become DONE;

endif
end

Procedure VISIT
begin

if Unvisited = ∅ then
next ⇐ Unvisited;
send(T) to next;

else
if not(initiator) then send(Return) to entry; endif
become DONE;

endif
end

FIGURE 2.9: Routines used by Protocol DF*

IMPORTANT. The value of f', unlike n and m, is not a system parameter. In fact,
it is execution-dependent.: it may change at each execution value. We shall indicate
this fact (for f as well as for any other execution-dependent value) by the use of the
subscript '.

2.3.3 Traversal in Special Networks

Trees In a tree network, depth-first traversal is particularly efficient in terms of
messages, and there is no need of any optimization effort (hacking). In fact, in any
execution of DF Traversal in a tree, no Backedge messages will be sent (Exercise
2.9.12). Hence, the total number of messages will be exactly 2(n− 1). The time
complexity is the same as the optimized version of the protocol: 2(n− 1).

M[DF Traversal/Tree] = T[DF Traversal/Tree] = 2n− 2 (2.13)

An interesting side effect of a depth-first traversal of a tree is that it constructs a
virtual ring on the tree (Figure 2.10). In this ring some nodes appear more than
once; in fact the ring has size 2n− 2 (Exercise 2.9.13). This fact will have useful
consequences.
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FIGURE 2.10: Virtual ring created by DF Traversal.

Rings In a ring network, every node has exactly two neighbors. Depth-first traversal
in a ring can be achieved in a simple way: the initiator chooses one direction and the
token is just forwarded along that direction; once the token reaches the initiator, the
traversal is completed. In other words, each entity will send and receive a single
T message. Hence both the time and the message costs are exactly n. Clearly this
protocol can be used only in rings.

Complete Graph In a complete graph, execution of DF* will require O(n2) mes-
sages. Exploiting the knowledge of being in a complete network, a better protocol can
be derived: the initiator sequentially will send the token to all its neighbors (which
are the other entities in the network); each of this entities will return the token to
the initiator without forwarding it to anybody else. The total number of messages is
2(n− 1), and so is the time.

2.3.4 Considerations on Traversal

Traversal as Access Permission The main use of a traversal protocol is in
the control and management of shared resources. For example, access to a shared
transmission medium (e.g., bus) must be controlled to avoid collisions (simultaneous
frame transmission by two or more entities). A typical mechanism to achieve this is
by the use of a control (or permission) token. This token is passed from one entity to
another according to the same set of rules. An entity can only transmit a frame when it
is in possession of the token; once the frame has been transmitted, the token is passed
to another entity. A traversal protocol by definition “passes” the token sequentially
through all the entities and thus solves the access control problem. The only proviso is
that, for the access permission problem, it must be made continuous: once a traversal
is terminated, another must be started by the initiator.
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The access permission problem is part of a family of problems commonly called
Mutual Exclusion, which will be discussed in details later in the book.

Traversal as Broadcast It is not difficult to see that any traversal protocol solves
the broadcast problem: the initiator puts the information in the token message; every
entity will be visited by the token and thus will receive the information. The converse
is not necessarily true; for example, Flooding violates the sequentiality requirement
since the message is sent to all (other) neighbors simultaneously.

The use of traversal to broadcast does not lead to a more efficient broadcasting
protocol. In fact, a comparison of the costs of Flooding and DF* (Expressions 1.1
and 2.12) shows that Flooding is more efficient in terms of both messages and ideal
time. This is not surprising since a traversal is constrained to be sequential; flooding,
by contrast, exploits concurrency at its outmost.

2.4 PRACTICAL IMPLICATIONS: USE A SUBNET

We have considered three basic problems (broadcast, wake-up, and depth-first traver-
sal) and studied their complexity, devised solution protocols and analyzed their ef-
ficiency. Let us see what the theoretical results we have obtained tell us about the
situation from a practical point of view.

We have seen that generic protocols for broadcasting and wake-up require �(m)
messages (Theorem 2.1.1). Indeed, in some special networks, we can sometimes
develop topology-dependent solutions and obtain some improvements.

A similar situation exists for generic traversal protocols: They all require �(m)
messages (Theorem 2.3.1); this cost cannot be reduced (in order of magnitude) unless
we make additional restrictions, for example, exploiting some special properties of
G of which we have a priori (i.e., at design time) knowledge.

In any connected, undirected graph G, we have

(n2 − n)/2 ≥ m ≥ n− 1,

and, for every value in that range, there are networks with those many links; in
particular, m = (n2 − n)/2 occurs when G is the complete graph, and m = n− 1
when G is a tree.

Summarizing, the cost of broadcasting, wake-up, and traversal depends on the
number of links: The more links the greater the cost; and it can be as bad as O(n2)
messages per execution of any of the solution protocols.

This result is punitive for networks where a large investment has been made in
the construction of communication links. As broadcast is a basic communication tool
(in some systems, it is a primitive one) dense networks are penalized continuously.
Similarly, larger operating costs will be incurred by dense networks every time a
wake-up (a very common operation, used as preliminary step in most computations)
or a traversal (fortunately, not such a common operation) is performed.
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The theoretical results, in other words, indicate that investments in communication
hardware will result in higher operating communication costs.

Obviously, this is not an acceptable situation, and it is necessary to employ some
“lateral thinking.”

The strategy to circumvent the obstacle posed by these lower-bounds (Theorems
2.1.1 and 2.3.1) without restricting the applicability of the protocol is fortunately
simple:

1. construct a subnet G′ of G and

2. perform the operations only on the subnet.

If the subnet G′ we construct is connected and spans G (i. e., contains all nodes
of G), then doing broadcast on G′ will solve the broadcasting problem on G: Every
node (entity) will receive the information. Similarly, performing a traversal on G′ will
solve that problem on G.

The important consequence is that, if G′ is a proper subnet, it has fewer links than
G; thus, the cost of performing those operations on G′ will be lower than doing it in G.

Which connected spanning subnet of G should we construct?
If we want to minimize the message costs, we should choose the one with the

fewest number of links; thus, the answer is: a spanning tree of G. So, the strategy for
a general graph G will be

Strategy Use-a-Tree:

1. construct a spanning tree of G and

2. perform the operations only on this spanning tree.

This strategy has two costs. First, there is the cost of constructing the spanning tree;
this task will have to be carried out only once (if no failures occur). Then there are
the operating costs, that is the costs of performing broadcast, wake-up, and traversal
on the tree. Broadcast will cost exactly n− 1 messages, and the cost of wake-up and
traversal will be twice that amount. These costs are independent of m and thus do not
inhibit investments in communication links (which might be useful for other reasons).

2.5 CONSTRUCTING A SPANNING TREE

Spanning-tree construction (SPT) is a classical problem in computer science. In a
distributed computing environment, the solution of this problem has, as we have
seen, strong practical motivations. It also has distinct formulation and requirements.

In a distributed computing environment, to construct a spanning tree of G means
to move the system from an initial system configuration, where each entity is just
aware of its own neigbors, to a system configuration where

1. each entity x has selected a subset Tree-neighbors(x) ⊆ N (x) and

2. the collection of all the corresponding links forms a spanning tree of G.
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What is wanted is a distributed algorithm (specifying what each node has to do when
receiving a message in a given status) such that, once executed, it guarantees that a
spanning tree T(G) of G has been constructed; in the following we will indicate T(G)
simply by T, if no ambiguity arises.

Note that T is not known a priori to the entities and might not be known after it
has been constructed: an entity needs to know only which of its neighbors are also its
neighbors in the spanning tree T.

As before, we will restrict ourselves to connected networks with bidirectional links
and further assume that no failure will occur.

We will first assume that the construction will be started by only one entity (i.e.,
Unique Initiator (UI) restriction); that is, we will consider spanning-tree construction
under restrictions RI.

We will then consider the general problem when any number of entities can inde-
pendently start the construction. As we will see, the situation changes dramatically
from the single-initiator scenario.

2.5.1 SPT Construction with a Single Initiator: Shout

Consider the entities; they do not know G, not even its size. The only things an entity
is aware of are the labels on the ports leading to its neighbors (because of the Local
Orientation axiom) and the fact that, if it sends a message to a neighbor, the message
will eventually be received (because of the Finite Communication Delays axiom and
the Total Reliability restriction).

How, using just this information, can a spanning tree be constructed?
The answer is surprisingly simple. Each entity needs to know which of its

neighbors are also neighbors in the spanning tree. The solution strategy is just “ask:”

Strategy Ask-Your-Neighbors:

1. The initiator s will “ask” its neighbors; that is, it will send a messageQ = (“Are
you my neighbor in the spanning tree"?) to all its neighbors.

2. An entity x = s will reply “Yes” only the first time it is asked and, in this
occasion, it will ask all its other neighbors; otherwise, it will reply “No.” The
initiator s will always reply “No.”

3. Each entity terminates when it has received a reply from all neighbors to which
it asked the question.

For an entity x, its neighbors in the spanning tree T are the neighbors that have
replied “Yes” and, if x = s, also the neighbor from which the question was first asked.

The corresponding set of rules is depicted in Figure 2.11 where in bold are shown
the tree links and in dotted lines the nontree links. The protocol Shout implementing
this strategy is shown in Figure 2.12. Initially, all nodes are in status idle except the
sole initiator.
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FIGURE 2.11: Set of Rules of Shout.

Before we discuss the correctness and the efficiency of the protocol, consider
how it is structured and operates. First of all observe that, in Shout the question Q
is broadcasted through the network (using flooding). Further observe that, when an
entity receives Q, it always sends a reply (either Yes or No). Summarizing, the structure
of this protocol is a flood where every information message is acknowledged. This
type of structure will be called Flood + Reply.
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PROTOCOL Shout

� Status: S = {INITIATOR,IDLE,ACTIVE,DONE};
SINIT = {INITIATOR,IDLE};
ST ERM = {DONE}.
� Restrictions: R ;UI.

INITIATOR
Spontaneously
begin

root:= true;
Tree-neighbors:=∅;
send(Q) to N (x);
counter:=0;
become ACTIVE;

end

IDLE
Receiving(Q)
begin

root:= false;
parent:= sender;
Tree-neighbors:={sender};
send(Yes) to {sender};
counter:=1;
if counter=|N (x)| then

become DONE
else

send(Q) to N (x)− {sender};
become ACTIVE;

endif
end

ACTIVE
Receiving(Q)
begin

send(No) to {sender};
end

Receiving(Yes)
begin

Tree-neighbors:=Tree-neighbors ∪{sender};
counter:=counter+1;
if counter=|N (x)| then become DONE; endif

end

Receiving(No)
begin

counter:=counter+1;
if counter=|N (x)| then become DONE; endif

end

FIGURE 2.12: Protocol Shout

Correctness Let us now show that Flood + Reply, as used above, always con-
structs a spanning tree; that is, the graph defined by all the Tree-neighbors computed
by the entities forms a spanning tree of G; furthermore, this tree is rooted in the
initiator s.
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Theorem 2.5.1 Protocol Shout correctly terminates.

Proof. This protocol consists of the flooding of Q, where every Q message is ac-
knowledged. Because of the correctness of flooding, we are guaranteed that every
entity will receive Q and by construction will reply (either Yes or No) to each Q it
receives. Termination then follows.

To prove correctness we must show that the subnet G′ defined by all the Tree-
neighbors is a spanning tree of G. First observe that, if x is in Tree-neighbors of y,
then y is in Tree-neighbors of x (see Exercise 2.9.18). If an entity x sends a Yes to y,
then it is in Tree-neighbors of y; furthermore, it is connected to s by a path where a
Yes is sent on each link (see Exercise 2.9.19). Since every x = s sends exactly one
Yes, the subnet G′ defined by all the Tree-neighbors contains all the entities (i.e., it
spans G), it is connected, and contains no cycles (see Exercise 2.9.20). Therefore, it
is a spanning tree of G. �

Note that G′ is actually a tree rooted in the initiator. Recall that, in a rooted tree ,
every node (except the root) has one parent: the neighbor closest to the root; all its
other neighbors are called children. The neighbor to which x sends a Yes is its parent;
all neighbors from which it receives a Yes are its children. This fact can be useful in
subsequent operations.

IMPORTANT. The execution of protocol Shout ends with local termination: each
entity knows when its own execution is over; this occurs when it enters status done.
Notice however that no entity, including the initiator, is aware of global termination
(i.e., every entity has locally terminated). This situation is fairly common in distributed
computations. Should we need the initiator to know that the execution has terminated
(e.g., to start another task), Flood+ Reply can be easily modified to achieve this goal
(Exercise 2.9.24).

Costs The message costs of Flood+Reply, and thus of Shout, are simple to analyze.
As mentioned before, Flood+Reply consists of an execution of Flooding(Q) with the
addition of a reply (either Yes or No) for every Q. In other words,

M[Flood+Reply] = 2 M[Flooding].

The time costs of Flood+Reply, and thus of Shout, are also simple to determine;
in fact (Exercise 2.9.21):

T[Flood+Reply] = T[Flooding]+1.

Thus

M[Shout] = 4m− 2n+ 2 (2.14)

T[Shout] = r(s')+ 1 ≤ d + 1 (2.15)
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The efficiency of protocol Shout can be evaluated better taking into account the
complexity of the problem it is solving.

Since every node must be involved, using an argument similar to the proof of
Theorem 2.1.1, we have:

Theorem 2.5.2 M(SPT/RI) ≥ m.

Proof. Assume that there exists a correct SPT protocol A that, in each execution under
RI on every G, uses fewer than m(G) messages. This means that there is at least one
link in G where no message is transmitted in any direction during an execution of the
algorithm. Consider an execution of the algorithm on G, and let e = (x, y) ∈ E be
the link where no message is transmitted by A. Now construct a new graph G′ from G
by removing the edge e and adding a new node z and two new edges e1 = (x, z) and
e2 = (y, z) (see Fig. 2.2). Set z in a noninitiator status. Run exactly the same execution
of A on the new graph G′: since no message was sent along (x,y), this is possible. But
since no message was sent along (x,y) in the original execution in G, x and y never
send a message to z in the current execution in G′; and since z is not the initiator
and does not receive any message, it will not send any message. Within finite time,
protocol A terminates claiming that a spanning-tree T of G′ has been constructed;
however, z is not part of T, and hence T does not span G′. �

And similarly to the broadcast problem we have

Theorem 2.5.3 T (SPT/RI) ≥ d.

This implies that protocol Shout is both time optimal and message optimal with
respect to order of magnitude. In other words,

Property 2.5.1 The message complexity of spanning-tree construction under RI
is �(m).

Property 2.5.2 The ideal time complexity of spanning-tree construction under RI is
�(d).

In the case of the number of messages some improvement might be possible in
terms of the constant.

Hacking Let us examine protocol Shout to see if it can be improved, thereby,
helping us to save some messages.

Question. Do we have to send No messages?

When constructing the spanning tree, an entity needs to know who its tree-neighbors
are; by construction, they are the ones that reply Yes and, except for the initiator, also
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the ones that first asked the question. Thus, for this determination, the No messages
are not needed.

On the contrary hand, the No messages are used by the protocol to terminate in
finite time. Consider an entity x that just sent Q to neighbor y; it is now waiting for a
reply. If the reply is Yes, it knows y is in the tree; if the reply is No, it knows y is not.
Should we remove the sending of No–how can x determine that y would have sent No?

More clearly: Suppose x has been waiting for a reply from y for a (very) long time;
it does not know if y has sent Yes and the delays are very long, or y would have sent
No and thus will send nothing. Because the algorithm must terminate, x cannot wait
forever and has to make a decision. How can x decide?

The question is relevant because communication delays are finite but unpredictable.
Fortunately, there is a simple answer to the question that can be derived by exam-

ining how protocol Shout operates.
Focus on a node x that just sent Q to its neighbor y. Why would y reply No ? It

would do so only if it had already said Yes to somebody else; if that happened, y sent
Q at the same time to all its other neighbors, including x. Summarizing, if y replies
No to x, it must have already sent Q to x. We can clearly use this fact to our advantage:
after x sent Q to y, if it receives Yes it knows that y is its neighbor in the tree; if it
receives Q, it can deduce that y will definitely reply No to x’s question. All of this can
be deduced by x without having received the No.

In other words: a message Q that arrives at a node waiting for a reply can act as
an implicit negative acknowledgment; therefore, we can avoid sending No messages.

Let us now analyze the message complexity of the resulting protocol Shout+. The
time complexity is clearly unchanged; hence

T[Shout]+ = r(s')+ 1 ≤ d + 1. (2.16)

On each link (x, y)∈E there will be exactly a pair of messages: either Q in one direction
and Yes in the other, or two Q messages, one in each direction. Thus

M[Shout+] = 2m. (2.17)

2.5.2 Other SPT Constructions with Single Initiator

SPT Construction by Traversal It is well known that a depth-first traversal
of a graph G actually constructs a spanning tree (df-tree) of that graph. The df-tree
is obtained by removing the back-edges from G (i.e., the edges where a Back-edge
message was sent in DF Traversal). In other words, the tree-neighbors of an entity x
will be those from which it receives a Return message and, if x is not the initiator, the
one from which x received the first T.

Simple modifications to protocol DF* will ensure that each entity will correctly
compute their neighbors in the df-tree and locally terminate in finite time (Exer-
cise 2.9.25). Notice that these modifications involve just local bookkeeping and no
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additional communication. Hence the time and message costs are unchanged. The
resulting protocol is denoted by df− SPT ; then

M[df− SPT] = 4m− 2n+ f' + 1. (2.18)

T[df− SPT] = 2n− 2. (2.19)

We can now better characterize the variable f', which appears in the cost above.
In fact, f' is exactly the number of leaves of the df-tree constructed by df− SPT
(Exercise 2.9.26).

Expressions 2.18 and 2.19, when compared with the costs of protocol Shout, indi-
cate that depth-first traversal is not an efficient tool for constructing a spanning tree;
this is particularly true for its very high time costs.

Notice that, like in protocol Shout, all entities will become aware of their local
termination, but only the initiator will be aware of global termination, that is, that the
construction of the spanning tree has been completed (Exercise 2.9.27).

SPT Construction by Broadcasting We have just seen how, with simple mod-
ifications, the techniques of flooding and of df-traversal can be used to construct a
spanning tree, if there is a unique initiator. This fact is part of a very interesting and
more general phenomenon: under RI,

the execution of any broadcast protocol constructs a spanning tree.

Let us examine this statement in more details. Take any broadcast protocol B; by
definition of broadcast, its execution will result in all entities receiving the informa-
tion initially held by the initiator. For each entity x different from the initiator, call
parent the neighbor from which x received the information for the first time; clearly,
everybody except the initiator will have only one parent, and the initiator has none.
Denote by x � y the fact that x is the parent of y; then we have the following property
whose proof is left as an exercise (Exercise 2.9.28):

Theorem 2.5.4 The parent relationship � defines a spanning tree rooted in the
initiator.

As a consequence, it would appear that, to solve SPT, we just need to execute a
broadcast algorithm without any real modification, just adding some local variables
(Tree-neighbors) and doing some local bookkeeping.

This is generally not the case; in fact, knowing its parent in the tree is not enough for
an entity. To solve SPT, when an entity x terminates its execution, it must explicitly
know which neighbors are its children as well as which neighbor are not its tree-
neighbors.

If not provided already by the protocol, this information can obviously be acquired.
For example, if every entity sends a notification message to its parent, the parents will
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know their children. To find out which neighbors are not children is more difficult
and will depend on the original broadcast protocol.

In protocol Shout this is achieved by adding the “Yes” (I am your child) and “No”
(I am not your child) messages to Flooding. In DF Traversal protocol this is already
achieved by the “Return” (I am your child) and the “Backedge” (I am not your child)
messages; so, no additional communication is required.

This fact establishes a computational relationship between the broadcasting prob-
lem and the spanning-tree construction problem. If I know how to broadcast, then
(with minor modifications) I know how to construct a spanning tree with a unique
initiator. The converse is also trivially true: Every protocol that constructs a span-
ning tree solves the broadcasting problem. We shall say that these two problems are
computationally equivalent and denote this fact by

Bcast ≡ SPT(UI). (2.20)

Since, as we have discussed in section 2.3.4, every traversal protocol performs a
broadcast, it follows that, under RI, the execution of any traversal protocol constructs
a spanning tree.

SPT Construction by Global Protocols Actually, we can make a much
stronger statement. Call a problem global if every entity must participate in its so-
lution; participation implies the execution of a communication activity: transmission
of a message and/or arrival of a message (even if it triggers only the Null action, i.e.,
no action is taken). Both broadcast and traversal are global problems. Now, every
single-initiator protocol that solves a global problem P solves also Bcast; thus, from
Equation 2.20, it follows that, under RI,

the execution of any solution to a global problem P constructs a spanning tree.

2.5.3 Considerations on the Constructed Tree

We have seen how, with few more messages than those required by flooding and the
same messages as a df-traversal, we can actually construct a spanning tree.

As discussed previously, once such a tree is constructed, we can from now on
perform broadcast and traversal using only O(n) messages (which is optimal) instead
of O(m) (which could be as bad as O(n2)).

IMPORTANT. Different techniques construct different spanning trees. It is even
possible that the same protocol constructs different spanning trees when executed at
different times.

This is for example the case of Shout: Because communication delays are unpre-
dictable, subsequent executions of this algorithm on the same graph may result in
different spanning trees. In fact (Exercise 2.9.23)

every possible spanning tree of G could be constructed by Shout.
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Prior to its execution, it is impossible to predict which spanning tree will be con-
structed; the only guarantee is that Shout will construct one.

This has implications for the time costs of the strategy Use-a-Tree of broadcasting
on the spanning tree T instead of the entire graph G. In fact, the broadcast time will
be d(T) instead of d(G); but d(T) could be much greater than d(G).

For example, if G is the complete graph, the df-tree constructed by any depth-first
traversal will have d(T ) = n− 1; but d(G) = 1.

In general, the trees constructed by depth-first traversal have usually terrible diam-
eters. The ones generated by Shout usually perform better, but there is no guarantee
on the diameter of the resulting tree.

This fact poses the problem of constructing spanning trees that have a good diame-
ter; that is, to find a spanning tree T ′ of G such that d(T ′) is not much more than d(G).
For obvious reasons, such a tree is traditionally called a broadcast tree. To construct a
broadcast tree we must first understand the relationship between radius and diameter.
The eccentricity (or radius) of a node x in G is the longest of its distances to the other
nodes:

rG(x) = Max{dG(x, y) : y ∈V }.

A node c with minimum radius (or eccentricity) is called a center; that is, ∀x ∈
V, rG(c) ≤ rG(x). There might be more than one center; they all, however, have the
same eccentricity, denoted by r(G) and are called the radius of G:

r(G) = Min{rG(x) : x ∈ V }.

There is a strong relationship between the radius and the diameter of a graph; in fact,
in every graph G,

r(G) ≤ d(G) ≤ 2r(G). (2.21)

The other ingredient we need is a breadth-first spanning tree (bf-tree). A breadth-
first spanning tree of G rooted in a node u, denoted by BFT(u,G), has the following
property: The distance between a node v and the root in the tree is the same as their
distance in the original graph G.

The strategy to construct a broadcast tree with diameter d(T ′) ≤ 2d(G) is then
simple to state:

Strategy Broadcast-Tree Construction:

1. determine a center c of G;

2. construct a breadth-first spanning tree BFT(c,G) rooted in c.

This strategy will construct the desired broadcast tree (Exercise 2.9.29):

Theorem 2.5.5 BFT(c,G) is a broadcast tree of G.
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To be implemented, this strategy requires that we solve two problems: Center
Finding and Breadth-First Spanning-Tree Construction. These problems, as we will
see, are not simple to solve efficiently; we will examine them in later chapters.

2.5.4 Application: Better Traversal

In Section 2.4, we have discussed the general strategy Use-a-Tree for problem solving.
Now that we know how to construct a spanning tree (using a single initiator), let us
apply the strategy to a known problem.

Consider again the traversal problem. Using the Use-a-Tree strategy, we can pro-
duce an efficient traversal protocol that is much simpler than all the algorithms we
have considered before:

Protocol Smart Traversal:

1. Construct, using Shout+, a spanning-tree T rooted in the initiator.

2. Perform a traversal of T, using DF Traversal.

The number of messages of SmartTraversal is easy to compute: Shout+ uses
2m messages (Equation 2.17), while DF Traversal on a tree uses exactly 2(n− 1)
messages (Equation 2.13). In other words,

M[SmartTraversal] = 2(m+ n− 1). (2.22)

The problem with DF Traversal was its time complexity: It was to reduce time
in which we developed more complex protocols. How about the time costs of this
simple new protocol? The ideal time of Shout+ is exactly d + 1. The ideal time of
DF Traversal in a tree is 2(n− 1). Hence the total is

T[SmartTraversal] ≤ 2n+ d − 1. (2.23)

In other words, SmartTraversal not only is simple but also has optimal time and
message complexity.

2.5.5 Spanning-Tree Construction with Multiple Initiators

We have started examining the spanning-tree construction problem in Section 2.5
assuming that there is a unique initiator. This is unfortunately a very strong (and
“unnatural”) assumption to make, as well as difficult and expensive to guarantee.

What happens to the single-initiator protocols Shout and df-SPT if there is more
than one initiator?

Let us examine first protocol Shout. Consider the very simple case (depicted in
Fig. 2.13) of three entities, x, y, and z, connected to each other. Let both x and y be
initiators and start the protocol, and let the Q message from x to z arrive there before
the one sent by y.
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FIGURE 2.13: With multiple initiators, Shout creates a forest.

In this case, neither the link (x,y) nor the link (y,z) will be included in the tree;
hence, the algorithm creates not a spanning tree but a spanning forest, which is not
connected.

Consider now protocol df-SPT, discussed in Section 2.5.2. Let us examine its
execution in the simple network depicted in Figure 2.14 composed of a chain of four
nodes x, y, z, and w. Let y and z be both initiators, and start the traversal by sending
the T message to x and w, respectively.

Also in this case, the algorithm will create a disconnected spanning forest of the
graph. It is easy to verify that the same situation will occur also with the optimized
versions (DF+ and DF*) of the protocol (Exercise 2.9.30).

The failure of these algorithms is not surprising, as they were developed specifically
for the restricted environment of a Unique Initiator.

Removing the restriction brings out the true nature of the problem, which, as we
will now see, has a formidable obstacle.

2.5.6 Impossibility Result

Our goal is to design a spanning-tree protocol, which works solely under the standard
assumptions and thus is independent of the number of initiators. Unfortunately, any
design effort to this end is destined to fail. In fact

Theorem 2.5.6 The SPT problem is deterministically unsolvable under R.

Deterministically unsolvable means that there is no deterministic protocol that
always correctly terminates within finite time.
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FIGURE 2.14: With multiple initiators, df-SPT creates a forest.

Proof. To see why this is the case, consider the simple system composed of three
entities x, y, and z connected by links labeled as shown in Figure 2.15. Let the three
entities have identical initial values (the symbols x, y, z are used only for description
purposes). If a solution protocol A exists, it must work under any conditions of message
delays (as long as they are finite) and regardless of the number of initiators. Consider
a synchronous schedule (i.e., an execution where communication delays are unitary)
and let all three entities start the execution of A simultaneously. Since they are in
identical states (same initial status and values, same port labels), they will execute the
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FIGURE 2.15: Proof of Theorem 2.5.6.
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same rule, obtain the same results (thus, continuing to have the same local values),
compose and send (if any) the same messages, and enter the same (possibly new)
status. In other words, by Property 1.6.2, they will remain in identical states. In the
next time unit, all sent messages (if any) will arrive and be processed. If one entity
receives a message, the others will receive the same message at the same time, perform
the same local computation, compose and send (if any) the same messages, and enter
the same (possibly new) status. And so on. In other words, the entities will continue
to be in identical states.

If A is a solution protocol, it must terminate within finite time. A spanning tree of
our simple system is obtained by removing one of the three links, let us say (x,y). In
this case, Tree-neigbors will be the port label 2 for entity x and the port label 1 for
entity y; instead, z has in Tree-neighbors both port numbers. In other words, when
they all terminate, they have distinct values for their local variable Tree-neighbors.
But this is impossible, since we just said that the states of the entities are always
identical.

Thus, no such a solution algorithm A exists. �

A consequence of this very negative result is that, to construct a spanning tree with-
out constraints on the number of initiators, we need to impose additional restrictions.
To determine the “minimal” restrictions that, added to R, will enable us to solve SPT
is an interesting research problem still open. The restriction that is commonly used is
a very powerful one, Initial Distinct Values, and we will discuss it next.

2.5.7 SPT with Initial Distinct Values

The impossibility result we just witnessed implies that, to solve the SPT problem, we
need an additional restriction. The one commonly used is Initial Distinct Values (ID):
Each entity has a distinct initial value. Distinct initial values are sometimes called
identifiers or ids or global names.

We will now examine some ways in which SPT can be solved under IR = R
∪ {ID}.

Multiple Spanning Trees As in most software design situations, once we have
a solution for a problem and are faced with a more general one, one approach is to
try to find ways to re-use and re-apply the already existing solution. The solutions
we already have are unique-initiator ones and, as we know, they fail in presence of
multiple initiators. Let us see how can we mend their shortcomings using distinct
values.

Consider the execution of Shout in the example of Figure 2.13. In this case, the
reason why the protocol fails is because the entities do not realize that there are two
different requests (e.g., when x receives Q from y) for spanning-tree construction.

But we can now use the entities’ ids to distinguish between requests originating
from different initiators.

The simplest and most immediate application of this approach is to have each
initiator construct “its own” spanning tree with a single-initiator protocol and to use
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the ids of the initiators to distinguish among different constructions. So, instead of
cooperating to construct a single spanning tree, we will have several spanning trees
concurrently and independently built.

This implies that all the protocol messages (e.g., Q andYes in Shout+) must contain
also the id of the initiator. It also requires additional variables and bookkeeping; for
example, at each entity, there will be several instances of the variable tree-neighbors,
one for each spanning tree being constructed (i.e., one for each initiator). Furthermore,
each entity will be in possibly different status values for each of these independent
SPT-constructions. Recall that the number k' of initiators is not known a priori and
can change at every execution.

The message cost of this approach depends solely on the number of initiators and
on the type of unique-initiator protocol used. But it is in any case very expensive. In
fact, if we employ the most efficient SPT-construction protocol we know, Shout+, we
will use 2mk' messages, which could be as bad as O(n3).

Selective Construction The large message cost derives from the fact that we
construct not one but k' spanning trees. Since our goal is just to construct one, there
is clearly a needless amount of communication and computation being performed.

A better approach consists of letting every initiator start the construction of its
own uniquely identified spanning tree (as before), but then suppressing some of these
constructions, allowing only one to complete. In this approach, an entity faced with
two different SPT-constructions will select and act on only one, “killing” the other;
the entity continues this selection process as long as it receives conflicting requests.

The criterion an entity uses to decide which SPT-construction to follow and which
one to terminate must be chosen very carefully. In fact, the danger is to “kill” all
constructions.

The criterion commonly used is based on min-id: Since each SPT-construction
has a unique id (that of its initiator), when faced with different SPT-constructions,
an entity will choose the one with the smallest id and terminate all the others. (An
alternative criterion would be the one based on max-id.)

The solution obtained with this approach has some very clear advantages over the
previous solution. First of all, each entity is at any time involved only in one SPT-
construction; this fact greatly simplifies the internal organization of the protocol (i.e.,
the set of rules), as well as the local storage and bookkeeping of each entity. Second,
upon termination, all entities have a single shared spanning tree for subsequent uses.

However, there is still competitive concurrency: An entity involved in one SPT-
construction might receive messages from another construction; in our approach, it
will make a choice between the two constructions. If the entity chooses the new one,
it will give up all the knowledge (variables, etc) acquired so far and start from scratch.
The message cost of this approach depends again on the number of initiators and on
the unique-initiator protocol used.

Consider a protocol developed using this approach, using Shout+ as the basic tool.
Informally, an entity u, at any time, participates in the construction of just one

spanning tree rooted in some initiator, x. It will ignore all messages referring to the
construction of other spanning trees where the initiators have larger ids than x. If
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instead u receives a message referring to the construction of a spanning tree rooted
in an initiator y with an id smaller than x’s, then u will stop working for x and start
working for y. As we will see, these techniques will construct a spanning tree rooted
in the initiator with the smallest initial value.

IMPORTANT. It is possible that an entity has already terminated its part of the
construction of a spanning tree when it receives a message from another initiator
(possibly, with a smaller id).

In other words, when an entity has terminated a construction, it does not know
whether it might have to restart again. Thus, it is necessary to include in the protocol
a mechanism that ensures an effective local termination for each entity.

This can be achieved by ensuring that we use, as a building block, a unique-
initiator SPT-protocol in which the initiator will know when the spanning tree has
been completely constructed (see Exercise 2.9.24). In this way, when the spanning
tree rooted in the initiator s with the smallest initial value has been constructed, s
will become aware of this fact (as well as that all other constructions, if any, have
been “killed”). It can then notify all other entities so that they can enter a terminal
status. The notification is just a broadcast; it is appropriate to perform it on the newly
constructed spanning-tree (so we start taking advantage of its existence).

Protocol MultiShout, depicted in Figures 2.16 and 2.17, uses Shout+ appropriately
modified so to ensure that the root of a constructed tree becomes aware of termination
and includes a final broadcast (on the spanning tree) to notify all entities that the task
has been indeed completed. We denote by v(x) the id of x; initially all entities are idle
and any of them can spontaneously start the algorithm.

Theorem 2.5.7 Protocol MultiShout constructs a spanning tree rooted in the ini-
tiator with the smallest initial value.

Proof. Let s be the initiator with the smallest initial value. Focus on an initiator x = s;
its initial execution of the protocol will start the construction of a spanning tree Tx
rooted in x. We will first show that the construction of Tx will not be completed. To
see this, observe that Tx must include every node, including s; but when s receives
a message relating to the construction of somebody’s else tree (such as Tx), it will
ignore it, killing the construction of that tree. Let us now show that Ts will instead
be constructed. Since the id of s is smaller than all other ids, no entity will ignore the
messages related to the construction of Ts started by s; thus, the construction will be
completed. �

Let us now consider the message costs of protocol MultiShout. It is clearly more
efficient than protocols obtained with the previous approach. However, in the worst
case, it is not much better in order of magnitude. In fact, it can be as bad as O(n3).

Consider for example the graph, shown in Figure 2.18, where n− k of the nodes
are fully connected among themselves (the subgraph Kn−k), and each of the other
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PROTOCOL MultiShout

� Status: S = {IDLE, ACTIVE, DONE}; SINIT = {IDLE}; ST ERM = {DONE}.
� Restrictions: R ;ID.

IDLE
Spontaneously
begin

root:= true;
root id:=v(x);
Tree neighbors:=∅;
send(Q,root id) to N (x);
counter:=0;
check counter:=0;
become ACTIVE;

end

Receiving(Q,id)
begin

CONSTRUCT;
end

ACTIVE
Receiving(Q,id)
begin

if root id = id then
counter:=counter+1;
if counter=|N (x)| then done:= true; CHECK; endif

else
if root id > id then CONSTRUCT;

endif
end

Receiving(Yes, id)
begin

if root id = id then
Tree-neighbors:=Tree-neighbors ∪{sender};
counter:=counter+1;
if counter=|N (x)| then done:= true; CHECK; endif

endif
end

Receiving(Check, id)
begin

if root id = id then
check counter:=check counter+1;
if (done ∧ check counter=|Children|) then TERM; endif

endif
end

Receiving(Terminate)
begin

send(Terminate) to Children;
become DONE;

end

FIGURE 2.16: Protocol MultiShout
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Procedure CONSTRUCT
begin

root:= false;
root id:= id;
Tree neighbors:={sender};
parent:= sender;
send(Yes,root id) to {sender};
counter:=1;
check counter:=0;
if counter=|N (x)| then

done:= true;
CHECK;

else
send(Q,root-id) to N (x)− {sender};

endif
become ACTIVE;

end

Procedure CHECK
begin

Children:= Tree neighbors-{parent};
if Children = ∅ then

send(Check,root id) to parent;
endif

end

Procedure TERM
begin

if root then
send(Terminate) to Tree-neighbors;
become DONE;

else
send(Check,root-id) to parent;

endif
end

FIGURE 2.17: Routines of MultiShout
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FIGURE 2.18: The execution of MultiShout can cost O(k(n− k)2) messages.
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k (nodes x1, x2, . . . , xk) is connected only to a node in Kn−k . Suppose that these k
“external” nodes are the initiators and that v(x1) > v(x2) > · · · > v(xk),

Consider now an execution where the Q messages from the external entities
arrive to Kn−k in order, according to the indices (i.e., the one from x1 arrives
first).

When the Q message from x1 arrives to Kn−k it will trigger the SPT-construction
there. Notice that the Shout+ component of our protocol with a unique initiator will use
O((n− k)2) messages inside the subgraph Kn−k . Assume that the entire computation
inside Kn−k triggered by x1 is practically completed (costing O((n− k)2) messages)
by the time the Q message from x2 arrives to Kn−k . Since v(x1) > v(x2), all the work
done in Kn−k has been wasted and every entity there must start the construction of
the spanning tree rooted in x2.

In the same way, assume that the time delays are such that the Q message from
xi arrives to Kn−k only when the computation inside Kn−k triggered by xi−1 is
practically completed (costing O((n− k)2) messages).

Then, in this case (which is possible), work costing O((n− k)2) messages will be
repeated k times, for a total of O(k(n− k)2) messages. If k is a linear fraction of n
(e.g., k = n/2), then the cost will be O(n3).

The fact that this solution is not very efficient does not imply that the approach of
selective construction it uses is not effective. On the contrary, it can be made efficient
at the expenses of simplicity. We will examine it in great details later in the book
when studying the leader election problem.

2.6 COMPUTATIONS IN TREES

In this section, we consider computations in tree networks under the standard restric-
tions R plus clearly the common knowledge that the network is tree.

Note that the knowledge of being in a tree implies that each entity can determine
whether it is a leaf (i.e., it has only one neighbor) or an internal node (i.e., it has more
than one neighbor).

We have already seen how to solve the Broadcast, the Wake-Up, and the Traversal
problems in a tree network. The first two are optimally solved by protocol Flooding,
the latter by protocol DF Traversal. These techniques constitute the first set of algo-
rithmic tools for computing in trees with multiple initiators. We will now introduce
another very basic and useful technique, saturation, and show how it can be em-
ployed to efficiently solve many different problems in trees regardless of the number
of initiators and of their location.

Before doing so, we need to introduce some basic concepts and terminology about
trees. In a tree T, the removal of a link (x,y) will disconnect T into two trees, one
containing x (but not y), the other containing y (but not x); we shall denote them
by T [x − y] and T [y − x], respectively. Let d[x, y] = Max{d(x, z) : z ∈ T [y − x]}
be the longest distance between x and the nodes in T [y − x]. Recall that the longest
distance between any two nodes is called diameter, and it is denoted by d. If d[x, y] =
d , the path between x and y is said to be diametral.



COMPUTATIONS IN TREES 71

2.6.1 Saturation: A Basic Technique

The technique, which we shall call Full Saturation, is very simple and can be au-
tonomously and independently started by any number of initiators.

It is composed of three stages:

1. the activation stage, started by the initiators, in which all nodes are activated;

2. the saturation stage, started by the leaf nodes, in which a unique couple of
neighboring nodes is selected; and

3. the resolution stage, started by the selected pair.

The activation stage is just a wake-up: each initiator sends an activation (i.e., wake-
up) message to all its neighbors and becomes active; any noninitiator, upon receiving
the activation message from a neighbor, sends it to all its other neighbors and becomes
active; active nodes ignore all received activation messages. Within finite time, all
nodes become active, including the leaves. The leaves will start the second stage.

Each active leaf starts the saturation stage by sending a message (call it M) to its
only neighbor, referred now as its “parent,” and becomes processing. (Note: M mes-
sages will start arriving within finite time to the internal nodes.) An internal node waits
until it has received an M message from all its neighbors but one, sends a M message
to that neighbor that will now be considered its “parent,” and becomes processing. If
a processing node receives a message from its parent, it becomes saturated.

The resolution stage is started by the saturated nodes; the nature of this stage
depends on the application. Commonly, this stage is used as a notification for all
entities (e.g., to achieve local termination).

Since the nature of the final stage will depend on the application, we will only
describe the set of rules implementing the first two stages of Full Saturation.

IMPORTANT. A “truncated” protocol like this will be called a “plug-in”. In its
execution, not all entities will enter a terminal status. To transform it into a full
protocol, some other action (e.g., the resolution stage) must be performed so that
eventually all entities enter a terminal status.

It is assumed that initially all entities are in the same status available.
Let us now discuss some properties of this basic technique.

Lemma 2.6.1 Exactly two processing nodes will become saturated; furthermore,
these two nodes are neighbors and are each other’s parent.

Proof. From the algorithm, it follows that an entity sends a message M only to its
parent and becomes saturated only upon receiving an M message from its parent.
Choose an arbitrary node x, and traverse the “up” edge of x (i.e., the edge along
which the M message was sent from x to its parent). By moving along “up” edges,
we must meet a saturated node s1 since there are no cycles in the graph. This node
has become saturated when receiving an M message from its parent s2. Since s2
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PLUG-IN Full Saturation .

� Status: S = {AVAILABLE, ACTIVE, PROCESSING, SATURATED};
SINIT = {AVAILABLE};
� Restrictions: R∪T.

AVAILABLE
Spontaneously
begin

send(Activate) to N (x);
Initialize;
Neighbors:= N (x);
if|Neighbors|=1 then
Prepare Message;
parent ⇐ Neighbors;
send(M) to parent;
become PROCESSING;

else become ACTIVE;
endif

end

Receiving(Activate)
begin

send(Activate) to N (x)− {sender};
Initialize;
Neighbors:= N (x);
if|Neighbors|=1 then
Prepare Message;
parent ⇐ Neighbors;
send(M) to parent;
become PROCESSING;

else become ACTIVE;
endif

end

ACTIVE
Receiving(M)
begin

Process Message;
Neighbors:= Neighbors−{sender};
if|Neighbors|=1 then
Prepare Message;
parent ⇐ Neighbors;
send(M) to parent;
become PROCESSING;

endif
end

PROCESSING
Receiving(M)
begin

Process Message;
Resolve;

end

FIGURE 2.19: Full Saturation



COMPUTATIONS IN TREES 73

Procedure Initialize
begin

nil;
end

Procedure Prepare Message
begin

M:=("Saturation");
end

Procedure Process Message
begin

nil;
end

Procedure Resolve
begin

become SATURATED;
Start Resolution stage;

end

FIGURE 2.20: Procedures used by Full Saturation

has sent an M message to s1, this implies that s2 must have been processing and
must have considered s1 its parent; thus, when the M message from s1 will arrive at
s2, s2 will become saturated also. Thus, there exist at least two nodes that become
saturated; furthermore, these two nodes are each other’s parent. Assume that there
are more than two saturated nodes; then there exist two saturated nodes, x and y,
such that d(x, y) ≥ 2. Consider a node z on the path from x to y; z could not send
am M message toward both x and y; therefore, one of the nodes cannot be saturated.
Therefore, the lemma holds. �

IMPORTANT. It depends on the communication delays which entities will become
saturated and it is therefore totally unpredictable. Subsequent executions with the
same initiators might generate different results. In fact

any pair of neighbors could become saturated.

The only guarantee is that a pair of neighbors will be selected; since a pair of neighbors
uniquely identifies an edge, the one connecting them; this result is also called edge
election.

To determine the number of message exchanges, observe that the activation stage
is a wake-up in a tree and hence it will use n+ k' − 2 messages (Equation 2.5), where
k' denotes the number of initiators. During the saturation stage, exactly one message
is transmitted on each edge, except the edge connecting the two saturated nodes on
which two M messages are transmitted, for a total of n− 1+ 1 = n messages. Thus,

M[Full Saturation] = 2n+ k' − 2. (2.24)
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Notice that only n of those messages are due to the saturation stage.
To determine the ideal time complexity, let I ⊆ V denote the set of initiator nodes,

L ⊆ V denote the set of leaf nodes; t(x) the time delay, from the initiation of the
algorithm, until node x becomes active. To become saturated, node s must have waited
until all the leafs have become active and the M messages originated from them have
reached s; that is, it must have waited Max{t(l)+ d(l, s) : l ∈ L}. To become active,
a noninitiator node x must have waited for an “Activation” message to reach it, while
there is no additional waiting time for an initiator node; thus, t(x) = Min{d(x, y)+
t(y) : y ∈ I }. Therefore, the total delay, from the initiation of the algorithm, until s
becomes saturated (and, thus, the ideal execution delay of the algorithm) is

T[Full Saturation] = Max{Min{d(l, y)+ t(y)} + d(l, y) : y ∈ I, l ∈ L}. (2.25)

We will now discuss how to apply the saturation technique to solve different
problems.

2.6.2 Minimum Finding

Let us see how the saturation technique can be used to compute the smallest among a
set of values distributed among the nodes of the network. Every entity x has an input
value v(x) and is initially in the same status; the task is to determine the minimum
among those input values. That is, in the end, each entity must know whether or not its
value is the smallest and enter the appropriate status, minimum or large, respectively.

IMPORTANT. Notice that these values are not necessarily distinct. So, more than
one entity can have the minimum value; all of them must become minimum. This
problem is called Minimum Finding (MinFind) and is the simplest among the class
of Distributed Query Processing problems that we will examine in later chapters: a
set of data (e.g., a file) is distributed among the sites of a communication network;
queries (i.e., external requests for information about the set) can arrive at any time at
any site (which becomes an initiator of the processing), triggering computation and
communication activities. A stronger version of this problem requires all entities to
know the minimum value when they enter the final status.

Let us see how to solve this problem in a tree network. If the tree was rooted, then this
task can be trivially performed. In fact, in a rooted tree not only is there a special node,
the root, but also a logical orientation of the links: “up” toward the root and “down”
away from the root; this corresponds to the “parent” and “children” relationship,
respectively. In a rooted tree, to find the minimum, the root would broadcast down
the request to compute the minimum value; exploiting the orientation of the links,
the entities will then perform a convergecast (described in more details in Section
2.6.7): starting from the leaves, the nodes determine the smallest value among the
values “down” and send it “up.” As a result of this process, the minimum value is
then determined at the root, which will then broadcast it to all nodes.
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PROCESSING
Receiving(Notification)
begin

send(Notification) to N (x)−parent;
if v(x) =Received Value then

become MINIMUM;
else

become LARGE;
endif

end

Procedure Initialize
begin

min:=v(x);
end

Procedure Prepare Message
begin

M:=("Saturation", min);
end

Procedure Process Message
begin

min:= MIN{min, Received Value};
end

Procedure Resolve
begin

Notification:= ("Resolution", min);
send(Notification) to N (x)−parent;
if v(x) =min then

become MINIMUM;
else

become LARGE;
endif

end

FIGURE 2.21: New Rule and Procedures used for Minimum Finding

Notice that convergecast can be used only in rooted trees. The existence of a root
(and the additional information existing in a rooted tree) is, however, a very strong
assumption; in fact, it is equivalent to assuming the existence of a leader (which, as
we will see, might not be computable).

Full Saturation allows to achieve the same goals without a root or any additional
information. This is achieved simply by including in the M message the smallest value
known to the sender. Namely, in the saturation stage the leaves will send their value
with the M message, and each internal node sends the smallest among its own value
and all the received ones. In other words, MinF-Tree is just protocol Full Saturation
where the procedures Initialize, Prepare Message, and Process Message are as shown
in Figure 2.21 and where the resolution stage is just a notification started by the two
saturated nodes, of the minimum value they have computed. This is obtained by
simply modifying procedure Resolve accordingly and adding the rule for handling
the reception of the notification.
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The correctness follows from the fact that both saturated nodes know the minimum
value (Exercise 2.9.31).

The number of message transmission for the minimum-finding algorithm MinF-
Tree will be exactly the same as the one experienced by Full Saturation plus the ones
performed during the notification. Since a notification message is sent on every link
except the one connecting the two saturated nodes, there will be exactly n− 2 such
messages. Hence

M[MinF− Tree] = 3n+ k' − 4. (2.26)

The time costs will be the one experienced by Full Saturation plus the ones required
by the notification. Let Sat denote the set of the two saturated nodes; then

T[MinF− Tree] = T[Full Saturation]+Max{d(s, x) : s ∈ Sat, x ∈ V }. (2.27)

2.6.3 Distributed Function Evaluation

An important class of problems are those of Distributed Function Evaluation; that is,
where the task is to compute a function whose arguments are distributed among the
processors of a distributed memory system (e.g., the sites of a network). An instance
of this problem is the the one we just solved: Minimum Finding. We will now discuss
how the saturation technique can be used to evaluate a large class of functions.

Semigroup Operations Let f be an associative and commutative function
defined over all subsets of the input values. Examples of this type of functions are: min-
imum, maximum, sum, product, and so forth, as well as logical predicates. Because
of their algebraic properties, these functions are called semigroup operations.

IMPORTANT. It is possible that some entities do not have an argument (i.e., initial
value) or that the function must only be evaluated on a subset of the arguments. We
shall denote the fact that x does not have an argument by v(x) = nil.

The same approach that has led us to solve Minimum Finding can be used to
evaluate f.

The protocol Function Tree is just protocol Full Saturation where the procedures
Initialize, Prepare Message, and Process Message are as shown in Figure 2.22 and
where the resolution stage is just a notification started by the two saturated nodes, of the
final result of the function they have computed. This is obtained by simply modifying
procedure Resolve accordingly and adding the rule for handling the reception of the
notification.

The correctness follows from the fact that both saturated nodes know the result of
the function (Exercise 2.9.32). For particular types of functions, see Exercises 2.9.33,
2.9.34, and 2.9.35.
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PROCESSING
Receiving(Notification)
begin

result:= received value;
send(Notification) to N (x)−parent;
become DONE;

end

Procedure Initialize
begin

if v(x) = nil then
result:=f (v(x));

else
result:=nil;

end

Procedure Prepare Message
begin

M:=("Saturation", result);
end

Procedure Process Message
begin

if received value =nil then
if result =nil then

result:= f(result, received value);
else

result:= f(received value);
endif

endif
end

Procedure Resolve
begin

Notification:= ("Resolution", result);
send(Notification) to N (x)−parent;
become DONE;

end

FIGURE 2.22: New Rule and Procedures used for Function Tree

The time and message costs of the protocol are exactly the same as the one for
Minimum Finding. Thus, semigroup operations can be performed optimally on a tree
with any number of initiators and without a root or additional information.

Cardinal Statistics A useful class of functions are statistical ones, such as aver-
age, standard deviation, and so for. These functions are not semigroup operation but
can nevertheless be optimally solved using the saturation technique.

We will just examine, as an example, the computation of Ave, the average of the
(relevant) entities’ values. Observe that Ave≡ Sum / Size where Sum is the the sum of
all (relevant) values, and Size is the number of those values. Since Sum is a semigroup
operation, we already know how to compute it. Also Size is trivially computed using
saturation (Exercises 2.9.36 and 2.9.37).
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We can collect at the two saturated nodes Sum and Size with a single execution of
Saturation: the M message will contain two data fields M=(“Saturation,” sum,size),
which are initialized by each leaf node and updated by the internal ones. The resolution
stage is just a notification started by the two saturated nodes, of the average they can
have computed.

Similarly, a single execution of Full Saturation with a final notification of the result
will allow the entities to compute cardinal statistics on the input values.

Notice that ordinal statistics (e.g., median) are in general more difficult to re-
solve. We will discuss them in the chapter on selection and sorting of distributed
data.

2.6.4 Finding Eccentricities

The basic technique has been so far used to solve single-valued problems; that is, prob-
lems whose solution requires the identification of a single value. It can also be used
to solve multi-valued problems such as the problem of determining the eccentricities
of all the nodes.

PROCESSING
Receiving(Notification)
begin

result:= received value;
send(Notification) to N (x)−parent;
become DONE;

end

Procedure Initialize
begin

sum:=v(x);
size:=1;

end

Procedure Prepare Message
begin

M:=("Saturation", sum,size);
end

Procedure Process Message
begin

sum:= sum + Received sum;
size:=size + Received size;

end

Procedure Resolve
begin

result := sum / size;
Notification:= ("Resolution", result);
send(Notification) to N (x)−parent;
become DONE;

end

FIGURE 2.23: New Rule and Procedures used for computing the Average
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The eccentricity of a node x, denoted by r(x), is the largest distance between x and
any other node in the tree: r(x) = Max{d(x, y) : y ∈ V }; note that a center is a node
with the smallest eccentricity. (We briefly discussed center and eccentricity already
in Section 2.5.3.)

To compute its own eccentricity, a node x needs to determine the maximum distance
from all other nodes in the tree. To accomplish this, x needs just to broadcast the
request, making itself the root of the tree, and, using convergecast on this rooted
tree, collect the maximum distance to itself. This approach would require 2(n− 1)
messages and it is clearly optimal with respect to order of magnitude. If we want
every entity to compute its eccentricity, this however would lead to a solution that
requires 2(n2 − n) messages.

We will now show that saturation will yield instead a O(n), and thus optimal,
solution.

The first step is to use saturation to compute the eccentricity of the two saturated
nodes. Notice that we do not know a priori which pair of neighbors will become
saturated. We can nevertheless ensure that when they become saturated they will
know their eccentricity. To do so, it is enough to include, in the M message sent by
an entity x to its neighbor y, the maximum distance from x to the nodes in T [x − y],
increased by 1. In this way, a saturated node s will know d[s, y] for each neighbor y;
thus, it can determine its eccentricity (Exercise 2.9.38).

Our goal is to have all nodes determine their eccentricity, not just the saturated
ones. The interesting thing is that the information available at each entity at the end of
the saturation stage is almost sufficient to make them compute their own eccentricity.

Consider an entity u; it sent the M message to its parent v, after it received one from
all its other neighbors; the message from y = v contained d[u, y]. In other words,
u knows already the maximum distance from all the entities except the ones in the
tree T [v− u]. Thus, the only information u is missing is d[u, v] = Max{d(u, y) : y ∈
T [v− u]}. Notice that (Exercise 2.9.39)

d[u, v] = Max{d(u, y) : y ∈ T [v− u]} = 1+Max{d[v, z] : z = u ∈ N (v)}.
(2.28)

Summarizing, every node, except the saturated ones, is missing one piece of infor-
mation: the maximum distance from the nodes on the other side of the link connecting
it to its parent. If the parents could provide this information, the task can be com-
pleted. Unfortunately, the parents are also missing the information, unless they are
the saturated nodes.

The saturated nodes have all the information they need. They also have the in-
formation their neighbors are missing: let s be a saturated node and x be an unsatu-
rated neighbor; x is missing the information d[x, s]; by Equation 2.28, this is exactly
d[x, s] = 1+Max{d[s, z] : x = z ∈ N (s)}, and s knows all the d[s, z] (they were
included in the M messages it received). So, the saturated nodes s can provide the
needed information to their neighbors, who can then compute their eccentricity. The
nice property is that now these neighbors have the information required by their own
neighbors (further away from the saturated nodes). Thus, the resolution stage of Full
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PROCESSING
Receiving("Resolution",dist)
begin

Resolve;
end

Procedure Initialize
begin

Distance[x]:= 0;
end

Procedure Prepare Message
begin

maxdist:= 1+ Max{Distance[*]};
M:=("Saturation", maxdist);

end

Procedure Resolve
begin

Process Message;
Calculate Eccentricity;
forall y ∈ N (x)− {parent} do

maxdist:= 1+Max{Distance[z]: z ∈ N (x)− {parent, y}};
send("Resolution", maxdist) to y;

endfor
become DONE;

end

Procedure Process Message
begin

Distance[sender]:= Received distance;
end

Procedure Calculate Eccentricity
begin

r(x):= Max{Distance[z]: z ∈ N (x)};
end

FIGURE 2.24: New Rule and Procedures used for computing the Eccentricities

Saturation can be used to provide the missing information: starting from the satu-
rated nodes, once an entity receives the missing information from a neighbor, it will
compute its eccentricity and provide the missing information to all its other neighbors.

IMPORTANT. Notice that, in the resolution stage, an entity sends different infor-
mation to each of its neighbors. Thus, unlike the resolution we used so far, it is not a
notification.

The protocol Eccentricities will thus be a Full Saturation where the procedures Initial-
ize, Prepare Message, and Process Message are as shown in Figure 2.24. The rules
for handling the reception of the message, the procedure Resolve, and the procedure
to calculate the eccentricity are also shown in Figure 2.24.

Notice that, even though each node receives a different message in the resolu-
tion stage, only one message will be received by each node in that stage, except
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the saturated nodes, which will receive none. Thus, the message cost of protocol
Eccentricities will be exactly as the one of MinF-Tree and so will the time cost:

M[Eccentricities] = 3n+ k' − 4 ≤ 4n− 4. (2.29)

T[Eccentricities] = T[MinF − T ree]. (2.30)

2.6.5 Center Finding

A center is a node from which the maximum distance to all other nodes is minimized.
A network might have more than one center. The Center Finding problem (Center) is
to make each entity aware of whether or not it is a center by entering the appropriate
terminal status center or not-center, respectively.

A Simple Protocol To solve Center we can use the fact that a center is exactly
a node with the smallest eccentricity. Thus a solution protocol consists of finding the
minimum among all eccentricities, combining the protocols we have developed so
far:

1. Execute protocol Eccentricities;

2. Execute the last two stages (saturation and resolution) of MinF-Tree.

Part (1) will be started by the initiators; part (2) will be started by the leaves once,
upon termination of their execution of Eccentricities, they know their eccentricity; the
saturation stage of MinF-Tree will determine at two new saturated nodes the minimum
overall eccentricity and will be broadcasted in the notification stage by them. At that
time, an entity can determine if it is a center or not.

This approach will cost 3n+ k' − 4 messages for part (1) and n+ n− 2 = 2n− 2
for part (2), for a total of 5n+ k' − 6 ≤ 6n− 6 messages.

The time costs are no more than T[Eccentricities] +2d ≤ 4d.

A Refined Protocol An improvement can be derived by exploiting the structure
of the problem in more details. Recall that d[x, y] = Max{d(x, z) : z ∈ T [y − x]} is
the longest distance between x and the nodes in T [y − x]. Let d1[x] and d2[x] be the
largest and second-largest of all {d[x, y] : y ∈ N (x)}, respectively. The centers of a
tree have some very interesting properties. Among them

Lemma 2.6.2 In a tree either there is a unique center or there are two centers and
they are neighbors.

Lemma 2.6.3 In a tree all centers lie on all diametral paths.

Lemma 2.6.4 A node x is a center if and only ifd1[x]− d2[x] ≤ 1; if strict inequality
holds, then x is the only center.
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Lemma 2.6.5 Let y and z be neighbors of x such that d1[x] = d[x, y] and d2[x] =
d[x, z]. If d[x, y]− d[x, z] > 1, then all centers are in T [y − x].

Lemma 2.6.4 gives us the tool we need to devise a solution protocol: an entity x can
determine whether or not it is a center, provided it knows the value d[x, y] for each of
its neighbors y. But this is exactly the information that was provided to x by protocol
Eccentricities so it could compute r(x).

This means that to solve Center it suffices to execute Eccentricities. Once an entity
has all the information to compute its radius, it will check whether the largest and the
second largest received values differ at most by one; if so, it becomes center, otherwise
not-center. Thus, the solution protocol Center Tree is obtained from Eccentricities
adding this test and some bookkeeping (Exercise 2.9.40).

The time and message costs of Center Tree will be exactly the same as that of
Eccentricities.

M[Center Tree] = 3n+ k' − 4 ≤ 4n− 4. (2.31)

T[Center Tree] = T[FullSaturation]. (2.32)

An Efficient Plug-In The solutions we have discussed are full protocols. In some
circumstances, however, a plug-in is sufficient; that is, when the centers must start
another global task. In these circumstances, the goal is just for the centers to know
that they are centers.

In such a case, we can construct a more efficient mechanism, always based on
saturation, using the resolution stage in a different way.

The properties expressed by Lemmas 2.6.4 and 2.6.5 give us the tools we need to
devise the plug-in.

In fact, by Lemma 2.6.4, x can determine whether or not it is a center once it
knows the value d[x, y] for each of its neighbors y. Furthermore, if x is not a center,
by Lemma 2.6.5, this information is sufficient to determine in which subtree T [y − x]
a center resides.

Thus, the solution is to collect such values at a node x; determine whether x is a
center; and, if not, move toward a center until it is reached.

In order to collect the information needed, we can use the first two stages (Wake-
up and Saturation) of protocol Eccentricities. Once a node becomes saturated, it can
determine whether it is a center by checking whether the largest and the second
largest received values differ at most by one. If it is not a center, it will know that the
center(s) must reside in the direction from which the largest value has been received.
By keeping track at each node (during the saturation stage) of which neighbor has
sent the largest value, the direction of the center can also be determined. Furthermore,
a saturated node can decide whether it is closest to a center or its parent.

The saturated node, say x, closest to a center will then send a “Center” message,
containing the second largest received value increased by one, in the direction of the
center. A processing node receiving such a message will, in turn, be able to determine
whether it is a center and, if not, the direction toward the center(s).
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Once the message arrives at a center c, c will be able to determine if it is the only
center or not (using Lemma 2.6.4); in this case, it will know which neighbor is the
other center and will notify it.

The Center Finding plug-in will then be the Full Saturation plug-in with the addi-
tion of the “Center” message traveling from the saturated nodes to the centers. In par-
ticular, the routines Initialize, Process Message, Prepare Message, Resolve, and the
new rules governing the reception of the “Center” messages are shown in Figure 2.25.

PROCESSING
Receiving("Center", value)
begin

Process Message;
Resolve;

end

Procedure Initialize
begin

Max Value := 0;
Max2 Value := 0;

end

Procedure Prepare Message
begin

M:=("Saturation", Max Value+1);
end

Procedure Process Message
begin

if Max Counter < Received value then
Max2 Value := Max Value;
Max Value := Received Value;
Max Neighbor := sender;

else
if Max2 Value < Received value then

Max2 Value := Received value;
endif

endif
end

Procedure Resolve
begin

if Max Value - Max2 Value = 1 then
if Max Neighbor = parent then

send(Center,Max2 Value) to Max Neighbor;
endif
become CENTER;

else
if Max Value - Max2 Value > 1 then

send(Center,Max2 Value) to Max Neighbor;
else

become CENTER;
endif

endif
end

FIGURE 2.25: Transforming Saturation into an efficient Plug-In for Center Finding
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The message cost of this plug-in is easily determined by observing that, after the
Full Saturation plug-in is applied, a message will travel from the saturated node s
(closest to a center) to its furthermost center c; hence, d(s, c) additional messages are
exchanged. Since d(s, c) ≤ n/2, the total number of message exchanges performed is

M[Center− Finding] = 2.5n+ k' − 2 ≤ 3.5n− 2. (2.33)

2.6.6 Other Computations

The simple modifications to the basic technique that we have discussed in the previous
sections can be applied to solve a variety of other problems efficiently.

Following is a sample of them and the key properties employed toward their
solution.

Finding a Median A median is a node from which the average distance to all
nodes in the network is minimized. Since a median obviously minimizes the sum
of the distances to all other nodes, it is also called a communication center of the
network.

In a tree, the key properties are:

Lemma 2.6.6 In a tree either there is a unique median or there are two medians
and they are neighbors.

Given a node x, and a sub-tree T ′, let g[T , x] = ∑
y∈T d(x, y) denote the sum of

all distances between x and the nodes in T, and let G[x, y] = g[T , x]− g[T , y] =
n+ 2− 2 ∗ |T [y − x]|; then

Lemma 2.6.7 Entity x is a median if and only if G[x, y] ≥ 0 for all neighbors y.

Furthermore,

Lemma 2.6.8 If x is not the median, there exists a unique neighbor y such that
G[y, x] < 0; such a neighbor lies in the path from x to the median.

Using these properties, it is simple to construct a full protocol as well as an efficient
plug-in, following the same approaches used for center finding (Exercise 2.9.41).

Finding Diametral Paths A diametral path is a path of the longest length. In a
network there might be more than one diametral path. The problem we are interested
in is to identify all these paths. In distributed terms, this means that each entity needs
to know if it is part of a diametral path or not, entering an appropriate status (e.g.,
on-path or off-path).

The key property to solve this problem is

Lemma 2.6.9 A node x is on a diametral path if and only if d1[x]+ d2[x] = d.
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Thus, a solution strategy will be to determine d, d1[x], and d2[x] at every x and then
use Lemma 2.6.9 to decide the final status. A full protocol efficiently implementing
this strategy can be designed using the tools developed so far (Exercise 2.9.45).

Consider now designing a plug-in instead of a full protocol; that is, we are only
interested in that the entities on diametral paths (and only those) become aware of it.

In this case, the other key property is Lemma 2.6.4: every center lies on every
diametral path. This gives us a starting point to find the diametral paths: the centers.
To continue, we can then use Lemma 2.6.9. In other words, we first find the centers
(note: they know the diameter) and then propagate the information along the diametral
paths. A center (or for that matter, a node on a diametral path) does not know a priori
which one of its neighbors is also on a diametral path. It will thus send the needed
information to all its neighbors which, upon receiving it, will determine whether or
not they are on such a path; if so, they continue the execution (Exercise 2.9.46).

2.6.7 Computing in Rooted Trees

Rooted Trees In some cases, the tree T is actually rooted; that is, there is a distinct
node, r, called the root, and all links are oriented toward r. In this case, the tree T will
be denoted by T[r].

If link (x,y) is oriented from y to x, x is called the parent of y and y is said to be
a child of x. Similarly, a descendant of x is any entity z for which there is a directed
path from z to x, and an ancestor of x is any entity z for which there is a directed path
from x to z.

Two important properties of a rooted tree are that the root has no parent, while
every other node has only one parent (see Fig. 2.26).

Before examining how to compute in rooted trees, let us first observe the important
fact that transforming a tree into a rooted one might be an impossible task.

S

(a) (b)

FIGURE 2.26: (a) A tree T; (b) the same tree rooted in s: T[s].
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11
yx

FIGURE 2.27: It is impossible to transform this tree into a rooted one.

Theorem 2.6.1 The problem of transforming trees into rooted ones is deterministi-
cally unsolvable under R.

Proof. Recall that deterministically unsolvable means that there is no deterministic
protocol that always correctly terminates within finite time. To see why this is true,
consider the simple tree composed of two entities x and y connected by links labeled
as shown in Figure 2.27. Let the two entities have identical initial values (the symbols
x, y are used only for description purposes). If a solution protocol A exists, it must
work under any conditions of message delays (as long as they are finite) and regard-
less of the number of initiators. Consider a synchronous schedule (i.e., an execution
where communication delays are unitary) and let both entities start the execution of
A simultaneously. Since they are identical (same initial status and values, same port
labels), they will execute the same rule, obtain the same results (thus, continuing to
have the same local values), compose and send (if any) the same messages, and enter
the same (possibly new) status. In other words, they will remain identical. In the next
time unit, all sent messages (if any) will arrive and be processed. If one entity receives
a message, the other will receive the same message at the same time, perform the same
local computation, compose and send (if any) the same messages, and enter the same
(possibly new) status. And so on. In other words, the two entities will continue to be
identical. If A is a solution protocol, it must terminate within finite time; when this
occurs, one entity, say x, becomes the root. But since both entities will always have
the same state in this execution, y will also become root, contradicting the fact that A
is correct. Thus, no such a solution algorithm A exists. �

This means that being in a rooted tree is considerably different from being in a
tree. Let us see how to exploit this difference.

Convergecast The orientation of the links in a rooted tree is such that each entity
has a notion of “up” (i.e., towards the root) and “down” (i.e., away from the root). If we
are in a rooted tree, we can obviously exploit the availability of this globally consistent
orientation. In particular, in the saturation technique, the process performed in the
saturation stage can be simplified as follows:

Convergecast

1. a leaf sends its message to its parent;

2. each internal node waits until it receives a message from all its children; it then
sends a message to its parent.

In this way, the root (that does not have a parent) will be the sole saturated node
and will start the resolution stage.
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This simplified process is called convergecast. If we are in a rooted tree, we can
solve all the problems we discussed in the previous section (minimum finding, center
finding, etc.) using convergecast in the saturation stage.

In spite of its greater simplicity, the savings in cost due to convergecast is only
1 message (Exercise 2.9.47). Clearly, such an amount alone does not justify the
difference between general trees and rooted ones. There are however other advantages
in rooted trees, as we will see later.

Totally Ordered Trees In addition to the globally consistent orientation “up and
down,” a rooted tree has another powerful property. In fact, the port numbers at a
node are distinct; thus, they can be sorted, for example, in increasing order, and
the corresponding links can be ordered accordingly. This means that the entire tree
is ordered. As a consequence, also the nodes can be totally ordered, for example,
according to a preorder traversal (see Fig. 2.28).

Note that a node might not be aware of its order number in the tree, although this
information can be easily acquired in the entire tree (Exercise 2.9.49). This means
that, in a rooted tree the root assigns unique ids to the entities. This fact shows indeed
the power of rooted trees.

The fact that a rooted tree is totally ordered can be exploited also in other compu-
tations. Following are two examples.

Example: Choosing a Random Entity. In many systems and applications, it is
necessary to occasionally select an entity at random. This occurs for instance in
routing systems where, to reduce congestion, a message is first sent to an intermediate
destination chosen at random and then delivered from there to the final destination.
The same random selection is made, for example, for coordination of a computation,
for control of a resource, etc. The problem is how to determine an entity at random. Let
us concentrate on uniform choice; that is, every entity must have the same probability,
1/n, of being selected.
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FIGURE 2.28: A rooted tree is an ordered tree and unique names can be given to the nodes.
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In a rooted tree, it becomes easy for the root to select uniformly an entity at random.
Once unique names have been assigned in preorder to the nodes and the root knows
the number n of entities, the root needs only to choose locally a number uniformly at
random between 1 and n; the entity with such a name will be the selected one. At this
point, the only thing that the root r still has to do is to communicate efficiently to the
selected entity x the result of the selection.

Actually, it is not necessary to assign unique names to the identities; in fact, it
suffices that each entity knows the number of descendents of each of its children,
and the entire process (from initial notification to all to final notification to x) can
be performed with at most 2(n− 1)+ dT (s, x) messages and 2r(s)+ dT (s, x) ideal
time units (Exercise 2.9.50).

Example: Choosing at Random from a Distributed Set. An interesting computa-
tion is the one of choosing at random an element of a set of data distributed (without
replication) among the entities. The setting is that of a set D partitioned among the
entities; that is, each entity x has a subset Dx ⊆ D of the data where ∪xDx = D and,
for x = y, Dx ∩Dy = ∅.

Let us concentrate again on uniform choice; that is, every data item must have the
same probability, 1/|D| of being selected. How can this be achieved?

IMPORTANT. Choosing first an entity uniformly at random and then choosing an
item uniformly at random in the set stored there will NOT give a uniformly random
choice from the entire set (Exercise2.9.51).

Interestingly, this problem can be solved with a technique similar to that used for
selecting an entity at random and with the same cost (Exercise 2.9.52).

Application: Broadcast with Termination Detection Convergecast can be
used whenever there is a rooted spanning tree. We will now see an application of this
fact.

It is a “fact of life” in distributed computing that entities can terminate the execution
of a protocol at different times; furthermore, when an entity terminates, it is usually
unaware of the status of the other entities. This is why we differentiate between local
termination (i.e., of the entity) and global termination (i.e., of the entire system).

For example, with the broadcast protocol Flooding the initiator of the broadcast
does not know when the broadcast is over. To ensure that the initiator of the broad-
cast becomes aware of when global termination occurs, we need to use a different
strategy.

To develop this strategy, recall that, if an entity s performs a Flood+Reply (e.g.,
protocol Shout) in a tree, the tree will become rooted in s: the initiator is the root;
for every other node y, the neighbor x from which it receives the first broadcasted
message is its parent, and all the neighbors that send the positive reply (e.g., “YES” in
Shout and Shout+) are its children. This means that convergecast can be “appended”
to any Flood+Reply protocol.
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Strategy Broadcast with Termination Detection:

1. The initiator s uses any Flood+Reply protocol to broadcast and construct a
spanning tree T[s] of the network;

2. Starting from the leaves of T[s], the entities perform a convergecast on T.

At the end of the convergecast, s becomes aware of the global termination of the
broadcast (Exercise 2.9.48).

As for the cost, to broadcast with termination detection we need just to add the
cost of the convergecast to the one of the Flood+Reply protocol used. For example,
if we use Shout+, the resulting protocol that we shall call TDCast will then use
2m+ n− 1 messages. The ideal time of Shout+ is exactly r(s)+ 1; the ideal time of
convergecast is exactly the height of the tree T[s], that is r(s); thus, protocol TDCast
has ideal time complexity 2r(s)+ 1. This means that termination detection can be
added to broadcast with less than twice the cost of broadcasting alone.

2.7 SUMMARY

2.7.1 Summary of Problems

Broadcast [Information problem] =⇒ A single entity has special information that
everybody must know.

� Unique Initiator
� Flooding: Messages = �(m); Time = �(d)

Wake-Up [Information/Synchronization problem] =⇒ Some entities are awake;
everybody must wake-up.

� Wake-Up ≡ (Broadcast with multiple initiators)
� WFlood: Messages = �(m); Time = �(d)

Traversal [Network problem] =⇒ Starting form the initiator, each entity is visited
sequentially.

� Unique Initiator
� DF-Traversal: Messages = �(m); Time = �(n)

Spanning-Tree Construction [Network problem]=⇒ Each entity identifies the sub-
set of neighbors in the spanning tree.

� SPT with unique initiator ≡ Broadcast
� Unique Initiator: Shout: Messages = �(m); Time = �(d)
� Multiple Initiators: assume Distinct Initial Values
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Election [Control problem]=⇒ One entity becomes leader, all others enter different
special status.

� Distinct Initial Values

Minimum Finding [Data problem] =⇒ Each entity must know whether its initial
value is minimum or not.

Center Finding [Network problem] =⇒ Each entity must know whether or not it is
a center of the network.

2.7.2 Summary of Techniques

Flooding: with single initiator = broadcast; with multiple initiators = wake-up.

Flooding with Reply (Shout ): with single initiator, it creates a spanning tree rooted
in the initiator.

Convergecast: in rooted trees only.

Flooding with Replies plus Convergecast (TDCast): single initiator only,
initiator finds out that the broadcast has globally terminated.

Saturation: in trees only.

Depth-first traversal: single initiator only.

2.8 BIBLIOGRAPHICAL NOTES

Of the basic techniques, flooding is the oldest one, still currently and frequently
used. The more sophisticated refinements of adding reply and a convergecast were
discussed and employed independently by Adrian Segall [11] and Ephraim Korach,
Doron Rotem and Nicola Santoro [8]. Broadcasting in a linear number of messages
in unoriented hypercubes is due to Stefan Dobrev and Peter Ruzicka [6]. The use of
broadcast trees was first discussed by David Wall [12].

The depth-first traversal protocol was first described by Ernie Chang [3]; the first
hacking improvement is due to Baruch Awerbuch [2]; the subsequent improvements
were obtained by Kadathur Lakshmanan, N. Meenakshi, and Krishnaiyan Thulasira-
man [9] and independently by Israel Cidon [4].

The difficulty of performing a wake-up in labeled hypercubes and in complete
graphs has been proved by Stefan Dobrev, Rastislav Kralovic, and Nicola Santoro [5].

The first formal argument on the impossibility of some global computations under
R (e.g., the impossibility result for spanning-tree construction with multiple initiators)
is due to Dana Angluin [1].

The saturation technique is originally due to Nicola Santoro [10]; its application
to center and median finding was developed by Ephraim Korach, Doron Rotem, and
Nicola Santoro [8]. A decentralized solution to the ranking problem (Problem 2.9.4)
was designed by Ephraim Korach, Doron Rotem, and Nicola Santoro [7]; a less
efficient centralized one is due to Shmuel Zaks [13].
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2.9 EXERCISES, PROBLEMS, AND ANSWERS

2.9.1 Exercises

Exercise 2.9.1 Show that protocol Flooding uses exactly 2m− n+ 1 messages.

Exercise 2.9.2 Design a protocol to broadcast without the restriction that the unique
initiator must be the entity with the initial information. Write the new problem defi-
nition. Discuss the correctness of your protocol. Analyze its efficiency.

Exercise 2.9.3 Modify Flooding so to broadcast under the restriction that the
unique initiator must be an entity without the initial information. Write the new
problem definition. Discuss the correctness of your protocol. Analyze its effi-
ciency.

Exercise 2.9.4 We want to move the system from an initial configuration where
every entity is in the same status ignorant except the one that is knowledgeable to
a final configuration where every entity is in the same status. Consider this problem
under the standard assumptions plus Unique Initiator.

(a) Prove that, if the unique initiator is restricted to be one of the ignorant entities,
this problem is the same as broadcasting (same solution, same costs).

(b) Show how, if the unique initiator is restricted to be the knowledgeable entity,
the problem can be solved without any communication.

Exercise 2.9.5 Design a protocol to broadcast without the Bidirectional Link re-
striction. Discuss its correctness. Analyze its efficiency.

Exercise 2.9.6 Prove that, in the worst case, the number of messages used by protocol
WFlood is at most 2m. Show under what conditions such a bound will be achieved.
Under what conditions will the protocol use only 2m− n+ 1 messages?

Exercise 2.9.7 Prove that protocol WFlood correctly terminates under the standard
set of restrictions BL,C, and TR.

Exercise 2.9.8 Write the protocol that implements strategy HyperFlood.

Exercise 2.9.9 Show that the subgraph Hk(x), induced by the messages sent when
using HyperFlood on the k-dimensional hypercube Hk with x as the initiator, contains
no cycles.

Exercise 2.9.10 Show that for every x the eccentricity of x in Hk(x) is k.

Exercise 2.9.11 Prove that the message complexity of traversal under R is at least m.
(Hint: use the same technique employed in the proof of Theorem 2.1.1.)
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Exercise 2.9.12 Let G be a tree. Show that, in this case, no Backedge messages will
be sent in any execution of DF Traversal.

Exercise 2.9.13 Characterize the virtual ring formed by an execution of
DF Traversal in a tree network. Show that the ring has 2n− 2 virtual nodes.

Exercise 2.9.14 Write the protocol DF++.

Exercise 2.9.15 Prove that protocol DF++ correctly performs a depth-first traversal.

Exercise 2.9.16 Show that, in the execution of DF++, on some back-edges there
might be two “mistakes.”

Exercise 2.9.17 Determine the exact number of messages transmitted in the worst
case when executing DF* in a complete graph.

Exercise 2.9.18 Prove that in protocol Shout, if an entity x is in Tree-neighbors of
y, then y is in Tree-neighbors of x.

Exercise 2.9.19 Prove that in protocol Shout, if an entity sends Yes, then it is con-
nected to the initiator by a path where on every link a Yes has been transmitted. (Hint:
use induction.)

Exercise 2.9.20 Prove that the subnet constructed by protocol Shout contains no
cycles.

Exercise 2.9.21 Prove that T[Flood+Reply] = T[Flooding]+1.

Exercise 2.9.22 Write the set of rules for protocol Shout+.

Exercise 2.9.23 Determine under what conditions on the communication delays,
protocol Shout will construct a breadth-first spanning tree.

Exercise 2.9.24 Modify protocol Shout so that the initiator can determine when
the broadcast is globally terminated. (Hint: integrate in the protocol the convergecast
operation for rooted trees.)

Exercise 2.9.25 Modify protocol DF* so that every entity determines its neighbors
in the df-tree it constructs.

Exercise 2.9.26 Prove that f∗ is exactly the number of leaves of the df-tree con-
structed by df-SPT.

Exercise 2.9.27 Prove that, in the execution of df-SPT, when the initiator becomes
done, a df-tree of the network has already been constructed.
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Exercise 2.9.28 Prove that, for any broadcast protocol, the graph induced by rela-
tionship “parent” is a spanning tree of the network.

Exercise 2.9.29 Prove that the bf-tree of G rooted in a center is a broadcast tree
of G.

Exercise 2.9.30 Verify that, with multiple initiators, the optimized version DF+ and
DF* of protocol df-SPT will always create a spanning forest of the graph depicted in
Figure 2.14.

Exercise 2.9.31 Prove that when a node becomes saturated in the execution of
protocol MinF-Tree, it knows the minimum value in the network.

Exercise 2.9.32 Prove that when a node becomes saturated in the execution of
protocol Funct-Tree, it knows the value of f.

Exercise 2.9.33 Design a protocol to determine if all the entities of a tree network
have positive initial values. Any number of entities can independently start.

Exercise 2.9.34 Consider a tree system where each entity has a salary and a gen-
der. Some external investigators want to know if all the entities with a salary below
$50, 000 are female. Design a solution protocol that can be started by any number of
entities independently.

Exercise 2.9.35 Consider the same tree system of Question 2.9.34. The investigators
now want to know if there is at least one female with a salary above $50, 000. Design
a solution protocol that can be started by any number of entities independently.

Exercise 2.9.36 Design an efficient protocol to compute the number of entities in a
tree network. Any number of entities can independently start the protocol.

Exercise 2.9.37 Consider the same tree system of Question 2.9.34. The investigators
now want to know how many female entities are in the system. Design a solution
protocol that can be started by any number of entities independently.

Exercise 2.9.38 Consider the following use of the M message: a leaf will include a
value v = 1; an internal node will include one plus the maximum of all the received
values. Prove that the saturated nodes will compute their maximum distance from all
other nodes.

Exercise 2.9.39 Prove that for any link (u, v), d[u, v]=Max {d(u, y) : y∈T [v− u]} =
1+Max{d(v, y) : y∈ T [u− v]} =Max{d[v, z] : z = u ∈ N(v)}.

Exercise 2.9.40 Modify protocol Eccentricities so it can solve Center, as discussed
in Section 2.6.5.
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Exercise 2.9.41 Median Finding. Construct an efficient plug-in so that the median
nodes know that they are such.

Exercise 2.9.42 Diameter Finding. Design an efficient protocol to determine the
diameter of the tree. (Hint: use Lemma 2.6.2.)

Exercise 2.9.43 Rank Finding in Tree. Consider a tree where each entity x has an
initial value v(x); these values are not necessarily distinct. The rank of an entity x will
be the rank of its value; that is, rank(x)= 1+ |{y ∈ V : v(y) < v(x)}. So, whoever has
the smallest value, it has rank 1. Design an efficient protocol to determine the rank of
a unique initiator (i.e., under the additional restriction UI).

Exercise 2.9.44 Generic Rank Finding. Consider the ranking problem described
in Exercise 2.9.43. Design an efficient solution protocol that is generic; that is, it
works in an arbitrary connected graph.

Exercise 2.9.45 Diametral Paths. A path whose length is d is called diametral.
Design an efficient protocol so that each entity can determine whether or not it lies
on a diametral path of the tree.

Exercise 2.9.46 A path whose length is d is called diametral. Design an efficient
plug-in so that all and only the entities on a diametral path of the tree become aware
of this fact.

Exercise 2.9.47 Show that convergecast uses only 1 (one) message less than the
saturation stage in general trees.

Exercise 2.9.48 Prove that, when an initiator of a TDCast protocol receives the
convergecast message from all its children, the initial broadcast is globally terminated.

Exercise 2.9.49 Show how to assign efficiently a unique id to the entities in a rooted
tree.

Exercise 2.9.50 Random Entity Selection (') Consider the task of selecting
uniformly at random an entity in a tree rooted at s. Show how to perform this task,
started by the root, with at most 2(n− 1)+ dT (s, x) messages and 2r(s)+ dT (s, x)
ideal time units. Prove both correctness and complexity.

Exercise 2.9.51 Show why choosing uniformly at random a site and then choosing
uniformly at random an element from that site is not the same as choosing uniformly
at random an element from the entire set.

Exercise 2.9.52 Random Item Selection ('') Consider the task of selecting
uniformly at random an item from a set of data partitioned among the nodes of a
tree rooted at s. Show how to perform this task, started by the root, with at most
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2(n− 1)+ dT (s, x) messages and 2r(s)+ dT (s, x) ideal time units. Prove both cor-
rectness and complexity.

2.9.2 Problems

Problem 2.9.1 Develop an efficient solution to the Traversal problem without the
Bidirectional Links assumption.

Problem 2.9.2 Develop an efficient solution to the Minimum Finding problem in a
hypercube with a unique initiator (i.e., under the additional restriction UI). Note that
the values might not be distinct.

Problem 2.9.3 Solve the Minimum Finding problem is a system where there is
already a leader; that is, under restrictions R∪UI. Note that the values might not be
distinct. Prove the correctness of your solution, and analyze its efficiency.

Problem 2.9.4 Ranking. (') Consider a tree where each entity x has an initial
value v(x); these values are not necessarily distinct. The rank of an entity x will be
the rank of its value; that is, rank(x) = 1+ |{y ∈ v : v(y) < v(x)}. So, whoever has
the smallest value, has rank 1. Design an efficient protocol to determine the rank of
all entities. prove the correctness of your protocol and analyze its complexity.

2.9.3 Answers to Exercises

Answer to Exercise 2.9.13
A node appears several times in the virtual ring; more precisely, there is an instance
of node z in R for each time z has received a Token or a Finished message. Let
x be the initiator; node x sends a Token to each of its neighbors sequentially and
receives a Finished message from each. Every node y = x receives exactly one
Token (from its parent) and sends one to all its other neighbors (its children); it will
also receive a Finished message from all its children and send one to its parent. In
other words every node z, including the initiator x, will appear n(z) = |N (z)| times
in the virtual ring. The total number of (virtual) nodes in the virtual ring is therefore∑

z∈V |N (z)| = 2m = 2(n− 1).

Answer to Exercise 2.9.16
Consider a ring network with the three nodes x, y, and z. Assume that entity
x holds the Token initially. Consider the following sequence of events that take place
successively in time as a result of the execution of the DF++ protocol: x sends Visited
messages to y and z, sends the Token to y, and waits for a (Visited or Return) reply
from y. Assume that the link (x, z) is extremely slow.

When y receives the Token from x, it sends to z a Visited message and then the
Token. Assume that when z receives the Token, the Visited message from x has not
arrived yet; hence z sends Visited to x followed by the Token. This is the first mistake:
Token is sent on a back-edge to x, which has already been visited.
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When z finally receives the Visited message from x, it realizes the Token it sent to
x was a mistake. Since it has no other unvisited neighbors, z sends a Return message
back to y. Since y has no other unvisited neighbors, it will then send a Return message
back to x. Assume that when x receives the Return message from y, x has not received
yet neither the Visited nor the Return messages sent by z. Hence, x considers z as
an unvisited neighbor and sends the Token to z. This is the second mistake on the
back-edge between x and z.

Answer to Exercise 2.9.19
Suppose some node x is not reachable from s in the graph T induced by the “parent”
relationship. This means that x never sent the Yes messages; this implies that x never
received the question Q. This is impossible because, since flooding is correct, every
entity will receive Q; thus, no such x exists.

Answer to Exercise 2.9.20
Suppose the graph T induced by the “parent” relationship (i.e., the Yes messages)
contains a directed cycle x0, x1, . . . , xk−1; that is, xi is the parent of xi+1 (operations
on the indices are modulo k). This cycle cannot contain the initiator s (because it
does not send any Yes). We know (Exercise 2.9.19) that in T there is a path from s
to each node, including those in the cycle. This means that there will be in T a node
y not in the cycle that is connected to a node xi in the cycle. This means that xi sent
a Yes message to y; but since it is in the cycle, it also sent a Yes message to xi−1
(operations on the indices are modulo k). This is impossible because an entity sends
no more than one Yes message.

Answer to Exercise 2.9.31
First show that if a node x sends M to neighbor y, N contains the smallest value in
T [x − y]; then, since a saturated node receives by definition a M message from all
neighbors, it knows the minimum value in the network. Prove that value sent by x to
y in M is the minimum value in T [x − y] by induction on the height h of T [x − y].
Trivially true if h = 1, that is, x is a leaf. Let it be true up to k ≥ 1; we will now
show it is true for h = k + 1. x sends M to y because it has received a value from all
its other neighbors y1, y2, . . .; since the height of (T [yi − x]) is less than h, then by
inductive hypothesis the value sent by yi to x is the minimum value in (T [yi − x]).
This means that the smallest among v(x) and all the values received by x is the
minimum value in T [x − y]; this is exactly what x sends to y.

Answer to Exercise 2.9.41
It is clear that if node x knows |T [y − x]| for all neighbors y, then it can compute
G[y, x] and decide whether x is itself a median and, if not, determine the direction of
the median. Thus, to find a median is sufficient to modify the basic technique to supply
this information to the elected node from which the median is approached. This is
done by providing two counters, m1 and m2, with each M message: When a node
x sends a M message to y, then m1 = g[T [y − x], y]− 1 and m2 = |T [y − x]| − 1.
An active node x processes all received M messages so that, before it sends M to the
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last neighbor y, it knows G[T [x − z], x] and |T [z− x]| for all other neighbors z. In
particular, the elected node can determine whether it is the median and, if not, can
send a message toward it; a node receiving such a message will, in turn, perform
the same operations until a median is located. Once again, the total number of
exchanged messages is the ones of the Full Saturation plug-in plus d(s,med), where
s is the saturated node closer to the medians, and med is the median furthermost from x.

Partial Answer to Exercise 2.9.48
By induction on the height of the rooted tree, prove that, in a TDCast protocol, when
an entity x receives the convergecast message from all its children, all its descendants
have locally terminated the broadcast.

Partial Answer to Exercise 2.9.49
Perform first a broadcast from the root to notify all entities of the start of the protocol,
and then a convergecast to collect at each entity the number of its descendents.
Afterwards use this information to assign distinct values to the entities according to
a preorder traversal of the tree.

Partial Answer to Exercise 2.9.51
Show that the data items from smaller sets will be chosen with higher probability than
that of the items from larger sets.
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CHAPTER 3

Election

3.1 INTRODUCTION

In a distributed environment, most applications often require a single entity to act tem-
porarily as a central controller to coordinate the execution of a particular task by the
entities. In some cases, the need for a single coordinator arises from the desire to sim-
plify the design of the solution protocol for a rather complex problem; in other cases,
the presence of a single coordinator is required by the nature of the problem itself.

The problem of choosing such a coordinator from a population of autonomous
symmetric entities is known as Leader Election (Elect). Formally, the task consists
in moving the system from an initial configuration where all entities are in the same
state (usually called available) into a final configuration where all entities are in
the same state (traditionally called follower), except one, which is in a different state
(traditionally called leader). There is no restriction on the number of entities that can
start the computation, nor on which entity should become leader.

We can think of the Election problem as the problem of enforcing restriction
Unique Initiator in a system where actually no such restriction exists: The multiple
initiators would first start the execution of an Election protocol; the sole leader will
then be the unique initiator for the subsequent computation.

As election provides a mechanism for breaking the symmetry among the entities in
a distributed environment, it is at the base of most control and coordination processes
(e.g., mutual exclusion, synchronization, concurrency control, etc.) employed in dis-
tributed systems, and it is closely related to other basic computations (e.g., minimum
finding, spanning-tree construction, traversal).

3.1.1 Impossibility Result

We will start considering this problem under the standard restrictions R: Bidirec-
tional Links, Connectivity, and Total Reliability. There is unfortunately a very strong
impossibility result about election.

Theorem 3.1.1 Problem Elect is deterministically unsolvable under R.

Design and Analysis of Distributed Algorithms, by Nicola Santoro
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FIGURE 3.1: Electing a leader.

In other words, there is no deterministic protocol that will always correctly termi-
nate within finite time if the only restrictions are those in R.

To see why this is the case, consider a simple system composed of two entities, x
and y, both initially available and with no different initial values; in other words, they
are initially in identical states. If a solution protocol P exists, it must work under any
conditions of message delays. Consider a synchronous schedule (i.e., an execution
where communication delays are unitary) and let the two entities start the execution
of P simultaneously. As they are in identical states, they will execute the same rule,
obtain the same result, and compose and send (if any) the same message; thus, they
will still be in identical states. If one of them receives a message, the other will receive
the same message at the same time and, by Property 1.6.2, they will perform the same
computation, and so on. Their state will always be the same; hence if one becomes
leader, so will the other. But this is against the requirement that there should be only
one leader; in other words, P is not a solution protocol.

3.1.2 Additional Restrictions

The consequence of Theorem 3.1.1 is that to break symmetry, we need additional
restrictions and assumptions.

Some restrictions are not powerful enough. This is the case, for example, with the
assumption that there is already available a spanning tree (i.e., restriction Tree). In
fact, the two-node network in which we know election is impossible is a tree.

To determine which restrictions, added to R, will enable us to solve Elect, we
must consider the nature of the problem. The entities have an inherent behavioral
symmetry: They all obey the same set of rules plus they have an initial state symmetry
(by definition of election problem). To elect a leader means to break these symmetries;
in fact, election is also called symmetry breaking. To be able to do so, from the start
there must be something in the system that the entities can use, something that makes
(at least one of) them different. Remember that any restriction limits the applicability
of the protocol.

The most obvious restriction is Unique Initiator (UI): The unique initiator, known
to be unique, becomes the leader. This is, however, “sweeping the problem under the
carpet,” saying that we can elect a leader if there is already a leader and it knows about
it. The problem is to elect a leader when many (possibly, all) entities are initiators;
thus, without UI.
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The restriction that is commonly used is a very powerful one, Initial Distinct Values
(ID), which we have already employed to circumvent a similar impossibility result
for constructing a spanning tree with multiple initiators (see Section 2.5.5). Initial
distinct values are sometimes called identifiers or ids or global names and, as we will
see, their presence will be sufficient to elect a leader; let id(x) denote the distinct value
of x. The use of this additional assumption is so frequent that the set of restrictions
IR = R ∪ {ID} is called the standard set for election.

3.1.3 Solution Strategies

How can the difference in initial values be used to break the symmetry and to elect a
leader?

According to the election problem specifications, it does not matter which entity
becomes the leader. Using the fact that the values are distinct, a possible strategy is
to choose as a leader the entity with the smallest value; in other words, an election
strategy is as follows:

Strategy Elect Minimum:

1. find the smallest value;

2. elect as a leader the entity with that value.

IMPORTANT. Finding the minimum value is an important problem of its own,
which we have already discussed for tree networks (Section 2.6.2). Notice that in that
occasion, we found the minimum value without unique identifiers; it is the election
problem that needs them.

A useful variant of this strategy is the one restricting the choice of the leader to
the set of entities that initiate the protocol. That is,

Strategy Elect Minimum Initiator:

1. find the smallest value among the initiators;

2. elect as a leader the entity with that value.

IMPORTANT. Notice that any solution implementing the strategy Elect Minimum
solves Min as well as Elect, not so the ones implementing Elect Minimum Initiator.

Similarly, we can define the Elect Maximum and the Elect Maximum Initiator
strategies.

Another strategy is to use the distinct values to construct a rooted spanning tree of
the network and to elect the root as the leader. In other words, an election strategy is
as follows:
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Strategy Elect Root:

1. construct a rooted spanning tree;

2. elect as the leader the root of the tree.

IMPORTANT. Constructing a (rooted) spanning tree is an important problem of
its own, which we have already discussed among the basic problems (Section 2.5 ).
Recall that SPT, like Elect, is unsolvable under R.

In the rest of this chapter, we will examine how to use these strategies to solve
Elect under election’s standard set of restrictions IR = R ∪{ID}. We will do so by
first examining special types of networks and then focusing on the development of
topology-independent solutions.

3.2 ELECTION IN TREES

The tree is the connected graph with the “sparsest" topology: m = n− 1.
We have already seen how to optimally find the smallest value using the saturation

technique: protocol MinF-Tree in Section 2.6.2. Hence the strategy Elect Minimum
leads to an election protocol Tree:Elect Min where the number of messages in the
worst case is as follows:

M[Tree:Elect Min] = 3n+ k∗ − 4 ≤ 4n− 4.

Interestingly, also the strategy Elect Minimum Initiator will have the same complexity
(Exercise 3.10.1).

Consider now applying the strategy Elect Root. As the network is a tree, the only
work required is to transform it into a rooted tree. It is not difficult to see how saturation
can be used to solve the problem. In fact, if Full Saturation is applied, then a saturated
node knows that it itself and its parent are the only saturated nodes; furthermore, as
a result of the saturation stage, every nonsaturated entity has identified as its parent
the neighbor closest to the saturated pair. In other words, saturation will root the tree
not in a single node but in a pair of neighbors: the saturated ones.

Thus, to make the tree rooted in a single node we just need to choose only one of
the two saturated nodes. In other words, the “Election” among all the nodes is reduced
to an “election” between the two saturated ones. This can be easily accomplished by
having the saturated nodes communicate their identities and by having the node with
the smallest identity become elected, while the other stays processing.

Thus, the Tree:Elect Root protocol will be Full Saturation with the new rules and
the routine Resolve shown in Figure 3.2.

The number of message transmissions for the election algorithm Tree Election
will be exactly the same as the one experienced by Full Saturation with notification
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SATURATED
Receiving(Election, id∗)
begin

if id(x) < id∗ then
become LEADER;

else
become FOLLOWER;

endif
send("Termination") to N (x)− {parent};

end

PROCESSING
Receiving("Termination")
begin

become FOLLOWER;
send("Termination") to N (x)− {parent};

end

Procedure Resolve
begin

send("Election",id(x)) to parent;
become SATURATED;

end

FIGURE 3.2: New rules and routine Resolve used for Tree:Elect Root.

plus two “Election” messages, that is,

M[Tree:Elect Root]= 3n+ k∗ − 2 ≤ 4n− 2.

In other words, it uses two messages more than the solution obtained using the strategy
Elect Minimum.

Granularity of Analysis: Bit Complexity From the discussion above, it would
appear that the strategy Elect Minimum is “better” because it uses two messages less
than the strategy Elect Root. This assessment is indeed the only correct conclusion ob-
tainable using the number of messages as the cost measure. Sometimes, this measure
is too “coarse” and does not really allow us to see possibly important details; to get a
more accurate picture, we need to analyze the costs at a “finer” level of granularity.

Let us re-examine the two strategies in terms of the number of bits. To do so,
we have to distinguish between different types of messages because some contain
counters and values, while others contain only a message identifier.

IMPORTANT. Messages that do not carry values but only a constant number of
bits are called signals and in most practical systems, they have significantly less
communication costs than value messages.

In Elect Minimum, only the nmessages in the saturation stage carry a value, while
all the others are signals; hence, the total number of bits transmitted will be

B[Tree:Elect Min] = n (c + log id)+ c (2n+ k∗ − 2), (3.1)
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where id denotes the largest value sent in a message, and c = O(1) denotes the number
of bits required to distinguish among the different messages.

In Elect Root, only the “Election” message carries a node identity; thus, the total
number of bits transmitted is

B[Tree:Elect Root] = 2 (c + log id)+ c (3n+ k∗ − 2). (3.2)

That is, in terms of number of bits, Elect Root is an order of magnitude better than
Elect Minimum. In terms of signals and value messages, with Elect Root strategy we
have only two value messages and with Elect Minimum strategy we have n value
messages.

Remember: Measuring the number of bits gives us always a “picture” of the effi-
ciency at a more refined level of granularity. Fortunately, it is not always necessary
to go to such a level.

3.3 ELECTION IN RINGS

We will now consider a network topology that plays a very important role in distributed
computing: the ring, sometimes called loop network.

A ring consists of a single cycle of length n. In a ring, each entity has exactly
two neighbors, (whose associated ports are) traditionally called left and right (see
Figure 3.3).

IMPORTANT. Note that the labeling might, however, be globally inconsistent, that
is, ‘right’ might not have the same meaning for all entities. We will return to this point
later.

x
x

x

x

x

0

2

1
n−1

n−2

FIGURE 3.3: A ring network.
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After trees, rings are the networks with the sparsest topology: m = n; however,
unlike trees, rings have a complete structural symmetry (i.e., all nodes look the
same).

We will denote the ring byR = (x0, x1, . . . , xn−1). Let us consider the problem of
electing a leader in a ring R, under the standard set of restrictions for election, IR =
{Bidirectional Links, Connectivity, Total Reliability, Initial Distinct Values}, as well
as the knowledge that the network is a ring (Ring). Denote by id(x) the unique value
associated to x.

Because of its structure, in a ring we will use almost exclusively the approach of
minimum finding as a tool for leader election. In fact we will consider both the Elect
Minimum and the Elect Minimum Initiator approaches. Clearly the first solves both
Min and Elect, while the latter solves only Elect.

NOTE. Every protocol that elects a leader in a ring can be made to find the minimum
value (if it has not already been determined) with an additional n message and time
(Exercise 3.10.2). Furthermore, in the worst case, the two approaches coincide: All
entities might be initiators.

Let us now examine how minimum finding and election can be efficiently per-
formed in a ring.

As in a ring each entity has only two neighbors, for brevity we will use the notation
other to indicate N (x)−sender at an entity x.

3.3.1 All the Way

The first solution we will use is rather straightforward: When an entity starts, it
will choose one of its two neighbors and send to it an “Election” message con-
taining its id; an entity receiving the id of somebody else will send its id (if it has
not already done so) and forward the received message along the ring (i.e., send
it to its other neighbor) keeping track of the smallest id seen so far (including its
own).

This process can be visualized as follows: Each entity originates a message (con-
taining its id), and this message travels “all the way” along the ring (forwarded by
the other entities) (see Figure 3.4). Hence, the name All the Way will be used for the
resulting protocol.

Each entity will eventually see the id of everybody else id (finite communication
delays and total reliability ensure that) including the minimum value; it will, thus,
be able to determine whether or not it is the (unique) minimum and, thus, the leader.
When will this happen ? In other words,

Question. When will an entity terminate its execution?

Entities only forward messages carrying values other than their own: Once the
message with id(x) arrives at x, it is no longer forwarded. Thus, each value will
travel “All the Way” along the ring only once. So, the communication activities will
eventually terminate. But how does an entity know that the communication activities



106 ELECTION

22

4

13

172

5

4

5

13

2

17

22

. . .

. . .

. . .

. . .

. . .

. .
 .

FIGURE 3.4: All the Way: Every id travels along the ring.

have terminated, that no more messages will be arriving, and, thus, the smallest value
seen so far is really the minimum id?
Consider a “reasonable” but unfortunately incorrect answer:

An entity knows that it has seen all values once it receives its value back.

The “reason” is that the message with its own id has to travel longer along the
ring to reach x than those originated by other entities; thus, these other messages will
be received first. In other words, reception of its own message can be used to detect
termination.

This reasoning is incorrect because it uses the (hidden) additional assumption
that the system has first in first out (FIFO) communication channels, that is, the
messages are delivered in the order in which they arrive. This restriction, called
Message Ordering, is not a part of election’s standard set; few systems actually have
it built in, and the costs of offering it can be formidable.

So, whatever the answer, it must not assume FIFO channels. With this proviso, a
“reasonable” but unfortunately still incorrect answer is the following:

An entity counts how many different values it receives; when the counter is equal to
n, it knows it can terminate.



ELECTION IN RINGS 107

PROTOCOL All the Way.

� States: S = {ASLEEP, AWAKE, FOLLOWER, LEADER};
SINIT = {ASLEEP};
STERM = {FOLLOWER, LEADER}.
� Restrictions: IR ∪Ring.

ASLEEP
Spontaneously
begin

INITIALIZE;
become AWAKE;

end

Receiving("Election", value∗, counter∗)
begin

INITIALIZE;
send("Election", value∗, counter∗+1) to other;
min:= Min{ min, value};
count:= count+1;
become AWAKE;

end

AWAKE
Receiving("Election", value∗, counter∗)
begin

if value 	= id(x) then
send("Election", value∗, counter∗+1) to other;
min:= MIN{min,value∗};
count:= count+1;
if known then CHECK endif;

else
ringsize:= counter∗;
known:= true;
CHECK;

endif
end

FIGURE 3.5: Protocol All the Way.

The problem is that this answer assumes that the entity knows n, but a priori
knowledge of the ring size is not a part of the standard restrictions for election. So it
cannot be used.

It is indeed strange that the termination should be difficult for such a simple protocol
in such a clear setting. Fortunately, the last answer, although incorrect, provides us
with the way out. In fact, although n is not known a priori, it can be computed. This
is easily accomplished by having a counter in the Election message, initialized to 1
and incremented by each entity forwarding it; when an entity receives its id back, the
value of the counter will be n.

Summarizing, we will use a counter at each entity, to keep track of how many
different ids are received and a counter in each message, so that each entity can
determine n. The protocol is shown in Figures 3.5 and 3.6.

The message originated by each entity will travel along the ring exactly once.
Thus, there will be exactly n2 messages in total, each carrying a counter and a value,
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Procedure INITIALIZE
begin

count:= 0;
size:= 1;
known:= false;
send("Election", id(x), size) to right;
min:= id(x);

end

Procedure CHECK
begin

if count = ringsize then
if min = id(x) then

become LEADER;
else

become FOLLOWER;
endif

endif
end

FIGURE 3.6: Procedures of protocol All the Way.

for a total of n2 log(id+ n) bits. The time costs will be at most 2n (Exercise 3.10.3).
Summarizing,

M[AlltheWay] = n2 (3.3)

T[AlltheWay] ≤ 2n− 1. (3.4)

The solution protocol we have just designed is very expensive in terms of commu-
nication costs (in a network with 100 nodes it would cause 10, 000 message trans-
missions).

The protocol can be obviously modified so as to follow strategy Elect Minimum
Initiator, finding the smallest value only among the initiators. In this case, those
entities that do not initiate will not originate a message but just forward the others’.
In this way, we would have fewer messages whenever there are fewer initiators.

In the modification we must be careful. In fact, in protocol All the Way, we were
using an entity’s own message to determine n so as to be able to determine local
termination. Now some entities will not have this information. This means that termi-
nation is again a problem. Fortunately, this problem has a simple solution requiring
only n additional messages and time (Exercise 3.10.4). Summarizing, the costs of the
modified protocol, All the Way:Minit, are as follows:

M[AlltheWay : Minit] = nk∗ + n (3.5)

T[AlltheWay : Minit] ≤ 3n− 1 (3.6)

The modified protocol All the Way:Minit will in general use fewer messages than
the original one. In fact, if only a constant number of entities initiate, it will use only
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O(n) messages, which is excellent. By contrast, if every entity is an initiator, this
protocol uses n messages more than the original one.

IMPORTANT. Notice that All the Way (in its original or modified version) can be
used also in unidirectional rings with the same costs. In other words, it does not
require the Bidirectional Links restriction. We will return to this point later.

3.3.2 As Far As It Can

To design an improved protocol, let us determine the drawback of the one we already
have: All the Way. In this protocol, each message travels all along the ring.

Consider the situation (shown in Figure 3.7) of a message containing a large id,
say 22, arriving at an entity x with a smaller id, say 4. In the existing protocol, x will
forward this message, even though x knows that 22 is not the smallest value.

But our overall strategy is to determine the smallest id among all entities; if an
entity determines that an id is not the minimum, there is no need whatsoever for the
message containing such an id to continue traveling along the ring.

We will thus modify the original protocol All the Way so that an entity will only
forward Election messages carrying an id smaller than the smallest seen so far by
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FIGURE 3.7: Message with a larger id does not need to be forwarded.
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that entity. In other words, an entity will become an insurmountable obstacle for all
messages with a larger id “terminating” them.

Let us examine what happens with this simple modification. Each entity will orig-
inate a message (containing its id) that travels along the ring “as far as it can”: until it
returns to its originator or arrives at a node with a smaller id. Hence the name AsFar
(As It Can) will be used for the resulting protocol.

Question. When will an entity terminate its execution?

The message with the smallest id will always be forwarded by the other entities;
thus, it will travel all along the ring returning to its originator. The message containing
another id will instead be unable to return to its originator because it will find an entity
with a smaller id (and thus be terminated) along the way. In other words, only the
message with the smallest id will return to its originator. This fact provides us with a
termination detection mechanism.

If an entity receives a message with its own id, it knows that its id is the minimum,
that is, it is the leader; the other entities have all seen that message pass by (they
forwarded it) but they still do not know that there will be no smaller ids to come
by. Thus, to ensure their termination, the newly elected leader must notify them by
sending an additional message along the ring.

Message Cost This protocol will definitely have fewer messages than the previous
one. The exact number depends on several factors. Consider the cost caused by the
Election message originated by x. This message will travel along the ring until it finds
a smaller id (or complete the tour). Thus, the cost of its travel depends on how the ids
are allocated on the ring. Also notice that what matters is whether an id is smaller or
not than another and not their actual value. In other words, what is important is the
rank of the ids and how those are situated on the ring. Denote by #i the id whose rank
is i.

Worst Case Let us first consider the worst possible case. Id #1 will always travel
all along the ring costing n messages. Id #2 will be stopped only by id #1; so its cost
in the worst case is n− 1, achievable if id #2 is located immediately after id #1 in
the direction it travels. In general, id #(i + 1) will be stopped by any of those with
smaller rank, and, thus, it will cost at most n− i messages; this will happen if all those
entities are next to each other, and id #(i + 1) is located immediately after them in the
direction it will travel. In fact, all the worst cases for each of the ids are simultaneously
achieved when the ids are arranged in an (circular) order according to their rank and
all messages are sent in the “increasing” direction (see Figure 3.9).

In this case, including also the n messages required for the final notification, the
total cost will be

M[AsFar] = n+
n∑

i=1

i = n (n+ 3)

2
. (3.7)



ELECTION IN RINGS 111

PROTOCOL AsFar.

� States: S = {ASLEEP, AWAKE, FOLLOWER, LEADER};
SINIT = {ASLEEP};
STERM = {FOLLOWER, LEADER}.
� Restrictions: IR ∪Ring.

ASLEEP
Spontaneously
begin

INITIALIZE;
become AWAKE;

end

Receiving("Election", value)
begin

INITIALIZE;
if value < min then

send("Election", value) to other;
min:= value;

endif
become AWAKE;

end

AWAKE
Receiving("Election", value)
begin

if value < min then
send("Election", value) to other;
min:= value;

else
if value min then NOTIFY endif;

endif
end

Receiving(Notify)
send(Notify) to other;
become FOLLOWER;

end

where the procedures Initialize and Notify are as follows:

Procedure INITIALIZE
begin

send("Election", id(x)) to right;
min:= id(x);

end

Procedure NOTIFY
begin

send(Notify) to right;
become LEADER;

end

FIGURE 3.8: Protocol AsFar.
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FIGURE 3.9: Worst case setting for protocol AsFar.

That is, we will cut the number of messages at least to half. From a theoretical
point of view, the improvement is not significant; from a practical point of view, this
is already a reasonable achievement. However we have so far analyzed only the worst
case. In general, the improvement will be much more significant. To see precisely
how, we need to perform a more detailed analysis of the protocol’s performance.

IMPORTANT. Notice that AsFar can be used in unidirectional rings. In other words,
it does not require the Bidirectional Links restriction. We will return to this point later.

The worst case gives us an indication of how “bad” things could get when the
conditions are really bad. But how likely are such conditions to occur? What costs
can we generally expect? To find out, we need to study the average case and determine
the mean and the variance of the cost of the protocol.

Average Case: Oriented Ring We will first consider the case when the ring is
oriented, that is, “right” means the same to all entities. In this case, all messages will
travel in only one direction, say clockwise.

IMPORTANT. Because of the unique nature of the ring network, this case coincides
with the execution of the protocol in a unidirectional ring. Thus, the results we will
obtain will hold for those rings.
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To determine the average case behavior, we consider all possible arrangements of
the ranks 1, . . . , n in the ring as equally likely. Given a set of size a, we denote by
C(a, b) the number of subsets of size b that can be formed from it.

Consider the id #i with rank i; it will travel clockwise exactly k steps if and only
if the ids of its k − 1 clockwise neighbors are larger than it (and thus will forward it),
while the id of its kth clockwise neighbor is smaller (and thus will terminate it).

There are i − 1 ids smaller than id #i from which to choose those k − 1 smaller
clockwise neighbors, and there are n− i ids larger than id #i from which to choose
the kth clockwise neighbor. In other words, the number of situations where id #i will
travel clockwise exactly k steps isC(i − 1, k − 1)C(n− i, 1), out of the total number
of C(n− 1, k − 1)C(n− k, 1) possible situations.

Thus, the probability P (i, k) that id #i will travel clockwise exactly k steps is

P (i, k) = C(i − 1, k − 1)C(n− i, 1)

C(n− 1, k − 1)C(n− k, 1)
. (3.8)

The smallest id, #1, will travel the full length n of the ring. The id #i, i > 1, will
travel less; the expected distance will be

Ei =
n−1∑

k=1

k P (i, k). (3.9)

Therefore, the overall expected number of message transmissions is

E = n+
n−1∑

i=1

n−1∑

k=1

k P (i, k) = n+
n−1∑

k=1

n

k + 1
= nHn, (3.10)

where Hn = 1+ 1
2 + 1

3 + ...+ 1
n

is the nth Harmonic number.
To obtain a close formula, we use the fact that the function f (x) = 1

x
is continu-

ous, linear, and decreasing; thus
∫∞

1
1
x

dx = limn→∞
∫ n

1
1
x

dx = limn→∞ ln x

∣∣∣
∣
∣
1

n
=

limn→∞(ln n− ln 1+ c) = ln n+ c. Hence,Hn = ln n+O(1) ≈ .69 log n+O(1);
thus

Theorem 3.3.1 In oriented and in unidirectional rings, protocol AsFar will cost
nHn ≈ .69n log n+O(n) messages on an average.

This is indeed great news: On an average, the message cost is an order of magnitude
less than that in the worst case. For n = 1024, this means that on an average we have
7066 messages instead of 525, 824, which is a considerable difference.

If we use the strategy of electing the Minimum Initiator instead, we obtain the
same bound but as a function of the number k∗ of initiators:
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Theorem 3.3.2 In oriented and in unidirectional rings, protocol AsFar-Minit will
cost nHk∗ ≈ .69n log k∗ messages on an average.

Average Case: Unoriented Ring Let us now consider what will happen on an
average in the general case, when the ring is unoriented. As before, we consider all
possible arrangements of the ranks 1, . . . , n of the values in the ring as equally likely.
The fact that the ring is not oriented means that when two entities send a message to
their “right” neighbors, they might send it in different directions.

Let us assume that at each entity the probability that “right” coincides with the
clockwise direction is 1

2 . Alternatively, assume that an entity, as its first step in the
protocol, flips a fair coin (i.e., probability 1

2 ) to decide the direction it will use to send
its value. We shall call the resulting probabilistic protocol ProbAsFar.

Theorem 3.3.3 In unoriented rings, Protocol ProbAsFar will cost
√

(2)
2 nHn ≈

.49n log n messages on an average.

A similar bound holds if we use the strategy of electing the Minimum Initiator:

Theorem 3.3.4 In unoriented rings, protocol ProbAsFar-Minit will cost
√

(2)
2 nHk∗ ≈

.49n log k" messages on an average.

What is very interesting about the bound expressed by Theorem 3.3.3 is that it is
better (i.e., smaller) than the one expressed by Theorem 3.3.1. The difference between
the two bounds is restricted to the constant and is rather limited. In numerical terms,
the difference is not outstanding: 5018 instead of 7066 messages on an average when
n = 1024.

In practical terms, from the algorithm design point of view, it indicates that we
should try to have the entities send their initial message in different directions (as in
the probabilistic protocol) and not all in the same one (like in the oriented case). To
simulate the initial “random” direction, different means can be used. For example,
each entity x can choose (its own) “right” if id(x) is even, (its own) “left” otherwise.

This result has also a theoretical relevance that will become apparent later, when
we will discuss lower bounds and will have a closer look at the nature of the difference
between oriented and unoriented rings.

Time Costs The time costs are the same as the ones of All the Way plus an addi-
tional n− 1 for the notification. This can, however, be halved by exploiting the fact
that the links are bidirectional and by broadcasting the notification; this will require
an extra message but halve the time.

Summary The main drawback of protocol AsFar is that there still exists the pos-
sibility that a very large number of messages (O(n2)) will be exchanged. As we have
seen, on an average, the use of the protocol will cost onlyO(n log n) messages. There
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is, however, no guarantee that this will happen the next time the protocol will be used.
To give such a guarantee, a protocol must have a O(n log n) worst case complexity.

3.3.3 Controlled Distance

We will now design a protocol that has a guaranteedO(n log n) message performance.
To achieve this goal, we must first of all determine what causes the previous

protocol to use O(n2) messages and then find ways around it.
The first thing to observe is that in AsFar (as well as in All the Way), an entity makes

only one attempt to become leader and does so by originating a message containing
its id. Next observe that, once this message has been created and sent, the entity has
no longer any control over it: In All the Way the message will travel all along the ring;
in AsFar it will be stopped if it finds a smaller id.

Consider now the situation that causes the worst case for protocol AsFar: this
is when the ids are arranged in an increasing order along the ring, and all entities
identify “right” with the clockwise direction (see Figure 3.9). The entity x with id
2 will originate a message that will cause n− 2 transmissions. When x receives the
message containing id 1, x finds out that its own value is not the smallest, and thus
its message is destined to be wasted. However, x has no means to stop it as it has no
longer any control over that message.

Let us take these observations into account to design a more efficient protocol.
The key design goal will be to make an entity retain some control over the message
it originates. We will use several ideas to achieve this:

1. limited distance: The entity will impose a limit on the distance its message will
travel; in this way, the message with id 2 will not travel “as far as it can” (i.e.,
at distance n− 2) but only up to some predefined length.

2. return (or feedback) messages: If, during this limited travel, the message is not
terminated by an entity with smaller id, it will return back to its originator to
get authorization for further travel; in this way, if the entity with id 2 has seen
id 1, it will abort any further travel of its own message.

Summarizing, an entity x will originate a message with its own id, and this message
will travel until it is terminated or it reaches a certain distance dis; if it is not terminated,
the message returns to the entity. When it arrives, x knows that on this side of the
ring, there are no smaller ids within the traveled distance dis.

The entity must now decide if to allow its message to travel a further distance; it
will do so only if it knows for sure that there are no smaller ids within distance dis on
the other side of the ring as well. This can be achieved as follows:

3. check both sides: The entity will send a message in both directions; only if
they both return, they will be allowed to travel a further distance.

As a consequence, instead of a single global attempt at leadership, an entity will go
through several attempts, which we shall call Electoral Stages: An entity enters the
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FIGURE 3.10: Controlled distances: A message travels no more than dis(i); if it is not dis-
carded, a feedback is sent back to the originator. A candidate that receives a feedback from
both sides starts the next stage.

next stage only if it passes the current one (i.e., both messages return) (see Fig. 3.10).
If an entity is defeated in an electoral stage (i.e., at least one of its messages does not
return), it still will have to continue its participation in the algorithm forwarding the
messages of those entities that are still undefeated.

Although the protocol is almost all outlined, some fundamental issues are still
unresolved. In particular, the fact that we now have several stages can have strange
consequences in the execution.

IMPORTANT. Because of variations in communication delays, it is possible that at
the same time instant, entities in different parts of the ring are in different electoral
stages. Furthermore, as we are only using the standard restrictions for elections,
messages can be delivered out of order; thus, it might be possible that messages from
a higher stage will arrive at an entity before the ones from the current one.

We said that an entity is defeated if it does not receive one of its messages back.
Consider now an entity x; it has sent its two messages and it is now waiting to know
the outcome. Let us say that one of its messages has returned but the other has not
yet. It is possible that the message is coming very slowly (e.g., experiencing long
transmission delays) or that it is not coming at all (i.e., it found a smaller id on the
way). How can x know ? How long will x have to wait before taking a decision (a
decision must be taken within finite time)? More specifically, what will x do if, in
the meanwhile, it receives a message from a higher stage ? The answer to all these
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questions is fortunately simple:

4. the smallest id wins: If, at any time, a candidate entity receives message with a
smaller id, it will become defeated, regardless of the stage number.

Notice that this creates a new situation: A message returns to its originator and
finds it defeated; in this case, the message will be terminated.

The final issue we need to address is termination. The limit to the travel distance
for a message in a given stage will depend on the stage itself; let disi denote the limit
in stage i. Clearly, these distances must be monotonically increasing, that is, disi >
disi−1. The messages from an entity whose id is not the minimum will sooner or later
encounter a smaller id in their travel and will not return to their originator.

Consider now the entity s with the smallest id. In each stage, both of its messages
will travel the full allocated distance (as no entity can terminate them) and return,
making s enter the next stage. This process will continue until disi ≥ n; at this time,
each message will complete a full tour of the ring reaching s from the other side.
When this happens, s will know that it has the smallest value and, thus, it is the leader.
It will then start a notification process so that all the other entities can enter a terminal
state.

A synthetic description of the protocol will thus be as follows:

� in each electoral stage there are some candidates;
� each candidate sends a message in both directions carrying its own id (as well

as the stage number);
� a message travels until it encounters a smaller id or it reaches a certain distance

(whose value depends on the stage);
� if a message does not encounter a smaller id, it will return back to its originator;
� a candidate that receives both of its own messages back survives this stage and

starts the next one;

with three meta rules:

� if a candidate receives its message from the opposite side it sent to, it becomes
the leader and notifies all the other entities of termination;
� if a candidate receives a message with a smaller id, it becomes defeated, regard-

less of the stage number;
� a defeated entity forwards the messages originating from the other entities; if

the message is notification of termination, it will terminate.

The fully specified protocol Control is shown in Figures 3.11 and 3.12, where dis
is a monotonically increasing function.

Correctness The correctness of the algorithm follows from the dynamics of the
rules: The messages containing the smallest id will always travel all the allocated
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PROTOCOL Control.

� States: S = {ASLEEP, CANDIDATE, DEFEATED, FOLLOWER, LEADER};
SINIT = {ASLEEP};
STERM = {FOLLOWER, LEADER}.
� Restrictions: IR ∪Ring.

ASLEEP
Spontaneously
begin

INITIALIZE;
become CANDIDATE;

end

Receiving("Forth", id*, stage*, limit*)
begin

if id* < id(x) then
PROCESS-MESSAGE;
become DEFEATED

else
INITIALIZE;
become CANDIDATE;

endif
end

CANDIDATE
Receiving("Forth", id*, stage*, limit*)
begin

if id* < id(x) then
PROCESS-MESSAGE;
become DEFEATED

else
if id* = id(x) then NOTIFY endif;

endif
end

Receiving("Back", id*)
begin

if id* = id(x) then CHECK endif;
end

Receiving(Notify)
begin

send(Notify) to other;
become FOLLOWER;

end

DEFEATED
Receiving(")
begin

send(") to other;
if " = Notify then become FOLLOWER endif;

end

FIGURE 3.11: Protocol Control.
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Procedure INITIALIZE
begin

stage:= 1;
limit:= dis(stage);
count:= 0;
send("Forth", id(x), stage, limit) to N (x);

end

Procedure PROCESS-MESSAGE
begin

limit*:=limit*-1;
if limit* =0 then

send("Back",id*, stage*) to sender;
else

send("Forth", id*, stage*, limit*) to other;
endif

end

Procedure CHECK
begin

count:=count+1;
if count = 1 then

count:= 0
stage:= stage+1
limit:= dis(stage);
send("Forth", id(x), stage, limit) to N (x);

endif
end

Procedure NOTIFY
begin

send(Notify) to right;
become LEADER;

end

FIGURE 3.12: Procedures used by protocol Control.

distance, and every entity still candidate they encounter will be transformed in
defeated; the distance is monotonically increasing in the number of stages; hence,
eventually, the distance will be at least n. When this happens, the messages with the
smallest value will travel all along the ring; as a result, their originator becomes leader
and all the others are already defeated.

Costs The costs of the algorithm depend totally on the choice of the function dis
used to determine the maximum distance a “Forth” message can travel in a stage.

Messages If we examine the execution of the protocol at some global time t ,
because communication delays are unpredictable, we can find not only that entities
in different parts of the ring are in different states (which is expected) but also that
entities in the candidate state are in different stages. Moreover, because there is no
Message Ordering, messages from high stages (the “future”) might overtake messages
from lower stages and arrive at an entity still in a lower stage (the “past”).

Still, we can visualize the execution as proceeding in logical stages; it is just that
different entities might be executing the same stage at different times.
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Focus on stage i > 1 and consider the entities that will start this stage; these ni
entities are those that survived stage i − 1.

To survive stage i − 1, the id of x must be smaller than the ids of its neighbors at
distance up to dis(i) on each side of the ring. Thus, within any group of dis(i)+ 1 con-
secutive entities, at most one can survive stage i − 1 and start stage i. In other words,

ni ≤
⌊

n

dis(i − 1)+ 1

⌋
. (3.11)

An entity starting stage i will send “Forth” messages in both directions; each message
will travel at most dis(i), for a total of 2ni dis(i) message transmissions.

Let us examine now the “Back” messages. Each entity that survives this stage
will receive such a message from both sides; as ni+1 entities survive this stage,
this gives an additional 2ni+1 dis(i) messages. Each entity that started but did not
survive stage i will receive either no or at most one “Back” message, causing a cost
of at most dis(i); as there are ni − ni+1 such entities, they will cost no more than
an additional (ni − ni+1)dis(i) messages in total. So, in total, the transmissions for
“Back” messages are at most 2ni+1dis(i)+ (ni − ni+1)dis(i).

Summarizing, the total number of messages sent in stage i > 1 will be no more
than

2 ni dis(i)+ 2 ni+1 dis(i)+ (ni − ni+1) dis(i) = (3 ni + ni+1) dis(i)

≤ (3 ⌊ n
dis(i−1)+1

⌋+ ⌊ n
dis(i)+1

⌋)
dis(i) < n

(
3 dis(i)

dis(i−1) + 1
)
.

The first stage is a bit different, as every entity starts; the n2 entities that survive
this stage will have caused the messages carrying their id to travel to distance dis(1)
and back on both sides, for a total of 4n2 dis(1) messages. The n− n2 entities that will
not survive will cause at most three messages each (two “Forth” and one “Back”) to
travel distance dis(1), for a total of 3(n1 − n2) dis(1) messages. Hence the first stage
will cost no more than

(
3n+ n2

)
dis
(
1
) ≤

(
3n+ n

dis(1)+1

)
dis
(
1
)
< n (3 dis

(
1
)+ 1

)
.

To determine the total number of messages, we then need to know the total number
k of stages. We know that a leader is elected as soon as the message with the smallest
value makes a complete tour of the ring, that is, as soon as dis(i) is greater or equal
to n. In other words, k is the smallest integer such that dis(k) ≥ n; such an integer is
called the pseudo-inverse of n and denoted by dis−1(n).

So, the total number of messages used by protocol Control will be at most

M[Control] ≤ n
dis−1(n)∑

i=1

(
3

dis(i)

dis(i − 1)
+ 1

)
+ n, (3.12)

where dis(0) = 1 and the last n messages are those for the final notification.
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To really finalize the design, we must choose the function dis. Different choices
will result in different performances.

Consider, for example, the choice dis
(
i
) = 2i−1; then dis(i)

dis(i−1) = 2 (i.e., we double

the distance every time) and dis−1(n) = �log n� + 1, which in Expression 3.12 yields

M[Control] ≤ 7 n log n+O(n),

which is what we were aiming for: a O(n log n) worst case.
The constant can be, however, further improved by carefully selecting dis. It is

rather difficult to determine the best function. Let us restrict the choice to among the
functions where, like the one above, the ratio between consecutive values is constant,
that is, dis(i)

dis(i−1) = c. For these functions, dis−1(n) = �logc(n)� + 1; thus, Expression
3.12 becomes

3c+1
log c n log n+O(n).

Thus, with all of them, protocol Control has a guaranteed O(n log n) performance.
The “best” among those functions will be the one where 3c+1

log c is minimized; as
distances must be integer quantities, also cmust be an integer. Thus such a best choice
is c = 3 for which we obtain

M[Control] ≤ 6.309 n log n+O(n). (3.13)

Time The ideal time complexity of procedure Control is easy to determine; the time
required by stage i is the time needed by the message containing the smallest id to
reach its assigned distance and come back to its originator; hence exactly 2dis(i) time
units. An additional n time units are needed for the final notification, as well as for
the initial wake-up of the entity with the smallest id. This means that the total time
costs will be at most

T[Control] ≤ 2n+
dis−1(n)∑

i=1

2 dis(i). (3.14)

Again, the choice of dis will influence the complexity. Using any function of the
form dis(i) = ci−1, where c is a positive integer, will yield O(n) time. The determi-
nation of the best choice from the time costs point of view is left as an exercise.

Electing Minimum Initiator (") Let us use the strategy of electing a leader only
among the initiators. Denote as usual by k" the number of initiators. Let us analyze
the worst case.

In the analysis of protocol Control, we have seen that those that survive stage i
contribute 4 dis(i) messages each to the cost, while those that do not survive contribute
at most 3 dis(i) messages each. This is still true in the modified version Control-Minit;
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what changes is the values of the numberni of entities that will start that stage. Initially,
n1 = k". In the worst case, the k" initiators are placed far enough from each other
in the ring that each completes the stage without interfering with the others; if the
distances between them are large enough, each can continue to go to higher stages
without coming into contact with the others, thus, causing 4 dis(i) messages.

For how many stages can this occur ? This can occur as long as dis(i) < n
k"+1 .

That is, in the worst case, ni = k" in each of the first l = dis−1( n
k"+1 − 1

)
stages, and

the cost will be 4 k"dis(i) messages. In the following stages instead, the initiators will
start interfering with each other, and the number of survivors will follow the pattern
of the general algorithm: ni ≤

⌊
n1

dis(i−1)+1

⌋
.

Thus, the total number M[Control-Minit] of messages in the worst case will be at
most

M[Control-Minit] ≤ 4 k"

l∑

i=1

dis
(
i
) + n

dis−1(n)∑

i=l+1

(
3

dis(i)

dis(i − 1)
+ 1

)
+ n.

(3.15)

3.3.4 Electoral Stages

In the previous protocol, we have introduced and used the idea of limiting the distances
to control the complexity of the original “as far as it can” approach. This idea requires
that an entity makes several successive attempts (at increasing distances) to become
a leader.

The idea of not making a single attempt to become a leader (as it was done in All
the Way and in AsFar), instead of proceeding in stages, is a very powerful algorithmic
tool of its own. It allows us to view the election as a sequence of electoral stages :
At the beginning of each stage, the “candidates" run for election; at the end of the
stage, some “candidates" will be defeated, the others will start the next stage. Recall
that “stage” is a logical notion, and it does not require the system to be synchronized;
in fact, parts of the system may run very fast while other parts may be slow in their
operation, so different entities might execute a stage at totally different times.

We will now see how the proper use of this tool allows us to achieve even better
results, without controlling the distances and without return (or feedback) messages.

To simplify the presentation and the discussion, we will temporarily assume that
there is Message Ordering (i.e., the links are FIFO); we will remove the restriction
immediately after.

As before, we will have each candidate send a message carrying its own id in both
directions. Without setting an a priori fixed limit on the distance these messages can
travel, we still would like to avoid them to travel unnecessarily far (costing too many
transmissions). The strategy to achieve this is simple and effective:

� A message will travel until it reaches another candidate in the same (or higher)
stage.
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The consequence of this simple strategy is that in each stage, a candidate will receive a
message from each side; thus, it will know the ids of the neighboring candidate on each
side. We will use this fact to decide whether a candidate x enters the next stage: x will
survive this stage only if the two received ids are not smaller than its own id(x) (recall
we are electing the entity with the smallest id); otherwise, it becomes defeated. As
before, we will have defeated entities continue to participate by forwarding received
messages.

Correctness and termination are easy to verify. Observe that the initiator with the
smallest identity will never become defeated; by contrast, at each stage, its message
will transform into defeated the neighboring candidate on each side (regardless of their
distance). Hence, the number of candidates decreases at each stage. This means that
eventually, the only candidate left is the one with the minimum id. When this happens,
its messages will travel all along the ring (forwarded by the defeated entities) and reach
it. Thus, a candidate receiving its own messages back knows that all other entities are
defeated; it will then become leader and notify all other entities of termination.

Summarizing (see also Figure 3.13):

� A candidate x sends a message in both directions carrying its identity; these
messages will travel until they encounter another candidate node.
� By symmetry, entity x will receive two messages, one from the “left" and one

from the “right" (independently of any sense of direction); it will then become
defeated if at least one of them carries an identity smaller than its own; if both
the received identities are larger than its own, it starts the next stage; finally, if
the received identities are its own, it becomes leader and notifies all entities of
termination.
� A defeated node will forward any received election message, and each nonini-

tiator will automatically become defeated upon receiving an election message.

The protocol is shown in Figure 3.14, where close and open denote the operation
of closing a port (with the effect of enqueueing incoming messages) and opening a
closed port (dequeueing the messages), respectively, and where procedure Initialize
is shown in Figure 3.15.

x > Min{y,z}  =>  x  defeated

x < Min{y,z}  =>  x  candidate next stage

x = Min{y,z}  =>  x  leader

zyxx
xx

FIGURE 3.13: A candidate x in an electoral stage.
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PROTOCOL Stages.

� States: S = {ASLEEP, CANDIDATE, WAITING, DEFEATED, FOLLOWER, LEADER};
SINIT = {ASLEEP}; STERM = {FOLLOWER, LEADER}.
� Restrictions: IR ∪Ring.

ASLEEP
Spontaneously
begin

INITIALIZE;
become CANDIDATE;

end

Receiving("Election", id*, stage*)
begin

INITIALIZE;
min:= Min(id*,min);
close(sender);
become WAITING;

end

CANDIDATE
Receiving("Election", id*, stage*)
begin

if id* 	= id(x) then
min:= Min(id*,min);
close(sender);
become WAITING;

else
send(Notify) to N (x);
become LEADER;

end

WAITING
Receiving("Election", id*, stage*)

open(other);
stage:= stage+1;
min:= Min(id*,min);
if min= id(x) then

send("Election", id(x), stage) to N (x);
become CANDIDATE;

else
become DEFEATED;

endif
end

DEFEATED
Receiving(")
begin

send(") to other;
if " = Notify then become FOLLOWER endif;

end

FIGURE 3.14: Protocol Stages.

Messages It is not so obvious that this strategy is more efficient than the previ-
ous one.

Let us first determine the number of messages exchanged during a stage. Con-
sider the segment of the ring between two neighboring candidates in stage i, x, and
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Procedure INITIALIZE
begin

stage:= 1;
count:= 0;
min:= id(x);
send("Election", id(x), stage) to N (x);

end

FIGURE 3.15: Procedure Initialize used by protocol Stages.

y = r(i, x); in this stage, x will send a message to y and y will send one to x. No
other messages will be transmitted during this stage in that segment. In other words,
on each link, only two messages will be transmitted (one in each direction) in this
stage. Therefore, in total, 2nmessage exchanges will be performed during each stage.

Let us determine now the number of stages. Consider a node x that is candidate
at the beginning of stage i and is not defeated during this stage; let y = r(i, x) and
z = l(i, x) be the first entity to the right and to the left of x, respectively, that are also
candidates in stage i (Figure 3.16).

It is not difficult to see that if x survives stage i, both r(i, x) and l(i, x) will be
defeated. Therefore, at least half of the candidates are defeated at each stage. In other
words, at most half of them survive:

ni ≤ ni−1
2 .

As n1 = n , the total number of stages is at most σStages ≤ �log n� + 1.
Combining the two observations, we obtain,

M[Stages] ≤ 2 n log n+O(n). (3.16)

That is, protocol Stages outperforms protocol Control.
Observe that equality is achievable in practice (Exercise 3.10.9). Further note that

if we use the Minimum Initiator approach the bound will become

M[Stages:Minit] ≤ 2 n log k∗ +O(n). (3.17)

candidate

xl(i,x) r(i,x)

defeated

FIGURE 3.16: If x survives this stage, its neighboring candidates will not.

Removing Message Ordering The correctness and termination of Stages are
easy to follow also because we have assumed in our protocol that there is Message
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Ordering. This assumption ensured that the two messages received by a candidate in
stage i are originated by candidates also in stage i. If we remove the Message Ordering
restriction, it is possible that messages arrive out of order and that a message sent in
stage j > i arrives before a message sent in stage i.

Simple Approach The simplest way to approach this problem is by enforcing the
“effects” of Message Ordering, without really having it.

1. First of all, each message will also carry the stage number of the entity origi-
nating it.

2. When a candidate node x in stage i receives a messageM∗with stage j > i, it
will not process it but will locally enqueue it until it has received from that side
(and processed) all the messages from stages i, i + 1, . . . , j − 1, which have
been “jumped over” byM∗; it will then processM∗.

The only modification to protocol Stages as described in Figure 3.14 is the addition
of the local enqueueing of messages (Exercise 3.10.6); as this is only local processing,
the message and time costs are unchanged.

Stages∗ An alternative approach is to keep a track of a message “jumping over”
others but without enqueueing it locally. We shall describe it in some details and call
Stages* the corresponding protocol.

1. First of all, we will give a stage number to all the nodes: For a candidate entity, it
is the current stage; for a defeated entity, it is the stage in which it was defeated.
We will then have a defeated node forward only messages from higher stages.

2. A candidate node x in stage i receiving an Election message M∗ with stage
j > i will use the id included in the message, id*, and will make a decision
about the outcome of the stage i as if both of them were in the same stage.

• If x is defeated in this round, then it will forward the messageM∗.
• If x survives, it means that id(x) is smaller not only than id* inM∗ but also

than the ids in the messages “jumped over” byM∗ (Exercise3.10.13).

In this case, x can act because it has received already from that side all the
messages from stages i, i + 1, . . . , j , and they all have an id larger than id(x).
We will indicate this fact by saying that x has now a credit of j − i messages
on that port. In other words, if a candidate x has a credit c > 0 associated with
a port, it does not have to wait for a message from that port during the current
stage. Clearly, the credit must be decreased in each stage.

To write the set of rules for protocol Stages* is a task that, although not difficult,
requires great care and attention to details (Exercise 3.10.12); similar characteristics
has the task of proving the correctness of the protocol Stages* (Exercise 3.10.14).

As for the resulting communication complexity, the number of messages is never
more (sometimes less) than that with Message Ordering (Exercise 3.10.15).
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Interestingly, if we attempt to measure the ideal time complexity, we will only see
executions with Message Ordering. In other words,

the phenomenon of messages delivered out of order will disappear.

This is yet another case showing how biased and limited (and thus dangerous) ideal
time is as a cost measure.

3.3.5 Stages with Feedback

We have seen how, with the proper use of electoral stages in protocol Stages, we can
obtain aO(n log n) performance without the need of controlling the distance travelled
by a message.

In addition to controlled distances, protocol Control uses also a “feedback” tech-
nique: If a message successfully reaches its target, it returns back to its originator,
providing it with a “positive feedback” on the situation it has encountered. Such a
technique is missing in Stages: A message always successfully reaches its target (the
next candidate in the direction it travels), which could be at an unpredictable distance;
however, the use of the message ends there.

Let us integrate the positive feedback idea in the overall strategy of Stages: When
an “Election” message reaches its target, a positive feedback will be sent back to its
originator if the id contained in the message is the smallest seen by the target in this
stage.

More precisely, when a candidate x receives Election messages containing id(y)
and id(z) from its neighboring candidates, y = r(i, x) and z = l(i, x), it will send
a (positive) “feedback” message: to y if id(y) < Min{id(x), id(z)}, to z if id(z) <
Min{id(x), id(y)}, and to none otherwise. A candidate will then survive this stage
and enter the new one if and only if it receives a feedback from both sides.

In the example of Figure 3.17, candidates with ids 2, 5, and 8 will not send any
feedback; of these three, only candidate with id 2 will enter next stage. The fate of
entity with id 7 depends on its other neighboring candidate, which is not shown; so,
we do not know whether it will survive or not.

If a node sends a “feedback” message, it knows that it will not survive this stage.
This is the case, for example, of the entities with ids 6, 9, 10, and 11.

Some entities, however, do not send any “feedback” and wait for a “feedback” that
will never arrive; this is, for example, the case of the entities with ids 5 and 8. How
will such an entity discover that no “feedback” is forthcoming and it must become
defeated? The answer is fortunately simple. Every entity that survives stage i (e.g.,

candidatedefeated

7 9 8 2 6 510 11

FIGURE 3.17: Only some candidates will send a feedback.
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the node with id 2) will start the next stage; its Stage message will act as a negative
feedback for those entities receiving the message while still waiting in stage i.

More specifically, if while waiting for a “feedback” message in stage i, an entity
receives an “Election” message (clearly with a smaller id) in stage i + 1, it becomes
defeated and forwards the message.

We shall call the protocol Stages with Feedback; our description was assuming
message ordering. As for protocol Stages, this restriction can and will be logically
enforced with just local processing.

Correctness The correctness and termination of the protocol follows from the fact
that the entity xmin with the smallest identity will always receive a positive feedback
from both sides; hence, it will never be defeated. At the same time, xmin never sends
a positive feedback; hence, its left and right neighboring candidates in that stage do
not survive it. In other words, the number ni of candidates in stage i is monotonically
decreasing, and eventually only xmin will be in such a state. When this happens, its
own “Election” messages will travel along the ring, and termination will be detected.

Messages We are adding bookkeeping and additional messages to the already
highly efficient protocol Stages. Let us examine the effect of these changes.

Let us start with the number of stages.
As in Stages, if a candidate x in stage i survives, it is guaranteed that its neighboring

candidates in the same stage, r(i, x) and l(i, x), will become defeated. With the
introduction of positive feedback, we can actually guarantee that if x survives, neither
will the first candidate to the right of r(i, x) survive nor will the first candidate to the
left of l(i, x) survive.

This is because if x survives, it must have received a “feedback” from both r(i, x)
and l(i, x) (see Figure 3.18). But if r(i, x) sends “feedback” to x, it does not send one
to its neighboring candidate r2(i, x); similarly, l(i, x) does not send a “Feedback” to
l2(i, x). In other words,

ni ≤ ni−1
3 .

That is, at most one third of the candidates starting a stage will enter the next one. As
n1 = n , the total number of stages is at most σStages ≤ �log3 n� + 1. Note that there
are initial configurations of the ids that will force the protocol to have exactly these
many stages (Exercise 3.10.22).

candidate

x

defeated

l(i,x) r(i,x) r (i,x)2 2
l (i,x)

FIGURE 3.18: If x survives, those other candidates do not.
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In other words, the number of stages has decreased with the use of “feedback”
messages. However, we are sending more messages in each stage.

Let us examine now how many messages will be sent in each stage. Consider
stage i; this will be started by ni candidates. Each candidate will send an “Election”
message that will travel to the next candidate on either side. Thus, exactly like in
Stages, two “Election” messages will be sent over each link, one in each direction, for
a total of 2n “Election” messages per stage. Consider now the “feedback” messages;
a candidate sends at most one “feedback” and only in one direction. Thus, in the
segment of the ring between two candidates, there will be at most one “feedback”
message on each link; hence, there will be no more than n “feedback” transmissions
in total in each stage. This means that in each stage there will be at most 3nmessages.

Summarizing,

M[StagesFeedback] ≤ 3 n log3 n+O(n) ≤ 1.89 n log n+O(n). (3.18)

In other words, the use of feedback with the electoral stages allows us to reduce the
number of messages in the worst case. The use of Minimum Initiator strategy yields
the similar result:

M[StagesFeedback–Minit] ≤ 1.89 n log k∗ +O(n). (3.19)

In the analysis of the number of “feedback” messages sent in each stage, we can
be more accurate; in fact, there are some areas of the ring (composed of consecutive
defeated entities between two successive candidates) where no feedback messages
will be transmitted at all. In the example of Figure 3.17, this is the case of the area
between the candidates with ids 8 and 10. The number of these areas is exactly equal
to the number ni+1 of candidates that survive this stage (Exercise 3.10.19). However,
the savings are not enough to reduce the constant in the leading term of the message
costs (Exercise 3.10.21).

Granularity of Analysis: Bit Complexity The advantage of protocol Stages
with Feedback becomes more evident when we look at communication costs at a
finer level of granularity, focusing on the actual size of the messages being used. In
fact, while the “Election” messages contain values, the “feedback” messages are just
signals, each containing O(1) bits. (Recall the discussion in Section 3.2.)

In each stage, only the 2n “Election” messages carry a value, while the other n are
signals; hence, the total number of bits transmitted will be at most

2 n (c + log id) log3 n+ n c log3 n+ l.o.t.,

where id denotes the largest value sent in a message, c = O(1) denotes the number
of bits required to distinguish among the different types of message, and l.o.t. stands
for “lower order terms.” That is,

B[StageswithFeedback] ≤ 1.26 n log n log id+ l.o.t. (3.20)
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The improvement on the bit complexity of Stages, where every message carries a
value, is, thus, in the reduction of the constant from 2 to 1.26.

Further Improvements? The use of electoral stages allows us to transform the
election process into one of successive “eliminations,” reducing the number of can-
didates at each stage. In the original protocol Stages, each surviving candidate will
eliminate its neighboring candidate on each side, guaranteeing that at least half of
the candidates are eliminated in each stage. By using feedback, protocol Stages with
Feedback extends the “reach” of a candidate also to the second neighboring candi-
date on each side, ensuring that at least two third of the candidates are eliminated
in each stage. Increasing the “reach” of a candidate during a stage will result in a
larger proportion of the candidates in each stage, thus, reducing the number of stages.
So, intuitively, we would like a candidate to reach as far as possible during a stage.
Obviously the price to be paid is the additional messages required to implement the
longer reach.

In general, if we can construct a protocol that guarantees a reduction rate of at least
b, that is, ni ≤ ni−1

b
, then the total number of stages would be logb(n); if the messages

transmitted in each stage are at most an, then the overall complexity will be

a n logb(n) = a

log b
n log n.

To improve on Stages with Feedback, the reduction must be done with a number of
messages such that a

log b < 1.89. Whether this is possible or not is an open problem
(Problem 3.10.3).

3.3.6 Alternating Steps

It should be clear by now that the road to improvement, on which creative ingenuity
will travel, is oftentimes paved by a deeper understanding of what is already available.

A way to achieve such an understanding is by examining the functioning of the
object of our improvement in “slow motion,” so as to observe its details.

Let us consider protocol Stages. It is rather simple and highly efficient. We have
already shown how to achieve improvements by extending the “reach” of a candidate
during a stage; in a sense, this was really “speeding up” the functioning of the protocol.
Let us examine now Stages instead by “slowing down” its functioning.

In each stage, a candidate sends its id in both directions, receives an id from each
direction, and decides whether to survive, be elected, or become defeated on the basis
of its own value and the received ones.

Consider the example shown in Figure 3.19; the result of stages will result in
candidates w, y, and v being eliminated and x and z surviving; the fate of u will
depend on its right candidate neighbor, which is not shown.

We can obviously think of “sending in both directions” as two separate steps: send
to one direction (say “right”) and send to the other. Assume for the moment that the
ring is oriented: “right” has the same meaning for all entities. Thus, the stage can be
thought of having two steps: (1) The candidate sends to the “right” and receives from
the “left”; (2) it will then send to the “left” and receive from the “right.”
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FIGURE 3.19: Alternating Steps: slowing down the execution of Stages.

Consider the first step in the same example as shown in Figure 3.19; both candidates
y and v already know at this time that they would not survive. Let us take advantage
of this “early” discovery. We will use each of these two steps to make an electoral
decision, and we will eliminate a candidate after step (1) if it receives a smaller id in
this step. Thus, a candidate will perform step (2) only if it is not eliminated in step (1).

The advantage of doing so becomes clear observing that by eliminating candidates
in each step of a phase, we eliminate more than that in the original phase; in the
example of Figure 3.19, also x will be eliminated.

Summarizing, the idea is that at each step, a candidate sends only one message
with its value, waits for one message, and decides on the basis of its value and the
received one; the key is to alternate at each step the direction in which messages are
sent.

This protocol, which we shall call Alternate, is shown in Figure 3.20, where close
and open denote the operation of closing a port (with the effect of enqueueing incom-
ing messages) and opening a closed port (dequeueing the messages), respectively;
and the procedures Initialize and Process Message are shown in Figure 3.21.

Correctness The correctness of the protocol follows immediately from observing
that, as usual, the candidate xmin with the smallest value will never be eliminated
and that, on the contrary, it will in each step eliminate a neighboring candidate.
Hence, the number of candidates is monotonically decreasing in the steps; when only
xmin is left, its message will complete the tour of the ring transforming it into the
leader. The final notification will ensure proper termination of all entities.

Costs To determine the cost is slightly more complex. There are exactlynmessages
transmitted in each step, so we need to determine the total number of steps σAlternate
(or, where no confusion arises, simply σ ) until a single candidate is left, in the worst
case, regardless of the placement of the ids in the ring, time delays, and so forth.

Let ni be the candidate entities starting step i; clearly n1 = n and nσ = 1. We
know that two successive steps of Alternate will eliminate more candidates than a
single stage of Stages; hence, the total number of steps will be less than twice the
number of stages of Stages:

σ < 2 log n.

We can, however, be more accurate regarding the amount of elimination performed
in two successive steps.
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PROTOCOL Alternate.

� States: S = {ASLEEP, CANDIDATE, DEFEATED, FOLLOWER, LEADER};
SINIT = {ASLEEP};
STERM = {FOLLOWER, LEADER}.
� Restrictions: IR ∪OrientedRing ∪MessageOrdering.

ASLEEP
Spontaneously
begin

INITIALIZE;
become CANDIDATE;

end

Receiving("Election", id*, step*)
begin

INITIALIZE;
become CANDIDATE;
PROCESS MESSAGE;

end

CANDIDATE
Receiving("Election", id*, step*)
begin

if id* 	= id(x) then
PROCESS MESSAGE;

else
send(Notify) to N (x);
become LEADER;

end

DEFEATED
Receiving(")
begin

send(") to other;
if " = Notify then become FOLLOWER endif;

end

FIGURE 3.20: Protocol Alternate.

Assume that in step i, the direction is “right” (thus, it will be “left” in step i + 1).
Let di denote the number of candidates that are eliminated in step i. Of those ni
candidates that start step i, di will be defeated and only ni+1 will survive that step.
That is,

ni = di + ni+1

Consider a candidate x that survives both step i and step i + 1. First of all observe
that the candidate to the right of x in step i will be eliminated in that step. (If not, it
would mean that its id is smaller than id(x) and thus would eliminate x in step i + 1;
but we know that x survives.)

This means that every candidate that, like x, survives both stages will eliminate
one candidate in the first stage; in other words,

di ≥ ni+2,
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Procedure INITIALIZE
begin

step:= 1;
min:= id(x);
send("Election", id(x), step) to right;
close(right);

end

Procedure PROCESS MESSAGE
begin

if id*< min then
open(other);
become DEFEATED;

else
step:= step+1;
send("Election", id(x), step) to sender;
close(sender);
open(other);

endif
end

FIGURE 3.21: Procedures used by protocol Alternate.

but then

ni ≥ ni+1 + ni+2. (3.21)

The consequence of this fact is very interesting. In fact, we know that nσ = 1 and,
obviously, nσ−1 ≥ 2. From Equation 3.21, we have nσ−i ≥ nσ−i+1 + nσ−i+2.

Consider now the Fibonacci numbers Fj defined by Fj = Fj+1 + Fj+2, where
F−1 = 0 and F0 = 1. Then, clearly

nσ−i ≥ Fi+1.

It follows that n1 ≥ Fσ , but n1 = n; thus σ is the index of the largest Fibonacci
number not exceeding n. This helps us in achieving our goal of determining σ , the

number of steps until there is only one candidate left. As Fj = b
( 1+√5

2

)j , where b
is a positive constant, we have

n ≥ Fσ = b
(

1+√5
2

)σ

from where we get,

σAlternate ≤ 1.44 log n+O(1).

That means that after at most so many steps, there will be only one candidate left.
Observe that what we have derived is actually achievable. In fact, there are allocations
of the ids to the nodes or a ring that will force the protocol to perform σAlternate
steps before there is only one candidate left (Exercise 3.10.26). In the next step, this
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candidate will become leader and start the notification. These last two operations
require n messages each.

Thus the total number of messages will be

M[Alternate] ≤ 1.44 n log n+O(n). (3.22)

In other words, protocol Alternate is not only simple but also more efficient than
all other protocols seen so far.

Recall, however, that it has been described and analyzed assuming that the ring is
oriented.

Question. What happens if the ring is not oriented ?

If the entities have different meaning for “right,” when implementing the first step,
some candidates will send messages clockwise while others in a counterclockwise
direction.

Notice that in the implementation for oriented rings described above, this would
lead to deadlock because we close the port we are not waiting to receive from; the
implementation can be modified so that the ports are never closed (Exercise 3.10.24).
Consider this to be the case.

It will then happen that a candidate waiting to receive from “left” will instead
receive from “right.” Call this situation a conflict.

What we need to do is to add to the protocol a conflict resolution mechanism to
cope with such situations. Clearly this complicates the protocol (Problem 3.10.2).

3.3.7 Unidirectional Protocols

The first two protocols we have examined, All the Way and AsFar, did not really require
the restriction Bidirectional Links; in fact, they can be used without any modification in
a directed or a unidirectional ring. The subsequent protocols Distances, Stages, Stages
with Feedback, and Alternate all used the communication links in both directions, for
example, for obtaining feedback. It was through them that we have been able to reduce
the costs fromO(n2) to a guaranteedO(n log n) messages. The immediate and natural
question is as follows:

Question. Is “Bidirectional Links” necessary for a O(n log n) cost ?

The question is practically relevant because if the answer is positive, it would
indicate that an additional investment in communication hardware (i.e., full duplex
lines) is necessary to reduce the operating costs of the election task. The answer is
important also from a theoretical point of view because if positive, it would clearly
indicate the “power” of the restriction Bidirectional Links. Not surprisingly, this
question has attracted the attention of many researchers.

We are going to see now that the answer is actually No.
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We are also going to see that, strangely enough, we know how to do better with
unidirectional links than with bidirectional ones.

First of all, we are going to show how the execution of protocols Stages and
Alternate can be simulated in unidirectional links yielding the same (if not better)
complexity. Then, using the lessons learned in this process, we are going to develop
a more efficient unidirectional solution.

Unidirectional Stages What we are going to do is to show how to simulate the
execution of protocol Stages in unidirectional rings �R, with the same message costs.

Consider how protocol Stages works. In a stage, a candidate entity x

1. sends a message carrying a value (its id) in both directions and thus receives a
message with the value (the id) of another candidate from each directions, and
then,

2. on the basis of these three values (i.e., its own and the two received ones), makes
a decision on whether it (and its value) should survive this stage and start the
next stage.

Let us implement each of these two steps separately.
Step (1) is clearly the difficult one because, in a unidirectional ring, messages can

only be sent in one direction. Decompose the operation “send in both directions” into
two substeps: (I) “send in one direction” and then (II) “send in the other direction.”

Substep (I) can be executed directly in �R; as a result, every candidate will receive
a message with the value of its neighboring candidate from the opposite direction
(see Figure 3.22 c). The problem is in implementing now substep (II); as we cannot
send information in the other direction, we will send information again in the same
direction, and, as it is meaningless to send again the same information, we will send
the information we just received. As a result, every candidate will receive now the
value of another candidate from the opposite direction (see Figure 3.22d).

Every entity in �R has now three values at its disposal: the one it started with plus
the two received ones. We can now proceed to implement Step (2). To simulate the
bidirectional execution, we need that a candidate decides on whether to survive or to
become passive on the basis of exactly the same information in �R as in the bidirectional
case. Consider the initial configuration in the example shown in Figure 3.22 and focus
on the candidate x with starting value 7; in the bidirectional case, x decides that the
value 7 should survive on the basis of the information: 7, 15, and 8. In the unidirectional
case, after the implementation of Step (1), x knows now 4 and 15 in addition to 7. This
is not the same information at all. In fact, it would lead to totally different decisions
in the two cases, destroying the simulation.

There is, however, in �R a candidate that, at the end of Step (1), has exactly the
same information that x has at the end of Step (1) in the bidirectional case: This is the
candidate that started with value 8. In fact, the information available in R exists in �R
(compare carefully Figures 3.22 (b) and (d)), but it is shifted to the “next” candidate
in the ring direction. It is, thus, possible to make the same decisions in �R as inR; they
will just have to be made by different entities in the two cases.
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FIGURE 3.22: (a) Initial configuration; (b) information after the first full stage of Stages
with Bidirectional Links; (c) information after first substep in the unidirectional simulation;
(d) information after the second substep.

In each stage, a candidate makes a decision on a value. In protocol Stages, this
value was always the candidate’s id. In the unidirectional algorithm, this value is not
the id; it is the first value sent by its neighboring candidate in Step (1). We will call
this value the envelope.

IMPORTANT. Be aware that unless we add the assumption Message Ordering, it
is possible that the second value arrives before the envelope. This problem can be
solved (e.g., by locally enqueueing out-of-order messages).

It is not difficult to verify that the simulation is exact: In each stage, exactly the
same values survive in �R as in R; thus, the number of stages is exactly the same.
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PROTOCOL UniStages.

� States: S = {ASLEEP, CANDIDATE, DEFEATED, FOLLOWER, LEADER};
SINIT = {ASLEEP};
STERM = {FOLLOWER, LEADER}.
� Restrictions: IR ∪UnidirectionalRing.

ASLEEP
Spontaneously
begin

INITIALIZE;
become CANDIDATE;

end

Receiving("Election", value*, stage*,order*)
begin

send ("Election", value*, stage*, order*);
become DEFEATED;

end

CANDIDATE
Receiving("Election", value*, stage*, order*)
begin

if value* 	= value1 then
PROCESS MESSAGE;

else
send(Notify);
become LEADER;

end

DEFEATED
Receiving(")
begin

send(");
if " = Notify then become FOLLOWER endif;

end

FIGURE 3.23: Protocol UniStages.

The cost of each stage is also the same: 2nmessages. In fact, each node will send (or
forward) exactly two messages.

In other words,

M[UniStages] ≤ 2 n log n+O(n). (3.23)

This shows that O(n log n) guaranteed message costs can be achieved in ring
networks also without Bidirectional Links.

The corresponding protocol UniStages is shown in Figure 3.23, described not as a
unidirectional simulation of Stages (which indeed it is) but directly as a unidirectional
protocol.

NOTES. In this implementation,

1. we elect a leader only among the initiators (using approach Minimum Initiator);

2. Message Ordering is not assumed; within a stage, we use a Boolean variable,
in order to distinguish between value and envelope and to cope with messages
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from different stages arriving out of order: If a candidate receives a message
from the “future” (i.e., with a higher stage number), it will be transformed
immediately into defeated and will forward the message.

Unidirectional Alternate We have shown how to simulate Stages in a unidi-
rectional ring, achieving exactly the same cost. Let us focus now on Alternate; this
protocol makes full explicit use of the full duplex communication capabilities of the
bidirectional ring by alternating direction at each step. Surprisingly, it is possible to
achieve an exact simulation also of this protocol in a unidirectional ring �R.

Consider how protocol Alternate works. In a “left” step,

1. a candidate entity x sends a message carrying a value v(x) to the “left”, and
receives a message with the value of another candidate from the “right”;

Procedure INITIALIZE
begin

stage:= 1;
count:= 0;
order:= 0;
value1:= id(x);
send("Election", value1, stage, order);

end

Procedure PROCESS MESSAGE
begin

if stage* = stage then
if order* = 0 then

envelope:= value*;
order:= 1;
send ("Election", value*, stage*, order);

else
value2:= value*;

endif
count:=count+1;
if count=2 then

if envelope < Min(value1, value2) then
order:= 0;
count:= 0;
stage:= stage+1;
value1:= envelope;
send ("Election", value1, stage, order);

else
become DEFEATED;

endif
endif

else
if stage* > stage then

send ("Election", value*, stage*, order*);
become DEFEATED;

endif
endif

end

FIGURE 3.24: Procedures used by protocol UniStages.
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FIGURE 3.25: (a-b) Information after (a) the first step and (b) the second step of Alternate in
an oriented bidirectional ring. (c-d) Information after (c) the first step and (d) the second step
of the unidirectional simulation.

2. on the basis of these two values (i.e., its own and the received one), x makes a
decision on whether it (and its value) should survive this step and start the next
step.

The actions in a “right” step are the same except that “left” and “right” are inter-
changed.

Consider the ring �R shown in Figure 3.25, and assume we can send messages only
to “right”. This means that the initial “right” step can be trivially implemented: Every
entity will send a value (its own) and receive another; it starts the next step if and only
if the value it receives is not smaller that its own.
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Let us concentrate on the “left” step. As a candidate cannot send a value to the
left, it will have to send the value to the “right”. Let us do so. Every candidate in �R
has now two values at its disposal: the one it started with and the received one.

To simulate the bidirectional execution, we need that a candidate makes a decision
on whether to survive or to become passive on the basis of exactly the same information
in �R as in the bidirectional case. Consider the initial configuration in the example
shown in Figure 3.25. First of all observe that the information in the “right” step is the
same both in the bidirectional (a) and in the unidirectional (c) case. The differences
occur in the “left” step.

Focus on the candidatexwith starting value 7; in the second step of the bidirectional
case, x decides that the value 7 should not survive on the basis of the information: 5
and 7. In the unidirectional case, after the second step, x knows now 7 and 8. This is
not the same information at all. In fact, it would lead to totally different decisions in
the two cases, destroying the simulation.

There is, however, in �R a candidate that, at the end of the second step, has exactly the
same information that x has in the bidirectional case: This is the candidate that started
with value 5. As we have seen already in the simulation of Stages, the information
available in R exists in �R (compare carefully Figures 3.25(b) and (d)). It is, thus,
possible to make the same decisions in �R as in R; they will just have to be made by
different entities in the two cases.

Summarizing, in each step, a candidate makes a decision on a value. In protocol
Alternate, this value was always the candidate’s id. In the unidirectional algorithm,
this value changes depending on the step. Initially, it is its own value; in the “left”
step, it is the value it receives; in the “right” step, it is the value it already has.

In other words,

1. in the “right” step, a candidate x survives if and only if the received value is
larger than v(x);

2. in the “left” step, a candidate x survives if and only if the received value is
smaller than v(x), and if so, x will now play for that value.

Working out a complete example will help clarify the simulation process and dispel
any confusion (Exercise 3.10.33).

IMPORTANT. Be aware that unless we add the assumption Message Ordering, it is
possible that the value from step i + 1 arrives before the value for step i.

It is not difficult to verify that the simulation is exact: In each step, exactly the
same values survive in �R as in R; thus, the number of steps is exactly the same. The
cost of each step is also the same: n messages. Thus,

M[UniAlternate] ≤ 1.44 n log n+O(n). (3.24)

The unidirectional simulation of Alternate is shown in Figure 3.26; it has been
simplified so that we elect a leader only among the initiators, and assuming Message
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PROTOCOL UniAlternate.

� States: S = {ASLEEP, CANDIDATE, DEFEATED, FOLLOWER, LEADER};
SINIT = {ASLEEP};
STERM = {FOLLOWER, LEADER}.
� Restrictions: IR ∪UnidirectionalRing ∪MessageOrdering.

ASLEEP
Spontaneously
begin

INITIALIZE;
become CANDIDATE;

end

Receiving("Election", value*, stage*,order*)
begin

send ("Election", value*, stage*, order*);
become DEFEATED;

end

CANDIDATE
Receiving("Election", value*, stage*)
begin

if value* 	= value then
PROCESS MESSAGE;

else
send(Notify);
become LEADER;

end

DEFEATED
Receiving(")
begin

send(");
if " = Notify then become FOLLOWER endif;

end

FIGURE 3.26: Protocol UniAlternate.

Ordering. The protocol can be modified to remove this assumption without changes in
its cost (Exercise 3.10.34). The procedures Initialize and Prepare Message are shown
in Figure 3.27.

An Alternative Approach In all the solutions we have seen so far, both for
unidirectional and bidirectional rings, we have used the same basic strategy of min-
imum finding; in fact in all of the protocols so far, we have elected as a leader the
entity with the smallest value (either among all the entities or among just the initia-
tors). Obviously, we could have used maximum finding in those solution protocols,
just substituting the function Min with Max and obtaining the exact same perfor-
mance.

A very different approach consists in mixing these two strategies. More precisely,
consider the protocols based on electoral stages. In all of them, what we could do is
to alternate strategy in each stage: In “odd” stages we use the function Min, and in
“even” stages we use the function Max. Call this approach min-max.
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Procedure INITIALIZE
begin

step:= 1;
direction:= "right";
value:= id(x);
send("Election", value, step, direction);

end

Procedure PROCESS MESSAGE
begin

if direction = "right" then
if value < value* then

step:= step+1;
direction:= "left";
send ("Election", value, step, direction);

else
become DEFEATED;

endif
else

if value > value* then
step:= step+1;
direction:= "right";
send ("Election", value, step, direction);

else
become DEFEATED;

endif
endif

end

FIGURE 3.27: Procedures used by protocol UniAlternate.

It is not difficult to verify that all the stage-based protocols we have seen so far, both
bidirectional and unidirectional, still correctly solve the election problem; moreover,
they do so with the same costs as before (Exercises 3.10.11, 3.10.23, 3.10.28, 3.10.31,
3.10.36).

The interesting and surprising thing is that this approach can lead to the design of
a more efficient protocol for unidirectional rings.

The protocol we will construct has a simple structure. Let us assume that every
entity starts and that there is Message Ordering (we will remove both assumptions
later).

1. Each initiator x becomes candidate, prepares a message containing its own
value id(x) and the stage number i = 1, and sends it (recall, we are in a unidi-
rectional ring, so there is only one out-neighbor); x is called the originator of
this message and remembers its content.

2. When a message with value b arrives at a candidate y, y compares the received
value b with the value a it sent in its last message.

(a) If a = b, the message originated by y has made a full trip around the ring;
y becomes the leader and notifies all other entities of termination.

(b) If a 	= b, the action y will take depends on the stage number j :

(i) if j is “even,” the message is discarded if and only if a < b (i.e., b
survives only if max);
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FIGURE 3.28: Protocol MinMax: (a) In an even stage, a candidate survives only if it receives
an envelope with a larger value; (b) it then generates an envelope with that value and starts
the next stage; (c) in an odd stage, a candidate survives only if it receives an envelope with a
smaller value; if so, it generates an envelope with that value and starts the next stage.

(ii) if j is “odd,” the message is discarded if and only if a > b (i.e., b
survives only if min).

If the message is discarded, y becomes defeated; otherwise, y will enter
the next stage: Originate a message with content (b, j + 1) and send it.

3. A defeated entity will, as usual, forward received messages.

For example, see Figure 3.28.
The correctness of the protocol follows from observing that,

(a) in an even stage i, the candidatex receiving the largest of all values in that stage,
vmax(i), will survive and enter the next stage; by contrast, its “predecessor”
l(i, x) that originated that message will become defeated (Exercise 3.10.37),
and

(b) in an odd stage j , the candidate y receiving the smallest of all values in that
stage, vmin(j ), will survive and enter the next stage; furthermore, its “prede-
cessor” l(j, y) that originated that message will become defeated.

In other words, in each stage at least one candidate will survive that stage, and
the number of candidates in a stage is monotonically decreasing with the number
of stages. Thus, within finite time, there will be only one candidate left; when that
happens, its message returns to it transforming it into a leader.
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IMPORTANT. Note that the entity that will be elected leader will be neither the one
with the smallest value nor the one with the largest value.

Let us now consider the costs of this protocol, which we will call MinMax. In a
stage, each candidate sends a message that travels to the next candidate. In other
words, in each stage there will be exactly n messages. Thus, to determine the total
number of messages, we need to compute the number σMinMax of stages.

We can rephrase the protocol in terms of values instead of entities. Each value sent
in a stage j travels from its originator to the next candidate in stage j . Of all these
values, only some will survive and will be sent in the next stage: In an even stage, a
value survives if it is larger than its “successor” (i.e., the next value in the ring in also
this stage); similarly, in an odd stage, it survives if it is smaller than its successor. Let
ni be the number of values in stage i; of those, di will be discarded and ni+1 will be
sent in the next stage. That is,

ni+1 = ni − di.

Let i be an odd (i.e., min) stage, and let value v survive this stage; this means that the
successor of v in stage i, say u, is larger than v that is, u >v. Let v survive also stage
i + 1 (an even, i.e., max, stage). This implies v must have been discarded in stage i: If
not, the entity that originates the message (i + 1, u) would discard (i + 1, v) because
u > v, but we know that x survives this stage. This means that every value that, like
v, survives both stages will eliminate one value in the first of the two stages; in other
words,

ni+2 ≤ di,

but then

ni ≥ ni+1 + ni+2. (3.25)

Notice that this is exactly the same equation as the one (Equation 3.21) we derived
for protocol Alternate. We thus obtain that

σMinMax ≤ 1.44 log n+O(1).

After at most these many stages, there will be only one value left. Observe that this
bound we have derived is actually achievable. In fact, there are allocations of the ids
to the nodes or a ring, which will force the protocol to perform σMinMax steps before
there is only one value left (Exercise 3.10.38). The candidate sending this value will
receive its message back and become leader; it will then start the notification. These
last two steps require n messages each; thus the total number of messages will be

M[MinMax] ≤ 1.44 n log n+O(n). (3.26)
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PROTOCOL MinMax

� States: S = {ASLEEP, CANDIDATE, DEFEATED, FOLLOWER, LEADER};
SINIT = {ASLEEP}; STERM = {FOLLOWER, LEADER}.
� Restrictions: IR ∪UnidirectionalRing ∪MessageOrdering.

ASLEEP
Spontaneously
begin

stage:= 1; value:= id(x);
send("Envelope", value, stage);
become ORIGINATOR;

end

Receiving("Envelope", value*, stage*)
begin

send ("Envelope", value*, stage*);
become DEFEATED;

end

CANDIDATE
Receiving("Envelope", value*, stage*)
begin

if value* 	= value then
PROCESS ENVELOPE;

else
send(Notify);
become LEADER;

end

DEFEATED
Receiving("Envelope", value*, stage*)
begin

send("Envelope", value*, stage*);
end

Receiving("Notify")
begin

send ("Notify");
become FOLLOWER;

end

FIGURE 3.29: Protocol MinMax.

In other words, we have been able to obtain the same costs of UniAlternate with
a very different protocol, MinMax, described in Figure 3.29.

We have assumed that all entities start. When removing this assumption we have
two options: The entities that are not initiators can be (i) made to start (as if they were
initiators) upon receiving their first message or (ii) transformed into passive and just
act as relayers. The second option is the one used in Figure 3.29.

We have also assumed Message Ordering in our discussion. As with all the other
protocols we have considered, this restriction can be enforced with just local book-
keeping at each entity, without any increase in complexity (Exercise 3.10.39).
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Procedure PROCESS ENVELOPE
begin

if odd(stage*) then
if value* < value then

stage= stage+1;
value:= value*;
send ("Envelope", value*, stage);

else
become DEFEATED;

else
if value* > value then

stage= stage+1;
value:= value*;
send ("Envelope", value, stage);

else
become DEFEATED;

endif
endif

end

FIGURE 3.30: Procedure Process Envelope of Protocol MinMax.

Hacking: Employing the Defeated (") The different approach used in protocol
MinMax has led to a different way of obtaining the same efficiency as we had already
with UniAlternate. The advantage of MinMax is that it is possible to obtain additional
improvements that lead to a significantly better performance.

Observe that like in most previous protocols, the defeated entities play a purely
passive role, that is, they just forward messages. The key observation we will use to
obtain an improvement in performance is that these entities can be exploited in the
computation.

Let us concentrate on the even stages and see if we can obtain some savings for
those steps. The message sent by a candidate travels (forwarded by the defeated
entities) until it encounters the next candidate. This distance can vary and can be very
large. What we will do is to control the maximum distance to which the message will
travel, following the idea we developed in Section 3.3.3.

(I) in an even step j , a message will travel no more than a predefined distance
dis(j ).

This is implemented by having in the message a counter (initially set to dis(j ))
that will be decreased by one by each defeated node it passes. What is the appropriate
choice of dis(i) will be discussed next.

Every change we make in the protocol has strong consequences. As a consequence
of (I ), the message from x might not reach the next candidate y if it is too far away
(more than dis(j )) (see Figure 3.31). In this case, the candidate y does not receive
the message in this stage and, thus, does not know what to do for the next stage.

IMPORTANT. It is possible that every candidate is too far away from the next one
in this stage, and hence none of them will receive a message.
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FIGURE 3.31: Protocol MinMax+. Controlling the distance: In even stage j , the message
does not travel more than dis(j ) nodes. (a) If it does not reach the next candidate y, the defeated
node reached last, z, will become candidate and start the next step; (b) in the next step, the
message from z transforms into defeated the entity y still waiting for the stage j message.

However, if candidate y does not receive the message from x, it is because the
counter of the message containing (v, j) reaches 0 at a defeated node z, on the way
from x to y (see Figure 3.31). To ensure progress (i.e., absence of deadlock), we will
make that defeated z become candidate and start the next stage j + 1 immediately,
sending (v, j+1). That is,

(II) in an even step j , if the counter of the message reaches 0 at a defeated node
z, then z becomes candidate and starts stage j + 1 with value= v*, where v*
is the value in the transfer message.

In other words, we are bringing some defeated nodes back into the game making
them candidates again. This operation could be dangerous for the complexity of the
protocol as the number of candidates appears to be increasing (and not decreasing).
This is easily taken care of: The originators, like y, waiting for a transfer message
that will not arrive will become defeated.

Question. How will y know that it is defeated?

The answer is simple. The candidate that starts the next stage (e.g., z in our
example) sends a message; when this message reaches a candidate (e.g., y) still
waiting for a message from the previous stage, that entity will understand, become
defeated, and forward the message. In other words,

(III) when, in an even step, a candidate receives a message for the next step, it
becomes defeated and forwards the message.

We are giving decisional power to the defeated nodes, even bringing some of them
back to “life.” Let us push this concept forward and see if we can obtain some other
savings.

Let us concentrate on the odd stages.
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Consider an even stage i in MinMax (e.g., Figure 3.28). Every candidate x sends
its message containing the value and the stage number and receives a message; it
becomes defeated if the received value is smaller than the one it sent. If it survives,
x starts stage i + 1: It sends a message with the received value and the new stage
number (see Figure 3.28(b)); this message will reach the next candidate.

Concentrate on the message (11, 3) in Figure 3.28(b) sent by x. Once (11, 3)
reaches its destination y, as 11 < 22 and we are in a odd (i.e., min) stage, a new
message (11, 4) will be originated. Observe that the fact that (11, 4) must be originated
can be discovered before the message reaches y (see Figure 3.32(c)). In fact, on its
travel from x to y, message (11, 3) will reach the defeated node z that originated
(20, 2) in the previous stage; once this happens, z knows that 11 will survive this stage
(Exercise 3.10.40). What zwill do is to become candidate again and immediately send
(11, 4).

(IV) When, in an even stage, a candidate becomes defeated, it will remember the
stage number and the value it sent. If, in the next stage, it receives a message
with a smaller value, it will become candidate again and start the next stage
with that value.

In our example, this means that the message (11, 3) from x will stop at z and never
reach y; thus, we will save d(z, y) messages. Notice that in this stage every message
with a smaller value will be stopped earlier. We have, however, transformed a defeated
entity into a candidate. This operation could be dangerous for the complexity of the

(a)

(b)

(c)

x z y

x z y

z yx

1011 20 13
(9, 2) (11, 2) (10, 2) (20, 2) (22, 2) (13, 2)

22

11 22
(11, 3) (22, 3)

11

(12, 3)

(12, 3) (11, 4)

FIGURE 3.32: Protocol MinMax+. (a) Early promotion in odd stages. (b) The message (11, 3)
from x, on its way to y, reaches the defeated node z that originated (20, 2). (c) Node z becomes
candidate and immediately originates envelope (11, 4).
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protocol as the number of candidates appears to be increasing (and not decreasing).
This is easily taken care of: This candidates, like y, waiting for a message of an odd
stage that will not arrive will become defeated.

How will y know that is defeated ? The answer again is simple. The candidate that
starts the next stage (e.g., z in our example) sends the message; when this message
reaches an entity still waiting for a message from the previous stage (e.g., y), that
entity will understand, become defeated, and forward the message. In other words,

(V) When, in an odd step, a candidate receives a message for the next step, it
becomes defeated and forwards the message.

The modifications to MinMax described by (I)–(V) generate a new protocol that
we shall call MinMax+ (Exercises 3.10.41 and 3.10.42).

Messages Let us estimate the cost of protocol MinMax+. First of all observe
that in protocol MinMax, in each stage a message (v, i) would always reach the next
candidate in that stage. This is not necessarily so in MinMax+. In fact, in an even
stage i no message will travel more than dis(i), and in an odd stage a message can be
“promoted” by a defeated node on the way. We must concentrate on the savings in
each type of stages.

Consider a message (v, i); denote by hi(v) the candidate that originates it, and if
the message is discarded in this stage, denote by gi(v) the node that discards it. For
the even stages, we must first of all choose the maximum distance dis(i) a message
will travel. We will use

dis(i) = Fi+2

With this choice of distance, we have a very interesting property.

Property 3.3.1 Let i be even.
If message (v, i) is discarded in this stage, then d(hi(v), gi(v)) ≥ Fi .
For any message (v, i + 1), d(hi(v), hi+1(v)) ≥ Fi+1.

This property allows us to determine the number of stages σMinMax+: In an even
stage i, the distance traveled by any message is at least Fi ; however, none of these
messages travels beyond the next candidate in the ring. Hence, the distance between
two successive candidates in an odd stage i is at least Fi ; this means that the number
ni of candidates is at most ni ≤ n

Fi
. Hence, the number of stages will be at most

F−1
n +O(1), whereF−1

n is the smallest integer j such thatFj ≥ n. Thus the algorithm
will use at most

σMinMax+ ≤ 1.44 log n+O(1)

stages. This is the same as protocol MinMax.
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The property also allows us to measure the number of messages we save in the odd
stages. In our example of Figure 3.32(b), message (11, 3) from x will stop at z and
never reach y; thus, we will save d(z, y) transmissions. In general, a message with
value v that reaches an even stage i + 1 (e.g., (11, 4)) saves at least Fi transmissions
in stage i (Exercise 3.10.44). The total number of transmissions in an odd stage i is,
thus, at most

n− ni+1Fi,

where ni+1 denotes the number of candidates in stage i + 1.
The total number of messages in an even stage is at most n. As in an even stage

i + 1 each message travels at most Fi+3 (by Property 3.3.1), the total number of
message transmissions in an even stage i + 1 will be at most ni+1Fi+3. Thus, the
total number of messages in an even stage i + 1 is at most

Min{n, ni+1Fi+3}.

If we now consider an odd stage i followed by an even stage i + 1, the total number
of message transmissions in the two stages will be at most

Min{n+ ni+1(Fi+3 − Fi), 2n− ni+1Fi} ≤ 2n− n Fi
Fi+3

< n(4−√5+ φ−2i),

where φ = 1+√5
2 . Hence,

M[MinMax+] ≤ 4−√5

2
n logφ(n)+O(n) < 1.271 n log n+O(n). (3.27)

Thus, protocol MinMax+ is the most efficient protocol we have seen so far, with
respect to the worst case.

3.3.8 Limits to Improvements (")

Throughout the previous sections, we have reduced the message costs further and
further using new tools or combining existing ones. A natural question is how far
we can go. Considering that the improvements have only been in the multiplicative
constant of the n log n factor, the next question becomes: Is there a tool or a technique
that would allow us to reduce the message costs for election significantly, for example,
from O(n log n) to O(n)?

These type of questions are all part of a larger and deeper one: What is the message
complexity of election in a ring ? To answer this question, we need to establish a lower
bound, a limit that no election protocol can improve upon, regardless of the amount
and cleverness of the design effort.

In this section we will see different bounds, some for unidirectional rings and
others for bidirectional ones, depending on the amount of a priori knowledge the
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entities have about the ring. As we will see, in all cases, the lower bounds are all of
the form �(n log n). Thus, any further improvement can only be in the multiplicative
constant.

Unidirectional Rings We want to know what is the number of messages that any
election algorithm for unidirectional rings must transmit in the worst case. A subtler
question is to determine the number of messages that any solution algorithm must
transmit on the average; clearly, a lower bound on the average case is also a lower
bound on the worst case.

We will establish a lower bound under the standard assumptions of Connectivity
and Total Reliability, plus Initial Distinct Values (required for election), and obviously
Ring. We will actually establish the bound assuming that there is Message Ordering;
this implies that in systems without Message Ordering, the bound is at least as bad.
The lower bound will be established for minimum-finding protocols; because of the
Initial Distinct Values restriction, every minimum-finding protocol is also an election
protocol. Also, we know that with the additional nmessages, every election protocol
becomes a minimum-finding protocol.

When a minimum-finding algorithm is executed in a ring of entities with distinct
values, the total number of transmitted messages depends on two factors: communi-
cation delays and the assignment of initial values.

Consider the unidirectional ring �R = (x0, x1, . . . , xn−1); let si = id(xi) be the
unique value assigned to xi . The sequence s = 〈s1, s2, . . . , sn〉, thus, describes the
assignment of ids to the entities.

Denote by S the set of all such assignments. Given a ring R of size n and an
assignment s ∈ S of n ids, we will say that �R is labeled by s, and denote it by �R(s).

LetA be a minimum-finding protocol under the restrictions stated above. Consider
the executions of A started simultaneously by all entities and their cost. The average
and the worst-case costs of these executions are possibly better but surely not worse
than the average and the worst-case costs, respectively, over all possible executions;
thus, if we find them, they will give us a lower bound.

Call global state of an entity x at time t , the content of all its local registers and
variables at time t . As we know, the entities are event driven. This means that for a
fixed set of rules A, their next global state will depend solely on the current one and
on what event has occurred. In our case, once the execution of A is started, the only
external events are the arrival of messages.

During an action, an entity might send one or more messages to its only out-
neighbor; if it is more than one, we can “bundle” them together as they are all sent
within the same action (i.e., before any new message is received). Thus, we assume
that in A, only one message is sent in the execution of an action by an entity.

Associate to each message all the “history” of that message. That is, with each
message M , we associate a sequence of values, called trace, as follows: (1) If the
sender has id si and has not previously received any message, the trace will be just

1 The converse is not true.
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〈si〉. (2) If the sender has id si and its last message previously received has trace
〈l1, . . . , lk−1〉, k > 1, the trace will be 〈l1, . . . , lk−1, si〉, which has length k.

Thus, a message M with trace 〈si, si+1, . . . , si+k〉 indicates that a message was
originally sent by entity xi ; as a reaction, the neighbor xi+1 sent a message; as a
reaction, the neighbor xi+2 sent a message; . . . ; as a reaction, xi+k sent the current
messageM .

IMPORTANT. Note that because of our two assumptions (simultaneous start by all
entities and only one message per action), messages are uniquely described by their
associated trace.

We will denote by ab the concatenation of two sequences a and b. If d = abc,
then a, b, and c are called subsequences of d; in particular, each of a, ab, and abc
will be called a prefix of d; each of c, bc, and abc will be called a suffix of d. Given
a sequence a, we will denote by len(a) the length of a and by C(a) the set of cyclic
permutations of a; clearly, |C(a)| = len(a).

Example If d = 〈2, 15, 9, 27〉, then len(d) = 4; the subsequences 〈2〉, 〈2, 15〉,
〈2, 15, 9〉, and 〈2, 15, 9, 27〉 are prefixes; the sequences 〈27〉, 〈9, 27〉, 〈15, 9, 27〉,
and 〈2, 15, 9, 27〉 are suffixes; and C(d) = {〈2, 15, 9, 27〉, 〈15, 9, 27, 2〉,
〈9, 27, 2, 15〉, 〈27, 2, 15, 9〉}.

The key point to understand is the following: If in two different rings, for example,
in �R(a) and in �R(b), an entity executingA happens to have the same global state, and
it receives the same message, then it will perform the same action in both cases, and
the next global state will be the same in both executions. Recall Property 1.6.1.

Let us use this point.

Lemma 3.3.1 Let a and b both contain c as a subsequence. If a message with trace
c is sent in an execution of A on �R(a), then c is sent in an execution of A on �R(b).

Proof. Assume that a message with trace c = 〈si, . . . , si+k〉 is sent when executingA
on �R(a). This means that when entity xi started the trace, it had not received any other
message, and so, the transmission of this message was part of its initial “spontaneous”
action; as the nature of this action depends only onA, xi will send the message both in
�R(a) and in �R(b). This message was the first and only message xi+1 received from xi
both in �R(a) and in �R(b); in other words, its global state until it received the message
with trace starting with 〈si〉 was the same in both rings; hence, it will send the same
message with trace 〈si, si+1〉 to xi+2 in both situations. In general, between the start
of the algorithm and the arrival of a message with trace 〈si, . . . , sj−1〉, entity xj with
id sj , i〈j ≤ i + k is in the same global state and sends and receives the same message
in both �R(a) and �R(b); thus, it will send a message with trace 〈si, . . . , sj−1, sj 〉
regardless of whether the input sequence is a or b.

Thus, if an execution of A in �R(a) has a message with trace c, then there is an
execution of A in �R(b) that has a message with trace c. �
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In other words, if �R(a) and �R(b) have a common segment c (i.e., a consecutive
group of len(c) entities in �R(a) has the same ids as a consecutive group of entities in
�R(b)), the entity at the end of the segment cannot distinguish between the two rings
when it sends the message with trace c.

As different assignments of values to rings may lead to different results (i.e.,
different minimum values), the protocol A must allow the entities to distinguish
between those assignments. As we will see, this will be the reason �(n log n) messages
are needed. To prove it, we will consider a set of assignments on rings, which makes
distinguishing among them “expensive” for the algorithm.

A set E ⊆ S of assignments of values is called exhaustive if it has the following
two properties:

1. Prefix Property: For every sequence belonging toE, its nonempty prefixes also
belong to E, that is, if ab ∈ E and len(a) ≥ 1, then a ∈ E.

2. Cyclic Permutation Property: Whether an assignment of values s belongs or
not belongs to E, at least one of its cyclic permutations belongs to E, that is, if
s ∈ S, then C(s) ∩ E 	= φ

Lemma 3.3.2 A has an exhaustive set E(A) ⊆ S.

Proof. Define E(A) to be the set of all the arrangements s ∈ S such that a message
with trace s is sent in the execution of A in �R(s). To prove that this set is exhaustive,
we need to show that the cycle permutation property and the prefix property hold.

To show that the prefix property is satisfied, choose an arbitrary s= ab ∈ E(A)
with len(a) ≥ 1; by definition of E(A), there will be a message with trace ab when
executing A in �R(ab); this means that in �R(ab) there will also be a message with
trace a. Consider now the (smaller) ring �R(a); as a is a subsequence of both ab and
(obviously) a, and there was a message with that trace in �R(ab), by Lemma 3.3.1
there will be a message with trace a also in �R(a); but this means that a ∈ E(A). In
other words, the suffix property holds.

To show that the cyclic permutation property is satisfied, choose an arbitrary
s = 〈s1, . . . , sk〉 ∈ S and consider �R(s). At least one entity must receive a message
with a trace of length k, otherwise the minimum value could not have been determined;
then t is a cyclic permutation of s. Furthermore, as t is a trace in �R(t), t ∈ E(A).
Summarizing, t ∈ E(A) ∪ S(s). In other words, the cyclic permutation property
holds. �

Now we are going to measure how expensive it is for the algorithmA to distinguish
between the elements of E(A).

Let m(s, E) be the number of sequences in E ⊆ S, which are prefixes of some
cyclic permutation of s ∈ S, and mk(s, E) denote the number of those that are of
length k > 1.

Lemma 3.3.3 The execution of A in �R(s) costs at least m(s, E(A)) messages.
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Proof. Let t ∈ E(A) be the prefix of some r ∈ C(s). That is, a message with trace
t is sent in �R(t) and because of Lemma 3.3.1, a message with trace t is sent also in
�R(r); as r ∈ C(s), a message with trace t is sent also in �R(r). That is, for each prefix
t ∈ E(A) of a cyclic permutation of s, there will be a message sent with trace t. The
number of such prefixes t is by definition m(s, E(A)). �

Let I = {s1, s2, . . . , sn} be the set of ids, and Perm(I ) be the set of permutations
of I . Assuming that all n! permutations in Perm(I ) are equally likely, the average
number aveA(I ) of messages sent by A in the rings labeled by I will be the average
message cost of A among the rings �R(s), where s ∈ Perm(I ). By Lemma 3.3.3, this
means the following:

aveA(I ) ≥ 1
n!

∑

s∈Perm(I )
m(s, E(A)).

By definition of mk(s, E(A)), we have

aveA(I ) ≥ 1
n!

∑

s∈Perm(I )

n∑

k=1
mk(s, E(A)) = 1

n!

n∑

k=1

∑

s∈Perm(I )
mk(s, E(A)).

We need to determine what
∑

s∈Perm(I )mk(s, E(A)) is. Fix k and s ∈ Perm(I ).
Each cyclic permutation C(s) of s has only one prefix of length k. In total, there are n
prefixes of length k among all the cyclic permutations of s ∈ Perm(I ). As there are n!
elements in Perm(I ), there are n! n instances of such prefixes for a fixed k. These n! n
prefixes can be partitioned in groups Gkj of size k, by putting together all the cyclic
permutations of the same sequence; there will be q = n! n

k
such groups. As E(A) is

exhaustive, by the cyclic permutation property, the set E(A) intersects each group,
that is, |E(A) ∪Gkj | ≥ 1.

∑

s∈Perm(I )
mk(s, E(A)) ≥

q∑

j=1
|E(A) ∪Gkj | ≥ n!n

k
.

Thus,

aveA(I ) ≥ 1
n!

n∑

k=1

n!n
k
≥ n

n∑

k=1

1
k
= nHn,

where Hn is the nth harmonic number. This lower bound on the average case is also
a lower bound on the number worstA(I ) of messages sent by A in the worst case in
the rings labeled by I :

worstA(I ) ≥ aveA(I ) ≥ nHn ≈ 0.69 n log n+O(n). (3.28)

This result states that �(n logn) messages are needed in the worst case by any
solution protocol (the bound is true for every A), even if there is Message Ordering.
Thus, any improvement we can hope to obtain by clever design will at most reduce the
constant; in any case, the constant cannot be smaller than 0.69. Also, we cannot expect
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to design election protocols that might have a bad worst case but cost dramatically
less on an average. In fact, �(n logn) messages are needed on an average by any
protocol.

Notice that the lower bound we have established can be achieved. In fact, protocol
AsFar requires on an averagenHn messages (Theorem 3.3.1). In other words, protocol
AsFar is optimal on an average.

If the entities know n, it might be possible to develop better protocols exploiting
this knowledge. In fact, the lower bound in this case leaves a little more room but
again the improvement can only be in the constant (Exercise 3.10.45):

worstA(I |n known) ≥ aveA(I |n known) ≥
(

1

4
− ε

)
n log n. (3.29)

So far no better protocol is known.

Bidirectional Rings In bidirectional rings, the lower bound is slightly different
in both derivation and value (Exercise 3.10.46):

worstA(I ) ≥ aveA(I ) ≥ 1

2
nHn ≈ 0.345 n log n+O(n). (3.30)

Actually, we can improve this bound even if the entities know n (Exercise 3.10.47):

worstA(I : n known) ≥ aveA(I : n known) ≥ 1

2
n log n. (3.31)

That is, even with the additional knowledge of n, any improvement can only be in
the constant. So far, no better protocol is known.

Practical and Theoretical Implications The lower bounds we have discussed
so far indicate that �(n log n) messages are needed both in the worst case and on the
average, regardless of whether the ring is unidirectional or bidirectional, and whether
n is known or not. The only difference between these cases will be in the constant. In
the previous sections, we have seen several protocols that use O(n log n) messages
in the worst case (and are thus optimal); their cost provides us with upper bounds on
the complexity of leader election in a ring.

If we compare the best upper and lower bounds for unidirectional rings with those
for bidirectional rings, we notice the existence of a very surprising situation: The
bounds for unidirectional rings are “better” than those for bidirectional ones; the upper
bound is smaller and the lower bound is bigger (see Fig. 3.33 and 3.34). This fact has
strange implications: As far as electing a leader in a ring is concerned, unidirectional
rings seem to be better systems than bidirectional ones, which in turn implies that
practically

half-duplex links are better than full-duplex links.
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bidirectional worst case average notes

All the Way n2 n2

AsFar n2 0.69n log n+O(n)
ProbAsFar n2 0.49n log n+O(n)

Control 6.31n log n+O(n)
Stages 2n log n+O(n)

StagesFbk 1.89n log n+O(n)
Alternate 1.44n log n+O(n) oriented ring

BiMinMax 1.44n log n+O(n)
lower bound 0.5n log n+O(n) n = 2p known

FIGURE 3.33: Summary of bounds for bidirectional rings.

This is clearly counterintuitive: In terms of communication hardware, Bidirectional
Links are clearly more powerful than half-duplex links. On the contrary, the bounds
are quite clear: Election protocols for unidirectional rings are more efficient than those
for bidirectional ones.

A natural reaction to this strange status of affairs is to suggest the use in bidirectional
rings of unidirectional protocols; after all, with Bidirectional Links we can send in
both directions, “left” and “right,” so we can just decide to use only one, say “right.”
Unfortunately, this argument is based on the hidden assumption that the bidirectional
ring is also oriented, that is, “right” means the same to all processors. In other words,
it assumes that the labeling of the port numbers, which is purely local, is actually
globally consistent.

This explains why we cannot use the (more efficient) unidirectional protocol in a
generic bidirectional ring. But why should we do better in unidirectional rings?

The answer is interesting—In a unidirectional ring, there is orientation: Each
entity has only one out-neighbor; so there is no ambiguity as to where to send a
message. In other words, we have discovered an important principle of the nature of
distributed computing:

Global consistency is more important than hardware communication power.

unidirectional worst case average notes

All the Way n2 n2

AsFar n2 0.69n log n+O(n)
UniStages 2n log n+O(n)

UniAlternate 1.44n log n+O(n)
MinMax 1.44n log n+O(n)

MinMax+ 1.271n log n+O(n)
lower bound 0.69n log n+O(n)
lower bound 0.25n log n+O(n) n = 2p known

FIGURE 3.34: Summary of bounds for unidirectional rings.
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This principle is quite general. In the case of rings, the difference is not much, just
in the multiplicative constant. As we will see in other topologies, this difference can
actually be dramatic.

If the ring is both bidirectional and oriented, then we can clearly use any unidirec-
tional protocol as well as any bidirectional one. The important question is whether in
this case we can do better than that. That is, the quest is for a protocol for bidirectional
oriented rings that

1. fully exploits the power of both full-duplex links and orientation;

2. cannot be used or simulated in unidirectional rings, nor in general bidirectional
ones; and

3. is more efficient than any unidirectional protocol or general bidirectional one.

We have seen a protocol for oriented rings, Alternate; however, it can be simu-
lated in unidirectional rings (protocol UniAlternate). To date, no protocol with such
properties is known. It is not even known whether it can exist (Problem 3.10.7).

3.3.9 Summary and Lessons

We have examined the design of several protocols for leader election in ring networks
and analyzed the effects that design decisions have had on the costs.

When developing the election protocols, we have introduced some key strategies
that are quite general in nature and, thus, can be used for different problems and for
different networks. Among them are the idea of electoral stages and the concept of
controlled distances. We have also employed ideas and tools, for example, feedback
and notification, already developed for other problems.

In terms of costs, we have seen that �(n log n) messages will be used both in the
worst case and on the average, regardless of whether the ring is unidirectional or
bidirectional, oriented or unoriented, and n is known or not. The only difference is
in the multiplicative constant. The bounds are summarized in Figures 3.33 and 3.34.
As a consequence of these bounds, we have seen that orientation of the ring is, so far,
more powerful than presence of Bidirectional Links.

Both ring networks and tree networks have very sparse topologies: m = n− 1 in
trees and m = n in rings. In particular, if we remove any single link from a ring,
we obtain a tree. Still, electing a leader costs �(n log n) in rings but only �(n) in
trees. The reason for such a drastic complexity difference has to be found not in the
number of links but instead in the properties of the topological structure of the two
types of networks. In a tree, there is a high level of asymmetry: We have two types
of nodes internal nodes and leaves; it is by exploiting such asymmetry that election
can be performed in a linear number of messages. On the contrary, a ring is a highly
symmetrical structure, where every node is indistinguishable from another. Consider
that the election task is really a task of breaking symmetry: We want one entity to
become different from all others. The entities already have a behavioral symmetry:
They all have the same set of rules and the same initial state, and potentially they
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are all initiators. Thus, the structural symmetry of the ring topology only makes the
solution to the problem more difficult and more expensive. This observation reflects a
more general principle: As far as election is concerned, structural asymmetry is to the
protocol designer’s advantage; on the contrary, the presence of structural symmetry
is an obstacle for the protocol designer.

3.4 ELECTION IN MESH NETWORKS

Mesh networks constitute a large class of architectures that includes meshes and tori;
this class is popular especially for parallel systems, redundant memory systems, and
interconnection networks. These networks, like trees and rings, are sparse:m = O(n).
Using our experience with trees and rings, we will now approach the election problem
in such networks. Unless otherwise stated, we will consider Bidirectional Links.

3.4.1 Meshes

A mesh M of dimensions a × b has n = a × b nodes, xi,j , 1 ≤ i ≤ a, 1 ≤ j ≤ b.
Each node xi,j is connected to xi−1,j , xi,j−1, xi+1,j , xi,j+1 if they exist; let us stress
that these names are used for descriptive purposes only and are not known to the
entities. The total number of links is thus m = a(b − 1)+ b(a − 1) = 2ab − a − b
(see Figure 3.35).

Observe that in a mesh, we have three types of nodes: corner (entities with only
two neighbors), border (entities with three neighbors), and interior (with four neigh-
bors) nodes. In particular, there are four corner nodes, 2(a + b) border nodes, and
n− 2(a + b − 2) interior nodes.

Unoriented Mesh The asymmetry of the mesh can be exploited to our advantage
when electing a leader: As it does not matter which entity becomes leader, we can
elect one of the four corner nodes. In this way, the problem of choosing a leader
among (possibly) n nodes is reduced to the problem of choosing a leader among the

x1,1

x4,5

FIGURE 3.35: Mesh of dimension 4× 5.
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four corner nodes. Recall that any number of nodes can start (each unaware of when
and where the others will start, if at all); thus, to achieve our goal, we need to design
a protocol that first of all makes the corners aware of the election process (they might
not be initiators at all) and then performs the election among them.

The first step, to make the corners aware, can be performed doing a wake-up of all
entities. When an entity wakes up (spontaneously if it is an initiator, upon receiving
a wake-up message otherwise), its subsequent actions will depend on whether it is a
corner, a border, or an interior node.

In particular, the four corners will become awake and can start the actual election
process.

Observe the following interesting property of a mesh: If we consider only the
border and corner nodes and the links between them, they form a ring network. We
can, thus, elect a leader among the corners by using a election protocol for rings: The
corners will be the only candidates; the borders will act as relayers (defeated nodes).
When one of the corner nodes is elected, it will notify all other entities of termination.

Summarizing, the process will consist of:

1. wake-up, started by the initiators;

2. election (on outer ring), among the corners;

3. notification (i.e., broadcast) started by the leader;

Let us consider these three activities individually.

(1) Wake up is straightforward. Each of the k" initiators will send a wake-up to
all its neighbors; a noninitiator will receive the wake-up message from a neighbor
and forward it to all its other neighbors (no more than three); hence the number of
messages (Exercise 3.10.48) will be no more than

3n+ k".

(2) The election on the outer ring requires a little more attention. First of all, we
must choose which ring protocol we will use; clearly, the selection is among the
efficient ones we have discussed at great length in the preceding sections. Then we
must ensure that the messages of the ring election protocol are correctly forwarded
along the links of the outer ring.

Let us use protocol Stages and consider the first stage. According to the protocol,
each candidate (in our case, a corner node) sends a message containing its value
in both directions in the ring; each defeated entity (in our case, a border node) will
forward the message along the (outer) ring.

Thus, in the mesh, each corner node will send a message to the only two neighbors.
A border node y, however, has three neighbors, of which only two are in the outer
ring; when y receives the message, it does not know to which of the other two ports
it must forward the message. What we will do is simple; as we do not know to which
port the message must be sent, we will forward it to both: One will be along the
ring and proceed safely, and the other will instead reach an interior node z; when the
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interior node z receives such an election message, it will reply to the border node y
“I am in the interior,” so no subsequent election messages are sent to it. Actually, it is
possible to avoid those replies without affecting the correctness (Exercise 3.10.50).

In Stages, the number of candidates is at least halved every time. This means that
after the second stage, one of the corners will determine that it has the smallest id
among the four candidates and will become leader.

Each stage requires 2n′messages, where n′ = 2(a + b − 2) is the dimension of the
outer ring. An additional 2(a + b − 4) messages are unknowingly sent by the border
to the interior in the first stage; there are also the 2(a + b − 4) replies from those
interior nodes, that, however, can be avoided (Exercise 3.10.50). Hence, the number
of messages for the election process will be at most

4(a + b − 2)+ 2(a + b − 4) = 6(a + b)− 16.

IMPORTANT. Notice that in a square mesh (i.e., a= b), this means that the election
process proper can be achieved in O(

√
n) messages.

(3) Broadcasting the notification can be performed using Flood, which will require
less than 3n messages as it is started by a corner. Actually, with care, we can ensure
that less than 2n messages are sent in total (Exercise 3.10.49).

Thus in total, the protocol ElectMesh we have designed will have cost

6(a + b)+ 5n+ k" − 16.

With a simple modification to the protocol, it is possible to save an additional
2(a + b − 4) messages (Exercise 3.10.51), achieving a cost of at most

M[ElectMesh] ≤ 4(a + b)+ 5n+ k" − 32. (3.32)

NOTE. The most expensive operation is to wake up the nodes.

Oriented Mesh A mesh is called oriented if the port numbers are the traditional
compass labels (north, south, east, west) assigned in a globally consistent way. This
assignment of labels has many important properties, in particular, one called sense
of direction that can be exploited to obtain efficient solutions to problems such as
broadcast and traversal (Problems 3.10.52 and 3.10.53). For the purposes of election,

in an oriented mesh, it is trivial to agree on a unique node.

For example, there is only one corner with link labels “south” and “west.” Thus, to
elect a leader in an oriented mesh, we must just ensure that that unique node knows
that it must become leader.

In other words, the only part needed is a wake-up: Upon becoming awake, and
participating in the wake-up process, an entity can immediately become leader or
follower depending on whether or not it is southwest corner.
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Notice that in an oriented mesh, we can exploit the structure of the mesh and the
orientation to perform a wakeup with fewer than 2n messages (Problem 3.10.54).

Complexity These results mean that regardless of whether the mesh is oriented or
not, a leader can be elected with O(n) messages, the difference being solely in the
multiplicative constant. As no election protocol for any topology can use fewer than
n messages, we have

Lemma 3.4.1 M(Elect/IR ; Mesh) = �(n)

3.4.2 Tori

Informally, the torus is a mesh with “wrap-around” links that transform it into a
regular graph: Every node has exactly four neighbors.

A torus of dimensionsa × b hasn = ab nodes vi,j (0 ≤ i ≤ a − 1,0 ≤ j ≤ b − 1);
each node vi,j is connected to four nodes vi,j+1, vi,j−1, vi+1,j , and vi−1,j , where all
the operations on the first index are modulo a, while those on the second index are
modulo b (e.g., see Figure 3.36). In the following sections, we will focus on square
tori (i.e., where a = b).

Oriented Torus We will first develop an election protocol assuming that there is
the compass labeling (i.e., the links are consistently labeled as north, south, east, and
west, and the dimensions are known); we will then see how to solve the problem also
when the labels are arbitrary. A torus with such a labeling is said to be oriented.

In designing the election protocol, we will use the idea of electoral stages developed
originally for ring networks and also use the defeated nodes in an active way. We will
also employ a new idea, marking of territory.

(I) In stage i, each candidate x must “mark” the boundary of a territory Ti (a di ×
di region of the torus), where di = αi for some fixed constant α > 1; initially

v

v

0,0

3,4

FIGURE 3.36: Torus of dimension 4× 5.



162 ELECTION
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FIGURE 3.37: Marking the territory. If the territories of two candidates intersect, one of them
will see the marking of the other.

the territory is just the single candidate node. The marking is done by origi-
nating a “Marking” message (with x’s value) that will travel to distance di first
north, then east, then south, and finally west to return to x.

A very important fact is that if the territory of two candidates have some elements
in common, the “Marking” message of at least one of them will encounter the marking
of the other (Figure 3.37).

(II) If the “Marking” message of x does not encounters any other marking of the
same stage, x survives this stage, enters stage i + 1, and starts the marking
of a larger territory Ti+1.

(III) If the “Marking” message arrives at a node w already marked by another
candidate y in the same stage, the following will occur:

1. If y has a larger id, the “Marking” message will continue to mark the
boundary, setting a boolean variable SawLarger to true.

2. If the id of y is instead smaller, then w will terminate the “Marking”
message from x; it will then originate a message “SeenbyLarger(x, i)”
that will travel along the boundary of y’ territory.

If candidate x receives both its “Marking” message with SawLarger= true
and a “SeenbyLarger” message, x survives this stage, enters stage i + 1, and
starts the marking of a larger territory Ti+1.

Summarizing, for a candidate x to survive, it is necessary that it receives its “Mark-
ing” message back. If SawLarger= false, then that suffices; if SawLarger= true, x
must also receive a “SeenbyLarger” message.

Note that if x receives a “SeenbyLarger(z, i)” message, then z did not finish mark-
ing its boundary; thus z does not survives this stage. In other words, if x survives,
either its message found no other markings, or at least another candidate does not
survive.

2 Distances include the starting node.
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(IV) A relay node w might receive several “Marking” messages from different
candidates in the same stage. It will only be part of the boundary of the
territory of the candidate with the smallest id.

This means that if w was part of the boundary of some candidate x and now
becomes part of the boundary of y, a subsequent “SeenbyLarger” message intended
for x will be sent along the boundary of y. This is necessary for correctness. To keep
the number of messages small, we will also limit the number of “SeenbyLarger”
messages sent by a relayer.

(V) A relay node will only forward one “SeenbyLarger” message.

The algorithm continues in this way until di ≥
√
n. In this case, a candidate will

receive its “Marking” message from south instead of east because of, the “wrap-
around” in the torus; it then sends the message directly east, and will wait for it to
arrive from west.

(VI) When a wrap-around is detected (receive its “Marking” message from south
rather than from east), a candidate x sends the message directly east, and
waits for it to arrive from west.

If it survives, in all subsequent stages the marking becomes simpler.

(VII) In every stage after wrap-around, a candidate x sends its “Marking” mes-
sage first north and waits to receive it from south, then it sends it east, and
waits for it to arrive from west.

The situation where there is only one candidate left will be for sure reached after
a constant number p of stages after the wrap-around occurs, as we will see later.

(VIII) If a candidate x survives p stages after wrap-around, it will become leader
and notify all other entities of termination.

Let us now discuss the correctness and cost of the algorithm, protocol MarkBound-
ary, we have just described.

Correctness and Cost For the correctness, we need to show progress, that is, at
least one candidate survives each stage of the algorithm, and termination, that is, p
stages after wrap-around there will be only one candidate left.

Let us discuss progress first. A candidate whose “Marking” message does not
encounter any other boundary will survive this stage; so the only problem would be
if, in a stage, every “Marking” message encounters another candidate’s boundary, and
somehow none of them advances. We must show that this cannot happen. In fact, if
every “Marking” message encounters another candidate’s boundary, the one with the
largest id will encounter a smaller id; the candidate with this smaller id will go onto
the next stage unless its message encounters the boundary with an even smaller id, and
so on; however, the message of the candidate with the smallest id cannot encounter
a larger id (because it is the smallest) and, thus, that entity would survive this stage.

For termination, the number of candidates does decrease overall, but not in a
simple way. However, it is possible to bound the maximum number of candidates
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in each stage, and that bound strictly decreases. Let ni be the maximum number
of candidates in stage i. Up until wrap-around, there are two types of survivors:
(a) those entities whose message did not encounter any border and (b) those whose
message encountered a border with a larger id and whose border was encountered by
a message with a larger id. Let ai denote the number of the first type of survivors;
clearly ai ≤ n/d2

i . The number of the second type will be at most (ni − ai)/2 as each
defeated one can cause at most one candidate to survive. Thus,

ni+1 ≤ ai + (ni − ai)/2 = (ni + ai)/2 ≤
(
ni + n

d2
i

)
/2.

As di = αi is increasing each stage, the upper bound ni on the number of candi-
dates is decreasing. Solving the recurrence relation gives

ni+1 ≤ n/α2i(2− α2). (3.33)

Wrap-around occurs when αi ≥ √n; in that stage, only one candidate can com-
plete the marking of its boundary without encountering any markings and at most
half the remaining candidates will survive. So, the number of candidates surviving
this stage is at most (2− α2)−1. In all subsequent stages, again only one candidate
can complete the marking without encountering any markings and at most half the
remaining candidates will survive. Hence, after

p >
⌈

log(2− α2)−1
⌉

additional stages for sure there will be only one candidate left. Thus, the protocol
correctly terminates.

To determine the total number of messages, consider that in stage i before wrap-
around, each candidate causes at most 4di “Marking” messages to mark its boundary
and another 4di “SeenbyLarger” messages, for a total of 8di = 8αi messages; as the
number of candidates is at most as expressed by equation 3.33, the total number of
messages in this pre-wrap-around stage will be at most

O(nα2 /(2− α2)(α − 1)).

In each phase after wrap-around, there is only a constant number of candidates,
each sending O(

√
n) messages. As the number of such phases is constant, the total

number of messages sent after wrap-around is O(
√
n).

Choosing α ≈ 1.1795 yields the desired bound

M[MarkBorder] = �(n). (3.34)

The preceding analysis ignores the fact that αi is not an integer: The distance
to travel must be rounded up and this has to be taken into account in the analysis.



ELECTION IN MESH NETWORKS 165

However, the effect is not large and will just affect the low-order terms of the cost
(Exercise 3.10.55).

The algorithm as given is not very time efficient. In fact, the ideal time can be as bad
as O(n) (Exercise 3.10.56). The protocol can be, however, modified so that without
changing its message complexity, the algorithm requires no more than O(

√
n) time

(Exercise 3.10.57).
The protocol we have described is tailored for square tori. If the torus is not square

but rectangular with length l and width w (l ≤ w), then the algorithm can be adapted
to use �(n+ l log l/w) messages (Exercise 3.10.58).

Unoriented Torus The algorithm we just described solved the problem of electing
a leader in an oriented torus, for example, among the buildings in Manhattan (well
known for its mesh-like design), by sending a messenger along east-west streets
and north-south avenues, turning at the appropriate corner. Consider now the same
problem when the streets have no signs and the entities have no compass.

Interestingly, the same strategy can be still used: A candidate needs to mark off a
square; the orientation of the square is irrelevant. To be able to travel along a square,
we just need to know how to

1. forward a message “in a straight line,” and

2. make the “appropriate turn.”

We will discuss how to achieve each, separately.

(1) Forwarding in a Straight Line. We first consider how to forward a message
in the direction opposite to the one from which the message was received, without
knowing the directions.

Consider an entity x, with its four incident links, and let a, b, c, and d be the
arbitrary port numbers associated with them; (see Figure 3.38); to forward a message
in a straight line, x needs to determine that a and d are opposite, and so are b and c.
This can be easily accomplished by having each entity send its identity to each of its
four neighbors, which will forward it to its three other neighbors; the entity will in
turn acquire the identity and relative position of each entity at distance 2. As a result,

x

zy

a
b

d
c

FIGURE 3.38: Even without a compass, x can determine which links are opposite.
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x will know the two pairs of opposite port numbers. In the example of Figure 3.38, x
will receive the message originating from z via both port a and port b; it, thus, knows
that a is not opposite to b. It also receives the message from y via ports a and c; thus
x knows also that a is not opposite to c. Then, x can conclude that a is opposite to d.

It will then locally relabel one pair of opposite ports as east, west, and the other
north, south; it does not matter which pair is chosen first.

(2) Making the Appropriate Turn. As a result of the the previous operation, each
entity x knows two perpendicular directions, but the naming (north, south) and (east,
west) might not be consistent with the one done by other entities. This can create
problems when wanting to make a consistent turn.

Consider a message, originating by x which is traveling “south” (according to x’s
view of the torus); to continue to travel “south” can be easily accomplished as each
entity knows how to forward a message in a straight line. At some point, according
to the protocol, the message must turn, say to “east” (always according to x’s view
of the torus), and continue in that direction.

To achieve the turn correctly, we add a simple information, called handrail, to a
message. The handrail is the id of the neighbor in the direction the message must
turn and the name of the direction. In the example of Figure 3.38, if x is sending a
message south that must then turn east , the handrail in the message will be the id
of its eastern neighbor q plus the direction “east.” Because every entity knows the
ids and the relative position of all the entities within distance 2, when y receives this
message with the handrail from x, it can determine what x means by “east,” and thus
in which direction the message must turn (when the algorithm prescribes it).

Summarizing, even without a compass, we can execute the protocol MarkBorder,
by adding the preprocessing phase and including the handrail information in the
messages.

The cost of the preprocessing is relatively small: Each entity receives four messages
for its immediate neighbors and 4× 3 for entities at distances 2, for a total of 16n
messages.

3.5 ELECTION IN CUBE NETWORKS

3.5.1 Oriented Hypercubes

The k-dimensional hypercube Hk , which we have introduced in Section 2.1.3, is a
common interconnection network, consisting of n = 2k nodes, each with degree k;
hence, in Hk there are m = k2k−1 = O(n log n) edges.

In an oriented hypercubeHk , the port numbers 1, 2, . . . , k for the k edges incident
on a node x are called dimensions and are assigned according to the “construction
rules” specifying Hk (see Fig. 2.3).

We will solve the election problem in oriented hypercubes using the approach
electoral stages that we have developed for ring networks. The metaphor we will use
is that of a fencing tournament: in a stage of the tournament, each candidate, called
duelist, will be assigned another duelist, and each pair will have a match; as a result
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of the match, one duelist will be promoted to the next stage, the other excluded from
further competition. In each stage, only half of the duelists enter the next stage; at the
end, there will be only one duelist that will become the leader and notify the others.

Deciding the outcome of a match is easy: The duelist with the smaller id will win;
for reasons that will become evident later, we will have the defeated duelist remember
the shortest path to the winning duelist.

The crucial and difficult parts are how pairs of opposite duelists are formed and
how a duelist finds its competitor. To understand how this can be done efficiently, we
need to understand some structural properties of oriented hypercubes.

A basic property of an oriented hypercube is that if we remove from Hk all the
links with label greater than i (i.e., consider only the first i dimensions), we are left
with 2k−i disjoint oriented hypercubes of dimension i; denote the collection of these
smaller cubes by Hk:i . For example, removing the links with label 3 and 4 from H4
will result into four disjoint oriented hypercubes of dimension 2 (see Figure 3.39
(a and b)).

What we will do is to ensure that

(I) at the end of stage i − 1, there will be only one duelist left in each of the
oriented hypercubes of dimension i − 1 of Hk:i−1.

So, for example, at the end of stage 2, we want to have only one duelist left in each
of the four hypercubes of dimension 2 (see Figure 3.39(c)).

Another nice property of oriented hypercubes is that if we add to Hk:i−1 the links
labeled i (and, thus, constructHk:i) the elements ofHk:i−1 will be grouped into pairs.

We can use this property to form the pairs of duelists in each stage of the tournament:

(II) A duelistx starting stage iwill have as its opponent the duelist in the hypercube
of dimension i − 1 connected to x by the link labeled i.

Thus, in stage i, a duelist x will send a Match message to (and receive a Match
message from) the duelist y in hypercube (of dimension i − 1) that is on the other
side of link i. The Match message from x will contain the id id(x) (as well as the path
traveled so far) and will be sent across dimension i (i.e., the link with label i). The
entity z on the other end of the link might, however, not be the duelist y and might
not even know who (and where) y is (Figure 3.40).

We need the Match message from x to reach its opponent y. We can obtain this
by having z broadcast the message in its (i − 1)-dimensional hypercube (e.g., using
protocol HyperFlood presented in Section 2.1.3); in this way, we are sure that y will
receive the message. Obviously, this approach is an expensive one (as determined in
Exercise 3.10.59).

To solve this problem efficiently, we will use the following observation. If node
z is not the duelist (i.e., z 	= y), node z was defeated in a previous stage, say i1 < i;
it knows the (shortest) path to the duelist zi1 , which defeated it in that stage, and
can thus forward the message to it. Now, if zi1 = y, then we are done: The message
from x has arrived and the match can take place. Otherwise, in a similar way, zi1 was
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1

2

(a)

(c)

(b)

FIGURE 3.39: (a) The four-dimensional hypercube H4, (b) the collection H4:2 of two-
dimensional hypercubes obtained by removing the links with labels greater than 2, and (c)
duelists (in black) at the end of stage 2.

x

z

y

FIGURE 3.40: Each duelist (in black) sends a Match message that must reach its opponent.
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defeated in some subsequent stage i2, i1 < i2 < i; it, thus, knows the (shortest) path
to the duelist zi2 , which defeated it in that stage and can thus forward the message to
it. In this way, the message from x will eventually reach y; the path information in
the message is updated during its travel so that y will know the dimensions traversed
by the message from x to y in chronological order. The Match message from y will
reach x with similar information.

The match between x and y will take place both at x and y; only one of them, say
x, will enter stage i + 1, while the other, y, is defeated.

From now on, if y receives a Match message, it will forward it to x; as mentioned
before, we need this to be done on the shortest path. How can y (the defeated duelist)
know the shortest path to x (the winner)?

The Match message y received from x contained the labels of a walk to it,
not necessarily the shortest path. Fortunately, it is easy to determine the shortcuts
in any path using the properties of the labeling. Consider a sequence α of labels
(with or without repetitions); remove from the sequence any pair of identical labels
and sort the remaining ones, obtaining a compressed sequence α. For example, if
α = 〈231345212〉, then α = 〈245〉.
The important property is that if we start from the same node x, the walk with labels
α will lead to the same node y as the walk with labels α. The other important property
is that α actually corresponds to the shortest path between x and y. Thus, y needs
only to compress the sequence contained in the Match message sent by x.

IMPORTANT. We can perform the compression while the message is traveling from
x to y; in this way, the message will contain at most k labels.

Finally, we must consider the fact that owing to different transmission delays, it
is likely that the computation in some parts of the hypercube is faster than in others.
Thus, it may happen that a duelist x in stage i sends a Match message for its opponent,
but the entities on the other side of dimension i are still in earlier stages.

So, it is possible that the message fromx reaches a duelisty in an earlier stage j < i.
What y should do with this message depends on future events that have nothing to do
with the message: If y wins all matches in stages j, j + 1, . . . , i − 1, then y is the op-
ponent of x in stage i, and it is the destination of the message; on the contrary, if it loses
one of them, it must forward the message to the winner of that match. In a sense, the
message from x has arrived “too soon”; so, what y will do is to delay the processing of
this message until the “right” time, that is, until it enters stage i or it becomes defeated.
Summarizing,

1. A duelist in stage i will send a Match message on the edge with label i.

2. When a defeated node receives a Match message, it will forward it to the winner
of the match in which it was defeated.

3. When a duelist y in stage i receives a Match message from a duelist x in stage i,
if id(x) > id(y), then y will enter stage i + 1, otherwise it will become defeated
and compute the shortest path to x.
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4. When a duelist y in stage j receives a Match message from a duelist x in stage
i > j , y will enqueue the message and process it (as a newly arrived one) when
it enters stage i or becomes defeated.

The protocol terminates when a duelist wins the kth stage. As we will see, when
this happens, that duelist will be the only one left in the network.

The algorithm, protocol HyperElect, is shown in Figures 3.41 and 3.42. Next-
Duelist denotes the (list of labels on the) path from a defeated node to the duelist
that defeated it. The Match message contains (Id*, stage*, source*, dest*), where
Id* is the identity of the duelist x originating the message; stage* is the stage of
this match; source* is (the list of labels on) the path from the duelist x to the entity
currently processing the message; and dest* is (the list of labels on) the path from the
entity currently processing the message to a target entity (used to forward message
by the shortest path between a defeated entity and its winner). Given a list of labels
list, the protocol uses the following functions:

– first(list) returns the first element of the list;

– list ⊕ i (respectively, �) updates the given path by adding (respectively, elimi-
nating) a label i to the list and compressing it.

To store the delayed messages, we use a set Delayed that will be kept sorted by
stage number; for convenience, we also use a set delay of the corresponding stage
numbers.

Correctness and termination of the protocol derive from the following fact
(Exercise 3.10.61):

Lemma 3.5.1 Let id(x) be the smallest id in one of the hypercubes of dimension i
in Hk:i . Then x is a duelist at the beginning of stage i + 1.

This means that when i = k, there will be only one duelist left at the end of that
stage; it will then become leader and notify the others so to ensure proper termination.

To determine the cost of the protocol, we need to determine the number of messages
sent in a stage i. For a defeated entity z, denote by w(z) its opponent (i.e., the one that
won the match). For simplicity of notation, let wj (z) = w(wj−1(z)) where w0(z) = z.

Consider an arbitrary H ∈ Hk:i−1; let y be the only duelist in H in stage i and let
z be the entity in H that receives first the Match message for y from its opponent.
Entity z must send this message to y; it forwards the message (through the shortest
path) to w(z), which will forward it to w(w(z)) = w2(z), which will forward it to
w(w2(z)) = w3(z), and so on, until wt (z) = y. There will be no more than i such
“forward” points (i.e., t ≤ i); as we are interested in the worst case, assume this to be
the case. Thus, the total cost will be the sum of all the distances between successive
forward points, plus one (from x to z). Denote by d(j − 1, j ) the distance between
wj−1(z) and wj (z); clearly d(j − 1, j ) ≤ j (Exercise 3.10.60); then the total number
of messages required for the Match message from a duelist x in stage i to reach its
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PROTOCOL HyperElect.

� States: S = {ASLEEP, DUELLIST, DEFEATED, FOLLOWER, LEADER};
SINIT = {ASLEEP}; STERM = {FOLLOWER, LEADER}.
� Restrictions: IR ∪OrientedHypercube.

ASLEEP
Spontaneously
begin

stage:= 1; delay:=0; value:= id(x);
Source:= [stage];
Dest:= [];
send("Match", value, stage, Source, Dest) to 1;
become DUELLIST;

end

Receiving("Match", value*, stage*, Source*, Dest*)
begin

stage:= 1; value:= id(x);
Source:= [stage];
Dest:= [];
send("Match", value, stage, Source, Dest) to 1;
become DUELLIST;
if stage* =stage then

PROCESS MESSAGE;
else

DELAY MESSAGE;
endif

end

DUELLIST
Receiving("Match", value*, stage*, Source*, Dest*)
begin

if stage* =stage then
PROCESS MESSAGE;

else
DELAY MESSAGE;

endif
end

DEFEATED
Receiving("Match", value*, stage*, Source*, Dest*)
begin

if Dest* = [ ] then Dest*:= NextDuelist; endif
l:=first(Dest*); Dest:=Dest* �l; Source:= Source* ⊕l;
send("Match", value*, stage*, Source, Dest) to l;

end

Receiving("Notify")
begin

send ("Notify") to {l ∈ N (x) : l > sender};
become FOLLOWER;

end

FIGURE 3.41: Protocol HyperElect.
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Procedure PROCESS MESSAGE
begin

if value* > value then
if stage* =k then

send ("Notify") to N (x);
become LEADER;

else
stage:= stage+1; Source:=[stage] ; dest:= [ ];
send("Match", value, stage, Source, Dest) to stage;
CHECK;

endif
else

NextDuelist := Source;
CHECK ALL;
become DEFEATED;

endif
end

Procedure DELAY MESSAGE
begin

Delayed ⇐ (value*, stage*, Source*, Dest*);
delay ⇐ stage*;

end

Procedure CHECK
begin

if Delayed 	= ∅ then
next:=Min{delay};
if next = stage then

(value*, stage*, Source*, Dest*) ⇐ Delayed;
delay:= delay-{next};
PROCESS MESSAGE

endif
endif

end

Procedure CHECK ALL
begin

while Delayed 	= ∅ do
(value*, stage*, Source*, Dest*) ⇐ Delayed;
if Dest* [ ] then Dest*:= NextDuelist; endif
l:=f irst(Dest*) ; Dest:=Dest* �l ; Source:= Source* ⊕l
send("Match", value*, stage*, Source, Dest) to l;

endwhile
end

FIGURE 3.42: Procedures used by Protocol HyperElect.

opposite y will be at most

L(i) = 1+
i−1∑

j=1
d(j − 1, j ) = 1+

i−1∑

j=1
j = 1+ i·(i−1)

2 .

Now we know how much does it cost for a Match message to reach its destination.
What we need to determine is how many such messages are generated in each stage;
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in other words, we want to know the number ni of duelists in stage i (as each will
generate one such message). By Lemma 3.5.1, we know that at the beginning of stage
i, there is only one duelist in each of the hypercubesH ∈ Hk:i−1; as there are exactly
n

2i−1 = 2k−i+1 such cubes,

ni = 2k−i+1.

Thus, the total number of messages in stage i will be

niL(i) = 2k−i+1
(

1+ i·(i−1)
2

)

and over all stages, the total will be

k∑

i=1
2k−i+1

(
1+ i·(i−1)

2

)
= 2k

(
k∑

i=1

i

2i−1 +
k∑

i=1

i2

2i
+

k∑

i=1

i
2i

)
= 6 2k − k2 − 3k − 7.

As 2k = n, and adding the (n− 1) messages to broadcast the termination, we have

M[HyperElect] ≤ 7n− (log n)2 − 3 log n− 7. (3.35)

That is, we can elect a leader in less than 7n messages! This result should be
contrasted with the fact that in a ring we need �(n log n) messages.

As for the time complexity, it is not difficult to verify that protocol HyperFlood
requires at most O(log3N ) ideal time (Exercise 3.10.62).

Practical Considerations The O(n) message cost of protocol HyperElect is
achieved by having the Match messages convey path information in addition to the
usual id and stage number. In particular, the fields Source and Dest have been
described as lists of labels; as we only send compressed paths, Source and Dest
contain at most log n labels each. So it would appear that the protocol requires “long”
messages. We will now see that in practice, each list only requires log n bits (i.e., the
cost of a counter).

Examine a compressed sequence of edge labels α in Hk (e.g., α = 〈1457〉 in H8);
as the sequence is compressed, there are no repetitions. The elements in the sequence
are a subset of the integers between 1 and k; thus α can be represented as a binary
string 〈b1, b2, . . . , bk〉 where each bit bj = 1 if and only if j is in α. Thus, the list
α = 〈1457〉 in H8 is uniquely represented as 〈10011010〉. Thus, each of Source and
Dest will be just a k = log n bits variable.

This also implies that the cost in terms of bits of the protocol will be no more than

B[HyperElect] ≤ 7n(log id+ 2 log n+ log log n), (3.36)

where the log log n component is to account for the stage field.
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3.5.2 Unoriented Hypercubes

Hypercubes with arbitrary labellings obviously do not have the properties of oriented
hypercubes. It is still possible to take advantage of the highly regular structure of
hypercubes to do better than in ring networks. In fact (Problem 3.10.8),

Lemma 3.5.2 M(Elect/IR; Hypercube) ≤ O(n log log n)

To date, it is not known whether it is possible to elect a leader in an hypercube in
just O(n) messages even when it is not oriented (Problem 3.10.9).

3.6 ELECTION IN COMPLETE NETWORKS

We have seen how structural properties of the network can be effectively used to over-
come the additional difficulty of operating in a fully symmetric graph. For example,
in oriented hypercubes, we have been able to achieveO(n) costs, that is, comparable
to those obtainable in trees.

In contrast, a ring has very few links and no additional structural property capable of
overcoming the disadvantages of symmetry. In particular, it is so sparse (i.e.,m = n)
that it has the worst diameter among regular graphs (to reach the furthermost node, a
message must traverse d = n/2 links) and no short cuts. It is thus no surprising that
election requires �(n log n) messages.

The ring is the sparsest network and it is an extreme in the spectrum of regular
networks. At the other end of the spectrum lies the complete graph Kn; in Kn, each
node is connected directly to every other node. It is thus the densest network

m = 1
2n(n− 1)

and the one with smallest diameter

d = 1.

Another interesting property is thatKn contains every other networkG as a subgraph!
Clearly, physical implementation of such a topology is very expensive.

Let us examine how to exploit such very powerful features to design an efficient
election protocol.

3.6.1 Stages and Territory

To develop an efficient protocol for election in complete networks, we will use elec-
toral stages as well as a new technique, territory acquisition.

In territory acquisition, each candidate tries to “capture” its neighbors (i.e., all
other nodes) one at a time; it does so by sending a Capture message containing its id
as well as the number of nodes captured so far (the stage). If the attempt is successful,
the attacked neighbor becomes captured, and the candidate enters the next stage and
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continues; otherwise, the candidate becomes passive. The candidate that is successful
in capturing all entities becomes the leader.

Summarizing, at any time an entity is candidate, captured, or passive. A captured
entity remembers the id, the stage, and the link to its “owner” (i.e., the entity that
captured it). Let us now describe an electoral stage.

1. A candidate entity x sends a Capture message to a neighbor y.

2. If y is candidate, the outcome of the attack depends on the stage and the id of
the two entities:

(a) If stage(x) > stage(y), the attack is successful.

(b) If stage(x) = stage(y), the attack is successful if id(x) < id(y); otherwise
x becomes passive.

(c) If stage(x) < stage(y), x becomes passive.

3. If y is passive, the attack is successful.

4. If y is already captured, then x has to defeat y’s owner z before capturing y.
Specifically, a Warning message with x’s id and stage is send by y to its owner z.

(a) If z is a candidate in a higher stage, or in the same stage but with a smaller
id than x, then the attack to y is not successful: z will notify y that, in turn,
will notify x.

(b) In all other cases (z is already passive or captured, z is a candidate in a
smaller stage, or in the same stage but with a larger id than x), the attack
to y is successful: z notifies x via y, and if candidate it becomes passive.

5. If the attack is successful, y is captured by x, x increments stage(x) and
proceeds with its conquest.

Notice that each attempt from a candidate costs exactly two messages (one for
the Capture, one for the notification) if the neighbor is also a candidate or passive;
instead, if the neighbor was already captured, two additional messages will be sent
(from the neighbor to its owner, and back).

The strategy just outlined will indeed solve the election problem (Exercise 3.10.65).
Even though each attempt costs only four (or fewer) messages, the overall cost can
be prohibitive; this is because of the fact that the number ni of candidates at level i
can in general be very large (Exercise 3.10.66).

To control the number ni , we need to ensure that a node is captured by at most one
candidate in the same level. In other words, the territories of the candidates in stage
i must be mutually disjoint. Fortunately, this can be easily achieved.

First of all, we provide some intelligence and decisional power to the captured
nodes:

(I) If a captured node y receives a Capture message from a candidate x that is in
a stage smaller than the one known to y, then y will immediately notify x that
the attack is unsuccessful.
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As a consequence, a captured node y will only issue a Warning for an attack at the
highest level known to y. A more important change is the following:

(II) If a captured node y sends a Warning to its owner z about an attack from x, y
will wait for the answer from z (i.e., locally enqueue any subsequent Capture
message in same or higher stage) before issuing another Warning.

As a consequence, if the attack from x was successful (and the stage increased),
y will send to the new owner x any subsequent Warning generated by processing the
enqueued Capture messages. After this change, the territory of any two candidates in
the same level are guaranteed to have no nodes in common (Exercise 3.10.64).

Protocol CompleteElect implementing the strategy we have just designed is shown
in Figures 3.43, 3.44, and 3.45.

Let us analyze the cost of the protocol.
How many candidates there can be in stage i? As each of them has a territory

of size i and these territories are disjoint, there cannot be more than ni ≤ n/i such
candidates. Each will originate an attack that will cost at most four messages; thus,
in stage i, there will be at most 4n/i messages.

Let us now determine the number of stages needed for termination. Consider
the following fact: if a candidate has conquered a territory of size n

2 + 1, no other
candidate can become leader. Hence, a candidate can become leader as soon as it
reaches that stage (it will then broadcast a termination message to all nodes).

Thus the total number of messages, including then− 1 for termination notification,
will be

n+ 1+
n/2∑

i=1
4ni ≤ n+ 1+ 4n

n/2∑

i=1

1
i
= 4nHn/2 + n+ 1,

which gives the overall cost

M[CompleteElect] ≤ 2.76 n log n− 1.76n+ 1. (3.37)

Let us now consider the time cost of the protocol. It is not difficult to see that in
the worst case, the ideal time of protocol CompleteElect is linear (Exercise 3.10.67):

T[CompleteElect] = O(n). (3.38)

This must be contrasted with theO(1) time cost of the simple strategy of each entity
sending its id immediately to all its neighbors, thus receiving the id of everybody else,
and determining the smallest id. Obviously, the price we would pay for a O(1) time
cost is O(n2) messages.

Appropriately combining the two strategies, we can actually construct protocols
that offer optimalO(n log n) message costs withO(n/ log n) time (Exercise 3.10.68).

The time can be further reduced at the expense of more messages. In fact, it
is possible to design an election protocol that, for any log n ≤ k ≤ n, uses O(nk)
messages and O(n/k) time in the worst case (Exercise 3.10.69).
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PROTOCOL CompleteElect.

� S = {ASLEEP, CANDIDATE,PASSIVE, CAPTURED, FOLLOWER, LEADER};
SINIT = {ASLEEP}; STERM = {FOLLOWER, LEADER}.
� Restrictions: IR ∪CompleteGraph.

ASLEEP
Spontaneously
begin

stage:= 1; value:= id(x);
Others:= N (x);
next ← Others;
send("Capture", stage, value) to next;
become CANDIDATE;

end

Receiving("Capture", stage*, value*)
begin

send("Accept", stage*, value*) to sender;
stage:= 1;
owner:= sender;
ownerstage:= stage* +1;
become CAPTURED;

end

CANDIDATE
Receiving("Capture", stage*, value*)
begin

if (stage* < stage) or ((stage* = stage) and
(value* > value)) then

send("Reject", stage) to sender;
else

send("Accept", stage*, value*) to sender;
owner:= sender;
ownerstage:= stage* +1;
become CAPTURED;

endif
end

Receiving("Accept", stage, value)
begin

stage:= stage+1;
if stage ≥ 1+ n/2 then

send("Terminate") to N (x);
become LEADER;

else
next ← Others;
send("Capture", stage, value) to next;

endif
end

(CONTINUES ...)

FIGURE 3.43: Protocol CompleteElect (I).

3.6.2 Surprising Limitation

We have just developed an efficient protocol for election in complete networks. Its
cost is O(n log n) messages. Observe that this is the same as we were able to do in
ring networks (actually, the multiplicative constant here is worse).
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CANDIDATE
Receiving("Reject", stage*)
begin

become PASSIVE;
end

Receiving("Terminate")
begin

become FOLLOWER;
end

Receiving("Warning", stage*, value*)
begin

if (stage* < stage) or ((stage* = stage) and
(value* > value)) then

send("No", stage) to sender;
else

send("Yes", stage*) to sender;
become PASSIVE;

endif
end

PASSIVE
Receiving("Capture", stage*, value*)
begin

if (stage* < stage) or ((stage* = stage) and
(value* > value)) then

send("Reject", stage) to sender;
else

send("Accept", stage*, value*) to sender;
ownerstage:= stage* +1;
owner:= sender;
become CAPTURED;

endif
end

Receiving("Warning", stage*, value*)
begin

if (stage* < stage) or ((stage* = stage) and
(value* > value)) then

send("No", stage) to sender;
else

send("Yes", stage*) to sender;
endif

end

Receiving("Terminate")
begin

become FOLLOWER;
end

(CONTINUES ...)

FIGURE 3.44: Protocol CompleteElect (II).

Unlike rings, in complete networks, each entity has a direct link to all other entities
and there is a total of O(n2) links. By exploiting all this communication hardware,
we should be able to do better than in rings, where there are only n links, and where
entities can be O(n) far apart.
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CAPTURED
Receiving("Capture", stage*, value*)
begin

if stage* < ownerstage then
send("Reject", ownerstage) to sender;

else
attack:= sender;
send("Warning", value*, stage*) to owner;
close N (x)− {owner};

endif
end

Receiving("No", stage*)
begin

open N (x);
send("Reject", stage*) to attack;

end

Receiving("Yes", stage*)
begin

ownerstage:= stage*+1;
owner:= attack;
open N (x);
send("Accept", stage*, value*) to attack;

end

Receiving("Warning", stage*, value*)
begin

if (stage* < ownerstage) then
send("No", ownerstage) to sender;

else
send("Yes", stage*) to sender;

endif
end

Receiving("Terminate")
begin

become FOLLOWER;
end

FIGURE 3.45: Protocol CompleteElect (III).

The most surprising result about complete networks is that in spite of having
available the largest possible amount of connection links and a direct connection
between any two entities, for election they do not fare better than ring networks.

In fact, any election protocol will require in the worst case �(n log n) messages,
that is,

Property 3.6.1 M(Elect/IR;K) = �(n log n)

To see why this is true, observe that any election protocol also solves the wake-up
problem: To become defeated or leader, an entity must have been active (i.e., awake).
This simple observation has dramatic consequences. In fact, any wake-up protocol
requires at least .5n log n messages in the worst case (Property 2.2.5); thus, any
Election protocol requires in the worst case the same number of messages.
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This implies that as far as election is concerned, the very large expenses due to
the physical construction of m = (n2 + n)/2 links are not justifiable as the same
performance and operational costs can be achieved with only m = n links arranged
in a ring.

3.6.3 Harvesting the Communication Power

The lower bound we have just seen carries a very strong and rather surprising message
for network development: in so far election is concerned, complete networks are not
worth the large communication hardware costs. The facts that Election is a basic
problem and its solutions are routinely used by more complex protocols makes this
message even stronger.

The message is surprising because the complete graph, as we mentioned, has the
most communication links of any network and the shortest possible distance between
any two entities.

To overcome the limit imposed by the lower bound and, thus, to harvest the com-
munication power of complete graphs, we need the presence of some additional tools
(i.e., properties, restrictions, etc.). The question becomes: which tool is powerful
enough? As each property we assume restricts the applicability of the solution, our
quest for a powerful tool should be focused on the least restrictive ones.

In this section, we will see how to answer this question. In the process, we will
discover some intriguing relationships between port numbering and consistency and
shed light on some properties of whose existence we already had an inkling in earlier
section.

We will first examine a particular labeling of the ports that will allow us to make
full use of the communication power of the complete graph.

The first step consists in viewing a complete graph Kn as a ring Rn, where any
two nonneighboring nodes have been connected by an additional link, called chord.
Assume that the label associated at x to link (x, y) is equal to the (clockwise) distance
from x to y in the ring. Thus, each link in the ring is labeled 1 in the clockwise
direction and n− 1 in the other. In general, if lx(x, y) = i, then ly(y, x) = n− i
(see Figure 3.46); this labeling is called chordal.

Let us see how election can be performed in a complete graph with such a labeling.
First of all, observe the following: As the links labeled 1 and n− 1 form a ring, the

entities could ignore all the other links and execute on this subnet an election protocol
for rings, for example, Stages. This approach will yield a solution requiring 2n log n
messages in the worst case, thus already improving on CompleteElect. But we can do
better than that.

Consider a candidate entity x executing stage i: It will send an election message
each in both directions, which will travel along the ring until they reach another
candidate, say y and z (see Figure 3.47). This operation will require the transmission
of d(x, y)+ d(x, z) messages. Similarly, x will receive the Election messages from
both y and z, and decide whether it survives this stage or not, on the basis of the
received ids.
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FIGURE 3.46: A complete graph with chordal labeling. The links labeled 1 and 4 form a ring.

Now, in a complete graph, there exists a direct link between x and y, as well as
between x and z; thus, a message from one to the other could be conveyed with only
one transmission. Unfortunately, x does not know which of its n− 1 links connect it
to y or to z; y and z are in a similar situation. In the example of Figure 3.47, x does not
know that y is the node at distance 5 along the ring (in the clockwise direction), and
thus the port connecting x to it is the one with label 5. If it did, those four defeated
nodes in between them could be bypassed. Similarly, x does not know that z is at
distance −3 (i.e., at distance 3 in the counterclockwise direction) and thus reachable
through port n− 3. However, this information can be acquired.

Assume that the Election message contains also a counter, initialized to one, which
is increased by one unit by each node forwarding it. Then, a candidate receiving the
Election message knows exactly which port label connects it to the originator of that
message. In our example, the election message from y will have a counter equal to
5 and will arrive from link 1 (i.e., counterclockwise), while the message from z will

x

z

y

5n−3

FIGURE 3.47: If x knew d(x, y) and d(x, z), it could reach y and z directly.



182 ELECTION

have a counter equal to 3 and will arrive from link n− 1 (i.e., clockwise). From this
information, x can determine that y can be reached directly through port 5 and z is
reachable through link n− 3. Similarly, y (respective z) will know that the direct link
to x is the one labeled n− 5 (respective 3).

This means that in the next stage, these chords can be used instead of the corre-
sponding segments of the ring, thus saving message transmissions. The net effect will
be that in stage i + 1, the candidates will use the (smaller) ring composed only of
the chords determined in the previous stage, that is, messages will be sent only on
the links connecting the candidates of stage i, thus, completely bypassing all entities
defeated in stage i − 1 or earlier.

Assume in our example that x enters stage i + 1 (and thus both y and z are de-
feated); it will prepare an election message for the candidates in both directions,
say u and v, and will send it directly to y and to z. As before, x does not know
where u and v are (i.e., which of its links connect it to them) but, as before, it can
determine it.

The only difference is that the counter must be initialized to the weight of the
chord: Thus, the counter of the Election message sent by x directly to y is equal to 5,
and the one to z is equal to 3. Similarly, when an entity forwards the Election message
through a link, it will add to the counter the weight of that link.

Summarizing, in each stage, the candidates will execute the protocol in a smaller
ring. Let R(i) be the ring used in stage i; initially R(1) = Rn. Using the ring protocol
Stages in each stage, the number of messages we will be transmitting will be exactly
2(n(1)+ n(2)+ . . .+ n(k)), wheren(i) is the size ofR(i) and k ≤ log n is the number
of stages; an additional n− 1 messages will be used for the leader to notify the
termination.

Observe that all the rings R(2), . . . , R(k) do not have links in common (Exercise
3.10.70). This means that if we consider the graph G composed of all these rings,
then the number of links m(G) of G is exactly m(G) = n(2)+ . . .+ n(k). Thus, to
determine the cost of the protocol, we need to find out the value of m(G).

This can be determined in many ways. In particular, it follows from a very in-
teresting property of those rings. In fact, each R(i) is “contained” in the interior of
R(i + 1): All the links of R(i) are chords of R(i + 1), and these chords do not cross.
This means that the graphG formed by all these rings is planar; that is, can be drawn
in the plane without any edge crossing. A well known fact of planar graphs is that
they are sparse, that is, they contain very few links: not more than 3(n− 2) (if you
did not know it, now you do). This means that our graph G has m(G) ≤ 3n− 6. As
our protocol, which we shall call Kelect-Stages, uses 2(n(1)+m(G))+ n messages
in the worst case, and n(1) = n, we have

M[Kelect–Stages] < 8n− 12.

A less interesting but more accurate measurement of the message costs follows
from observing that the nodes in each ring R(i) are precisely the entities that were
candidates in stage i − 1; thus,n(i) = ni−1. Recalling thatni ≤ 1

2ni−1, and asn1 = n,
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we have n(1)+ n(2)+ . . .+ n(k) ≤ n+∑k−1
i=1 ni < 3n, which will give

M[Kelect–Stages] < 7n (3.39)

Notice that if we were to use Alternate instead of Stages as ring protocol (as we
can), we would use fewer messages (Exercise 3.10.72).

In any case, the conclusion is that the chordal labeling allows us to finally harvest
the communication power of complete graphs and do better than in ring networks.

3.7 ELECTION IN CHORDAL RINGS (�)

We have seen how election requires �(n log n) messages in rings and can be done
with justO(n) messages in complete networks provided with chordal labeling. Inter-
estingly, oriented rings and complete networks with chordal labeling are part of the
same family of networks, known as loop networks or chordal rings.

3.7.1 Chordal Rings

A chordal ring Cn〈d1, d2, ..., dk〉 of size n and k-chord structure 〈d1, d2, ..., dk〉, with
d1 = 1, is a ring Rn of n nodes {p0, p1, ..., pn−1}, where each node is also directly
connected to the nodes at distance di andN − di by additional links called chords. The
link connecting two nodes is labeled by the distance that separates these two nodes
on the ring, that is, following the order of the nodes on the ring: Node pi is connected
to the node pi+dj mod n through its link labeled dj (as shown in Figure 3.48). In
particular, if the link between p and q is labeled d at p, this link is labeled n− d at q.

Note that the oriented ring is the chordal ring Cn〈1〉 where label 1 corresponds to
“right,” and n− 1 to “left.” The complete graph with chordal labeling is the chordal

FIGURE 3.48: Chordal ring C11〈1, 3〉.
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ringCn〈1, 2, 3, · · · , !n/2"〉 In fact, rings and complete graphs are two extreme topolo-
gies among chordal rings.

Clearly, we can exploit the techniques we designed for complete graph with chordal
labeling to develop an efficient election protocol for the entire class of chordal ring
networks. The strategy is simple:

1. Execute an efficient ring election protocol (e.g., Stages or Alternate) on the
outer ring. As we did in Kelect, the message sent in a stage will carry a counter,
updated using the link labels, that will be used to compute the distance between
two successive candidates.

2. Use the chords to bypass defeated nodes in the next stage.

Clearly, the more the distances can be “bypassed” by the chords, the more
the messages we will be able to save. As an example, consider the chordal ring
Cn〈1, 2, 3, 4, ..., t〉, where every entity is connected to its distance-t neighborhood
in the ring. In this case (Exercise 3.10.76), a leader can be elected with a number of
messages not more than

O
(
n+ n

t
log n

t

)
.

A special case of this class is the complete graph, where t = !n/2�"; in it we can
bypass any distance in a single “hop” and, as we know, the cost becomes O(n).

Interestingly, we can achieve the same O(n) result with fewer chords. In fact,
consider the chordal ring Cn〈1, 2, 4, 8, ..., 2�log n/2�〉; it is called double cube and
k = �log n�. In a double cube, this strategy allows election with just O(n) messages
(Exercise 3.10.78), like if we were in a complete graph and had all the links.

At this point, an interesting and important question is what is the smallest set of
links that must be added to the ring to achieve a linear election algorithm. The double
cube indicates that k = O(log n) suffices. Surprisingly, this can be significantly further
reduced (Problem 3.10.12); furthermore, in that case (Problem 3.10.13), theO(n) cost
can be obtained even if the links have arbitrary labels.

3.7.2 Lower Bounds

The class of chordal rings is quite large; it includes rings and complete graphs, and
the cost of electing a leader varies greatly depending on the structure. For example,
we have already seen that the complexity is �(n log n) and �(n) in those two extreme
chordal rings.

We can actually establish precisely the complexity of the election problem for
the entire class of chordal rings Ctn = Cn〈1, 2, 3, 4..., t〉. In fact, we have (Exercise
3.10.77)

M(Elect/IR;Ctn) = �
(
n+ n

t
log

n

t

)
. (3.40)
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Notice that this class includes the two extremes. In view of the matching upper
bound (Exercise 3.10.76), we have

Property 3.7.1 The message complexity of Elect inCtn under IR is �
(
n+ n

t
log n

t

)
.

3.8 UNIVERSAL ELECTION PROTOCOLS

We have so far studied in detail the election problem in specific topologies; that is,
we have developed solution protocols for restricted classes of networks, exploiting
in their design all the graph properties of those networks so as to minimize the costs
and increase the efficiency of the protocols. In this process, we have learned some
strategies and principles, which are, however, very general (e.g., the notion of electoral
stages), as well as the use of known techniques (e.g., broadcasting) as modules of our
solution.

We will now focus on the main issue, the design of universal election protocols,
that is, protocols that run in every network, requiring neither a priori knowledge of
the topology of the network nor that of its properties (not even its size). In terms
of communication software, such protocols are obviously totally portable, and thus
highly desirable.

We will describe two such protocols, radically different from each other. The first,
Mega-Merger, which constructs a rooted spanning tree, is highly efficient (optimal in
the worst case); the protocol is, however, rather complex in terms of both specifications
and analysis, and its correctness is still without a simple formal proof. The second,
Yo-Yo, is a minimum-finding protocol that is exceedingly simple to specify and to
prove correct; its real cost is, however, not yet known.

3.8.1 Mega-Merger

In this section, we will discuss the design of an efficient algorithm for leader elec-
tion, called Mega-Merger. This protocol is topology independent (i.e., universal) and
constructs a (minimum cost) rooted spanning tree of the network.

Nodes are small villages each with a distinct name, and edges are roads each with
a different distance. The goal is to have all villages merge into one large megacity.
A city (even a small village will be considered such) always tries to merge with the
closest neighboring city.

When merging, there are several important issues that must be resolved. First
and foremost is the naming of the new city. The resolution of this issue depends
on how far the involved cities have progressed in the merging process, that is, on
the level they have reached and on whether the merger decision is shared by both
cities.

The second issue to be resolved during a merging is the decision of which roads of
the new city will be serviced by public transports. When a merger occurs, the roads
of the new city serviced by public transports will be the roads of the two cities already
serviced plus only the shortest road connecting them.
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Let us clarify some of these concepts and notions, as well as the basic rules of the
game.

1. A city is a rooted tree; the nodes are called districts, and the root is also known
as downtown.

2. Each city has a level and a unique name; all districts eventually know the name
and the level of their city.

3. Edges are roads, each with a distinct distance (from a totally ordered set). The
city roads are only those serviced by public transport.

4. Initially, each node is a city with just one district, itself, and no roads. All
cities are initially at the same level.

Note that as a consequence of rule (1), every district knows the direction (i.e.,
which of its links in the tree leads) to its downtown (Figure 3.49).

5. A city must merge with its closest neighboring city. To request the merging,
a Let-us-Merge message is sent on the shortest road connecting it to that
city.

6. The decision to request for a merger must originate from downtown and until
the request is resolved, no other request can be issued from that city.

D(A)

FIGURE 3.49: A city is a tree rooted in its downtown.
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7. When a merger occurs, the roads of the new city serviced by public transports
will be the roads of the two cities already serviced plus the shortest road
connecting them.

Thus, to merge, the downtown of city A will first determine the shortest link,
which we shall call the merge link, connecting it to a neighboring city; once this is
done, a Let-us-Merge is sent through that link; the message will contain information
identifying the city, its level, and the chosen merge link. Once the message reaches the
other city, the actual merger can start to take place. Let us examine the components
of this entire process in some details.

We will consider city A, denote by D(A) its downtown, by level(A) its current
level, and by e(A) = (a, b) the merge link connecting A to its closest neighboring
city; let B be such a city. Node b will be called the entry point of the request from A
to B, and node a the exit point.

Once the Let-us-Merge message from a inA reaches the district b ofB, three cases
are possible.

If the two cities have the same level and each asks to merge with the other, we
have what is called a friendly merger: The two cities merge into a new one; to avoid
any conflict, the new city will have a new name and a new downtown, and its level is
increased:

8. If level(A) = level(B) and the merge link chosen by A is the same as that
chosen by B (i.e., e(A) = e(B)), then A and B perform a friendly merger.

If a city asks a merger with a city of higher level, it will just be absorbed, that is,
it will acquire the name and the level of the other city:

9. If level(A) < level(B), A is absorbed in B.

In all other cases, the request for merging and, thus, the decision on the name are
postponed :

10. If level(A) = level(B), but the merge link chosen by A is not the same as
that chosen by B (i.e., e(A) 	= e(B)), then the merge process of A with B is
suspended until the level of b’s city becomes larger than that of A.

11. If level(A) > level(B), the merge process of A with B is suspended: x will
locally enqueue the message until the level of b’s city is at least as large as the
one of A. (As we will see later, this case will never occur.)

Let us see these rules in more details.

Absorption The absorption process is the conclusion of a merger request sent
by A to a city with a higher level (rule 9). As a result, city A becomes part of city
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B acquiring the name, the downtown, and the level of B. This means that during
absorption,

(i) the logical orientation of the roads in A must be modified so that they are
directed toward the new downtown (so rule (1) is satisfied);

(ii) all districts of A must be notified of the name and level of the city they just
joined (so rule (2) is satisfied).

All these requirements can be easily and efficiently achieved. First of all, the entry
point bwill notify a (the exit point ofA) that the outcome of the request is absorption,
and it will include in the message all the relevant information aboutB (name and level).
Once a receives this information, it will broadcast it in A; as a result, all districts of
A will join the new city and know its name and its level.

To transform A so that it is rooted in the new downtown is fortunately simple.
In fact, it is sufficient to logically direct toward B the link connecting a to b and to
“flip” the logical direction only of the edges in the path from the exit point a to the
old downtown of A (Exercise 3.10.79), as shown in Figure 3.50. This can be done
as follows: Each of the districts of B on the path from a to D(A), when it receives
the broadcast from a, will locally direct toward B two links: the one from which the
broadcast message is received and the one toward its old downtown.

D(B)

D(A)

ba

FIGURE 3.50: Absorption. To make the districts ofA be rooted inD(B), the logical direction
of the links (in bold) from the downtown to the exit point of A has been “flipped.”

Friendly Merger If A and B are at the same level in the merging process (i.e.,
level(A) = level(B)) and want to merge with each other (i.e., e(A) = e(B)), we have
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a friendly merger. Notice that if this is the case, a must also receive a Let-us-Merge
message from b.

The two cities now become one with a new downtown, a new name, and an in-
creased level:

(i) The new downtown will be the one of a and b that has smaller id (recall that
we are working under the ID restriction).

(ii) The name of the new city will be the name of the new downtown.

(iii) The level will be increased by one unit.

Both a and b will independently compute the new name, level, and downtown.
Then each will broadcast this information to its old city; as a result, all districts of A
and B will join the new city and know its name and its level.

Both A and B must be transformed so that they are rooted in the new downtown.
As discussed in the case of absorption, it is sufficient to “flip” the logical direction
only of the edges in the path from the a to the old downtown of A, and of those in the
path from b to the old downtown of B (Figure 3.51).

Suspension In two cases (rules (10) and (11)), the merge request of A must be
suspended: b will then locally enqueue the message until the level of its city is such
that it can apply rule (8) or (9). Notice that in case of suspension, nobody from city
A knows that their request has been suspended; because of rule (6), no other request
can be launched from A.

Choosing the Merging Edge According to rule (6), the choice of the merging
edge e(A) in A is made by the downtown D(A); according to rule (5), e(A) must be
the shortest road connecting A to a neighboring city. Thus, D(A) needs to find the
minimum length among all the edges incident on the nodes of the rooted tree A; this
will be done by implementing rule (5) as follows:

(5.1) Each district ai ofA determines the length di of the shortest road connecting
it to another city (if none goes to another city, then di = ∞).

(5.2) D(A) computes the smallest of all the di .

Concentrate on part (5.1) and consider a district ai ; it must find among its incident
edges the shortest one that leads to another city.

IMPORTANT. Obviously, ai does not need to consider the internal roads (i.e., those
that connect it to other districts of A). Unfortunately, if a link is unused, that is, no
message has been sent or received through it, it is impossible for ai to know if this
road is internal or leads to a neighboring city (Figure 3.52). In other words, ai must
also try the internal unused roads.
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D(B)

(a)

(b)

b

D(A)

a

ba

FIGURE 3.51: Friendly merger. (a) The two cities have the same level and choose the same
merge link. (b) The new downtown is the exit node (a or b) with smallest id.

Thus, ai will determine the shortest unused edge e, prepare a Outside? message,
send it on e, and wait for a reply. Consider now the district c on the other side of e,
which receives this message; c knows the name(C) and the level(C) of its city (which
could, however, be changing).
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D(A)

FIGURE 3.52: Some unused links might lead back to the city.

If name(A) = name(C) (recall that the message contains the name of A), c will
reply Internal to ai , the road e will be marked as internal (and no longer used in the
protocol) by both districts, and ai will restart its process to find the shortest local
unused edge.

If name(A) 	= name(C), it does not necessarily mean that the road is not internal.
In fact, it is possible that while c is processing this message, its city C is being
absorbed by A. Observe that in this case, level(C) must be smaller than level(A)
(because by rule (8) only a city with smaller level will be absorbed). This means that
if name(A) 	= name(C) but level(C) ≥ level(A), then C is not being absorbed by A,
and C is for sure a different city; thus, c will reply External to ai , which will have,
thus, determined what it was looking for: di = length(e).

The only case left is when name(A) 	= name(C) and level(C) < level(A), the case
in which c cannot give a sure answer. So, it will not: c will postpone the reply until
the level of its city becomes greater than or equal to that of A. Note that this means
that the computation in A is suspended until c is ready.

NOTE. As a consequence of this last case, rule (11) will never be applied
(Exercise 3.10.80).

In conclusion to determine if a link is internal should be simple, but, due to con-
currency, the process is neither trivial nor obvious.

Concentrate on part (5.2). This is easy to accomplish; it is just a minimum finding in
a rooted tree, for which we can use the techniques discussed in Section 2.6.7. Specifi-
cally, the entire process is composed of a broadcast of a message informing all districts
in the city of the current name and level (i) of the city, followed by a covergecast.

Issues and Details We have just seen in details the process of determining the
merge link as well as the rules governing a merger. Because of the asynchronous
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nature of the system and its unpredictable (though finite) communication delays, it
will probably be the case that different cities and districts will be at different levels at
the same time. In fact, our rules take explicitly into account the interaction between
neighboring cities at different levels. There are a few situations where the application
of the rules will not be evident and thus require a more detailed treatment.

(I) Discovering a friendly merger
We have seen that when the Let-us-Merge message from A to B arrives at b, if

level(A) = level(B), the outcome will be different (friendly merger or postponement)
depending on whether e(A) = e(B) or not. Thus, to decide if it is a friendly merger,
b needs to know both e(A) and e(B). When the Let-us-Merge message sent from a

arrives to b, it knows e(A) = (a, b).

Question. How does b know e(B)?

The answer is interesting. As we have seen, the choice of e(B) is made by the
downtown D(B), which will forward the merger request message of B towards the
exit point.

If e(A) = e(B), b is the exit point and, thus, it will eventually receive the message
to be sent to a; then (and only then) b will know the answer to the question, and that
it is dealing with a friendly merger.

If e(A) 	= e(B), b is not the exit point. Note that, unless b is on the way from
downtown D(B) to the exit point, b will not even know what e(B) is.

Thus, what really happens when the Let-us-Merge message from A arrives at b, is
the following. If b has received already a Let-us-Merge message from its downtown
to be sent to a, then b knows that is a friendly merger; also a will know when it
receives the request from b.
(Note for hackers: thus, in this case, no reply to the request is really necessary.)
Otherwise b does not know; thus it waits: if it is a friendly merger, sooner or later the
message from its downtown will arrive and bwill know; ifB is requesting another city,
eventually the level of b’s city will increase becoming greater than level(A) (which,
asA is still waiting for the reply, cannot increase), and thus result inA being absorbed.

(II) Overlapping discovery of an internal link
In the merge-link calculation, when the Outside? message from a in A is sent to

neighbor b in B, if name(A) = name(B) then the link (a, b) is internal and should be
removed from consideration by both a and b. As b knows (it just found out receiving
the message) but a possibly does not, b will send to a the reply Internal. However, if
b also had sent to a an Outside? message, when a receives that message, it will find
out that (a, b) is internal, and the Internal reply would be redundant. In other words,
if a and b from the same city independently send to each other an Outside? message,
there is no need for either of them to reply Internal to the other.

(III) Interaction between absorption and link calculation
A situation that requires attention is due to the interaction between merge-link

calculation and absorption. Consider the Let-us-Merge message sent by a on merge
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link e(A) = (a, b) to b, and let level(A) = j < i = level(B); thus, A will have to be
absorbed in B.

Suppose that, when b receives the message, it is computing the merge link for
its city B; as its level is i, we will call it the i-level merge link. What b will do in
this case, is to first proceed with the absorption of A (so to involve it in the i-level
merge-link computation), and then to continue its own computation of the merge link.
More precisely, b will start the broadcast in A of the name and level of B asking the
districts there to participate in the computation of the i-level merge link for B, and
then resume its computation.

Suppose instead that b has already finished computing the i-level merge link for
its city B; in this case, b will broadcast inA the name and level of B (so to absorbA),
but without requesting them to participate in the computation of the i-level merge
link for B (it is too late).

(IV) Overlap between notification and i-level merge-link calculation
As mentioned, the i-level merge-link calculation is started by a broadcast informing

all districts in the city of the current name and level (i) of the city. Let us call “start-
next" the function provided by these messages.

Notice that broadcasts are already used following the discovery of a friendly merger
or an absorption. Consider the case of a friendly merger. When the two exit points
know that it is a friendly merger, the notification they broadcast will inform all districts
in the merged city of the new level, new name, and to start computing the next merge
link. In other words, the notification is exactly the “start next” broadcast.

In the case of an absorption, as we just discussed, a “start-next” broadcast is needed
only if it is not too late for the new districts to participate in the current calculation
of the merge link. If it is not too late, the notification message contains the request
to participate in the next merge-link calculation; thus, it is just the propagation of the
current “start-next” broadcast in this new part of the city.

In other words, the “notification” broadcasts act as “start-next” broadcasts, if
needed.

3.8.2 Analysis of Mega-Merger

A city only carries out one merger request at a time, but it can be asked concurrently
by several cities, which in turn can be asked by several others. Some of these requests
will be postponed (because the level is not right, or the entry node does not (yet)
know what the answer is, etc.) Due to communication delays, some districts will be
taking decisions on the basis of the information (level and name of its city) that is
obsolete. It is not difficult to imagine very intricate and complex scenarios that can
easily occur.

How do we know that, in spite of concurrency and postponements and commu-
nication delays, everything will eventually work out? How can we be assured that
some decisions will not be postponed forever, that is, there will not be deadlock?
What guarantees that, in the end, the protocol terminates and a single leader will be
elected? In other words, how do we know that the protocol is correct?
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Because of its complexity and the variety of scenarios that can be created, there is
no satisfactory complete proof of the correctness of the Mega-Merger protocol. We
will discuss here a partial proof that will be sufficient for our learning purposes. We
will then analyze the cost of the Protocol. Finally, we will discuss the assumption of
having distinct lengths associated to the links, examine some interesting connected
properties, and then remove the assumption.

Progress and Deadlock We will first discuss the progress of the computation
and the absence of deadlock. To do so, let us pinpoint the cases when the activity of a
cityC is halted by a district d of another cityD. This can occur only when computing
the merge edge, or when requesting a merger on the merge edge e(C); more precisely,
there are three cases:

(i) When computing the merge edge, a district c ofC sends the Outside? message
to d and D has a smaller level than C.

(ii) A district c of C sends the Let-us-Merge message on the merge edge e(C) =
(c, d); D and C have the same level but it is not a friendly merger.

(iii) A district c of C sends the Let-us-Merge message on the merge edge e(C) =
(c, d);D and C have the same level and it is a friendly merger, but d does not
know yet.

In cases (i) and (ii), the activities of C are suspended and will be resolved (if the
protocol is correct) only in the “future,” that is, after D changes level. Case (iii) is
different in that it will be resolved within the “present” (i.e., in this level); we will
call this case a delay rather than a suspension.

Observe that if there is no suspension, there is no problem.

Property 3.8.1 If a city at level l will not be suspended, its level will eventually
increase (unless it is the megacity).

To see why this is true, consider the operations performed by a city C at a level
l: Compute the merge edge and send a merge request on the merge edge. If it is not
suspended, its merge request arrives at a city D with either a larger level (in which
case,C is absorbed and its level becomes level(D)) or the same level and same merge
edge (the case in which the two cities have a friendly merger and their level increases).

So, only suspensions can create problems, but not necessarily so.

Property 3.8.2 Let city C at level l be suspended by a district d in city D. If the level
of the city of D becomes greater than l, C will no longer be suspended and its level
will increase.

This is because once the level ofD becomes greater than the level of C, d can an-
swer the Outside? message in case (i), as well as the Let-us-Merge message in case (ii).

Thus, the only real problem is the presence of a city suspended by another whose
level will not grow. We are now going to see that this cannot occur.
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Consider the smallest level l of any city at time t , and concentrate on the cities C
operating at that level at that time.

Property 3.8.3 No city in C will be suspended by a city at higher level.

This is because for a suspension to exist, the level of D can not be greater than the
level of C (see the cases above).

Thus, if a city C ∈ C is suspended, it is for some other city C′ ∈ C. If C′ is not
suspended at level l, its level will increase; when that happens, C will no longer be
suspended. In other words, there would be no problems as long as there are no cycles
of suspensions within C, that is, as long as there is no cycleC0, C1, . . . , Ck−1 of cities
of C where Ci is suspended by Ci+1 (and the operation on the indices are modulo k).
The crucial property is the following:

Property 3.8.4 There will be no cycles of suspensions within C.

The proof of this property is based heavily on the fact that each edge has a unique
length (we have assumed that.) and that the merge edge e(C) chosen by C is the
shortest of all the unused links incident on C. Remember this fact and let us proceed
with the proof.

By contradiction, assume that the property is false. That is, assume there is a
cycle C0, C1, . . . , Ck−1 of cities of C where Ci is suspended by Ci+1 (the operation
on the indices are modulo k). First of all observe that as all these cities are at the
same level, the reason they are suspended can only be that each is involved in an
“unfriendly” merger, that is, case (ii). Let us examine the situation more closely:
Each Ci has chosen a merge edge e(Ci) connecting it to Ci+1; thus, Ci is suspending
Ci−1 and is suspended byCi+1. Clearly, both e(Ci−1) and e(Ci) are incident onCi . By
definition of merging edge (recall what we said at the beginning of the proof), e(Ci)
is shorter than e(Ci−1) (otherwise Ci would have chosen it instead); in other words,
the length di of the road e(Ci) is smaller than the length di11 of e(Ci+1). This means
that d0 > d1 > . . . > dk−1, but as it is a circle of suspensions, Ck−1 is suspended
by C0, that is, dk−1 > d0. We have reached a contradiction, which implies that our
assumption that the property does not hold is actually false; thus, the property is true.

As a consequence of the property, all cities in C will eventually increase their level:
first, the ones involved in a friendly merger, next those that had chosen them for a
merger (and thus absorbed by them), then those suspended by the latter, and so on.

This implies that at no time there will be deadlock and there is always progress:
Use the properties to show that the ones with smallest level will increase their value;
when this happens, again the ones with smallest level will increase it, and so on.
That is,

Property 3.8.5 Protocol Mega-Merger is deadlock free and ensures progress.

Termination We have just seen that there will be no deadlock and that progress
is guaranteed. This means that the cities will keep on merging and eventually the
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megacity will be formed. The problem is how to detect that this has happened. Recall
that no node has knowledge of the network, not even of its size (it is not part of the
standard set of assumptions for election); how does an entity finds out that all the
nodes are now part of the same city? Clearly, it is sufficient for just one entity to
determine termination (as it can then broadcast it to all the others).

Fortunately, termination detection is simple to achieve; as one might have sus-
pected, it is the downtown of the megacity that will determine that the process is
terminated.

Consider the downtown D(A) of city A, and the operations it performs: It coor-
dinates the computation of the merge link and then originates a merge request to be
sent on that link. Now, the merge link is the shortest road going to another city. IfA is
already the megacity, there are no other cities; hence all the unused links are internal.
This means that when computing the merge link, every district will explore every
unused link left and discover that each one of them is internal; it will thus choose
∞ as its length (meaning that it does not have any outgoing links). This means that
the minimum-finding process will return∞ as the smallest length. When this hap-
pens,D(A) understands that the mega-merger is completed, and can notify all others.
(Notification is not really necessary: Exercise 3.10.81.)

As the megacity is a rooted tree with the downtown as its root,D(A) becomes the
leader; in other words,

Property 3.8.6 Protocol Mega-Merger correctly elects a leader.

Cost In spite of the complexity of protocol Mega-Merger, the analysis of its cost
is not overly difficult. We will first determine how many levels there can be and then
calculate the total number of messages transmitted by entities at a given level.

The Number of Levels A district acquires a larger level because its city has been
either absorbed or involved in a friendly merger. Notice that when there is absorption,
only the districts in one of the two cities increase their level, and thus the max level
in the system will not be increased. The max level can only increase after a friendly
merger.

How high can the max level be ? We can find out by linking the minimum number
of districts in a city to the level of the city.

Property 3.8.7 A city of level i has at least 2i districts.

This can be proved easily by induction. It is trivially true at the beginning (i.e.,
i = 0). Let it be true for 0 ≤ i ≤ k − 1. A level k city can only be created by a friendly
merger of two level k − 1 cities; hence, by inductive hypothesis, such a city will have
at least 2 2k−1 = 2k districts; thus the property is true also for i = k.

As a consequence,

Property 3.8.8 No city will reach a level greater than log n.
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The Number of Messages per Level Consider a level i; some districts will reach
this level from level i − 1 or even lower; others might never reach it (e.g., because of
absorption, they move from a level lower than i directly to one larger than i). Consider
only those districts that do reach level i and let us count how many messages they
transmit in this level. In other words, as each message contains the level, we need to
determine how many messages are sent in which the level is i.

We do know that every district (except the downtown) of a city of level i receives
a broadcast message informing it that its current level is i, and to start computing the
i-level merge-link (this last part may not be included). Hence at most every district
will receive such a message, accounting for a total of n messages.

If the received broadcast also requests to compute the i-level edge-merge link, a
district must find its shortest outgoing link, by using Outside? messages.

IMPORTANT. For the moment, we will not consider the Outside? messages sent to
internal roads (i.e., where the reply is Internal); they will be counted separately later.

In this case, the district will send at most one Outside? message that causes a reply
External. The district will then participate in the convergecast, sending one message
toward the downtown. Hence, all these activities will account for a total of at most
3n messages.

Once the i-level merge-links have been determined, the Let-us-Merge messages
are originated and sent to and across the merge-links. Regardless of the final outcome
of the request, the forwarding of the i-level Let-us-Merge message from the downtown
D(A) to the new city through the merge edge e(A) = (a, b) will cause at most n(A)
transmissions in a city A with n(A) districts (n(A)− 1 internal and one on the merge
edge). This means that these activities will cost in total at most

∑

A∈City(i)
n(A) ≤ n

messages where City(i) is the set of the cities reaching level i.
This means that excluding the number of level i messages Outside? whose reply

is Internal, the total number of messages sent in level i is

Property 3.8.9 Cost(i) ≤ 5n

The Number of Useless Messages In the calculation so far we have excluded
the Outside? messages whose reply was Internal. These messages are in a sense
“useless” as they do not bring about a merger; but they are also unavoidable. Let
us measure their number. On any such road there will be two messages, either the
Outside? message and the Internal reply, or two Outside? messages. So, we only
need to determine the number of such roads. These roads are not part of the city (i.e.,
not serviced by public transport). As the final city is a tree, the total number of the
publicly serviced roads is exactly n− 1. Thus, the total number of the other roads is
exactly m− (n− 1). This means that the total number of useless messages will be

Property 3.8.10 Useless = 2(m− n+ 1)
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The Total Combining Properties 3.8.8, 3.8.9, and 3.8.10, we obtain the total number
of messages exchanged in total by protocol Mega-Merger during all its levels of
execution.

To these, we need to add then− 1 messages because of the downtown of the megac-
ity broadcasting termination (eventhough these could be saved: Exercise 3.10.81), for
a total of

M[Mega – Merger] ≤ 2m+ 5n log n+ n+ 1. (3.41)

Road Lengths and Minimum-Cost Spanning Trees In all the previous dis-
cussions we have made some nonstandard assumptions about the edges. We have in
fact assumed that each link has a value, which we called length, and that those values
are unique.

The existence of link values is not uncommon. In fact, dealing with networks,
usually there is a value associated with a link denoting, for example, the cost of using
that link, the transmission delays incurred when sending a message through it, and so
forth.

In these situations, when constructing a spanning tree (e.g., to use for broadcasting),
the prime concern is how to construct the one of minimum cost, that is, where the sum
of the values of its link is as small as possible. For example, if the value of the link is
the cost of using it, a minimum-cost spanning tree is one where broadcasting would
be the cheapest (regardless of who is the originator of the broadcast). Not surprisingly,
the problem of constructing a minimum-cost spanning tree is important and heavily
investigated.

We have seen that protocol Mega-Merger constructs a rooted spanning tree of the
network. What we are going to see now is that this tree is actually the unique minimum-
cost spanning tree of the network. We are also going to see how the nonstandard
assumptions that we have made about the existence of unique lengths can be easily
removed.

Minimum-Cost Spanning Trees In general, a network can have several minimum-
cost spanning trees. For example, if all links have the same value (or have no value),
then every spanning tree is minimal. By contrast,

Property 3.8.11 If the link values are distinct, a network has a unique minimum-cost
spanning tree.

Assuming that there are distinct values associated to the links, protocol Mega-
Merger constructs a rooted spanning tree of the network. What we are going to see
now is that this tree is actually the unique minimum-cost spanning tree of the network.

To see why this is the case, we must observe a basic property of the minimum-cost
spanning tree T . A fragment of T is a subtree of T .

Property 3.8.12 Let A be a fragment of T, and let e be the link of minimum value
among those connecting A to other fragments; let B be the fragment connected by A.
Then the tree composed by merging A and B through e is also a fragment of T.
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This is exactly what the Mega-Merger protocol does: It constructs the minimum-
cost spanning tree T (the megacity) by merging fragments (cities) through the ap-
propriate edges (merge link). Initially, each node is a city and, by definition, a single
node is a fragment. In general, each cityA is a fragment of T ; its merge link is chosen
as the shortest (i.e., minimum value) link connecting A to any neighboring city (i.e.,
fragment); hence, by Property 3.8.12, the result of the merger is also a fragment.

Notice that the correctness of the process depends crucially on Property 3.8.11,
and thus on the distinctness of the link values.

Creating Unique Lengths We will now remove the assumptions that there are
values associated to the links and these values are unique.

If there are no values (the more general setting), then a unique value can be easily
given to each link using the fact that the nodes have unique ids: To link e = (a, b)
associate the sorted pair d(e) = 〈Min{id(a), id(b)},Max{id(a), id(b)}〉 and use the
lexicographic ordering to determine which edge has smaller length. So, for example,
the link between nodes with ids 17 and 5 will have length 〈5, 17〉, which is smaller
than 〈6, 5〉 but greater than 〈4, 32〉. To do this requires, however, that each node knows
the id of all its neighbors. This information can be acquired in a preprocessing phase,
in which every node sends to its neighbors, its id (and will receive theirs from them);
the cost will be two additional messages on each link. Thus, even if there are no values
associated to the links, it is possible to use protocol Mega-Merger. The price we have
to pay is 2m additional messages.

If there are values but they are not (known to be) unique, they can be made so,
again using the fact that the nodes have unique ids. To link e = (a, b) with value v(e)
associate the sorted triple d(e) = 〈v(e),Min{id(a), id(b)},Max{id(a), id(b)}〉. Thus,
links with the same values will now be associated to different lengths. So, for example,
the link between nodes with ids 17 and 5 and value 7 will have length 〈7, 5, 17〉, which
is smaller than 〈7, 6, 5〉 but greater than 〈7, 4, 32〉. Also, in this case, each node needs
to know the id of all its neighbors. The same preprocessing phase will achieve the
goal with only 2m additional messages.

Summary Protocol Mega-Merger is a universal protocol that constructs a
(minimum-cost) spanning tree and returns it rooted in a node, thus electing a leader.
If there are no initial distinct values on the links, a preprocessing phase needs to be
added, in which each entity exchanges its unique id with its neighbors; then the actual
execution of the protocol can start. The total cost of the protocol (with or without
preprocessing phase) is O(m+ n log n), which, we will see, is worst case optimal.

The main drawback of Mega-Merger is its design complexity, which makes any
actual implementation difficult to verify.

3.8.3 YO-YO

We will now examine another universal protocol for leader election. Unlike the pre-
vious one, it has simple specifications, and its correctness is simple to establish. This
protocol, called YO-YO, is a minimum-finding algorithm and consists of two parts: a
preprocessing phase and a sequence of iterations. Let us examine them in detail.
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Setup In the preprocessing phase, called Setup, every entity x exchanges its id
with its neighbors. As a result, it will receive the id of all its neighbors. Then, x will
logically orient each incident link (x, y) in the direction of the entity (x or y), with
the largest id. So, if id(x) = 5 and its neighbor y has id(y) = 7, x will orient (x, y)
toward y; notice that y will also do the same. In fact, the orientation of each link will
be consistent at both end nodes.

Consider now the directed graph �G so obtained. There is a very simple but important
property:

Property 3.8.13 �G is acyclic.

To see why this is true, consider by contradiction the existence of a directed cycle
x0, x1, . . . , xk; this means that id(x0) < id(x1) < . . . < id(xk−1) but, as it is a cycle,
id(xk−1) < id(x0), which is impossible.

This means that �G is a directed acyclic graph (DAG). In a DAG, there are three
types of nodes:

– source is a node where all the links are out-edges; thus, a source in �G is a node
with an id smaller than that of all its neighbors, that is, it is a local minimum;

– sink is a node where all the links are in-edges; thus, a sink in �G is a node whose
id is larger than that of all its neighbors, that is, it is a local maximum;

– internal node is a node, which is neither a source nor a sink.

As a result of the setup, each node will know whether it is a source, a sink, or
an internal node. We will also use the terminology of “down” referring to the di-
rection toward the sinks, and “up” referring to the direction toward the sources (see
Figure 3.53).

Once this preprocessing is completed, the second part of the algorithm start. As
YO-YOs is a minimum-finding protocol, only the local minima (i.e., the sources) will
be the candidates (Figure 3.54).

Iteration The core of the protocol is a sequence of iterations. Each iteration acts as
an electoral stage in which some of the candidates are removed from consideration.
Each iteration is composed of two parts, or phases, called YO- and -YO.

YO- This phase is started by the sources. Its purpose is to propagate to each sink the
smallest among the values of the sources connected to that sink (see Figure 3.54(a)).

1. A source sends its value down to all its out-neighbors.

2. An internal node waits until it receives a value from all its in-neighbors. It
then computes the minimum of all received values and sends it down to its
out-neighbors.

3. A sink waits until it receives a value from all its in-neighbors. It then computes
the minimum of all received values and starts the second part of the iteration.

3 In the sense that there is a directed path from the source to that sink.
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FIGURE 3.53: In the Setup phase, (a) the entities know their neighbors’ ids and (b) orient
each incident link toward the smaller id, creating a DAG.

-YO This phase is started by the sinks. Its purpose is to eliminate some candidates,
transforming some sources into sinks or internal nodes. This is done by having the
sinks inform their connected sources of whether or not the id they sent is the smallest
seen so far (see Figure 3.54(b)).

4. A sink sends YES to all in-neighbors from which the smallest value has been
received. It sends NO to all the others.

5. An internal node waits until it receives a vote from all its out-neighbors. If all
votes are YES, it sends YES to all in-neighbors from which the smallest value
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FIGURE 3.54: In the Iteration stage, only the candidates are sources. (a) In the YO- phase,
the ids are filtered down to the sinks. (b) In the -YO phase, the votes percolate up to the sources.

has been received and NO to all the others. If at least a vote was NO, it sends
NO to all its in-neighbors.

6. A source waits until it receives a vote from all its out-neighbors. If all votes are
YES, it survives this iteration and starts the next one. If at least a vote was NO,
it is no longer a candidate.

Before the next iteration can be started, the directions on the links in the DAG
must be modified so that only the sources that are still candidate (i.e., those that
received only YES) will still be sources; clearly, the modification must be done
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FIGURE 3.55: (a) In the -YO phase, we flip the logical direction of the links on which a NO
is sent, (b) creating a new DAG, where only the surviving candidates will be sources.

without creating cycles. In other words, we must transform the DAG into a new
one, whose only sources are the undefeated ones in this iteration. This modifica-
tion is fortunately simple to achieve. We need only to “flip” the direction of each
link where a NO vote is sent (see Figure 3.55(a)). Thus, we have two meta-rules for
the -YO part:

7. When a node x sends NO to an in-neighbor y, it will reverse the (logical)
direction of that link (thus, y becomes now an out-neighbor of x).

8. When a node y receives NO from an out-neighbor x, it will reverse the (logical)
direction of that link (thus, x becomes now an in-neighbor of y).
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As a result, any source that receives a NO will cease to be a source; it can actually
become a sink. Some sinks may cease to be such and become internal nodes, and
some internal nodes might become sinks. However, no sink or internal node will ever
become a source (Exercise 3.10.83). A new DAG is, thus, created, where the sources
are only those that received all YES in this iteration (see Figure 3.55(b)).

Once a node has completed its part in the -YO phase, it will know whether it is
a source, a sink, or an internal node in the new DAG. The next iteration could start
now, initiated by the sources of the new DAG.

Property 3.8.14 Applying an iteration to a DAG with more than one source will
result into a DAG with fewer sources. The source with smallest value will still be a
source.

In each iteration, some sources (at least one) will be no longer sources; in contrast
to this, the source with the smallest value will be eventually the only one left under
consideration. In other words, eventually the DAG will have a single source (the
overall minimum, say c), and all other nodes are either sinks or internal nodes. How
can c determine that it is the only source left, and thus it should become the leader?

If we were to perform an iteration now, only c’s value will be sent in the YO- phase,
and only YES votes will be sent in the -YO phase. The source c will receive only YES
votes; but c has received only YES votes in every iteration it has performed (that is
why it survived as a source). How can c distinguish that this time is different, that
the process should end? Clearly, we need some additional mechanisms during the
iterations.

We are going to add some meta-rules, called Pruning, which will allow to reduce
the number of messages sent during the iterations, as well as to ensure that termination
is detected when only one source is left.

Pruning The purpose of pruning is to remove from the computation, nodes and
links that are “useless,” do not have any impact on the result of the iteration; in other
words, if they were not there, still the same result would be obtained: The same
sources would stay sources, and the others defeated. Once a link or a node is declared
“useless,” during the next iterations it will be considered nonexistent and, thus, not
used.

Pruning is achieved through two meta-rules.
The first meta-rule is a structural one. To explain it, recall that the function of the

sinks is to reduce the number of sources by voting on the received values. Consider
now a sink that is a leaf (i.e., it has only one in-neighbor); such a node will receive
only one value; thus it can only vote YES. In other words, a sink leaf can only agree
with the choice (i.e., the decision) made by its parent (i.e., its only neighbor). Thus,
a sink leaf is “useless.”

9. If a sink is a leaf (i.e., it has only one in-neighbor), then it is useless; it then asks
its parent to be pruned. If a node is asked to prune an out-neighbor, it will do so
by declaring useless (i.e., removing from consideration in the next iterations)
the connecting link.
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FIGURE 3.56: Rules of pruning.

Notice that after pruning a link, a node might become a sink; if it is also a leaf,
then it becomes useless.

The other meta-rule is geared toward reducing the communication of redundant
information. During YO- phase, a (internal or sink) node might receive the value of the
same source from more than one in-neighbor; this information is clearly redundant as,
to do its job (choose the minimum received value), it is enough for the node to receive
just one copy of that value. Let x receive the value of source s from in-neighbors
x1, . . . , xk , k > 1. This means that in the DAG, there are directed paths from s to (at
least) k distinct in-neighbors of x. This also means that if the link between x and one
of them, say x1, did not exist, the value from s would still arrive to x from those other
neighbors, x2, . . . , xk . In fact, if we had removed the links between x and all those
in-neighbors except one, x would still have received the value of s from that neighbor.
In other words, the links between x and x1, . . . , xk are redundant: It is sufficient to
keep one; all others are useless and can be pruned. Notice that the choice regarding
the link that should be kept is irrelevant.

10. If in the YO- phase, a node receives the same value from more than one in-
neighbor, it will ask all of them except one to prune the link connecting them
and it will declare those links useless. If a node receives such a request, it
will declare useless (i.e., remove from consideration in the next iterations) the
connecting link.

Notice that after pruning a link because of rule (10), a sink might become a leaf and
thus useless (by rule (9)) (see Figure 3.57).
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FIGURE 3.57: The effects of pruning in the first iteration: Some nodes (in black) and links
are removed from consideration.

The pruning rules require communication: In rule (7), a sink leaf needs to ask its
only neighbor to declare the link between them useless; in rule (8), a node receiving
redundant information needs to ask some of its neighbors to prune the connecting
link. We will have this communication take place during the -YO phase: The message
containing the vote will also include the request, if any, to declare that link useless.
In other words,

pruning is performed when voting.

Let us return now on our concern on how to detect termination. As we will see,
the pruning operations, integrated in the -YO phase, will do the trick. To understand
how and why, consider the effect of performing a full iteration (with pruning) on a
DAG with only one source.
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FIGURE 3.58: The effects of pruning in the second iteration: Other nodes (in black) and links
are removed from consideration.

Property 3.8.15 If the DAG has a single source, then, after an iteration, the new
DAG is composed of only one node, the source.

In other words, when there is a single source c, all other nodes will be removed,
and c will be the only useful node left. This situation will be discovered by c when,
because of pruning, it will have no neighbors (Figure 3.59).

Costs The general formula expressing the costs of protocol YO-YO is easy to
establish; however, the exact determination of the costs expressed by the formula is
still an open research problem. Let us derive the general formula.

In the Setup phase, each node sends its value to all its neighbors; hence, on each
link there will be two messages sent, for a total of 2m messages.
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FIGURE 3.59: The effects of pruning in the third iteration: Termination is detected as the
source has no more neighbors in the DAG.

Consider now an iteration. In the YO- stage, every useful node (except the sinks)
sends a message to its out-neighbors; hence, on each link still under consideration,
there will be exactly one message sent. Similarly, in the -YO stage, every useful node
(except the sources) sends a message to its in-neighbors; hence, on each link there
will be again only one message sent. Thus, in total in iteration i there will be exactly
2mi messages, where mi is the number of links in the DAG used at stage i.

The notification of termination from the leader can be performed by broadcasting
on the constructed spanning tree with only n− 1 messages.

Hence, the total cost will be

2
k(G)∑

i=0
mi + n− 1,

where m0 = m and k(G) is the total number of iterations on network G.
We need now to establish the number of iterations k(G). Let D(1) = �G be the

original DAG obtained fromG as a result of setup. LetG(1) be the undirected graph
defined as follows: There is a node for each source inD(1) and there is a link between
two nodes if and only if the two corresponding sources have a sink in common.
Consider now the diameter d(G(1)) of this graph.

Property 3.8.16 The number of iteration is at most �log diam(G(1))� + 1.

To see why this is the case, consider any two neighbors a and b in G(1). As, by
definition, the corresponding sources in D(1) have a common sink, at least one of
these two sources will be defeated (because the sink will vote YES to only one of
them). This means that if we take any path in G(1), at least half of the nodes on that
path will correspond to sources that will cease to be such at the end of this iteration.

4 In a DAG, two sources a and b are said to have a common sink c if c is reachable from both a and b.
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Furthermore, if (the source corresponding to) a survives, it will now have a sink
in common with each of the undefeated (sources corresponding to) neighbors of b.
This means that if we consider the new DAG D(2), the corresponding graph G(2) is
exactly the graph obtained by removing the nodes associated to the defeated sources,
and linking together the nodes previously at length two. In other words, d(G(2)) ≤
� d(G(1))/2�.

Similar will be the relationship between the graphsG(i − 1) andG(i) correspond-
ing to the DAG D(i − 1) of iteration i − 1 and to the resulting new DAG D(i), re-
spectively. In other words, d(G(i)) ≤ � d(G(i − 1))/2�. Observe that diam(G(i)) = 1
corresponds to a situation where all sources except one will be defeated in this iter-
ation, and d(G(i)) = 0 corresponds to the situation where there is only one source
left (which does not know it yet). As d(G(i)) ≤ 1 after at most �log diam(G(1))�
iterations, the property follows:

As the diameter of a graph cannot be greater than the number of its nodes, and as
the nodes of G(1) correspond to the sources of �G, we have that

k(G) ≤ ⌈ log s( �G)
⌉ ≤ ⌈ log n

⌉
.

We can thus establish that without pruning, that is, with mi = m, we have a
O(m log n) total cost

M[Yo – Yo (without pruning)] ≤ 2 m log n+ l.o.t. (3.42)

The unsolved problem is the determination of the real cost of the algorithm, when
the effects of pruning are taken into account.

3.8.4 Lower Bounds and Equivalences

We have seen a complex but rather efficient protocol, MegaMerger, for electing a
leader in an arbitrary network. In fact, it uses O(m+ n log n) messages in the worst
case. This means that in a ring network it uses O(n log n) messages and it is thus
optimal, without even knowing that the network is a ring.

The next question we should ask is how efficient a universal election protocol can
be. In other words,

what is the complexity of the election problem?

The answer is not difficult to derive.
First of all observe that any election protocol requires to send a message on every

link. To see why this is true, assume by contradiction that indeed there is a correct
universal election protocolA that in every networkG and in every execution under IR
does not send a message on every link ofG. Consider a networkG and an execution
of A in G; let z be the entity that becomes leader and let e = (x, y) ∈ E be a link
where no message is transmitted by A (Figure 3.60(a)).
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FIGURE 3.60: Every universal election protocol must send messages on every link.

We will now construct a new graph H as follows: We make two copies of G
and remove from both of them the edge e; we then connect these two graphs G′
and G′′ by adding two new edges e1 = (x′, x′′) and e2 = (y′, y′′), where x′ and x′′
(respective y′ and y′′) are the copies of x (respective y) in G′ and G′′, respectively,
and where the labels are: lx′ (e1) = lx′′ (e1) = lx(e) and ly′ (e1) = ly′′ (e2) = ly(e)
(see Figure 3.60(b)).

Run exactly the same execution of A we did in G on the two components G′ and
G′′ ofH : As no message was sent along (x, y) inG, this is possible, but as no message
was sent along (x, y) in the original execution, x′ and x′′ will never send messages to
each other in the current execution; similarly, y′ and y′′ will never send messages to
each other. This means that the entities ofG′ will never communicate with the entities
of G′′ during this execution; thus, they will not be aware of their existence and will
operate solely within G′; similarly for the entities of G′′.

This means that when the execution of A in G′ terminates, entity z′ will become
leader; but similarly, entity z′′ inG′′ will become leader as well. In other words, two
leaders will be elected, contradicting the correctness of protocol A. In other words,

M(Elect /IR) ≥ m.

This lower bound is powerful enough to provide us with interesting and useful
information; for example, it states that �(n2) messages are needed in a complete
graph if you do not know that is a complete graph. By contrast, we know that there
are networks where election requires way more than m messages; for example, in
rings m = n but we need �(n log n) messages. As a universal election protocol must
run in every network, including rings, we can say that in the worst case,

M(Elect/IR) ≥ �(m+ n log n). (3.43)
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This means that protocol MegaMerger is the worst case optimal and we know the
complexity of the election problem.

Property 3.8.17 The message complexity of election under IR is �(m+ n log n).

We are now going to see that constructing a spanning tree SPT and electing a leader
Elect are strictly equivalent: Any solution to one of them can be easily modified so
as to solve the other with the same message cost (in order of magnitude).

First of all, observe that , similarly to the Election problem, SPT also requires a
message to be sent on every link (Exercise 3.10.85):

M(SPT/IR) ≥ m. (3.44)

We are now going to see how we can construct a spanning-tree construction al-
gorithm from any existing election protocol. Let A be an election protocol; consider
now the following protocol B:

1. Elect a leader using A.

2. The leader starts the execution of protocol Shout.

Recall that protocol Shout (seen in Section 2.5) will correctly construct a spanning
tree if there is a unique initiator. As the leader elected in step (1) is unique, a spanning
tree will be constructed in step (2). So, protocol B solves SPT. What is the cost ? As
Shout uses exactly 2m messages, we have

M[B] = M[A]+ 2m.

In other words, with at mostO(m) additional messages, any election protocol can
be made to construct a spanning tree; as �(m) messages are needed anyway (Equation
3.44), this means that

M(SPT/IR) ≤M(Elect/IR). (3.45)

Focus now on a spanning-tree construction algorithm C. Using C as the first step,
it is easy to construct an election protocol D where (Exercise 3.10.86)

M[D] = M[C]+O(n).

In other words, the message complexity of Elect is no more than that of Elect
plus at most another O(n) messages; as election requires more than O(n) messages
anyway (Property 3.8.17), this means that

M(Elect/IR) ≤M(SPT/IR). (3.46)
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Combining Equations 3.45 and 3.46, we have not only that the problems are com-
putationally equivalent

Elect(IR) ≡ SPT(IR) (3.47)

but also that they have the same complexity:

M(Elect/IR) =M(SPT/IR). (3.48)

Using similar arguments, it is possible to establish the computational and com-
plexity equivalence of election with several other problems (e.g., see Exercise
3.10.87).
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Moran [25]. The �(m+ n log n) lower bound for universal election as well as some
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3.10 EXERCISES, PROBLEMS, AND ANSWERS

3.10.1 Exercises

Exercise 3.10.1 Modify protocol MinF-Tree (presented in Section 2.6.2) so as to
implement strategy Elect Minimum Initiator in a tree. Prove its correctness and analyze
its costs. Show that, in the worst case, it uses 3n+ k" − 4 ≤ 4n− 4 messages.

Exercise 3.10.2 Design an efficient single-initiator protocol to find the minimum
value in a ring. Prove its correctness and analyze its costs.

Exercise 3.10.3 Show that the time costs of protocol All the Way will be at most
2n− 1. Determine also the minimum cost and the condition that will cause it.

Exercise 3.10.4 Modify protocol All the Way so to use strategy Elect Minimum
Initiator.

Exercise 3.10.5 Modify protocol AsFar so to use strategy Elect Minimum Initiator.
Determine the average number of messages assuming that any subset of k∗ entities is
equally likely to be the initiators.

Exercise 3.10.6 Expand the rules of protocol Stages described in Section 3.3.4, so
as to enforce message ordering.

Exercise 3.10.7 Show that in protocol Stages, there will be at most one enqueued
message per closed port.

Exercise 3.10.8 Prove that in protocol Stages with Feedback, the minimum distance
between two candidates in stage i is d(i) ≥ 2i−1.

Exercise 3.10.9 Show an initial configuration for n = 8 in which protocol Stages
will require the most messages. Describe how to construct the “worst configuration”
for any n.

Exercise 3.10.10 Determine the ideal time complexity of protocol Stages.

Exercise 3.10.11 Modify protocol Stages using the min-max approach discussed in
Section 3.3.7. Prove its correctness. Show that its message costs are unchanged.

Exercise 3.10.12 Write the rules of protocol Stages* described in Section 3.3.4.

Exercise 3.10.13 Assume that in Stages* candidate x in stage i receives a message
M∗ with stage j > i. Prove that if x survives, then id(x) is smaller not only of id∗
but also of the ids in the messages “jumped over” byM∗.

Exercise 3.10.14 Show that protocol Stages* correctly terminates.
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Exercise 3.10.15 Prove that the message and time costs of Stages* are no worse
that those of Stages. Produce an example in which the costs of Stages* are actually
smaller.

Exercise 3.10.16 Write the rules of protocol Stages with Feedback assuming mes-
sage ordering.

Exercise 3.10.17 Derive the ideal time complexity of protocol Stages with Feedback.

Exercise 3.10.18 Write the rules of protocol Stages with Feedback enforcing mes-
sage ordering.

Exercise 3.10.19 Prove that in protocol Stages with Feedback, the number of ring
segments where no feedback will be transmitted in stage i is ni+1.

Exercise 3.10.20 Prove that in protocol Stages with Feedback, the minimum distance
between two candidates in stage i is d(i) ≥ 3i−1.

Exercise 3.10.21 Give a more accurate estimate of the message costs of protocol
Stages with Feedback.

Exercise 3.10.22 Show an initial configuration for n = 9 in which protocol Stages
with Feedback will require the most stages. Describe how to construct the “worst
configuration” for any n.

Exercise 3.10.23 Modify protocol Stages with Feedback using the min-max ap-
proach discussed in Section 3.3.7. Prove its correctness. Show that its message costs
are unchanged.

Exercise 3.10.24 Implement the alternating step strategy under the same restrictions
and with the same cost of protocol Alternate but without closing any port.

Exercise 3.10.25 Determine initial configurations that will force protocol Alternate
to use k steps when n = Fk .

Exercise 3.10.26 Show that the worst case number of steps of protocol Alternate is
achievable for every n > 4.

Exercise 3.10.27 Determine the ideal time complexity of protocol Alternate.

Exercise 3.10.28 Modify protocol Alternate using the min-max approach discussed
in Section 3.3.7. Prove its correctness. Show that its message costs are unchanged.

Exercise 3.10.29 Show the step-by-step execution of Stages and of UniStages in
the ring of Figure 3.3. Indicate for each step, the values know at the candidates.
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Exercise 3.10.30 Determine the ideal time complexity of protocol UniStages.

Exercise 3.10.31 Modify protocol UniStages using the min-max approach discussed
in Section 3.3.7. Prove its correctness. Show that its message costs are unchanged.

Exercise 3.10.32 Design an exact simulation of Stages with Feedback for unidirec-
tional rings. Analyze its costs.

Exercise 3.10.33 Show the step-by-step execution of Alternate and of UniAlternate
in the ring of Figure 3.3. Indicate for each step, the values know at the candidates.

Exercise 3.10.34 Without changing its message cost, modify protocol UniAlternate
so that it does not require Message Ordering.

Exercise 3.10.35 Prove that the ideal time complexity of protocol UniAlternate is
O(n).

Exercise 3.10.36 Modify protocol UniAlternate using the min-max approach dis-
cussed in Section 3.3.7. Prove its correctness. Show that its message costs are un-
changed.

Exercise 3.10.37 Prove that in protocol MinMax, if a candidate x survives an even
stage i, its predecessor l(i, x) becomes defeated.

Exercise 3.10.38 Show that the worst case number of steps of protocol MinMax is
achievable.

Exercise 3.10.39 Modify protocol MinMax so that it does not require Message
Ordering. Implement your modification and throughly test your implementation.

Exercise 3.10.40 For protocol MinMax, consider the configuration depicted in Fig-
ure 3.32. Prove that once envelope (11, 3) reaches the defeated node z, z can determine
that 11 will survive this stage.

Exercise 3.10.41 Write the rules of Protocol MinMax+ assuming message ordering.

Exercise 3.10.42 Write the rules of Protocol MinMax+ without assuming message
ordering.

Exercise 3.10.43 Prove Property 3.3.1.

Exercise 3.10.44 Prove that in protocol MinMax+, if an envelope with value v
reaches an even stage i + 1, it saves at least Fi messages in stage i with respect to
MinMax (Hint: Use Property 3.3.1.).
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Exercise 3.10.45 Prove that even if the entities known, aveA(I |n known) ≥ ( 1
4 − ε)

n log n for any election protocol A for unidirectional rings.

Exercise 3.10.46 Prove that in bidirectional rings, aveA(I ) ≥ 1
2 nHn for any election

protocol A.

Exercise 3.10.47 Prove that even if the entities known, aveA(I |nknown) ≥ 1
2n log n

for any election protocol A for unidirectional rings.

Exercise 3.10.48 Determine the exact complexity of Wake-Up in a mesh of dimen-
sions a × b.

Exercise 3.10.49 Show how to broadcast from a corner of a mesh dimensions a × b
with less than 2n messages.

Exercise 3.10.50 In Protocol ElectMesh, in the first stage of the election process,
if an interior node receives an election message, it will reply to the sender “I am in
the interior,” so that no subsequent election messages are sent to it. Explain why it is
possible to achieve the same goal without sending those replies.

Exercise 3.10.51 Consider the following simple modification to Protocol
ElectMesh: When sending a wake-up message, a node includes the information of
whether it is an internal, a border, or a corner node. Then, during the first stage of
the election, a border node uses this information if possible to send the election mes-
sage only along the outer ring (it might not be possible.). Show that the protocol so
modified uses at most 4(a + b)+ 5n+ k" − 32 messages.

Exercise 3.10.52 Broadcasting in Oriented Mesh. Design a protocol that allows
to broadcast in an oriented mesh using n− 1 messages regardless of the location of
the initiator.

Exercise 3.10.53 Traversal in Oriented Mesh. Design a protocol that allows to
traverse an oriented mesh using n− 1 messages regardless of the location of the
initiator.

Exercise 3.10.54 Wake-Up in Oriented Mesh. Design a protocol that allows to
wake-up all the entities in an oriented mesh using less than 2n messages regardless
of the location and the number of the initiators.

Exercise 3.10.55 Show that the effect of rounding up αi does not affect the order
of magnitude of the cost of Protocol MarkBorder derived in Section 3.4.2 (Hint:
Show that it amounts to at most eight extra messages per candidate per stage with an
insignificant change in the bound on the number of candidates in each stage).
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Exercise 3.10.56 Show that the ideal time of protocol MarkBorder can be as bad
as O(n).

Exercise 3.10.57 Improving Time in Tori ("") Modify Protocol MarkBorder so
that the time complexity isO(

√
n) without increasing the message complexity. Ensure

that the modified protocol is correct.

Exercise 3.10.58 Election in Rectangular Torus (") Modify Protocol MarkBorder
so that it elects a leader in a rectangular torus of dimension l × w (l ≤ w), using
�(n+ l log l/w) messages.

Exercise 3.10.59 Determine the cost of electing a leader in an oriented hypercube if
in protocol HyperElect the propagation of the Match messages is done by broadcasting
in the appropriate subcube instead of “compressing the address.”

Exercise 3.10.60 Prove that in protocol HyperElect the distanced(j − 1, j ) between
wj−1(z) and wj (z) is at most j .

Exercise 3.10.61 Prove Lemma 3.5.1, that is, that during the execution of protocol
HyperElect, the only duelists in stage i are the entities with the smallest id in one of
the hypercubes of dimension i − 1 in Hk:i−1.

Exercise 3.10.62 Show that the time complexity of Protocol HyperFlood is
O(log3N ).

Exercise 3.10.63 ("") Prove that it is possible to elect a leader in a hypercube using
O(n) messages with any sense of direction (Hint: Use long messages).

Exercise 3.10.64 Prove that in the strategy CompleteElect outlined in Section 3.6.1,
the territories of any two candidates in the same stage have no nodes in common.

Exercise 3.10.65 Prove that the strategy CompleteElect outlined in Section 3.6.1
solves the election problem.

Exercise 3.10.66 Determine the cost of the strategy CompleteElect described in
Section 3.6.1 in the worst case (Hint: Consider how many candidates there can be at
level i).

Exercise 3.10.67 Analyze the ideal time cost of protocol CompleteElect described
in Section 3.6.1.

Exercise 3.10.68 Design an election protocol for complete graphs that, like Com-
pleteElect, uses O(n log n) messages but uses only O(n/ log n) time in the worst
case.
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Exercise 3.10.69 Generalize the answer to Exercise 3.10.68. Design an election
protocol for complete graphs that, for any log n ≤ k ≤ n, uses O(nk) messages and
O(n/k) time in the worst case.

Exercise 3.10.70 Prove that all the rings R(2), . . . , R(k) where messages are sent
by protocol Kelect do not have links in common.

Exercise 3.10.71 Write the code for, implement, and test protocol Kelect-Stages.

Exercise 3.10.72 (") Consider using the ring protocol Alternate instead of Stages
in Kelect. Determine what will be the cost in this case.

Exercise 3.10.73 ("") Determine the average message costs of protocol Kelect-
Stages.

Exercise 3.10.74 (") Show how to elect a leader in a complete network with
O(n log n) messages in the worst case but only O(n) on the average.

Exercise 3.10.75 ("") Prove that it is possible to elect a leader in a complete graph
using O(n) messages with any sense of direction.

Exercise 3.10.76 Show how to elect a leader in the chordal ring Cn〈1, 2, 3, 4..., t〉
with O

(
n+ n

t
log n

t

)
messages.

Exercise 3.10.77 Prove that in chordal ring Ctn electing a leader requires at least
�
(
n+ n

t
log n

t

)
messages in the worst case (Hint: Reduce the problem to that of

electing a leader on a ring of size n/t).

Exercise 3.10.78 Show how to elect a leader in the double cube Cn〈1, 2, 4, 8...,
2�log n�〉 with O(n) messages.

Exercise 3.10.79 Consider a merger message from city A arriving at neighbouring
city B along merge link (a, b) in protocol Mega-Merger. Prove that if we reverse the
logical direction of the links on the path from D(A) to the exit point a and direct
toward B the merge link, the union of A and B will be rooted in the downtown of A.

Exercise 3.10.80 District b of B has just received a Let-us-Merge message from a

along merge link (a, b). From the message, b finds out that level(A) > level(B); thus,
it postpones the request. In the meanwhile, the downtown D(B) chooses (a, b) as its
merge link. Explain why this situation will never occur.

Exercise 3.10.81 Find a way to avoid notification of termination by the downtown
of the megacity in protocol Mega-Merger (Hint: Show that by the time the downtown
understands that the mega-merger is completed, all other districts already know that
their execution of the protocol is terminated).
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Exercise 3.10.82 Time Costs. Show that protocol Mega-Merger uses at most
O(n log n) ideal time units.

Exercise 3.10.83 Prove that in the YO-YO protocol, during an iteration, no sink or
internal node will become a source.

Exercise 3.10.84 Modify the YO-YO protocol so that upon termination, a spanning
tree rooted in the leader has been constructed. Achieve this goal without any additional
messages.

Exercise 3.10.85 Prove that to solve SPT under IR, a message must be sent on
every link.

Exercise 3.10.86 Show how to transform a spanning-tree construction algorithm C
so as to elect a leader with at most O(n) additional messages.

Exercise 3.10.87 Prove that under IR, the problem of finding the smallest of the
entities’ values is computationally equivalent to electing a leader and has the same
message complexity.

3.10.2 Problems

Problem 3.10.1 Josephus Problem. Consider the following set of electoral rules.
In stage i, a candidate x sends its id and receives the id from its two neighboring
candidates, r(i, x) and l(i, x): x does not survive this stage if and only if its id is larger
than both received ids. Analyze the corresponding protocol Josephus, determining in
particular the number of stages and the total number of messages both in the worst
and in the average case. Analyze and discuss its time complexity.

Problem 3.10.2 Alternating Steps (") Design a conflict resolution mechanism
for the alternating steps strategy to cope lack of orientation in the ring. Analyze the
complexity of the resulting protocol

Problem 3.10.3 Better Stages ("") Construct a protocol based on electoral stages
that guarantees ni ≤ ni−1

b
with cn messages transmitted in each stage, where c

log b <

1.89.

Problem 3.10.4 Bidirectional MinMax (") Design a bidirectional version of Min-
Max with the same costs.

Problem 3.10.5 Distances in MinMax+ ("") In computing the cost of protocol
MinMax+ we have used dis(i) = Fi+2. Determine what will be the cost if we use
dis(i) = 2i instead.
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Problem 3.10.6 MinMax+ Variations ("") In protocol MinMax+ we use “pro-
motion by distance” only in the even stages and “promotion by witness” only in the
odd stages. Determine what would happen if we use

1. only “promotion by distance” but in every stage;

2. only “promotion by witness” but in every stage;

3. “promotion by distance” in every stage and “promotion by witness” only in odd
stages;

4. “promotion by witness” in every stage and “promotion by distance” only in
even stages;

5. both “promotion by distance” and “promotion by witness” in every stage.

Problem 3.10.7 Bidirectional Oriented Rings. (""") Prove or disprove that there
is an efficient protocol for bidirectional oriented rings that cannot be used nor simu-
lated neither in unidirectional rings nor in general bidirectional ones with the same
or better costs.

Problem 3.10.8 Unoriented Hypercubes. (") Design a protocol that can elect a
leader in a hypercube with arbitrary labelling using O(n log log n) messages. Imple-
ment and test your protocol.

Problem 3.10.9 Linear Election in Hypercubes. (""") Prove or disprove that it
is possible to elect a leader in an hypercube in O(n) messages even when it is not
oriented.

Problem 3.10.10 Oriented Cube-Connected Cycles (") Design an election pro-
tocol for an oriented CCC using O(n) messages. Implement and test your protocol.

Problem 3.10.11 Oriented Butterfly. Design an election protocol for an oriented
butterfly. Determine its complexity. Implement and test your protocol.

Problem 3.10.12 Minimal Chordal Ring ("") Find a chordal ring with k = 2
where it is possible to elect a leader with O(n) messages.

Problem 3.10.13 Unlabelled Chordal Rings ("") Show how to elect a leader
in the chordal ring of Problem 3.10.12 with O(n) messages even if the edges are
arbitrarily labeled.

Problem 3.10.14 Improved Time (") Show how to elect a leader using O(m+
n log n) messages but only O(n) ideal time units.

Problem 3.10.15 Optimal Time ("") Show how to elect a leader in O(d) time
using at most O(m log d) messages.
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3.10.3 Answers to Exercises

Answer to Exercise 3.10.21
The size of the areas where no feedback is sent in stage i can vary from one another,
from stage to stage, and from execution to execution. We can still have an estimate
of their size. In fact, the distance di between two candidates in stage i is d(i) ≥ 3i−1

(Exercise 3.10.20). Thus, the total number of message transmissions caused in
stage i by the feedback will be at most n− ni+13i−1, yielding a total of at most
3n−∑�log3n�

i=1 ni+13i−1 messages.

Answer to Exercise 3.10.44
Let hj (a) denote the candidate that originated message (a, j ). Consider a message
(v, i + 1) and its originator z = hi+1(v); this message was sent after receiving (v, i)
originated by x = hi(v).

Let y = hi(u) be the first candidate after x in the ring in stage i, and (u, i) the
message it originated. As v survives this stage, which is odd (i.e., min), it must be that
v < u.

Message (v, i) travels from x toward y; upon receiving (v, i), node z in this
interval will generate (v, i + 1). Now z cannot be after node hi−1(u) in the ring
because by rule (IV) w = hi−1(u) would immediately generate (v, i + 1) after
receiving (v, i). In other words, either z = w or z is before w. Thus we save at least
d(z, y) ≥ d(w, y) = d(hi−1(u), hi(u)) ≥ Fi , where the last inequality is by Property
3.3.1.

Partial Answer to Exercise 3.10.66
Consider a captured nodey that receives an attack after the other, say from a candidates
x1 in level i. According to the strategy, y will send a Warning to its owner z to
inform it of this attack and wait for a reply; depending on the reply, it will notify
x1 of whether the attack was successful (the case in which y will be captured by
x1) or not. Assume now that while waiting, y receives an attack after the other, say
from candidates x2, . . . , xk in that order, all in the same level i. According to the
strategy, y will issue a Warning to its owner z for each of them. Observe now that if
id(z) > id(x1) > . . . > id(xk), each of these attacks will be successful, and y will in
turn be captured by all those candidates.
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CHAPTER 4

Message Routing and Shortest Paths

4.1 INTRODUCTION

Communication is at the base of computing in a distributed environment, but the task
to achieve it efficiently is neither simple nor trivial.

Consider an entity x that wants to communicate some information to another entity
y; for example, x has a message that it wants to be delivered to y. In general, x does
not know where y is or how to reach it (i.e., which paths lead to it); actually, it might
not even know if y is a neighbor or not.

Still, the communication is always possible if the network �G is strongly connected.
In fact, it is sufficient for x to broadcast the information: every entity, including y will
receive it. This simple solution, called broadcast routing, is obviously not efficient;
on the contrary, it is impractical, expensive in terms of cost, and not very secure (too
many other nodes receive the message), even if it is performed only on a spanning-tree
of the network.

A more efficient approach is to choose a single path in �G from x to y: The message
sent by x will travel along this path only, relayed by the entities in the path, until it
reaches its destination y. The process of determining a path between a source x and a
destination y is known as routing.

If there is more than one path from x to y, we would obviously like to choose the
“best” one, that is, the least expensive one. The cost θ (a, b) ≥ 0 of a link (a, b),
traditionally called length, is a value that depends on the system (reflecting, e.g.,
time delay, transmission cost, link reliability, etc.), and the cost of a path is the sum
of the costs of the links composing it. The path of minimum cost is called shortest
path; clearly, the objective is to use this path for sending the message. The process of
determining the most economic path between a source and a destination is known as
shortest-path routing.

The (shortest-path) routing problem is commonly solved by storing at each entity
x the information that will allow to address a message to its destination through a
(shortest) path. This information is called routing table.

In this chapter we will discuss several aspects of the routing problem. First of
all, we will consider the construction of the routing tables. We will then address
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FIGURE 4.1: Determining the shortest paths from s to the other entities.

the problem of maintaining the information of the tables up to date, should changes
occur in the system. Finally, we will discuss how to represent routing information in
a compact way, suitable for systems where space is a problem. In the following, and
unless otherwise specified, we will assume the set of restrictions IR: Bidirectional
Links (BL), Connectivity (CN), Total Reliability (TR), and Initial Distinct Values (ID).

4.2 SHORTEST PATH ROUTING

The routing table of an entity contains information on how to reach any possible
destination. In this section we examine how this information can be acquired, and
the table constructed. As we will see, this problem is related to the construction
of particular spanning-trees of the network. In the following, and unless otherwise
specified, we will focus on shortest-path routing.

Different types of routing tables can be defined, depending on the amount of
information contained in them. We will consider for now the full routing table: For
each destination, there is stored a shortest path to reach it; if there are more than one
shortest path, only the lexicographically smallest1 will be stored. For example, in the
network of Figure 4.1, the routing table RT(s) for s is shown in Table 4.1.

We will see different approaches to construct routing tables, some depending on
the amount of local storage an entity has available.

4.2.1 Gossiping the Network Maps

A first obvious solution would be to construct at every entity the entire map of the
network with all the costs; then, each entity can locally and directly compute its
shortest-path routing table. This solution obviously requires that the local memory
available to an entity is large enough to store the entire map of the network.

1 The lexicographic order will be over the strings of the names of the nodes in the paths.
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TABLE 4.1: Full Routing Table for Node s

Routing Shortest
Destination Path Cost

h (s, h) 1
k (s, h)(h, k) 4
c (s, c) 10
d (s, c)(c, d) 12
e (s, e) 5
f (s, e)(e, f ) 8

The map of the network can be viewed as an n× n array MAP(G), one row and one
column per entity, where for any two entities x and y, the entry MAP[x, y] contains
information on whether link (x, y) exists, and if so on its cost. In a sense, each entity
x knows initially only its own row MAP[x, ]. To know the entire map, every entity
needs to know the initial information of all the other entities.

This is a particular instance of a general problem called input collection or gossip:
every entity has a (possibly different) piece of information; the goal is to reach a final
configuration where every entity has all the pieces of information. The solution of the
gossiping problem using normal messages is simple:

every entity broadcasts its initial information.

Since it relies solely on broadcast, this operation is more efficiently performed in
a tree. Thus, the protocol will be as follows:

Map Gossip:

1. An arbitrary spanning tree of the network is created, if not already available;
this tree will be used for all communication.

2. Each entity acquires full information about its neighborhood (e.g., names of
the neighbors, cost of the incident links, etc.), if not already available.

3. Each entity broadcasts its neighborhood information along the tree.

At the end of the execution, each entity has a complete map of the network with
all the link costs; it can then locally construct its shortest-path routing table.

The construction of the initial spanning-tree can be done using O(m+ n log n)
messages, for example using protocol MegaMerger. The acquisition of neighborhood
information requires a single exchange of messages between neighbors, requiring in
total just 2m messages. Each entity x then broadcasts on the tree deg(x) items of
information. Hence the total number of messages will be at most

∑
x deg

(
x
)(
n− 1

) = 2m
(
n− 1

)
.

Thus, we have

M[Map Gossip] = 2 m n+ l.o.t. (4.1)
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This means that, in sparse networks, all the routing tables can be constructed with
at most O(n2) normal messages. Such is the case of meshes, tori, butterflies, and so
forth.

In systems that allow very long messages, not surprisingly the gossip problem, and
thus the routing table construction problem, can be solved with substantially fewer
messages (Exercises 4.6.3 and 4.6.4).

The time costs of gossiping on a tree depend on many factors, including the
diameter of the tree and the number of initial items an entity initially has (Exercise
4.6.2).

4.2.2 Iterative Construction of Routing Tables

The solution we have just seen requires that each entity has locally available enough
storage to store the entire map of the network. If this is not the case, the problem of
constructing the routing tables is more difficult to resolve.

Several traditional sequential methods are based on an iterative approach. Initially,
each entity x knows only its neighboring information: for each neighbor y, the entity
knows the cost θ (x, y) of reaching it using the direct link (x, y). On the basis of
this initial information, x can construct an approximation of its routing table. This
imperfect table is usually called distance vector, and in it the cost for those destinations
x knows nothing about will be set to∞. For example, the initial distance vector for
node s in the network of Figure 4.1 is shown in Table 4.2.

This approximation of the routing table will be refined, and eventually corrected,
through a sequence of iterations. In each iteration, every entity communicates its
current distance vector with all its neighbors. On the basis of the received information,
each entity updates its current information, replacing paths in its own routing table if
the neighbors have found better routes.

How can an entity x determine if a route is better ? The answer is very simple:
when, in an iteration, x is told by a neighbor y that there exists a path π2 from y to z
with cost g2, x checks in its current table the path π1 to z and its cost g1, as well as the
cost θ (x, y). If θ (x, y)+ g2 < g1, then going directly to y and then using π2 to reach
z is less expensive than going to z through the path π1 currently in the table. Among
several better choices, obviously x will select the best one.

TABLE 4.2: Initial Approximation of RT(s)

Routing Shortest
Destination Path Cost

h (s, h) 1
k ? ∞
c (s, c) 10
d ? ∞
e (s, e) 5
f ? ∞
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TABLE 4.3: Initial Distance Vectors
s h k c d e f

s - 1 ∞ 10 ∞ 5 ∞
h 1 - 3 ∞ ∞ ∞ ∞
k ∞ 3 - ∞ ∞ 3 5
c 10 ∞ ∞ - 2 ∞ ∞
d ∞ ∞ ∞ 2 - 8 ∞
e 5 ∞ 3 ∞ 8 - 3
f ∞ ∞ 5 ∞ ∞ 3 -

Specifically, let V i
y [z] denote the cost of the “best” path from y to z known to y

in iteration i; this information is contained in the distance vector sent by y to all its
neighbors at the beginning of iteration i + 1. After sending its own distance vector
and upon receiving the distance vectors of all its neighbors, entity x computes

w[z] = Miny∈N (x)(θ (x, y)+ V i
y [z])

for each destination z. If w[z] < V i
x [z], then the new cost and the corresponding path

to z is chosen, replacing the current selection.
Why should interaction just with the neighbors be sufficient follows from the fact

that the cost γa(b) of the shortest path from a to b has the following defining property:

Property 4.2.1 γa(b) =
{

0 if a = b

Minw∈N (a) {θ (a,w)+ γw(b)} otherwise.

The Protocol Iterated Construction based on this strategy converges to the correct
information and will do so after at most n− 1 iterations (Exercise 4.6.8). For example,
in the graph of Figure 4.1, the process converges to the correct routing tables after
only two iterations; see Tables 4.3–4.5 : for each entity, only the cost information for
every destination is displayed.

The main advantage of this process is that the amount of storage required at an
entity is proportional to the size of the routing table and not to the map of the entire
system.

TABLE 4.4: Distance Vectors After First Iteration
s h k c d e f

s - 1 4 10 12 5 8
h 1 - 3 11 ∞ 6 8
k 4 3 - ∞ 11 3 5
c 10 11 ∞ - 2 10 ∞
d 12 ∞ 11 2 - 8 11
e 5 6 3 10 8 - 3
f 8 8 5 ∞ 11 3 -
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TABLE 4.5: Distance Vectors After Second Iteration
s h k c d e f

s - 1 4 10 12 5 8
h 1 - 3 11 13 6 8
k 4 3 - 13 11 3 5
c 10 11 13 - 2 10 13
d 12 13 11 2 - 8 11
e 5 6 3 10 8 - 3
f 8 8 5 13 11 3 -

Let us analyze the message and time costs of the associated protocol.
In each iteration, an entity sends its distance vector containing costs and path

information; actually, it is not necessary to send the entire path but only the first hop
in it (see discussion in Section 4.4). In other words, in each iteration, an entity x needs
to send n items of information to its deg(x) neighbors. Thus, in total, an iteration
requires 2nm messages. As this process terminates after at most n− 1 iterations, we
have

M[Iterated Construction] = 2 (n− 1) n m. (4.2)

That is, this approach is more expensive than the one based on constructing all the
maps; it does, however, require less local storage.

As for the time complexity, let τ (n) denote the amount of ideal time required to
transmit n items of information to the same neighbor; then

T[Iterated Construction] = (n− 1) τ (n). (4.3)

Clearly, if the system allows very long messages, the protocol can be executed
with fewer messages. In particular, if messages containing O(n) items of information
(instead of O(1)) are possible, then in each iteration an entity can transmit its entire
distance vector to a neighbor with just one message and τ (n) = 1. The entire process
can thus be accomplished with O(n, m) messages and the time complexity would
then be just n− 1.

4.2.3 Constructing Shortest-Path Spanning Tree

The first solution we have seen, protocol Map Gossip, requires that each entity has
locally available enough storage to store the entire map of the network. The second
solution, protocol Iterative Construction, avoids this problem, but it does so at the
expense of a substantially increased amount of messages.

Our goal is to design a protocol that, without increasing the local storage re-
quirements, constructs the routing tables with a smaller amount of communication.
Fortunately, there is an important property that will help us in achieving this goal.
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Consider the paths contained in the full routing table RT(s) of an entity s, for
example, the ones in Table 4.1.These paths define a subgraph of the network (as not
every link is included). This subgraph is special: It is connected, contains all the
nodes, and does not have cycles (see Figure 4.1 where the subgraph links are in bold);
in other words,

it is a spanning tree!

It is called the shortest path spanning tree rooted in s(PT(s)), sometimes also known
as the sink tree of s.

This fact is important because it tells us that, to construct the routing table RT(s)
of s, we just need to construct the shortest path spanning tree PT(s).

Protocol Design To construct the shortest path spanning tree PT(s), we can adapt
a classical serial strategy for constructing PT(s) starting from the source s:

Serial Strategy

� We are given a connected fragment T of PT(s), containing s (initially, T will be
composed of just s).
� Consider now all the links going outside of T (i.e., to nodes not yet in T). To each

such link (x, y) associate the value v(x, y) = γs(x)+ θ (x, y), that is, v(x, y) is
the cost of reaching y from the source s by first going to x (through a shortest
path) and then using the link (x, y) to reach y.
� Add to T the link (a, b) for which v(a, b) is minimum; in case of a tie, choose

the one leading to the node with the lexicographically smallest name.

The reason this strategy works is because of the following property:

Property 4.2.2 Let T and (a, b) be as defined in the serial strategy. Then T ∪ (a, b)
is a connected fragment T of PT(s).

That is, the new tree, obtained by adding the chosen (a, b) to T, is also a connected
fragment of PT(s), containing s, and it is clearly larger than T. In other words, using
this strategy, the shortest path spanning-tree PT(s) will be constructed, starting from
s, by adding the appropriate links, one at the time.

The algorithm based on this strategy will be a sequence of iterations started from the
root. In each iteration, the outgoing link (a, b) with minimum cost v(a, b) is chosen;
the link (a, b) and the node b are added to the fragment, and a new iteration is started.
The process terminates when the fragment includes all the nodes.

Our goal is now to implement this algorithm efficiently in a distributed way.
First of all, let us consider what a node y in the fragment T knows. Definitely y

knows which of its links are part of the current fragment; it also knows the length
γs(y) of the shortest path from the source s to it.
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IMPORTANT. Let us assume for the moment that y also knows which of its links are
outgoing (i.e., lead to nodes outside of the current fragment) and which are internal.

In this case, to find the outgoing link (a, b) with minimum cost v (a, b) is rather
simple, and the entire iteration is composed of four easy steps:

Iteration

1. The root s broadcasts in T the start of the new iteration.

2. Upon receiving the start, each entity x in the current fragment T computes
locally v(x, y)= γs(x)+ θ (x, y) for each of its outgoing incident links (x, y); it
then selects among them the link e = (x, y′) for which v(x, y′) is minimized.

3. The overall minimum v(a, b) among all the locally selected v(e)’s is computed
at s, using a minimum-finding for (rooted) trees (e.g., see Section 2.6.7), and
the corresponding link (a, b) is chosen as the one to be added to the fragment.

4. The root s notifies b of the selection; the link (a, b) is added to the spanning-tree;
b computes γs(b), and s is notified of the end of the iteration.

Each iteration can be performed efficiently, in O(n) messages, as each operation
(broadcast, min-finding, notifications) is performed on a tree of at most n nodes.

There are a couple of problems that need to be addressed. A small problem is how
can b compute γs(b). This value is actually determined at s by the algorithm in this
iteration; hence, s can communicate it to b when notifying it of its selection.

A more difficult problem regards the knowledge of which links are outgoing (i.e.,
they lead to nodes outside of the current fragment); we have assumed that an en-
tity in T has such a knowledge about its links. But how can such a knowledge be
ensured?

As described, during an iteration, messages are sent only on the links of T and on
the link selected in that iteration. This means that the outgoing links are all unexplored
(i.e., no message has been sent or received on them). As we do not know which are
outgoing, an entity could perform the computation of step 2 for each of its unexplored
incident links and select the minimum among those. Consider for example the graph
of Figure 4.2(a) and assume that we have already constructed the fragment shown
in Figure 4.2(b). There are four unexplored links incident to the fragment (shown
as leading to square boxes), each with its value (shown in the corresponding square
box); the link (s, e) among them has minimum value and is chosen; it is outgoing and
it is added to the segment. The new segment is shown in Figure 4.2(c) together with
the unexplored links incident on it.

However, not all unexplored links are outgoing: An unexplored link might be
internal (i.e., leading to a node already in the fragment), and selecting such a link
would be an error. For example, in Figure 4.2(c), the unexplored link (e, k) has value
v(e, k) = 7, which is minimum among the unexplored edges incident on the fragment,
and hence would be chosen; however, node e is already in the fragment.

We could allow for errors: We choose among the unexplored links and, if the
link (in our example: (e, k)) selected by the root s in step 3 turns out to be internal
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FIGURE 4.2: Determining the next link to be added to the fragment.

(k would find out in step 4 when the notification arrives), we eliminate that link from
consideration and select another one. The drawback of this approach is its overall
cost. In fact, since initially all links are unexplored, we might have to perform the
entire selection process for every link. This means that the cost will be O(nm), which
in the worst case is O(n3): a high price to construct a single routing table.

A more efficient approach is to add a mechanism so that no error will occur.
Fortunately, this can be achieved simply and efficiently as follows.

When a node b becomes part of the tree, it sends a message to all its neighbors
notifying them that it is now part of the tree. Upon receiving such a message, a
neighbor c knows that this link must no longer be used when performing shortest
path calculations for the tree. As a side effect, in our example, when the link (s, e)
is chosen in Figure 4.2(b), node e already knows that the link (e, k) leads to a node
already in the fragment; thus such a link is not considered, as shown in Figure 4.2(d).

RECALL. We have used a similar strategy with the protocol for depth-first traversal,
to decrease its time complexity.

IMPORTANT. It is necessary for b to ensure that all its neighbors have received its
message before a new iteration is started. Otherwise, due to time delays, a neighbor
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c might receive the request to compute the minimum for the next iteration before the
message from b has even arrived; thus, it is possible that c (not knowing yet that b is
part of the tree) chooses its link to b as its minimum, and such a choice is selected as
the overall minimum by the root s. In other words, it is still possible that an internal
link is selected during an iteration.

Summarizing, to avoid mistakes, it is sufficient to modify rule 4 as follows:

4.′ The root s sends an Expand message to b and the link (a, b) is added to the
spanning tree; b computes γs(b), sends a notification to its neighbors, waits for
their acknowledgment, and then notifies s of the end of the iteration.

This ensures that there will be only n− 1 iterations, each adding a new node to
the spanning tree, with a total cost of O(n2) messages. Clearly we must also consider
the cost of each node notifying its neighbors (and them sending acknowledgments),
but this adds only O(m) messages in total.

The protocol, called PT Construction, is shown in Figures 4.3–4.6.

Analysis Let us now analyze the cost of protocol PT Construction in details. There
are two basic activities being performed: the expansion of the current fragment of
the tree and the announcement (with acknowledgments) of the addition of the new
node to the fragment.

Let us consider the expansion first. It consists of a “start-up” (the root broadcasting
the Start Iteration message), a “convergecast” (the minimum value is collected at the
root using the MinValue messages), two “notifications” (the root notifies the new
node using the Expansion message, and the new node notifies the root using the
Iteration Completed message). Each of these operations is performed on the current
fragment, which is a tree, rooted in the source. In particular, the start-up and the
convergecast operations each cost only one message on every link; in the notifications,
messages are sent only on the links in path from the source to the new node, and there
will be only one message in each direction. Thus, in total, on each link of the tree
constructed so far, there will be at most four messages due to the expansion; two
messages will also be sent on the new link added in this expansion. Thus, in the
expansion at iteration i, at most 4(ni − 1)+ 2 messages will be sent, where ni is the
size of the current tree. As the tree is expanded by one node at the time, ni = i. In
fact, initially there is only the source; then the fragment is composed of the source
and a neighbor, and so on. Thus, the total number of messages due to the expansion is

n−1∑

i=1
(4(ni − 1)+ 2) =

n−1∑

i=1
(4i − 2) = 2n(n− 1)− 2(n− 1) = 2n2 − 4n+ 2.

The cost due to announcements and acknowledgments is simple to calculate: Each
node will send a Notify message to all its neighbors when it becomes part of the tree
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PROTOCOL PT Construction.

� States: S = { INITIATOR, IDLE, AWAKE, ACTIVE, WAITING FOR ACK, COMPUTING,
DONE };
SINIT = { INITIATOR,IDLE }; STERM = { DONE }.
� Restrictions: IR ; UI.

INITIATOR
Spontaneously
begin

source:= true;
my distance:= 0;
ackcount:= |N (x)|;
send(Notify) to N (x);

end

Receiving(Ack)
begin

ackcount:= ackcount - 1;
if ackcount = 0 then

iteration:= 1;
v(x, y) := MIN{v(x, z) : z ∈ N (x)};
path length:= v(x, y);
Children:={y};
send(Expand, iteration, path length) to y;
Unvisited:= N (x)− {y};
become ACTIVE;

endif
end

IDLE
Receiving(Notify)
begin

Unvisited:= N (x)− {sender};
send(Ack) to sender;
become AWAKE;

end

AWAKE
Receiving(Expand, iteration, path value)
begin

my distance:= path value ;
parent:= sender;
Children:= ∅;
if |N (x)| > 1 then

send(Notify) to N (x)− {sender};
ackcounter:= |N (x)| − 1;
become WAITING FOR ACK;

else
send(I terationCompleted) to parent;
become ACTIVE;

endif
end

FIGURE 4.3: Protocol PT-Construction (I)
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AWAKE
Receiving(Notify)
begin

Unvisited:= Unvisited−{sender};
send(Ack) to sender;

end

WAITING FOR ACK
Receiving(Ack)
begin

ackcount:= ackcount - 1;
if ackcount = 0 then

send(I terationCompleted) to parent;
become ACTIVE;

endif
end

ACTIVE
Receiving(I teration Completed)
begin

if not(source) then
send(I teration Completed) to parent;

else
iteration:= iteration + 1;
send(Start I teration, iteration) to children;
Compute Local Minimum;
childcount:= 0;
become COMPUTING;

endif
end

Receiving(Start I teration, iteration)
begin

iteration:= iteration;
Compute Local Minimum;
if children = ∅ then

send(MinV alue, minpath) to parent;
else

send(Start I teration, iteration) to children;
childcount:=0;
become COMPUTING;

endif
end

FIGURE 4.4: Protocol PT-Construction (II)

and receives an Ack from each of them. Thus, the total number of messages due to
the notifications is

2
∑

x∈V
|N (x)| = 2

∑

x∈V
deg(x) = 4m.

To complete the analysis, we need to consider the final broadcast of the Termination
message, which is performed on the constructed tree; this will add n− 1 messages to
the total, yielding the following:

M[PT Construction] ≤ 2n2 + 4m− 3n+ 1 (4.4)
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ACTIVE
Receiving(Expand, iteration, path value)
begin

send(Expand, iteration, path value) to exit;
if exit = mychoice then

Children := Children ∪ {mychoice};
Unvisited := Unvisited − {mychoice};

endif
end

Receiving(Notify)
begin

Unvisited:= Unvisited −{sender};
send(Ack) to sender;

end

Receiving(T erminate)
begin

send(T erminate) to children;
become DONE;

end

COMPUTING
Receiving(MinV alue, path value)
begin

if path value < minpath then
minpath:= path value;
exit:= sender;

endif
childcount :=childcount + 1;
if childcount = |Children| then

if not(source) then
send(MinV alue, minpath) to parent;
become ACTIVE;

else
Check for Termination;

endif
endif

end

FIGURE 4.5: Protocol PT Construction (III)

By adding a little bookkeeping, the protocol can be used to construct the routing
table RT(s) of the source (Exercise 4.6.13). Hence, we have a protocol that constructs
the routing table of a node using O(n2) messages.

We will see later how more efficient solutions can be derived for the special case
when all the links have the same cost (or, alternatively, there is no cost on the links).

Note that we have made no assumptions other than that the costs are non-negative;
in particular, we did not assume first in first out (FIFO) channels (i.e., message
ordering).

4.2.4 Constructing All-Pairs Shortest Paths

Protocol PT Construction allows us to construct the shortest-path tree of a node,
and thus to construct the routing table of that entity. To solve the original problem of
constructing all the routing table, also known as all-pairs shortest-paths construction,
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Procedure Check f or T ermination
begin

if minpath= inf then
send(T erminate) to Children;
become DONE;

else
send(Expand, iteration, minpath) to exit;
become ACTIVE;

endif
end

Procedure Compute Local Minimum
begin

if Unvisited = ∅ then
minpath:= inf;

else
link length:= v(x, y) = MIN{v(x, z) : z ∈ Unvisited};
minpath:= my distance + link length;
mychoice:= exit:= y;

endif
end

FIGURE 4.6: Procedures used by protocol PT Construction

this process must be repeated for all nodes. The complexity of resulting protocol
PT All follows immediately from equation 4.4:

M[PT All] ≤ 2n3 − 3n2 + 4(m− 1)n (4.5)

The costs of protocols Map Gossip, Iterative Construction, and PT All are shown
in Figure 4.7. Definitively better than protocol Iterative Construction, protocol PT All
matches the worst case cost of Map Gossip without requiring large amounts of local
storage. Hence, it is an efficient solution.

It is clear that some information computed when constructing PT(x) can be reused
in the construction of PT(y). For example, the shortest path from x to y is just the
reverse of the one from y to x (under the bidirectional links assumption we are using);
hence, we just need to determine one of them. Even stronger is the so-called optimality
principle:

Property 4.2.3 If a node x is in the shortest path π from a to b, then π is also a
fragment of PT(x)

Hence, once a shortest path π has been computed for the shortest path tree of an
entity, this path can be added to the shortest path tree of all the entities in the path.
So, in the example of Figure 4.1, the path (s, e)(e, f ) in PT(s) will also be a part of

Algorithm Cost restrictions
Map Gossip O(n m) �(m) local storage

Iterative Construction O(n2 m)
PT All O(n3)

SparserGossip O(n2 log n)

FIGURE 4.7: Constructing all shortest path routing tables.
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PT(e) and PT(f ). However, to date, it is not clear how this fact can be used to derive
a more efficient protocol for constructing all the routing tables.

Constructing a Sparser Subgraph Interestingly, the number of messages can
be brought down from O(n3) to O(n2 log n) not by cleverly exploiting information
but rather by cleverly constructing a spanning subgraph of the network, called sparser
and then simulating the execution of Map Gossip on it. To understand this subgraph,
we need some terminology.

Given a subset V ′ ⊆ V of the nodes, we call the eccentricity of x ∈ V ′ in V ′ its
largest distance from the other nodes of V ′, that is, r(x, V ′) = maxy∈V ′ {dG(x, y)};
then r(V ′) = maxx∈V ′ {r(x, V ′)} is called the radius of V ′. The density of x ∈ V ′
in V ′ instead is the number of its neighbors that are in V ′, that is, den(x, V ′) =
|N (x) ∪ V ′|; the density of V ′ is the sum of the densities of all its nodes: den(V ′) =∑

x∈V ′ den(x, V ′).
Given a collection A of subsets of the nodes, the radius r(A) of A will be just the

largest among the radii of those subsets; the density den(A) will be just the sum of
the densities of those subsets. A (a, b)-sparser is just a partition of the set V of nodes
into subsets such that its radius is r(S) = a and its density is den(S) = b.

The basic idea is to first of all

1. construct a sparser V ′ = 〈V ′1, . . . , V ′k〉;
2. elect a leader xi in each of its sets V ′i ;

3. establish a path connecting the two leaders of each pair of neighboring subsets.

Then the execution of the protocol in G is simulated in the sparser. What this means
is that

4. each leader executes the algorithm for each node in its subset;

5. whenever in the algorithm a message is sent from a node in V ′i to a node in V ′j ,
the message is sent by xi to xj .

An interesting consequence of (5) above is that the cost of a node u sending
a message to all its neighbors, when simulated in the sparser, will depend on the
number of subsets in which u has neighbors as well as on the distance between the
corresponding leaders.

This means that for the simulation to be efficient, the radius should be small,
r(V ′) = O(log n), and the density at most linear, den(S) = O(n). Fortunately we
have (Exercise 4.6.15):

Property 4.2.4 Any connected graph G of n nodes has a (log n, n)-sparser.

The existence of this good sparser is not enough; we must be able to construct
it with a reasonable amount of messages. Fortunately, this is also possible (Exercise
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4.6.16). When constructing it, there are several important details that must be taken
care; in particular, the paths between the centers must be uniquely determined.

Once all of this is done, we must then define the set of rules (Exercise 4.6.17) to sim-
ulate protocol MapGossip. At this point, the resulting protocol, called SparserGossip,
yields the desired performance

M[SparserGossip] = O(n2 log n). (4.6)

Using Long Messages In systems that allow very long messages, not surpris-
ingly the problem can be solved with fewer messages. For example, if messages can
contain O(n) items of information (instead of O(1)), all the shortest path trees can
be constructed with just O(n2) messages (Exercise 4.6.18). If messages can contain
O(n2) items, then any graph problem including the construction of all shortest path
trees can be solved using O(n) messages once a leader has been elected (requiring at
least O(m+ n log n) normal messages). A summary of all these results is shown in
Figure 4.7.

4.2.5 Min-Hop Routing

Consider the case when all links have the same cost (or alternatively, there are no
costs associated to the links), that is, θ (a, b) = θ for all (a, b) ∈ E.

This case is special in several respects. In particular, observe that the shortest path
from a to b will have cost γa(b) = θ dG(a, b), where dG(a, b) is the distance (in
number of hops) of a from b in G; in other words, the cost of a path will depend solely
on the number of hops (i.e., the number of links) in that path. Hence, the shortest path
between two nodes will be the one with minimum hops. For these reasons, routing in
this situation is called min-hop routing.

An interesting consequence is that the shortest path spanning tree of a node co-
incides with its breadth-first spanning tree. In other words, a breadth-first spanning
tree rooted in a node is the shortest path spanning tree of that node when all links
have the same cost.

Protocol PT Construction works for any choice of the costs, provided they are
non-negative; so it constructs a breadth-first spanning tree if all the costs are the
same. However, we can take advantage of the fact that all links have the same costs
to obtain a more efficient protocol. Let us see how.

Breadth-First Spanning-Tree Construction Without any loss of generality,
let us assume that θ = 1; thus, γs(a) = dG(s, a).

We can use the same strategy of protocol PT Construction of starting from s and
successively expanding the fragment; only, instead of choosing one link (and thus one
node) at the time, we can choose several simultaneously: In the first step, s chooses all
the nodes at distance 1 (its neighbors); in the second step, s chooses simultaneously
all the nodes at distance 2; in general, in step i, s chooses simultaneously all the nodes
at distance i; notice that before step i, none of the nodes at distance i was a part of the
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fragment. Clearly, the problem is to determine, in step i, which nodes are at distance
i from s.

Observe this very interesting property: All the neighbors of s are at distance 1 from
s; all their neighbors (not at distance 1 from s) are at distance 2 from s; in general,

Property 4.2.5 If a node is at distance i from s, then its neighbors are at distance
either i − 1 or i or i + 1 from s.

This means that once the nodes at distance i from s have been chosen (and become
part of the fragment), we need to consider only their neighbors to determine which
nodes are at distance i + 1.

So the protocol, which we shall call BF, is rather simple. Initially, the root s sends
a “start iteration 1” message to each neighbor indicating the first iteration of the
algorithm and considers them its children. Each recipient marks its distance as 1,
marks the sender as its parent, and sends an acknowledgment back to the parent. The
tree is now composed of the root s and its neighbors, which are all at distance 1 from s.

In general, after iteration i all the nodes at distance up to i are part of the tree.
Furthermore, each node at distance i knows which of its neighbors are at distance
i − 1 (Exercise 4.6.19).

In iteration i + 1, the root broadcasts on the current tree a “start iteration i + 1”
message. Once this message reaches a node x at distance i, it sends a “explore i + 1”
message to its neighbors that are not at distance i − 1 (recall, x knows which they
are) and waits for a reply from each of them. These neighbors are either at distance i
like x itself, or at i + 1; those at distance i are already in the tree and so do not need
to be included. Those at distance i + 1 must be attached to the tree; however, each
must be attached only once (otherwise we create a cycle and do not form a tree; see
Figure 4.8).

When a neighbor y receives the “Explore” message, the content of its reply will
depend on whether or not y is already part of the tree. If y is not part of the tree, it now
knows that it is at distance i + 1 from s; it then marks the sender as its parent, sends a
positive acknowledgment to it, and becomes part of the tree. If y is part of the tree (even
if it just happened in this iteration), it will reply with a negative acknowledgment.

When x receives the reply from y, if the reply is positive, it will mark y as a
child, otherwise, it will mark y as already in the tree. Once all the replies have been
received, it participates in a convergecast notifying the root that the iteration has been
completed.

Cost Let us now examine the cost of protocol BF. Denote by ni the number of nodes
at distance at most i from s. In each iteration, there are three operations involving
communication: (1) the broadcast of “Start”on the tree constructed so far; (2) the
sending of “Explore” messages sent by the nodes at distance i, and the corresponding
replies; and (3) the convergecast to notify the root of the termination of the iteration.

Consider first the cost of operation (2), that is, the cost of the “Explore” messages
and the corresponding replies. Consider a node x at distance i. As already mentioned,
its neighbors are at distance either i − 1 or i or i + 1. The neighbors at distance i − 1
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FIGURE 4.8: Protocol BF expands an entire level in each iteration.

sent an “Explore” message to x in stage i − 1, so x sent a reply to each of them. In
stage i x sent an “Explore” message to all its other neighbors. Hence, in total, x sent
just one message (either “Explore” or reply) to each of its neighbors. This means that
in total, the number of “Explore” and “Reply” messages is

∑

x∈V
| N (x)‖ = 2m.

We will consider now the overall cost of operations (1) and (3). In iteration i + 1,
both broadcast and convergecast are performed on the tree constructed in iteration i,
thus costing ni − 1 messages each, for a total of 2ni − 2 messages. Therefore, the
total cost will be

∑

1≤i<r(s)
2(ni − 1),

where r(s) denotes the eccentricity of s (i.e., the hight of the breadth-first spanning
tree of s).

Summarizing

M[BF ] ≤ 2m+
∑

1≤i<r(s)

2(ni − 1) ≤ 2m + 2(n− 1) d(G), (4.7)

where d(G) is the diameter of the graph. We know that ni < ni+1 and that nr(s) = n

in any network G and for any root s, but the actual values depend on the nature of G
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and on the position of s. For example, in the complete graph, r(s) = 1 for any s, so
the entire construction is completed in the first iteration; however, m = n(n− 1)/2;
hence the cost will be

n(n− 1)+ 2(n− 1) = n2 + n− 2.

On the contrary, if G is a line and s is an endpoint of the line, r(s) = n− 1 and
in each iteration we only add one node (i.e., ni = i); thus

∑
1≤i<r(s) 2(ni − 1) =

n2 − 4n+ 3; however, m = n− 1; hence the cost will be

2(n− 1)+ n2 − 4n+ 3 = n2 − 2n+ 1.

As for the time complexity, in iteration i, the “Start” messages travel from the root
s to the nodes at distance i − 1, hence arriving there after i − 1 time units; therefore,
the nodes at distance i will receive the “Explore i ” message after i time units. At
that time, they will start the convergecast to notify the root of the termination of the
iteration; this process requires exactly i time units. In other words, iteration i will cost
exactly 2i time units. Summarizing,

T[BF ] = 2
∑

1≤i≤r(s)

i = r(s)(r(s)+ 1) ≤ d(G)2 + d(G). (4.8)

Multiple Layers: An Improved Protocol To improve the costs, we must un-
derstand the structure of protocol BF. We know that the execution of protocol BF is
a sequence of iterations, started by the root.

Each iteration i + 1 of protocol BF can be thought of as composed of three different
phases:

1. Initialization: the root node broadcasts the “start iteration i + 1” along the
already constructed tree, which will reach the leaves (i.e., the nodes at distance
i from the root).

2. Expansion: in this phase, which is started by the leaves, new nodes (i.e., all
those of level i + 1) are added to the tree forming a larger fragment.

3. Termination: the root is notified of the end of this iteration using a convergecast
on the new tree.

Initialization and termination are bookkeeping operations that allow the root to
somehow synchronize the execution of the algorithm, iteration by iteration. For this
reason, the two of them, together, are also called synchronization. Each synchroniza-
tion costs O(n) messages (as it is done on a tree). Hence, this activity alone costs

O(nL)

messages where L is the number of iterations.
In the original protocol BF, we expand the tree one level at the time; hence

L = d(G) and the total cost for synchronization alone is O(n d(G)) messages (see
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FIGURE 4.9: Protocol BF Levels expands l levels in each iteration.

expression 4.7). This means that to reduce the cost of synchronization, we need to
decrease the number of iterations. To do so, we need each iteration to grow the current
tree by more than a single level, that is, we need each expansion phase to add several
levels to the current fragment.

Let us see how to expand the current tree by l ≥ 1 levels, in a single iteration,
efficiently (see Figure 4.9). Assume that initially each node x �= r has a variable
levelx = ∞, while levelr = 0.

Let t be the current level of the leaves; each leaf will start the exploration by
sending Explore(t + 1, l) to its still unexplored neighbors. In general, the expansion
messages will be of the form Explore(level, counter), where level is the next level to
be assigned and counter denotes how many more levels should be expanded by the
node receiving the message.

When a node x not yet in the tree receives its first expansion message, say Ex-
plore(j, k) from neighbor y, it will accept the message, consider the sender y as its
parent in the tree and set its own level to be j. It then considers the number k of levels
still to be expanded. If k = 0, x sends immediately a Positive(j ) reply to its parent y.
Instead, if k > 0, x will send Explore(j + 1, k − 1) to all its other neighbors and wait
for their reply: Those that reply Positive(j + 1) are considered its children, those that
reply Negative(j + 1) are considered not-children; if/when all have sent a reply with
level j + 1, x sends a Positive(j ) reply to its parent y.
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Note that this first “Explore” message will not necessarily determine x’s parent or
level in the final tree; in fact, it is possible that x will receive later an Explore(j ′, k′)
message with a smaller level j ′ < j from a neighbor z. (Note: it might even be possible
that y = z.) What we will do in this case is to have x “trow away” the work already
done and “start from scratch” with the new information: x will accept the message,
consider z its parent, set its level to j ′, send Explore(j ′ + 1, k′ − 1) to all its other
neighbors (assuming k′ > 0), and wait for their reply. Note that x might have to “trow
away” work already done more than once during an iteration. How many times ? It
is not difficult to figure out that it can happen at most t − j + 1 times, where j is the
first level it receives in this iteration (Exercise 4.6.22).

We still have to specify under what conditions will a node x send a negative reply
to a received message Explore(j, k); the rule is simple: x will reply Negative(j ) if no
shorter path is found from the root s to x, that is, if j ≥ levelx .

A more detailed description of the expansion phase of the protocol, which we
will call BF Levels, is shown in Figure 4.10, describing the behavior of a node
x not part of the current fragment. As mentioned, the expansion phase is started
by the leaves of the current fragment, which we will call sources of this phase,
upon receiving the start iteration message from the root. Each source will then send
Explore(t + 1, l) to their unexplored neighbors, where t is the level of the leaves and
l (a design parameter) is the number of levels that will be added to the current frag-
ment in this iteration. The terminating phase also is started by the sources (i.e., the
leaves of the already existing fragment), upon receiving a reply to all their expansion
messages.

When x receives Explore(j, k) from its neighbor y:

1. If j < levelx , a shorter path from the root s to x has been found.
(a) If x already has a parent, then x disregards all previous information (including the

identity of its parent).
(b) x considers y to be its parent, and sets levelx = j .
(c) If k > 0, x sends Explore(j + 1, k − 1) to all its neighbors except its parent. If k = 0,

then a positive reply Positive(j ) is sent to the parent y.
2. Let j > levelx . In this case, this is not a shorter path to x; x replies with a negative

acknowledgment Negative(j ).

When x receives a reply from its neighbor z:

1. If the level of the reply is (levelx + 1) then:
(a) if the reply is Negative(levelx + 1), then x considers z a non-child.
(b) if the reply is Positive(levelx + 1) then x considers z a child.
(c) If, with this message, x has now received a reply with level (levelx + 1) from all its

neighbors except its parent, then it sends Positive(levelx) to its parent.
2. If the level of the reply is not (levelx + 1) then the message is discarded.

FIGURE 4.10: Exploration phase of BF Levels: x is not part of the current fragment
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Correctness During the extension phase all the nodes at distance at most t + l

from the root are indeed reached, as can be easily verified (Exercise 4.6.23). Thus, to
prove the correctness of the protocol, we need just to prove that those nodes will be
attached to the existing fragment at the proper level.

We will prove this by induction on the levels. First of all, all the nodes at level t + 1
are neighbors of the sources and thus each will receive at least one Explore(t + 1, l)
message; when this happens, regardless of whatever has happened before, each will
set its level to t + 1; as this is the smallest level that they can ever receive, their level
will not change during the rest of the iteration.

Let it be true for the nodes up to level t + k, 1 ≤ k ≤ l − 1; we will show that it
also holds for the nodes in level t + k + 1. Let π be the path of length t + k + 1 from
s to x and let u be the neighbor of x in this path; by definition, u is at level t + k and, by
inductive hypothesis, it has correctly set (levelu) = t + k. When this happened, u sent
a message Explore(t + k + 1, l − k − 1) to all its neighbors, except its parent. As x
is clearly not u’s parent, it will eventually receive this message; when this happens,
x will correctly set (levelx) = t + k + 1. So we must show that the expansion phase
will not terminate before x receives this message. Focus again on node u; it will not
send a positive acknowledgment to its parent (and thus the phase can not terminate)
until it receives a reply from all its other neighbors, including x. As, to reply, x must
first receive the message, x will correctly set its level during the phase.

Cost To determine the cost of protocol BF Levels, we need to analyze the cost of
the synchronization and of the expansion phases.

The cost of a synchronization, as we discussed earlier, is at most 2(n− 1) messages,
as both the initialization broadcast and the termination convergecast are performed
on the currently available tree. Hence, the total cost of all synchronization activities
depends on the number of iterations. This quantity is easily determined. As there
are radius(r) < d(G) levels, and we add l levels in every iteration, except in the last
where we add the rest, the number of iterations is at most �d(G)/l�. This means that
the total amount of messages due to synchronization is at most

2(n− 1)

⌈
d(G)

l

⌉
≤ 2

(n− 1)2

l
. (4.9)

Let us now analyze the cost of the expansion phase in iteration i, 1 ≤ i ≤ �d(G)/l�.
Observe that in this phase, only the nodes in the levels L(i) = {(i − 1)l + 1,
(i − 1)l + 2, . . . , il − 1, il} as well as the sources (i.e., the nodes at level (i − 1)l)
will be involved, and messages will only be sent on the mi links between them.
The messages sent during this phase will be just Explore(t + 1, l), Explore(t + 2,
l − 1), Explore(t + 3, l − 2), . . . , Explore(t + l, 0), and the corresponding replies
will be Positive(j ) or Negative(j ), t + 1 ≤ j ≤ t + l.

A node in one of the levels in L(i) sends to its neighbors at most one of each
of those Explore messages; hence there will be on each of edge at most 2l Explore
messages (l in each direction), for a total of 2lmi . As for each Explore there is at most
one reply, the total number of messages sent in this phase will be no more than 4lmi.
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This fact, observing that the set of links involved in each iteration are disjoint, yields
less than

�d(G)/l�∑

i=1

4 l mi = 4 l m (4.10)

messages for all the explorations of all iterations. Combining equations (4.9) and
(4.10), we obtain

M[BF Levels] ≤ 2(n− 1)d(G)

l
+ 4 l m. (4.11)

If we choose l = O(n/
√
m), expression (4.11) becomes

M[BF Levels]= O(n
√
m).

This formula is quite interesting. In fact, it depends not only on n but also on the
square root of the number m of links.

If the network is sparse (i.e., it has O(n) links), then the protocol uses only

O(n1.5)

messages; note that this occurs in any planar network.
The worst case will be with very dense networks (i.e., m = O(n2)). However, in

this case the protocol will use at most

O(n2)

messages, which is no more than protocol BF .
In other words, protocol BF Levels will have the same cost as protocol BF only

for very dense networks and will be much better in all other systems; in particular,
whenever m = o(n2), it uses a subquadratic number of messages.

Let us consider now the ideal time costs of the protocol. Iteration i consists of
reaching levels L(i) and returning to the root; hence the ideal time will be exactly 2il
if 1 ≤ i < �d(G)/l�, and time 2d(G) in the last iteration. Thus, without considering
the roundup, in total we have

T[BF Levels] =
d(G)/l∑

i=1

2 l i = d(G)2

l
+ d(G). (4.12)

The choice l = O(n/
√
m) we considered when counting the messages will give

T[BF Levels]= O(d(G)2√m/n),
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TABLE 4.6: Summary: Costs of Constructing a Breadth-first Tree

Network Algorithm Messages Time

General BF O(m+ nd) O(d2)
General BF Levels O(n

√
m) O(d2√m/n+ d)

Planar BF Levels O(n1.5) O(d2/
√
n+ d)

which, again, is the same ideal time as protocol BF only for very dense networks,
and less in all other systems.

Reducing Time with More Messages () If time is of paramount importance,
better results can be obtained at the cost of more messages. For example, if in protocol
BF Levels we were to choose l = d(G), we would obtain an optimal time costs.

T[BF Levels]= 2d(G).

IMPORTANT. We measure ideal time considering a synchronous execution where
the communication delays are just one unit of time. In such an execution, when
l = d(G), the number of messages will be exactly 2m+ n− 1 (Exercise 4.6.25). In
other words, in this synchronous execution, the protocol has optimal message costs.
However, this is not the message complexity of the protocol, just the cost of that
particular execution. To measure the message complexity we must consider all possi-
ble executions. Remember that to measure ideal time we consider only synchronous
executions, while to measure message costs we must look at all possible executions,
both synchronous and asynchronous (and choose the worst one).

The cost in messages choosing l = d(G) is given by expression (4.11) that
becomes

O(m d(G)).

This quantity is reasonable only for networks of small degree. By the way, a priori
knowledge of d(G) is not necessary to obtain these bounds (either time or messages;
Exercise 4.6.24).

If we are willing to settle for a low but suboptimal time, it is possible to achieve it
with a better message complexity. Let us see how.

In protocol BF Levels the network (and thus the tree) is viewed as divided into
“strips,” each containing l levels of the tree. See Figure 4.11.

The way the protocol works right now, in the expansion phase, each source (i.e.,
each leaf of the existing tree) constructs its own bf-tree over the nodes in the next
l levels. These bf-trees have differential growth rates, some growing quickly, some
slowly. Thus, it is possible for a quickly growing bf-tree to have processed many
more levels than a slower bf-tree. Whenever there are conflicts due to transmission
delays (e.g., the arrival of a message with a better level) or concurrency (e.g., the
arrival of another message with the same level), these conflicts are resolved, either
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FIGURE 4.11: We need more efficient expansion of l levels in each iteration.

by “trowing away” everything already done and joining the new tree or sending a
negative reply. It is the amount of work performed to take care of these conflicts that
drives the costs of the protocol up. For example, when a node joins a bf-tree and has a
(new) parent, it must send out messages to all its other neighbors; thus, if a node has a
high degree and frequently changes trees, these adjacent edge messages dominate the
communication complexity. Clearly, the problem is how to perform these operations
efficiently.

Conflicts and overlap occurring during the constructions of those different bf-trees
in the l levels can be reduced by organizing the sources into clusters and coordinating
the actions of the sources that are in the same cluster, as well as coordinating the
different clusters.

This in turn requires that the sources in the same cluster must be connected so as to
minimize the communication costs among them. The connection through a tree is the
obvious option and is called a cover tree. To avoid conflicts, we want that for different
clusters the corresponding cover trees have no edges in common. So we will have a
forest of cover trees, which we will call the cover of all the sources. To coordinate
the different clusters in the cover, we must be able to reach all sources; this, however,
can already be done using the current fragment (recall, the sources are the leaves of
the fragment).

The message costs of the expansion phase will grow with the number of different
clusters competing for the same node (the so-called load factor); on the contrary, the
time costs will grow with the depth of the cover trees (the so-called depth factor).
Notice that it is possible to obtain tradeoffs between the load factor and the depth
factor by varying the size of the cover (i.e., the number of trees in the forest), for
example, increasing the size of the forest reduces the depth factor while increasing
the load factor.

We are thus faced with the problem of constructing clusters with small amount of
competition and shallow cover trees. Achieving this goal yields a time cost ofO(d1+ε)
and a message cost of O(m1+ε) for any fixed ε > 0. See Exercise 4.6.26.
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4.2.6 Suboptimal Solutions: Routing Trees

Up to now, we have considered only shortest-path routing, that is, we have been look-
ing at systems that always route a message to its destination through the shortest path.
We will call such mechanisms optimal. To construct optimal routing mechanisms, we
had to construct n shortest path trees, one for each node in the network, a task that
we have seen is quite communication expensive.

In some cases, the shortest path requirement is important but not crucial; actually,
in many systems, guarantee of delivery with few communication activities is the only
requirement.

If the shortest path requirement is relaxed or even dropped, the problem of con-
structing a routing mechanism (tables and forwarding scheme) becomes simpler and
can be achieved quite efficiently. Because they do not guarantee shortest paths, such
solutions are called suboptimal. Clearly there are many possibilities depending on
what (suboptimal) requirements the routing mechanism must satisfy.

A particular class of solutions is the one using a single spanning tree of the network
for all the routing, which we shall call routing tree. The advantages of such an approach
are obvious: We need to construct just one tree. Delivery is guaranteed and no more
that diam(T ) messages will be used on the tree T. Depending on which tree is used,
we have different solutions. Let us examine a few.

� Center-Based Routing. As the maximum number of messages used to deliver a
message is at most diam(T), a natural choice for a routing tree is the spanning tree
with a small diameter. One such a tree is shortest path tree rooted in a center of
the network. In fact, let c a center of G (i.e., a node where the maximum distance
is minimized) and let PT(c) be the shortest path tree of c. Then (Exercise 4.6.27),

diam(G) ≤ diam(PT(c)) ≤ 2diam(G).

To construct such a tree, we need first of all to determine a center c and then
construct PT(c), for example, using protocol PT Construction.
� Median-Based Routing. Once we choose a tree T, an edge e = (x, y) of T linking

the subtree T [x − y] to the subtree T [y − x] will be used every time a node
in T [x − y] wants to send a message to a node in T [y − x], and viceversa
(see Figure 4.12), where each use costs θ (e). Thus, assuming that overall every
node generates the same amount of messages for every other node and all nodes
overall generate the same amount of messages, the cost of using T for routing
all this traffic is

Traffic(T ) = ∑

(x,y)∈T
|T [x − y]| |T [y − x]| θ (x, y).

It is not difficult to see that such a measure is exactly the sum of all distances
between nodes (Exercise 4.6.28). Hence, the best tree T to use is one that
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FIGURE 4.12: The message traffic between the two subtrees passes through edge e = (x, y).

minimizes the sum of all distances between nodes. Unfortunately, to construct
the minimum-sum-distance spanning tree of a network is not simple. In fact, the
problem is NP-hard. Fortunately, it is not difficult to construct a near-optimal
solution. In fact, let z be a median of the network (i.e., a node for which the sum
of distances SumDist(z) =∑v∈V dG(x, z) to all other nodes is minimized) and
let PT(z) be the shortest path tree of z. If T  is the spanning tree that minimizes
traffic, then (Exercise 4.6.29)

Traffic(PT(z)) ≤ 2 Traffic(T ).

Thus, to construct such a tree, we need first of all to determine a median z and
then construct PT(z), for example, using protocol PT Construction.
� Minimum-Cost Spanning-Tree Routing. A natural choice for routing tree is a

minimum-cost spanning tree (MST) of the network. The construction of such
a tree can be done, for example, using protocol MegaMerger discussed in
Chapter 3.

All the solutions above have different advantages; for example, the center-based
one offers the best worst-case cost, while the median-based one has the best average
cost. Depending on the nature of the systems and of the applications, each might be
preferable to the others.

There are also other measures that can be used to evaluate a routing tree. For
example, a common measure is the so-called stretch factor σG(T ) of a spanning tree
T of G defined as

σG(T ) = Maxx,y∈V
dT (x, y)

dG(x, y)
. (4.13)

In other words, if a spanning tree T has a stretch factor α, then for each pair of
nodes x and y, the cost of the path from x to y in T is at most α times the cost of
the shortest path between x and y in G. A design goal could thus be to determine
spanning trees with small stretch factors (see Exercises 4.6.30 and 4.6.31). These
ratios are sometimes difficult to calculate.

Alternate, easier to compute, measures are obtained by taking into account only
pairs of neighbors (instead of pairs of arbitrary nodes). One such measure is the
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so-called dilation, that is the length of the longest path in the spanning tree T corre-
sponding to an edge of G, defined as

dilationG(T) = Max(x,y)∈E dT (x, y). (4.14)

We also can define the edge-stretch factor εG(T ) (or dilation factor) of a spanning
tree T of G as

εG(T ) = Max(x,y)∈E
dT (x, y)

θ (x, y)
. (4.15)

As an example, consider the spanning tree PT(c) used in the center-based solution;
if all the link costs are the same, we have that for every two nodes x and y

1 ≤ dG(x, y) ≤ dPT(c)(x, y) ≤ dPT(c) = dG.

This means that in PT(c) (unweighted) stretch factor σG(T ), dilation dilationG(T ),
and edge-stretch factor εG(T ) are all bounded by the same quantity, the diameter dG
of G.

For a given spanning tree T, the stretch factor and the dilation factor measure the
worst ratio between the distance in T and in G for the same pair of nodes and the
same edge, respectively. Another important cost measure is the average stretch factor
describing the average ratio:

σG(T ) = Averagex,y∈V
dT (x, y)

dG(x, y)
(4.16)

and the average edge-stretch factor (or average dilation factor) εG(T ) of a spanning
tree T of G as

εG(T ) = Average(x,y)∈E
dT (x, y)

θ (x, y)
. (4.17)

Construction of spanning trees with low average edge-stretch can be done effec-
tively (Exercises 4.6.35 and 4.6.36).

Summarizing, the main disadvantage of using a routing tree for all routing tasks
is the fact that the routing path offered by such mechanisms is not optimal. If this is
not a problem, these solutions are clearly a useful and viable alternative to shortest
path routing.

The choice of which spanning tree, among the many, should be used depends on
the nature of the system and of the application. Natural choices include the ones
described above, as well as those minimizing some of the cost measures we have
introduced (see Exercises 4.6.31, 4.6.32, 4.6.33).



COPING WITH CHANGES 253

4.3 COPING WITH CHANGES

In some systems, it might be possible that the cost associated to the links change
over time; think, for example, of having a tariff (i.e., cost) for using a link during
weekdays different from the one charged in the weekend. If such a change occurs, the
shortest path between several pairs of node might change, rendering the information
stored in the tables obsolete and possibly incorrect. Thus, the routing tables need to
be adjusted.

In this section, we will consider the problem of dealing with such events. We will
assume that when the cost of a link (x, y) changes, both x and y are aware of the change
and of the new cost of the link. In other words, we will replace the Total Reliability
restriction with Total Component Reliability (thus, the only changes are in the costs)
in addition to the Cost Change Detection restriction.

Note that costs that change in time can also describe the occurrence of some link
failures in the system: The crash failure of an edge can be described by having its
cost becoming exceedingly large. Hence, in the following, we will talk of link crash
failures and of cost changes as the same types of events.

4.3.1 Adaptive Routing

In these dynamical networks where cost changes in time, the construction of the
routing tables is only the first step for ensuring (shortest path) routing: There must
be a mechanism to deal with the changes in the network status, adjusting the routing
tables accordingly.

Map Update A simple, albeit expensive solution is the Map Update protocol.
It requires first of all that each table contains the complete map of the entire

network; the next “hop” for a message to reach its destination is computed on the
basis of this map. The construction of the maps can be done, for example, using
protocol Map Gossip discussed in Section 4.2.1. Clearly, any change will render the
map inaccurate. Thus, integral part of this protocol is the update mechanism:

Maintenance

� as soon as an entity x detects a local change (either in the cost or in the status of
an incident link), x will update its map accordingly and inform all its neighbors
of the change through an “update” message;
� as soon as an entity y receives an “update” from a neighbor, it will update its

map accordingly and inform all its neighbors of the change through an “update”
message.

NOTE. In several existing systems, an even more expensive periodic maintenance
mechanism is used: Step 1 of the maintenance mechanism is replaced by having each
node, periodically and even if there are no detected changes, send its entire map to all
its neighbors. This is, for example, the case with the second Internet routing protocol:
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The complete map is being sent to all neighbors every 10–60 s (10 s if there is a cost
change; 60 s otherwise).

The great advantage of this approach is that it is fully adaptive and can cope with
any amount and type of changes. The clear disadvantage is the amount of information
required locally and the volume of transmitted information.

Vector Update To alleviate some of the disadvantages of the Map Update pro-
tocol, an alternative solution consists in using protocol Iterative Construction, that
we designed to construct the routing tables, to keep them up-to-date should faults or
changes occur. Every entity will just keep its routing table.

Note that a single change might make all the routing tables incorrect. To complicate
things, changes are detected only locally, where they occur, and without a full map
it might be impossible to detect if it has any impact on a remote site; furthermore, if
more several changes occur concurrently, their cumulative effect is unpredictable: A
change might “undo” the damage inflicted to the routing tables by another change.

Whenever an entity x detects a local change (either in the cost or in the status of
an incident link), the update mechanism is invoked, which will trigger an execution
of possibly several iterations of protocol Iterative Construction.

In regard to the update mechanism, we have two possible choices:

� recompute the routing tables: everybody starts a new execution of the algorithm,
trowing away the current tables, or
� update current information: everybody starts a new iteration of the algorithm

with x using the new data, continuing until the tables converge.

The first choice is very costly because, as we know, the construction of the routing
tables is an expensive process. For these reasons, one might want to recompute only
what and when is; hence the second choice is preferred.

The second choice was used as the original Internet routing protocol; unfortunately,
it has some problems.

A well known problem is the so-called count-to-infinity problem. Consider the
simple network shown in Figure 4.13. Initially all links have cost 1. Then the cost
of link (z, w) becomes a large integer K >> 1. Both nodes z and w will then start
an iteration that will be performed by all entities. During this iteration, z is told by y
that there is a path from y to w of cost 2; hence, at the end of the iteration, z sets its
distance to w to 3. In the next iteration, y sets its distance from w to 4 because the best
path to w (according to the vectors it receives from x and z) is through x. In general,
after the (2i + 1)th iteration, x and z will set their cost for reaching w to 2(i + 1)+ 1,
while z will set it to 2(i + 1). This process will continue until z sets its cost for w

1      K
x

11
y z w

FIGURE 4.13: The count-to-infinity problem.
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to the actual value K. As K can be arbitrarily large, the number of iterations can be
arbitrarily large.

Solving this problem is not easy. See Exercises 4.6.38 and 4.6.39.

Oscillation We have seen some approaches to maintain routing information in
spite of failures and changes in the system.

A problem common to all the approaches is called oscillation. It occurs if the cost
of a link is proportional to the amount of traffic on the link. Consider, for example, two
disjoint paths π1 and π2 between x and y, where initially π1 is the “best” path. Thus,
the traffic is initially sent to π1; this will have the effect of increasing its cost until
π2 becomes the best path. At this point the traffic will be diverted on π2 increasing
its cost, and so forth. This oscillation between the two paths will continue forever,
requiring continuous execution of the update mechanism.

4.3.2 Fault-Tolerant Tables

To continue to deliver a message through a shortest path to its destination in presence
of cost changes or link crash failures, an entity must have up-to-date information on
the status of the system (e.g., which links are up, their current cost, etc.). As we have
seen, maintaining the routing tables correct when the topology of the network or the
edge values may change is a very costly operation. This is true even if faults are very
limited.

Consider, for example, a system where at any time there is at most one link down
(not necessarily the same one at all times), and no other changes will ever occur in
the system; this situation is called single link crash failure (SLF).

Even in this restricted case, the amount of information that must be kept in addition
to the shortest paths is formidable (practically the entire map). This is because the
crash failure of a single edge can dramatically change all the shortest path information.
As the tables must be able to cope with every possible choice of the failed link, even
in such a limited case, the memory requirements soon become unfeasible.

Furthermore when a link fails, every node must be notified so that it can route
messages along the new shortest paths; the subsequent recovery of that node also will
require such a notification. Such a notification process needs to be repeated at each
crash failure and recovery, for the entire lifetime of the system. Hence, the amount of
communication is rather high and never ending as long as there are changes.

Summarizing, the service of delivering a message through a shortest path in pres-
ence of cost changes or link crash failures, called shortest path rerouting (SR), is
expensive (sometimes to the point of being unfeasible) both in terms of storage and
communication.

The natural question is whether there exists a less expensive alternative. Fortu-
nately, the answer is positive. In fact, if we relax the shortest path rerouting require-
ment and settle for lower quality services, then the situation changes drastically; for
example, as we will see, if the requirement is just message delivery (i.e., not neces-
sarily through a shortest path), this service be achieved in our SLF system with very
simple routing tables and without any maintenance mechanism.
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In the rest of this section, we will concentrate on the single-link crash failure case.

Point-of-failure Rerouting To reduce the amount of communication and of
storage, a simple and convenient alternative is to offer, after the crash failure of
an arbitrary single link, a lower quality service called point-of-failure rerouting (PR):

Point-of-failure (Shortest path) Rerouting:

1. if the shortest path is not affected by the failed link, then the message will be
delivered through that path;

2. otherwise, when the message reaches the node where the crash failure has
occurred (the “point of failure”), the message will then be rerouted through a
(shortest) path to its destination if no other failure occurs.

This type of service has clearly the advantage that there is no need to notify the
entities of a link crash failure and its subsequent reactivation (if any): The message is
forwarded as there are no crash failures and if, by chance, the next link it must take
has failed, it will be just then provided with an alternative route. This means that once
constructed with the appropriate information for rerouting,

the routing tables do not need to be maintained or updated.

For this reason, the routing tables supporting such a service are called fault-tolerant
tables.

The amount of information that a fault-tolerant table must contain (in addition to
the shortest paths) to provide such a service will depend on what type of information
is being kept at the nodes to do the rerouting and on whether or not the rerouting is
guaranteed to be through a shortest path.

A solution consists in every node x knowing two (or more) edge-disjoint paths
for each destination: the shortest path, and a secondary one to be used only if the
link to the next “hop” in the shortest path has failed. So the routing mechanism is
simple: When a message for destination r arrives at x, x determines the neighbor y in
the shortest path to r. If (x,y) is up, x will send the message to y, otherwise, it will
determine the neighbor z in the secondary path to r and forward the message to z.

The storage requirements of this solution are minimal: For each destination, a
node needs to store in its routing table only one link in addition to the one in the
fault-free shortest path. As we already know how to determine the shortest path trees,
the problem is reduced to the one of computing the secondary paths (see Exercise
4.6.37).

NOTE. The secondary paths of a node do not necessarily form a tree.

A major drawback of this solution is that rerouting is not through a shortest path: If
the crash failure occurs, the system does not provide any service other than message
delivery. Although acceptable in some contexts, this level of service might not be
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tolerable in general. Surprisingly, it is actually possible to offer shortest path rerouting
storing at each node only one link for each destination in addition to the one in the
fault-free shortest path.

We are now going to see how to design such a service.

Point-of-Failure Shortest Path Rerouting Consider a message originated by x
and whose destination is s; its routing in the system will be according to the information
contained in the shortest path spanning tree PT(s). The tree PT(s) is rooted in s; so
every node x �= s has a parentps(x), and every edge in PT(s) links a node to its parent.

When the link es[x] = (ps(x), x) fails, it disconnects the tree into two subtrees,
one containing s and the other x; call them T [s − x] and T [x − s]; see Figure 4.14.

When ex fails, a new path from x to s must be found. It cannot be any: It must be
the shortest path possible between x and s in the network without es[x].

Consider a link e = (u, v) ∈ G \ PT(s), not part of the tree, that can reconnect
the two subtrees created by the crash failure of es[x], that is, u ∈ T [s − x] and v ∈
T [x − s]. We will call such a link a swap edge for es[x].

Using e we can create a new path from x to s. The path will consist of three parts: the
path from x to v in T [x/ex], the edge (u, v), and the path from u to s; see Figure 4.15.
The cost of going from x to s using this path will then be

dPT(s)(s, u)+ θ (u, v)+ dPT(s)(v, x) = d(s, u)+ θ (u, v)+ d(v, x).

This is the cost of using e as a swap for es[x]. For each es[x] there are several edges
that can be used as swaps, each with a different cost. If we want to offer shortest path
rerouting from x to s when es[x] fails, we must use the optimal swap, that is the swap
edge for es[x] of minimum cost.

p (x)
s

s

x

T [x−s]T [s−x]

FIGURE 4.14: The crash failure of es[x] = (ps(x), x) disconnects the tree PT (s).
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u v

x

s

FIGURE 4.15: Point-of-failure rerouting using the swap edge e = (u, v) of es[x].

So the first task that must be solved is to how find the optimal swap for each
edge es[x] in PT(s). This computation can be done efficiently (Exercises 4.6.40 and
4.6.41); its result is that every node x knows the optimal swap edge for its incident
link es[x]. To be used to construct the routing tables, this process must be repeated n
times, one for each destination s (i.e., for each shortest path spanning tree PT(s)).

Once the information about the optimal swap edges has been determined, it needs
to be integrated in the routing tables so as to provide point-of-failure shortest path
rerouting.

The routing table of a node x must contain information about (1) the shortest paths
as well as about (2) the alternative paths using the optimal swaps:

1. Shortest path information. First and foremost, the routing table of x contains
for each destination s the link to the neighbor in the shortest path to s if there
are no failures. Denote by ps(x) this neighbor. The choice of symbol is not
accidental: This neighbor is the parent of x in PT(s) and the link is really
es[x] = (ps(x), x).

2. Alternative path information. In the entry for the destination s, the routing
table of x must also contain the information needed to reroute the message if
es[x] = (ps(x), x) is down. Let us see what this information is.

Let e = (u, v) be the optimal swap edge that x has computed for es[x]; this
means that the shortest path from x to s if es[x] fails is by first going from x to
v, then over the link (u, v), and finally from u to s. In other words, if es[x] fails,
x must reroute the message for s to v, that is, x must send it to its neighbor in
the shortest path to v. The shortest paths to v are described by the tree PT(v); in
fact, this neighbor is just pv(x) and the link over which the message to s must
be sent when rerouting is precisely ev[x] = (pv(x), x) (see Exercise 4.6.42).

Concluding, the additional information x must keep in the entry for desti-
nation s are the rerouting link ev[x] = (pv(x), x) and the closest node v on the
optimal swap edge for es[x]; this information will be used only if es[x] is down.
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TABLE 4.7: Entry in the Routing Table of x; e=(u, v) is the
Optimal Swap Edge for es[x]

Final Normal Rerouting Swap Swap
Destination Link Link Destination Link

s (ps(x), x) (pv(x), x) v (u,v)

Any message must thus contain, in addition to the final destination (node s in our
example), also a field indicating the swap destination (node v in our example), the
swap link (link (u, v) in our example), and a bit to explain which of the two must
be considered (see Table 4.7). The routing mechanism is rather simple. Consider a
message originating from r for node s.

PSR Routing Mechanism

1. Initially, r sets the final destination to s, the swap destination and the swap link
to empty, and the bit to 0; it then sends the message toward the final destination
using the normal link indicated in its routing table.

2. If a node x receives the message with final destination s and bit set to 0, then

(a) if x = s, the message has reached its destination: s processes the message;

(b) if es[x] = (ps(x), x) is up, x forwards the unchanged message on that link;

(c) if es[x] = (ps(x), x) is down, then x

i. copies to the swap destination and swap link fields of the message the
swap destination and swap link entries for s in its routing table;

ii. sets the bit to 1;

iii. sends the message on the rerouting link indicated in its table.

3. If a node x receives the message with final destination s and bit set to 1, and
swap destination set to v, then

(a) if x = v, then

i. it sets the bit to 0;

ii. it sends the message on the swap link;

(b) otherwise, it forwards the unchanged message on the link ev[x]= (pv(x), x).

4.3.3 On Correctness and Guarantees

Adaptive Routing In all adaptive routing approaches, maintenance of the tables
is carried out by broadcasting information about the status of the network; this can

Mode SwapDest SwapLink ContentDestination

v1 (u, v) INFOs

FIGURE 4.16: Message rerouted by x using the swap edge e =(u, v) of es[x].
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be done periodically or just when changes do occur. In all cases, news of changes
detected by a node will eventually reach any node (still connected to it). However,
because of time delays, while an update is being disseminated, nodes still unaware
will be routing messages on the basis of incorrect information. In other words, as
long as there are changes occurring in the system (and for some time afterwards),
the information in the tables is unreliable and might be incorrect. In particular, it is
likely that routing will not be done through a shortest path; it is actually possible
that messages might not be delivered as long as there are changes. This sad status of
affairs is not due to the individual solutions but solely due to the fact that time delays
are unpredictable. As a result,

it is impossible to make any guarantee on correctness and in particular on shortest
path delivery for adaptive routing mechanisms.

This situation occurs even if the changes at any time are few and their nature limited,
as the SLF. It would appear that we should be able to operate correctly in such a
system; unfortunately this is not true:

It is impossible to provide shortest path routing even in the single-link
crash failure case.

This is because the crash failure of a single edge can dramatically change all the
shortest path information; thus, when the link fails, every node must be notified so
that it can route messages along the new shortest paths; the subsequent recovery of
that node will also require such a notification. Such a notification process needs to be
repeated at each crash failure and recovery, and again the unpredictable time delays
will make it impossible to guarantee correctness of the information available at the
entities, and thus of the routing decision they make on the basis of that information.

Question. What, if anything, can be guaranteed?

The only think that we can say is that, if the changes stop (or there are no changes
for a long period of time), then the updates to the routing information converge to
the correct state, and routing will proceed according to the existing shortest paths. In
other words, if the “noise” caused by changes stops, eventually the entities get the
correct result.

Fault-Tolerant Tables In the fault-tolerant tables approach, no maintenance of
the routing tables is needed once they have been constructed. Therefore, there are
no broadcasts or notifications of changes that, because of delays, might affect the
correctness of the routing.

However, also, fault-tolerant tables suffer because of the unpredictability of time
delays. For example, even with the single-link crash failure, point-of-failure shortest-
path rerouting can not be guaranteed to be correct: While the message for s is being
rerouted from x toward the swap edge es[x], the link es[x] might recover (i.e., come
up again) and another link on the may go down. Thus, the message will again be
rerouted and might continue to do so if a “bad” sequence of recovery failure occurs.
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In other words, not only the message will not reach s through a shortest path from the
first point-of-failure, but it will not reach s at all as long as there is a change. It might
be argued that such a sequence of events is highly unlikely, but it is possible. Thus,
again,

Question. What, if anything, can be guaranteed?

As in the case of adaptive routing, the only guarantee is that if the changes stop (or
there are no changes for a long period of time), then messages will be (during that
time) correctly delivered through point-of-failure shortest paths.

4.4 ROUTING IN STATIC SYSTEMS: COMPACT TABLES

There are systems that are static in nature; for example, if Total Reliability holds, no
changes will occur in the network topology. We will consider static also any system
where the routing table, once constructed, cannot be modified (e.g., because they are
hardcoded/hardwired). Such is, for example, any system etched on a chip; should
faults occur, the entire chip will be replaced.

In these systems, an additional concern in the design of shortest path routing tables
is their size, that is, an additional design goal is to construct table that are as small as
possible.

4.4.1 The Size of Routing Tables

The full routing table can be quite large. In fact, for each of its n− 1 destinations, it
contains the specification (and the cost) of the shortest path to that destination. This
means that each entry possibly contains O(n log w) bits, where w ≥ n is the range
of the entities’ names, for a total table size of O(n2 log w) bits. Assuming the best
possible case, that is, w = n, the number of bits required to store all the n full routing
tables is

SFULL = O(n3 log n).

For large n, this is a formidable amount of space just to store the routing tables.
Observe that for any destination, the first entry in the shortest path will always be

a link to a neighbor. Thus, it is possible to simplify the routing table by specifying
for each destination y only the neighbor of x on the shortest path to it. Such a table is
called short. For example, the short routing table for s in the network of Figure 4.1 is
shown in Table 4.8.

In its short representation, each entry of the table of an entity x will contain log w bits
to represent the destination’s name and another log w bits to represent the neighbor’s
name. In other words, the table contains 2(n− 1) log w bits. Assuming the best pos-
sible case, that is, w = n , the number of bits required to store all the routing tables is

2n(n− 1) log n.
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TABLE 4.8: Short Representation of RT(s)

Destination Neighbor

h h
k h
c c
d c
e e
f e

This amount of space can be further reduced if, instead of the neighbors’ names
we use the local port numbers leading to them. In this case, the size will be (n− 1)
(log w+ logpx) bits, where px ≥ deg(x) is the range of the local port numbers of x.
Assuming the best possible case, that is, w = n and px = deg(x) for all x, this implies
that the number of bits required to store all the routing tables is at least

SSHORT =
∑

x (n− 1) log deg(x) = (n− 1) log �xdeg(x),

which can be still rather large.
Notice that the same information can be represented by listing for each port the des-

tinations reached via shortest path through that port; for example, see Table 4.9. This
alternative representation of RT(x) uses only deg(x)+ (n− 1) log(n) bits for a total of

SALT =
∑

x

(deg(x)+ (n− 1) log n) = 2m+ n(n− 1) log n. (4.18)

It appears that there is not much more that can be done to reduce the size of the
table. This is, however, not the case if we, as designers of the system, had the power
to choose the names of the nodes and of the links.

4.4.2 Interval Routing

The question we are going to ask is whether it is possible to drastically reduce this
amount of storage if we know the network topology and we have the power of choosing
the names of the nodes and the port labels.

An Example: Ring Networks Consider for example a ring network, and assume
for the moment that all links have the same cost.

TABLE 4.9: Alternative Short Representation of RT(s)

Port Destinations

ports(h) h, k

ports(c) c, d

ports(e) e, f
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FIGURE 4.17: (a) assigning names and labels; (b) Routing table of node 2.

Suppose that we assign as names to the nodes consecutive integers, starting from
0 and continuing clockwise, and we label the ports right or left depending on whether
or not they are in the clockwise direction. See Figure 4.17(a).

Concentrate on node 0. This node, like all the others, has only two links. Thus,
whenever 0 has to route a message for z > 0, it must just decide whether to send it
to right or to left. Observe that the choice will be right for 1 ≤ z ≤ �n/2� and left
for �n/2� + 1 ≤ z ≤ n− 1. In other words, the destinations are consecutive integers
(modulo n). This is true not just for node 0: If x has to route a message for z �= x, the
choice will be right if z is in the interval 〈x + 1, x + 2, . . . x + �n/2�〉 and left if z is
in the interval 〈x + �n/2� + 1, . . . , x − 1〉, where the operations are modulo n. See
Figure 4.17(b).

In other words, in all these routing tables, the set of destinations associated to a
port is an interval of consecutive integers, and, in each table, the intervals are disjoint.
This is very important for our purpose of reducing the space.

In fact, an interval has a very short representation: It is sufficient to store the two
end values, that is, just 2 log n bits. We can actually do it with just log n bits; see
Exercise 4.6.43. As a table consists just of two intervals, we have routing tables of
4 log n bits each, for a grand total of just

4n log n.

This amount should be contrasted with the one of Expression 4.18 that, in the case
of rings, becomes n2 log n+ l.o.t.. In other words, we are able to go from quadratic
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to just linear space requirements. Note that it is true even if the costs of the links are
not all the same; see Exercise 4.6.44.

The phenomenon we have just described is not isolated, as we will discuss next.

Routing With Intervals Consider the names of the nodes in a network G. Without
any loss of generality, we can always assume that the names are consecutive positive
integers, starting from 0, that is, the set of names is Zn = {0, 1, . . . , n− 1}.

Given two integers j, k ∈ Zn, we denote by (j, k) the sequence

(j, k) = 〈j, j + 1, j + 2, . . . , k〉 if j < k

(j, k) = 〈j, j + 1, j + 2, . . . , n− 1, 0, 1, . . . , k〉 if j ≥ k.

Such a sequence (j, k) is called a circular interval of Zn; the empty interval ∅ is
also an interval of Zn.

Suppose that we are able to assign names to the nodes so that the shortest path
routing tables for G have the following two properties. At every node x,

1. interval: for each link incident to x, the (names of the) destinations associated
to that link form a circular interval of Zn;

2. disjointness: each destination is associated to only one link incident to x.

If this is the case, then we can have for G a very compact representation of the
routing tables, like in the example of the ring network. In fact, for each link the set of
destinations is an interval of consecutive integers, and, like in the ring, the intervals
associated to the links of a given nodes are all disjoint.

In other words, each table consists of a set of intervals (some of them may be
empty), one for each incident link. From the storage point of view, this is very good
news because we can represent such intervals by just their start values (or, alterna-
tively, by their end values).

In other words, the routing table of x will consist of just one entry for each of its
links. This means that the amount of storage for its table is only deg(x) log n bits. In
turn, this means that the number of bits used in total to represent all the routing tables
will be just

SINTERVAL =
∑

x

deg(x) log n = 2m log n. (4.19)

How will the routing mechanism then work with such tables? Suppose x has a
message whose destination is y. Then x checks in its table which interval y is part of
(as the intervals are disjoint, y will belong to exactly one) and sends the message to
the corresponding link.

Because of its nature, this approach is called interval routing. If it can be done, as
we have just seen, it allows for efficient shortest-path routing with a minimal amount
of storage requirements.
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FIGURE 4.18: Naming for interval routing in trees

It, however, requires that we, as designers, find an appropriate way to assign names
to nodes so that the interval and disjointness properties hold. Given a network G, it is
not so obvious how to do it or whether it can be done at all.

Tree Networks First of all we will consider tree networks. As we will see, in a tree
it is always possible to achieve our goal and can actually be done in several different
ways.

Given a tree T, we first of all choose a node s as the source, transforming T into
the tree T (s) rooted in s; in this tree, each node x has a parent and some children
(possibly none). We then assign as names to the nodes consecutive integers, starting
from 0, according to the post-order traversal of T (s), for example, using procedure

Post Order Naming(x, k)
begin

Unnamed Children(x):= Children(x);
while Unnamed Children(x) �= ∅ do

y ← Unnamed Children(x);
Post Order Naming(y, k)

endwhile
myname:= k;
k:= k + 1;

end

started by calling Post Order Naming(s, 0). This assignment of names has several
properties. For example, any node has a larger name than all its descendents. More
importantly, it has the interval and disjointness properties (Exercise 4.6.48). Infor-
mally, the interval property follows is because when executing Post Order Naming
with input (x, k), x and its descendents will be given as names consecutive integers
starting from k. See for example Figure 4.19.
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FIGURE 4.19: Disjoint intervals

Special Networks Most regular network topologies we have considered in the
past can be assigned names so that interval routing is possible. This is for example the
case of the p × q mesh and torus, hypercube, butterfly, and cube-connected-cycles;
see Exercises 4.6.51 and 4.6.52. For these networks the construction is rather simple.

Using a more complex construction, names can be assigned so that interval routing
can be done also in any outerplanar graph (Exercise 4.6.53); recall that a graph is
outerplanar if it can be drawn in the plane with all the nodes lying on a ring and all
edges lying in the interior of the ring without crossings.

Question. Can interval routing be done in every network?

The answer is unfortunately No. In fact there exist rather simple networks, the so-
called globe outerplanar graph (one is shown in Figure 4.20), for which interval
routing is impossible (Exercise 4.6.55).

Multi-Intervals As we have seen, interval routing is a powerful technique but the
classes of networks in which it is possible are rather limited.

To overcome somehow this limitation without increasing excessively the size of
the routing table an approach is to associate to each link a small number of intervals.
An interval-routing scheme that uses up to k intervals per edge is called a k-intervals
routing scheme.

FIGURE 4.20: A globe graph: interval routing is not possible.
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Clearly, with enough intervals we can find a scheme for every connected graph.
The question is whether this can be achieved with a small k. The answer again is No.

In fact, there are graphs where O(n) intervals are needed in each edge
(Exercise 4.6.56).

Suboptimal Interval Routing A reason why it is impossible to do interval rout-
ing in all graphs is that we require the tables to provide shortest path. The situation
changes if we relax this requirement.

If we ask the tables to provide us just with a path to destination, not necessarily
the shortest one, then we can use the approach already discussed in Section 4.2.6: We
construct a single spanning tree T of the network G and use only the edges of T for
routing.

Once we have the tree T, we then assign the names to the nodes using the naming
algorithm for trees that provides interval routing. In this way, we obtain for G the
very compact routing tables provided by interval routing. Clearly, the interval routing
mechanism so constructed is optimal (i.e., shortest path) for the tree T but not neces-
sarily so for the original network G. This means that suboptimal interval routing is
always possible in any network.

Question. How much worse can a path provided by this approach be than the shortest
one to the destination?

If we choose as tree T a breadth-first spanning tree rooted in a center of the graph
G, then its diameter is at most twice the diameter of the original graph (the worst
case is when G is a ring). This means that the longest route is never more than
2 diam(G).

We can extend this approach by allowing the longest route to be within a factor
β ≤ 2 of the diameter of G and by using more than one interval. We have seen that it is
possible to obtain β = 2 using a single interval per edge. The question then becomes
whether using more intervals we can obtain a better scheme (i.e., a smaller β). The
answer is again not very positive; for example, to have the longest route shorter than
3
2 diam(G), then we need O(log n) labels (Exercise 4.6.58).

4.5 BIBLIOGRAPHICAL NOTES

The construction of routing table is a prerequisite for the functioning of many net-
works. One of the earliest protocols is due to William Tajibnapis [31]. The basic
MapGossip for the construction of all routing tables is due to Eric Rosen [29]. Proto-
col IteratedConstruction is the distributed version of Bellman’s sequential algorithm
designed by Lestor Ford and D. Fulkerson [13]; from the start it has been the main
routing algorithm in the Internet.

The same cost as IteratedConstruction, O(n2m), was incurred by several other
protocols designed much later, including the ones of Philip Merlin and Adrian Segall
[25] and by Jayadev Misra and Mani Chandy [22]. The improvement to O(n3) is due
to Baruch Awerbuch, who designed a protocol to construct a single shortest path tree
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using O(n2) message [6]. The same bound is achieved by protocol PT Construction,
the efficient distributed implementation of Dijkstra’s sequential algorithm designed by
K. Ramarao and S. Venkatesan [28]. The even more efficient Protocol SparserGossip
is due to Yeuda Afek and Moty Ricklin [1].

A protocol for systems allowing long messages was designed by Sam Toueg with
cost O(nm) [32]; the reduction to O(n2) is easy to achieve using protocol MapGossip
by Eric Rosen [29] (Exercise 4.6.4), constructing, however, complete maps at each
entity; the same cost but with less local storage (Exercise 4.6.18) has been obtained
by S. Haldar [20].

The distributed construction of min-hop spanning trees has been extensively in-
vestigated. Protocol BF (known as the “Coordinated Minimum Hop Algorithm”) is
due to Bob Gallager [17]; a different protocol with the same cost was independently
designed by To-Yat Cheung [8]. Also to Gallager [17] is due the idea of reducing
time by partitioning the layers of the breadth-first tree into groups (Section 4.2.5) and
a series of time-messages tradeoffs. Protocol BF Layers has been designed by Greg
Frederickson [15]. The problem of reducing time while maintaining a reasonable
message complexity has been investigated by Baruch Awerbuch [3], Baruch Awer-
buch and Bob Gallager [5], and Y. Zhu and To-Yat Cheung [35]. The near-optimal
bounds (Exercise 4.6.26) have been obtained by Baruch Awerbuch [4].

The suboptimal solutions of center-based and median-based routing were first
discussed in details by David Wall and Susanna Owicki [34]. The lower-bound on
average edge-stretch and the construction of spanning trees with low average edge-
stretch (Exercises 4.6.34, 4.6.35 and 4.6.36) are due to Noga Alon, Richard Karp,
David Peleg, and Doug West [2].

The idea of point-of-failure rerouting was suggested independently by Enrico
Nardelli, Guido Proietti, and Peter Widmayer[27] and by Hiro Ito, Kazuo Iwama,
Yasuo Okabe, and Takuya Yoshihiro [21]. The distributed algorithm for computing
the swap edges (Exercise 4.6.41) was designed by Paola Flocchini, Linda Pagli, Tony
Mesa, Giuseppe Prencipe, and Nicola Santoro [12].

The idea of compact routing was introduced by Nicola Santoro and Ramez Kathib
[30], who designed the interval routing for trees; this idea was then extended by
Jan van Leeuwen and Richard Tan [24]. The interval routing for outerplanar graphs
(Exercise 4.6.53) is due to Greg Frederickson and Ravi Janardan [16].

The more restrictive notion of linear interval routing (Exercise 4.6.54 and Problem
4.6.1) was introduced and studied by Erwin Bakker, Jan van Leeuwen, and Richard
Tan [7]; the more general notion of Boolean routing was introduced by Michele
Flammini, Giorgio Gambosi, and Sandro Salomone [11].

Several issues of compact routing have been investigated, among others, by Greg
Frederickson and Ravi Janardan [16], Pierre Fraigniaud and Cyril Gavoille [14], and
Cyril Gavoille and David Peleg [19]. Exercises 4.6.56, 4.6.57, and 4.6.58 are due to
Cyril Gavoille and Eric Guevremont [18], Evangelos Kranakis and Danny Krizanc
[23], and Savio Tse and Francis Lau [33], respectively.

Characterizations of networks supporting interval routing are due to Lata
Narayanan and Sunil Shende [26], Tamar Eilam, Shlomo Moran, and Shmuel Zaks
[9], and Michele Flammini, Giorgio Gambosi, Umberto Nanni, and Richard Tan [10].
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4.6 EXERCISES, PROBLEMS, AND ANSWERS

4.6.1 Exercises

Exercise 4.6.1 Write the set of rules corresponding to Protocol Map Gossip de-
scribed in Section 4.2.1.

Exercise 4.6.2 () Consider a tree network where each entity has a single item
of information. Determine the time costs of gossiping. What would the time costs be
if each entity x initially has deg(x) items?

Exercise 4.6.3 Consider a tree network where each entity has f (n) items of informa-
tion. Assume that messages can contain g(n) items of information (instead of O(1));
with how many messages can gossiping be performed?

Exercise 4.6.4 Using your answer to question 4.6.3, with how many messages can
all routing tables be constructed if g(n) = O(n)?

Exercise 4.6.5 Consider a tree network where each entity has f (n) items of informa-
tion. Assume that messages can contain g(n) items of information (instead of O(1));
with how many messages can all items of information be collected at a single entity?

Exercise 4.6.6 Using your answer to question 4.6.5, with how many messages can
all routing tables be constructed at that single entity if g(n) = O(n)?

Exercise 4.6.7 Write the set of rules corresponding to Protocol Iterated Construction
described in Section 4.2.2. Implement and properly test your implementation.

Exercise 4.6.8 Prove that Protocol Iterated Construction converges to the correct
routing tables and will do so after at most n− 1 iterations. Hint: Use induction to
prove that V i

x [z] is the cost of the shortest path from x to z using at most i hops.

Exercise 4.6.9 We have assumed that the cost of a link is the same in both directions,
that is, θ (x, y) = θ (y, x). However, there are cases when θ (x, y) can be different from
θ (y, x). What modifications have to be made so that protocol Iterated Construction
works correctly also in those cases?

Exercise 4.6.10 In protocol PT Construction, no action is provided for an idle entity
receiving an Expand message. Prove that such a message will never be received in
such a state.

Exercise 4.6.11 In procedure Compute Local Minimum of protocol PT Cons-
truction, an entity might set path length to infinity. Show that if this happens, this
entity will set path length to infinity in all subsequent iterations.
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Exercise 4.6.12 In protocol PT Construction, each entity will eventually set
path length to infinity. Show that when this happens to a leaf of the constructed
tree, that entity can be removed from further computations.

Exercise 4.6.13 Modify protocol PT Construction so that it constructs the routing
table RT(s) of the source s.

Exercise 4.6.14 We have assumed that the cost of a link is the same in both directions,
that is, θ (x, y) = θ (y, x). However, there are cases when θ (x, y) can be different from
θ (y, x). What modifications have to be made so that protocol PT Construction works
correctly also in those cases?

Exercise 4.6.15 Prove that any G has a (log n, n) sparser.

Exercise 4.6.16 Show how to construct a (log n, n) sparser with O(m+ n log n)
messages.

Exercise 4.6.17 Show how to use a (log n, n) sparser to solve the all-pairs shortest
paths problem in O(n2 log n) messages.

Exercise 4.6.18 Assume that messages can contain O(n) items of information (in-
stead of O(1)). Show how to construct all the shortest path trees with just O(n2)
messages.

Exercise 4.6.19 Prove that, after iteration i − 1 of protocol BF Construction,
(a) all the nodes at distance up to i − 1 are part of the tree;
(c) each node at distance i − 1 knows which of its neighbors are at distance i − 1.

Exercise 4.6.20 Write the set of rules corresponding to protocol BF described in
Section 4.2.2. Implement and properly test your implementation.

Exercise 4.6.21 Write the set of rules corresponding to protocol BF Levels. Imple-
ment and properly test your implementation.

Exercise 4.6.22 Let Explore(j, k) be the first message x accepts in the expansion
phase of protocol BF Levels. Prove that the number of times x will change its level
in this phase is at most j − t + 1 < l.

Exercise 4.6.23 Prove that in the expansion phase of an iteration of protocol
BF Levels, all nodes in levels t + 1 to t + l are reached and attached to the existing
fragment, where t is the level of the sources (i.e., the leaves in the current fragment).

Exercise 4.6.24 Consider protocol BF Levels when l = d(G). Show how to obtain
the same message and time complexity without any a priori knowledge of d(G).
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Exercise 4.6.25 Prove that if we choose l = d(G) in protocol BF Levels, then in any
synchronous execution the number of messages will be exactly 2m+ n− 1.

Exercise 4.6.26 () Show how to construct a breadth-first spanning tree in time
O(d(G)1+ε) using no more than O(m1+ε) messages, for any ε > 0.

Exercise 4.6.27 Let c be a center of G and let SPT(c) be the shortest path tree of c.
Prove that diam(G) ≤ 2 diam(SPT(c)).

Exercise 4.6.28 Let T be a spanning tree of G. Prove that
∑

(x,y)∈T |T [x − y]|
|T [y − x]|w(x, y) =∑u,v∈T dT (u,v).

Exercise 4.6.29 (median-based routing)
Let z be a median of G (i.e., a node for which the sum of distances to all other nodes is
minimized) and let PT(z) be the shortest path tree of z. Prove that Traffic(PT(z)) ≤ 2
Traffic(T ), where T  is the spanning tree of G for which Traffic is minimized.

Exercise 4.6.30 Consider a ring network Rn with weighted edges. Prove or disprove
that PT(c) = MSP(Rn), where c is a center of Rn and MSP(Rn) is the minimum-cost
spanning tree of Rn.

Exercise 4.6.31 Consider a ring network Rn with weighted edges. Let c and z be a
center and a median of Rn, respectively.

1. For each of the following spanning trees of Rn, compare the stretch factor
and the edge-stretch factor: PT(c), PT(z), and the minimum-cost spanning tree
MSP(Rn).

2. Determine bounds on the average edge-stretch factor of PT(c), PT(z), and
MSP(Rn).

Exercise 4.6.32 () Consider a a × a square meshMa,a where all costs are the same.

1. Is it possible to construct two spanning treesT ′ andT ′′ such thatσ (T ′) < σ (T ′′)
but ε(T ′) > ε(T ′′) ? Explain.

2. Is it possible to construct two spanning treesT ′ andT ′′ such thatσ (T ′) < σ (T ′′)
but ε(T ′) > ε(T ′′) ? Explain.

Exercise 4.6.33 Consider a square meshMa,a where all costs are the same. Construct
two spanning trees T ′ and T ′′ such that σ (T ′) < σ (T ′′) but ε(T ′) > ε(T ′′).

Exercise 4.6.34 () Show that there are graphs G with unweighted edges where
εG(T ) = �(log n) for every spanning tree T of G.

Exercise 4.6.35 () Design an efficient protocol for computing a spanning tree
with low average edge-stretch of a network G with unweighted edges.
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Exercise 4.6.36 () Design an efficient protocol for computing a spanning tree
with low average edge-stretch of a network G with weighted edges.

Exercise 4.6.37 () Design a protocol for computing the secondary paths of a node x.
You may assume that the shortest-path tree PT(x) has already been constructed and
that each node knows its and its neighbors’ distance from x. Your protocol should use
no more messages than that required to construct PT(x).

Exercise 4.6.38 (split horizon) () Consider the following technique, called split
horizon, for solving the count-to-infinity problem discussed in Section 4.3.1: During
an iteration, a node a does not send its cost for destination c to its neighbor b if b is
the next node in the “best” path (so far) from a to c. In the example of Figure 4.13,
in the first iteration y does not send its cost for w to z, and thus z will correctly set
its cost for w to K. In the next two iterations y and x will correctly set their cost for
w to K + 1 and K + 2, respectively. Prove or disprove that split horizon solves the
count-to-infinity problem.

Exercise 4.6.39 (split horizon with poison reverse) () Consider the following
technique, called split horizon with poison reverse, for solving the count-to-infinity
problem discussed in Section 4.3.1: During an iteration, a node a sends its cost for
destination c set to∞ to its neighbor b if b is on the “best” path (so far) from a to c.
Prove or disprove that split horizon with poison reverse solves the count-to-infinity
problem.

Exercise 4.6.40 () Design an efficient protocol that, given a shortest-path spanning
tree PT(s), determines an optimal swap for every edge in PT(s): At the end of the
execution, every node x knows the optimal swap edge for its incident link es[x]. Your
protocol should use no more than O(nh(s)) messages, where h(s) is the height of
PT(x).

Exercise 4.6.41 () Show how to answer Exercise 4.6.40 using no more than
O(n(s)) messages, where n(s) is the number of edges in the transitive closure of
PT(x).

Exercise 4.6.42 Let e = (u,v) be the optimal swap edge that x has computed for
es[x]. Prove that, if es[x] fails, to achieve point-of-failure shortest path rerouting, x
must send the message for s to the incident link (pv(x), x).

Exercise 4.6.43 Show how to represent the intervals of a ring with just log n bits
per interval.

Exercise 4.6.44 Show how that the intervals of a ring can be represented with just
log n bits per interval, even if the costs of the links are not all the same.
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Exercise 4.6.45 Let G be a network and assume that we can assign names to the
nodes so that in each routing table, the destinations for each link form an interval.
Determine what conditions the intervals must satisfy so that they can be represented
with just log n bits each.

Exercise 4.6.46 Redefine properties interval and disjointness in case the n integers
used as names are not consecutive, that is, they are chosen from a larger setZw, w > n.

Exercise 4.6.47 Show an assignment of names in a tree that does not have the
interval property. Does there exists an assignment of distinct names in a tree that has
the interval property but not the disjointness one? Explain your answer.

Exercise 4.6.48 Prove that in a tree, the assignment of names by Post-Order
traversal has both interval and disjointness properties.

Exercise 4.6.49 Prove that in a tree, also the assignment of names by Pre-Order
traversal has both interval and disjointness properties.

Exercise 4.6.50 Determine whether interval routing is possible in the regular graph
shown in Figure 4.21. If so, show the routing table; otherwise explain why.

Exercise 4.6.51 Design an optimal interval routing scheme for p × q mesh and
torus. How many bits of storage will it require?

Exercise 4.6.52 Design an optimal interval routing scheme for d-dimensional
(a) hypercube, (b) butterfly, and (c) cube-connected cycles. How many bits of total
storage will each require?

FIGURE 4.21: The regular graph used in Exercise 4.6.55.
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Exercise 4.6.53 () Show how to assign names to the nodes of an outerplanar
graph so that interval routing is possible.

Exercise 4.6.54 () If for every x all the intervals in its routing table are strictly
increasing (i.e., there is no “wraparound” node ”0), the interval routing is called linear.
Prove that there are networks for which there exists interval routing but linear interval
routing is impossible.

Exercise 4.6.55 Prove that in the globe graph of Figure 4.20, interval routing is not
possible.

Exercise 4.6.56 () Consider the approach of k-interval routing. Prove that there
are graphs that require k = O(n) intervals.

Exercise 4.6.57 () Consider allowing each route to be within a factor α from
optimal. Prove that if we want α = 2, there are graphs that require O(n2) bits of
storage at each node.

Exercise 4.6.58 () Consider allowing the longest route to be within a factor β
from the diameter diam(G) of the network, using at most k labels per edge. Prove that
if we want β < 3

2 , then there are graphs that require O(log n) bits of storage at each
node.

4.6.2 Problems

Problem 4.6.1 Linear Interval Routing. () If for every x all the intervals in its
routing table are strictly increasing (i.e., there is no “wraparound” node 0), the interval
routing is called linear. Characterize the class of graphs for which there exists a linear
interval routing.

4.6.3 Answers to Exercises

Partial Answer to Exercise 4.6.26.
Choose the size of the strip to be k = √d(G). A strip cover is a collection of trees
that span all the source nodes of a strip. In iteration i, first of all construct a “good”
cover of strip i.

Answer to Exercise 4.6.29.
Observe that for any spanning tree T of G, Traffic(T ) =∑u,v∈V dT (u,v)
(Exercise 4.6.28). Let SumDist(x) =∑u∈V dG(u, x); clearly Traffic(T ) ≥∑

x∈V SumDist(x). Let z be a median of G (i.e., a node for which SumDist

is minimized); then SumDist(z) ≤ 1
n
T raff ic(T ). Thus we have that

Traffic(PT(z)) =∑u,v∈V dPT(z)(u, v) ≤ ∑
u,v∈V (dPT(z)(u, z)+ dPT(z)(z, v)) ≤

(n− 1)
∑

u∈V (dPT(z)(u, z)+ (n− 1)
∑

v∈V (dPT(z)(v, z) = 2(n− 1)SumDist(z) ≤
2Traffic(T ).
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FIGURE 4.22: Graph with interval routing but where no linear interval routing exists.

Answer to Exercise 4.6.43.
In the table of node x, the interval associated to right always starts with x + 1 while
the one associated to left always ends with x − 1. Hence, for each interval, it is
sufficient to store only the other end value.

Partial Answer to Exercise 4.6.54.
Consider the graph shown in Figure 4.22.
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CHAPTER 5

Distributed Set Operations

5.1 INTRODUCTION

In a distributed computing environment, each entity has its own data stored in its local
memory. Some data items held by one entity are sometimes related to items held by
other entities, and we focus and operate on them. An example is the set of the ids of
the entities. What we did in the past was to operate on this set, for example, by finding
the smallest id or the largest one. Another example is the set of the single values held
by each entity, and the operation was to find the overall rank of each of those values. In
all these examples, the relevant data held by an entity consist of just a single data item.

In general, an entity x has a set of relevant data Dx . The union of all these local
sets forms a distributed set of data

D =
⋃

x

Dx (5.1)

and the tuple

〈Dx1 ,Dx2 , . . . , Dxn〉

describes the distribution of D among the entities x1, x2 . . . , xn. Clearly there are
many different distributions of the same distributed set.

There are two main types of operations that can be performed on a distributed set:

1. queries and

2. updates.

A query is a request for some information about the global data set D, as well
as about the individual sets Dx forming D. A query can originate at any entity. If
the entity where the query originates has locally the desired information, the query
can be answered immediately; otherwise, the entity will have to communicate with
other entities to obtain the desired information. As usual, we are concerned with
the communication costs, rather than the local processing costs, when dealing with
answering a query.

Design and Analysis of Distributed Algorithms, by Nicola Santoro
Copyright © 2007 John Wiley & Sons, Inc.
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An update is a request to change the composition of the distributed set. There are
two basic updates: the request to add a new element to the set, an operation called
insertion; and the request to remove an element from the set, an operation called
deletion. The third basic update is the request to change the value of an existing item
of the set, an operation called change. Note that a change can be seen as a deletion of
the item with the old value followed by an insertion of an item with the new value.

There are many distributions of the same set. In a distribution, the local sets are not
necessarily distinct or disjoint. Two extreme cases serve to illustrate the spectrum of
distributions and the impact that the structure of the distribution has when handling
queries and performing updates. One extreme distribution is the partition where the
local sets have no elements in common:

Di ∪Dj = ∅, i �= j.

At the other end of the spectrum is the multiple-copy distribution where every
entity has a copy of the entire data set.

∀i Di = D.

A multiple-copy distribution is excellent for queries but poor for updates. Queries
are easy because all entities possess all the data; hence every answer can be derived
locally, without any communication. However, an update will require modification
of the data held at each and every entity; in the presence of concurrent updates, this
process becomes exceedingly difficult.

The situation is reversed in the partition. As each data item is located in only one
site, answering a query requires searching through all potential entities to find the one
that has locally stored the required data. By contrast, to perform an update is easy
because the change is performed in only the entity having the item, and there is no
danger of concurrent updates on the same item.

In most cases, the data are partially replicated; that is, some data items are stored
at more than one entities while others are to be found at only one entity. This means
that, in general, we have to face and deal with the problems of both extremes, partition
and multiple-copy distributions, without the advantages of either one.

In the following we will first focus on an important class of queries, called order
statistics; the problem of answering such queries is traditionally called selection. As
selection as well as most queries is more easily and efficiently solved if the distribution
is sorted, we will also investigate the problem of sorting the distributed data. We will
then concentrate on distributed set operations; that is, computing union, intersection,
and differences of the local sets. The ability to perform such operations has a direct
impact on the processing of complex queries usually performed in databases.

To focus on the problems, we will assume the standard set of restrictions IR
(Connectivity, Total Reliability, Bidirectional Links, Distinct Identifiers). For simp-
licity, as local processing time does not interest us when we consider the cost of our
protocols, we will assume that all of the data stored at an entity are sorted.
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IMPORTANT. As we consider arbitrary distributions of the data set, it is possible
that a data item a is in more than one local set. As we assume ID, we can use the ids
of the entities to break ties and create a total order even among copies of the same
value; so, for example, if a is in both Dx and Dy where id(x) > id(y), then we can
say that the copy of a inDx is “greater” than the one inDy . In this way, if so desired,
the copies can also be considered distinct and included in the global data setD by the
union operation (5.1).

5.2 DISTRIBUTED SELECTION

5.2.1 Order Statistics

Given a totally ordered data set D of size N distributed among the entities, the dis-
tributed selection problem is the general problem of locating D[K], the Kth smallest
element of D. Problems of this type are called order statistics, to distinguish them
from the more conventional cardinal statistics (e.g., average, standard deviation, etc.).
Unlike cardinal statistics, ordinal ones are more difficult to compute in a distributed
environment.

We have already seen and examined the problem of computing D[1] (i.e., the
minimum value), and D[N ] (i.e., the maximum value). Other elements whose ranks
are of particular importance are the medians of the data set. If N is odd, there is
only one median, D[ �N/2	 ]. If N is even, there are two medians: the lower median
D[N/2] and the upper median D[N/2+ 1].

Unlike the case ofD[1] andD[N ], the problem of finding the median(s) and ofK
selection for an arbitrary value of K is not simple, and considerably more expensive
to resolve. The complexity of the problem depends on many parameters including the
number n of entities, the size N = |D| of the set, the number nx = |Dx | of elements
stored at an entity x, the rankK of the element being sought, and the topology of the
network.

Before proceeding to examine strategies for its solution, let us introduce a funda-
mental property and a basic observation that will be helpful in our designs.

Let �D[K] denote the Kth largest element of the data set. Then

Property 5.2.1 D[K] = �D[N −K + 1]

Thus looking for the Kth smallest is the same as looking for the (N −K + 1)th largest.
Consider, for example, a set of 10 distinct elements; the 4th smallest is clearly the 7th
largest; see Figure 5.1 where the elements d1, . . . , d10 of the set are represented and
sorted in an increasing order. This fact has many important consequences, as we will
see later.

The other useful tool is based on the trivial observation.

Property 5.2.2 Dx[K + 1] > D[K] > �Dx[N −K + 2].

This means that, if an entity x has more than K items, it needs only to consider the
smallest K items. Similarly, if x has more than (N −K + 1) items, it needs only to
consider the largest (N −K + 1) items.
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FIGURE 5.1: The Kth smallest is precisely the (N −K + 1)th largest.

Finally, we will assume that the selection process will be coordinated by a single
entity and that all communication will take place on a spanning tree of the network.
Although it does not matter for the correctness of our protocols which entity is selected
as coordinator and which spanning tree is chosen for communication, for efficiency
reasons it is convenient to choose as coordinator a communication center s of the
network and to choose as a spanning-tree SP(s) the shortest path spanning tree for
s. Recall (Section 2.6.6) that a communication center e is a node that minimizes the
sum of the distances to all other nodes (i.e.,

∑
v dG(v, s) is minimum). Also recall

(Section 4.2.3) that, by definition of the shortest path spanning tree, PT(s) is such that
dG(v, s) = dPT(s)(v, s) for all entities v. In the following we will assume that s is used
as coordinator, and for simplicity we will denote PT(s) simply as T .

5.2.2 Selection in a Small Data Set

We will first consider the selection problem when the data set is rather small; more
precisely, we consider data sets where N = O(n). A special instance of a small
distributed set is when every Dx is a singleton: it contains just a single element dx ;
this is, for example, the case when the only data available at a node is its id.

Input Collection As the data set is small, the simple solution of collecting all the
data at the coordinator and letting s solve locally the problem is actually not unfeasible
from a complexity point of view.

The cost of collecting all the data items at s is clearly
∑

v dG(v, s). To this, we
must add an initial broadcast to notify the entities to send their data to the coordinator,
and (if needed) a final broadcast to notify them of the final result; as these are done
on a tree, their cost will be 2(n− 1) messages. Hence the total cost of this protocol
that we can call Collect is

M[Collect] =
∑

v

dG(v, s)+ 2(n− 1) (5.2)

communication.
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Notice that, depending on the network,

n− 1 ≤∑
v
dG(v, s) ≤ (n2 − 1

)
n
2

where the lower bound is achieved, for example, when G is a complete graph, and
the upper is achieved, for example, when G is a ring. So M[Collect] = O(n2) in the
worst case.

This approach is somehow an overkill as the entire set is collected at s.

Truncated Ranking It might be possible to reduce the amount of messages by
making it dependent on the value ofK . In fact we can use the existing ranking protocol
for trees (Exercise 2.9.4) and execute it on T until the Kth smallest item is found. The
use of the ranking algorithm will then cost no more than

∑

Rank(v)≤K
2dG(v, s).

Note that, if K > N −K + 1 we can exploit Property 5.2.1 and use the ranking
algorithm to assign ranks in decreasing order until the (N −K + 1)th largest element
is ranked. In this case, the cost will then be no more than

∑

Rank(v)≥K
dG(v, e).

To this we must add the initial broadcast to set up the ranking and a final broadcast
to notify the entities of the final result; as these are done on a tree, their cost will be
2(n− 1) messages. Hence, assumingK ≤ N −K + 1, the total cost of this protocol
that we can call Rank is

M[Rank] ≤
∑

Rank(v)≤K
2dG(v, s)+ 2(n− 1). (5.3)

Notice that, depending on the network,

2(K − 1) ≤ ∑

Rank(v)≤k
2dG(v, e) ≤ K

2

(
n− K

2 + 1
)

where the lower bound is achieved, for example, when G is a complete graph, and
the upperbound could be achieved, for example, when G is a ring. This means that,
in any case,

M[Rank] ≤ n�

where � = Min{K,N −K + 1}. In other words, ifK (orN −K + 1) is small, Rank
will be much more efficient than Collect. As K becomes larger, the cost increases
until, when K = N/2, the two protocols have the same cost.
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IMPORTANT. The protocols we have seen are generic, in that they apply to any
topology. For particular networks, it is possible to take advantage of the properties of
the topology so to obtain a more efficent selection protocol. This is the case of the ring
(Exercise 5.6.1), the mesh (Exercise 5.6.2), and the complete binary tree (Exercise
5.6.3). The problem of designing a selection protocol that uses o(n2) messages in the
worst case is still unsolved (Problem 5.6.1).

5.2.3 Simple Case: Selection Among Two Sites

In the previous section we have seen how to perform selection when the number of
data items is small: N = O(n). In general, this is not the case; in fact, not only N is
much larger than n but it is order of magnitude so. So, in general, the techniques that
we have seen so far are clearly not efficient. What we need is a different strategy to
deal with the general case, in particular when N >> n.

In this section we will examine this problem in a simple setting when n = 2; that
is, there are only two entities in the system, x and y. We will develop efficient solution
strategies; some of the insights will be useful when faced with a more general case in
later sections.

Median Let us consider first the problem of determining the lower median, that is,
D[�N/2	]. Recall that this is the unique element that has exactly �N/2	 − 1 elements
smaller than itself and exactly �N/2� elements larger than itself.

A simple solution is the following. First of all, one of the entities (e.g., the one
where the selection query originates, or the one with the smallest id) is elected, which
will receive the entire set of the other entity. The elected entity, say x, will then locally
determine the median of the set Dx ∪Dy and communicate it, if necessary, to the
other entity. Notice that as x has now locally available the entire data set, it can answer
any selection query, not just for the lower median. The drawback of this solution is that
the amount of communication is significant as an entire local set is transferred. We
can obviously elect the entity with the larger set to minimize the amount of messages;
still, O(N ) messages must be transferred in the worst case.

A more efficient technique is clearly needed. We can design such a technique on
the basis of a simple observation: if we compare the medians of the two local sets,
then we can immediately eliminate almost half of the elements from consideration.

Let us see why and how. Assume for simplicity that each local set containsN/2 =
2p−1 elements; this means that bothDx andDy have a lower median,mx = Dx[2p−2]
and my = Dy[2p−2] respectively. The lower median will have exactly N/2− 1 =
2p − 1 elements smaller than itself and exactlyN/2 = 2p elements larger than itself.
For example, consider the two sets of size N/2 = 16 shown in Figure 5.2(a) where
each black circle indicates a data element, and in each set the elements are shown
locally sorted in a left-to-right increasing order; then mx = Dx[8] and my = Dy[8].

Assume thatmx > my ; then each element inDx larger thanmx must also be larger
thanmy . This means that each of them is larger than at least 2p−2 elements inDx and
that of at least 2p−2 elements inDy ; that is, it has at least 2p−2 + 2p−2 = 2p−1 = N/2
elements smaller than itself, and therefore it can not be the lower median. In other
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FIGURE 5.2: Half of the elements can be discarded after a single comparison of the two local

medians.

words, any element larger than the largest of the median of the two sets can be
discounted from consideration as it is larger than the overall median. See Figure 5.2(b).

Similarly, all the elements in Dy smaller than mx can be discounted as well. In
fact, each such element would be smaller that at least 2p−2 elements in its own set
and at least 2p−2 + 1 elements in the other set; that is, it has at least 22p−2 + 1 =
2p−1 + 1 = N/2+ 1 elements larger than itself, and therefore it can not be the lower
median. See Figure 5.2(b).

Thus, by locally calculating and then exchanging the median of each set, at least
half of the elements of each set, and therefore half of the total number of elements,
can be discounted; shown as white circle in Figure 5.2(c).
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There is a very interesting and important property (Exercise 5.6.4):

the overall lower median is the lower median of the elements still under
consideration.

This means that we can reapply the same process to the elements still under consid-
eration: the entities communicate to each other the lower median of the local elements
under consideration, these are compared, and half of all this data are removed from
consideration.

In other words, we have just designed a protocol, that we shall call Halving, that
is composed of a sequence of iterations; in each, half of the elements still under
consideration are discarded and the sought global median is still the median of the
considered data; this process is repeated until only a single element is left at each
site and the median can be unambiguously determined. As we halve the problem size
at every iteration, the total number of iterations is logN . Each iteration requires the
communication of the local lower medians (of the elements still under consideration),
a task that can be accomplished using just one message per iteration.

The working of the protocol has been described assuming that N is a power of
two and that both sets have the same number N/2 of elements. Fortunately, these
two assumptions are not essential. In fact the protocol Halving can be adjusted to two
arbitrarily sized sets without changing its complexity: Exercise 5.6.5.

Arbitrary K We have just seen a simple and efficient protocol for finding the overall
(lower) median D[ �N/2	 ] of a set D distributed over two sites. Let us consider the
general problem of selectingD[K], the Kth smallest element ofDwhenK is arbitrary,
1 ≤ k ≤ N . Assume again, for simplicity, that the two sets have the same size N/2.
We know already how to deal with the case of K = �N/2	.
Case K < �N/2	
Consider first the case when K < �N/2	. This means that each of the two sites has
locally more than K elements. An example with N/2 = 12 and K = 4 is shown in
Figure 5.3.

Consider the setDx . As we are looking for the Kth smallest data item overall, any
data item greater thanDx[K] cannot beD[K] (as it will be larger than at leastK data
items). This means that we can immediately discount all these items, keeping only
K items still under consideration. For example, in Figure 5.3(a) we have N/2 = 12
items shown in a left-to-right increasing order; if K = 4, then all the items greater
than Dx[4] are too large to be D[4]: Figure 5.3(b). Similarly, we can keep under
consideration in Dy just Dy[K] and the items that are smaller.

IMPORTANT. Notice that D[K] is also the Kth smallest item among those kept
in consideration; this is because we have discounted only the elements larger than
D[K].

What is the net result of this ? We are now left with two sets of items, each of
size K; see Figure 5.3(c). Among those items, we are looking for the Kth smallest
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FIGURE 5.3: All the elements greater than the local Kth smallest element can be discarded.

element. In other words, once this operation has been performed, the problem we
need to solve is to determine the lower median of the elements under consideration.
We already know how to solve this problem efficiently.

In other words, if K < N/2 we can reduce the problem to that of finding the
lower median. Notice that this is accomplished without any communication, once it
is known that we are looking for D[K].

Case K > �N/2	
Consider next the case when K > �N/2	. This means that each of the two sites has
locally less thanK elements, thus we cannot use the approach we did forK < �N/2	.
Still, we can make a similar reduction also in this case. To see how and why, consider
the following obvious but important property of any totally ordered set.
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Looking for the Kth smallest is the same as looking for the (N −K + 1)th largest.
This fact is an important practical consequence. First of all observe that ifK > �N/2	
then N −K + 1 < �N/2	. Further observe that the (N −K + 1)th largest item is
the only one that has exactly N − k larger than itself and exactlyK − 1 smaller than
itself.

Consider Dx . As we are looking for the (N −K + 1)th largest data item overall,
any data item smaller than �Dx[N −K + 1] cannot be �D[K] (as there are at least
N −K + 1 larger data items). This means that we can immediately discount all
these items, keeping only N −K + 1 items still under consideration. For example,
in Figure 5.4(a) we have N = 24 items equidistributed between the two sites, whose
items are shown in a left-to-right increasing order. If K = 21, then N −K + 1 = 4;
that is, we are looking for the 4th largest item overall; then all the items smaller than
the 4th largest inDx , that is, smaller thanDx[4], are too small to beD[21] = �D[4], see
Figure 5.3(b). Similarly, we can keep under consideration inDy just �Dy[N −K + 1]
and the items that are larger.
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FIGURE 5.4: All the data item smaller than the local (N−K+1)th largest element can be
discarded.
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IMPORTANT. Notice that D[K] is the (N −K + 1)th largest item among those
kept in consideration; this is because we have discounted only elements smaller than
D[K].

What is the net result of this ? We are now left with two sets of items, each
of size N −K + 1; see Figure 5.4(c). Among those items, we are looking for the
(N −K + 1)th largest element. In other words, once this operation has been per-
formed, the problem we need to solve is to determine the upper median of the elements
under consideration. We already know how to solve this problem efficiently.

Summary Regardless of the value of K we can always transform the K-selection
problem into a median-finding problem. Notice that this is accomplished without any
additional communication, once it is known that we are looking for D[K].

In the description we have assumed that both sites have the same number of ele-
ment, N/2. If this is not the case, it is easy to verify (Exercise 5.6.6) that the same
type of reduction can still take place.

Hacking As we have seen, median finding is “the” core problem to solve. Our
solution, Halving, is efficient. This protocol can be made more efficient by observing
that we can discard (because it is too large to be the median) any element greater
than mx not only in Dx but also in Dy (if there is any); similarly, we can discard the
elements smaller thanmy (because it is too small to be the median) not only fromDy
but also from Dx (if there is any). In this way we can reduce the amount of elements
still under consideration by more than half, thus possibly reducing the number of
iterations.

CAUTION: The number of discarded items that are greater than the median might
be larger than the number of discarded items that are smaller than the median (or vice
versa). This means that the overall lower median we are looking for is no longer the
median of the elements left under consideration.

In other words, after removing items from consideration, we might be left with a
general selection problem. By now, we know how to reduce a selection problem to
the median-finding one. The resulting protocol, that we shall call GeneralHalving,
will use a few more messages, in each iteration but might yield a larger reduction
(Exercise 5.6.7).

Generalization This technique can be generalized to three sites; however, we are
no longer able to reduce the number of items still under consideration to at most half
at each iteration (Exercise 5.6.9). For larger n > 3 the technique we have designed for
two sites is unfortunately no longer efficiently scalable. Fortunately, some lessons we
have learned when dealing with the two sites are immediately and usefully applicable
to any n, as we will discuss in the next section.

5.2.4 General Selection Strategy: RankSelect

In the previous section we have seen how to perform selection when the number of
data items is small or there are only two sites. In general, this is not the case. For
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example, in most practical applications, the number of sites is 10–100, while the
amount of data at each site is≥ 106. What we need is a different strategy to deal with
the general case.

Let us think of the set D containing the N elements as a search space in which
we need to find d∗ = D[K], unknown to us, and the only thing we know about d∗ is
its rank Rank[d∗,D] = K . An effective way to handle the problem of discovering
d∗ is to reduce as much as possible the search space, eliminating from consideration
as many items as possible, until we find d∗ or the search space is small enough (e.g.,
O(n)) for us to apply the techniques discussed in the previous section.

Suppose that we (somehow) know the rank Rank[d,D] of a data item d in D.
If Rank[d,D] = K then d is the element we were looking for. If Rank[d,D] < K

then d is too small to be d∗, and so are all the items smaller than d. Similarly, if
Rank[d,D] > K , then d is too large to be d∗, and so are all the items larger than d.

This fact can be employed to design a simple and, as we will see, rather efficient
selection strategy:

Strategy RankSelect:

1. Among the data items under consideration, (initially, they all are) choose one,
say d .

2. Determine its overall rank k′ = Rank[d,D].

3. If k′ = K then d = d∗ and we are done. Else, if k′ < K , (respectively, k′ > K)
remove from consideration d all the data items smaller (respectively, larger)
than d and restart the process.

Thus, according to this strategy, the selection process consists of a sequence of
iterations, each reducing the search space, performed until d∗ is found. Notice that
we could stop the process as soon as just few data items (e.g., O(n)) are left for
consideration, and then apply protocol Rank.

Most of the operations performed by this strategy are rather simple to implement.
We can assume that a spanning tree of the network is available and will be used
for all communication, and an entity is elected to coordinate the overall execution
(becoming the root of the tree for this protocol). Any entity can act as a coordinator
and any spanning-tree T of the network will do. However, for efficiency reasons, it
is better to choose as a coordinator the communication center s of the network, and
choose as a tree T the shortest path spanning-tree PT(s) of s.

Let d(i) be the item selected at the beginning of iteration i. Once d(i) is chosen, the
determination of its rank is a trivial broadcast (to let every entity know d(i)) started
by the root s and a convergecast (to collect the partial rank information) ending at the
root s. Recall Exercise 2.9.43.

Onced(i) has determined the rank ofd(i), swill notify all other entities of the result:
d(i) = d∗, d(i) < d∗, or d(i) > d∗; each entity will then act accordingly (terminating
or removing some elements from consideration).
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The only operation still to be discussed is how we choose d(i). The choice of
d(i) is quite important because it affects the number of iterations and thus the overall
complexity of the resulting protocol. Let us examine some of the possible choices
and their impact.

Random Choice We can choose d(i) uniformly at random; that is, in such a way
that each item of the search space has the same probability of being chosen.

How can s choose d(i) uniformly at random ? In Section 2.6.7 and Exercise 2.9.52
we have discussed how to select, in a tree, uniformly at random an item from the
initial distributed set. Clearly that protocol can be used to choose d(i) in the first
iteration of our algorithm. However, we cannot immediately use it in the subsequent
iterations. In fact, after an iteration, some items are removed from consideration;
that is, the search space is reduced. This means that, for the next iteration, we must
ensure we select an item that is still in new search space. Fortunately, this can be
achieved with simple readjustments to the protocol of Exercise 2.9.52, achieving the
same cost in each iteration (Exercise 5.6.10). That is, each iteration costs at most
2(n− 1)+ dT (s, x) messages and 2r(s)+ dT (s, x) ideal time units for the random
selection plus an additional 2(n− 1) messages and 2r(s) time units to determine the
rank of the selected element.

Let us call the resulting protocol RandomSelect. To determine its global cost, we
need to determine the number of iterations. In the worst case, in iteration i we remove
from the search space only d(i); so the number of iterations can be as bad as N , for
a worst case cost of

M[RandomSelect] ≤ (4(n− 1)+ r(s)) N, (5.4)

T [RandomSelect] ≤ 5 r(s) N. (5.5)

However, on the average, the power of making a random choice is evident; in fact
(Exercise 5.6.11):

Lemma 5.2.1 The expected number of iterations performed by Protocol Random-
Select until termination is at most

1.387 logN +O(1).

This means that, on the average

Maverage[RandomSelect] = O(n logN ), (5.6)

Taverage[RandomSelect] = O(n logN ). (5.7)

As mentioned earlier, we could stop the strategy RankSelect, and thus terminate
protocol RandomSelect, as soon as O(n) data items are left for consideration, and
then apply protocol Rank. See Exercise 5.6.12.
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Random Choice with Reduction We can improve the average message
complexity by exploiting the properties discussed in Section 5.2.1. Let �(i) =
min{K(i), N (i)−K(i)+ 1}.

In fact, by Property 5.2.2, if at the beginning of iteration i, an entity has more
than K(i) elements under consideration, it needs to consider only the K(i) smallest
and immediately remove from consideration the others; similarly, if it has more than
N (i)−K(i)+ 1 items, it needs to consider only the N (i)−K(i)+ 1 largest and
immediately remove from consideration the others.

If every entity does this, the search space can be further reduced even before the
random selection process takes place. In fact, the net effect of the application of this
technique is that each entity will have at most �(i) = min{K(i), N (i)−K(i)+ 1}
items still under consideration during iteration i. The root s can then perform random
selection in this reduced space of size n(i) ≤ N (i). Notice that d∗ will have a new
rank k(i) ≤ K(i) in the new search space.

Specifically, our strategy will be to include, in the broadcast started by the root s at
the beginning of iteration i, the valuesN (i) andK(i). Each entity, upon receiving this
information, will locally perform the reduction (if any) of the local elements and then
include in the convergecast the information about the size of the new search space. At
the end of the convergecast, s knows both n(i) and k(i) as well as all the information
necessary to perform the random selection in the reduced search space.

In other words, the total number of messages per iteration will be exactly the same
as that of Protocol RandomSelect.

In the worst case this change does not make any difference. In fact, for the resulting
protocol RandomFlipSelect, the number of iterations can still be as bad asN (Exercise
5.6.13), for a worst case cost of

M[RandomFlipSelect] ≤ (2(n− 1)+ r(s)) N, (5.8)

T [RandomFlipSelect] ≤ 3 r(s) N. (5.9)

The change does however make a difference on the average cost. In fact, (Exercise
5.6.14)

Lemma 5.2.2 The expected number of iterations performed by Protocol Random-
FlipSelect until termination is less than

ln(�)+ ln(n)+O(1)

where ln() denotes the natural logarithm (recall that ln() = .693 log()).
This means that, on the average

Maverage[RandomFlipSelect] = O(n (ln(�)+ ln(n))) (5.10)

Taverage[RandomFlipSelect] = O(n (ln(�)+ ln(n))). (5.11)
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Also in this case, we could stop the strategy RankSelect, and thus terminate protocol
RandomSelect, as soon as only O(n) data items are left for consideration, and then
apply protocol Rank. See Exercise 5.6.15.

Selection in a Random Distribution So far, we have not made any assumption
on the distribution of the data items among the entities. If we know something about
how the data are distributed, we can clearly exploit this knowledge to design a more
efficient protocol. In this section we consider a very simple and quite reasonable
assumption about how the data are distributed.

Consider the setD; it is distributed among the entities x1, . . . , xn; letn[xj ] = |Dxj |
be the number of items stored at xj . The assumption we will make is that all the
distributions of D that end up with n[xj ] items at xj , 1 ≤ j ≤ n, are equally likely.

In this case we can refine the selection of d(i). Let z(i) be the entity where the
number of elements still under consideration in iteration i is the largest; that is,
∀x m(i) = |Dz(i)(i)| ≥ |Dx(i)|. (If there is more than one entity with the same num-
ber of items, choose an arbitrary one.) In our protocol, which we shall call Random-
RandomSelect, we will choose d(i) to be the h(i)th smallest item in the set Dz(i)(i),
where

h(i) = ⌈K(i)
(
m(i)+1
N+1

) − 1
2

⌉
.

We will use this choice until there are less than n items under consideration.
At this point, in Protocol RandomRandomSelect we will use Protocol Random-

FlipSelect to finish the job and determine d∗.
Notice that also in this protocol, each iteration can easily be implemented (Exercise

5.6.16) with at most 4(n− 1)+ r(s) messages and 5r(s) ideal time units.
With the choice of d(i) we have made, the average number of iterations, until

there are less than n items left under consideration, is indeed small. In fact (Exercise
5.6.17),

Lemma 5.2.3 Let the randomness assumption hold. Then the expected number of
iterations performed by Protocol RandomRandomSelect until there are less than n
items under consideration is at most

4
3�log log �+ 1�.

This means that, on the average

Maverage[RandomRandomSelect] = O(n(log log �+ log n)) and (5.12)

Taverage[RandomRandomSelect] = O(n(log log �+ log n)). (5.13)

Filtering The drawback of all previous protocols rests on their worst case costs:
O(nN ) messages and O(r(s)N ) time; notice that this cost is more than that of input
collection, that is, of mailing all the items to s. It can be shown that the probability of
the occurrence of the worst case is so small that it can be neglected. However, there
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might be systems where such a cost is not affordable under any circumstances. For
these systems, it is necessary to have a selection protocol that, even if less efficient
on the average, can guarantee a reasonable cost even in the worst case.

The design of such a system is fortunately not so difficult; in fact it can be achieved
with the strategy RankSelect with the appropriate choice of d(i).

As before, letDi
x denote the set of elements still under consideration at x in iteration

i and nix = |Di
x | denote its size. Consider the (lower) median dix = Di

x[ �nix/2	 ] of
Di
x , and let M(i) = {dix} be the set of these medians. With each element in M(i)

associate a weight; the weight associated with dix is just the size of the corresponding
set nix .

Filter: Choose d(i) to be the weighted (lower) median of M(i).
With this choice, the number of iterations is rather small (Exercise 5.6.18):

Lemma 5.2.4 The number of iterations performed by Protocol Filter until there
are no more than n elements left under consideration is at most

2.41 log(N/n).

Once there are at most n elements left after consideration, the problem can be
solved using one of the known techniques, for example, Rank, for small sets.

However, each iteration requires a complex operation; in fact we need to find the
median of the setM(i) in iteration i. As the set is small (it contains at mostn elements),
this can be done using, for example, Protocol Rank. In the worst case, it will require
O(n2) messages in each iteration. This means that, in the worst case,

M[Filter] = O
(
n2 log

N

n

)
(5.14)

T [Filter] = O
(
n log

N

n

)
. (5.15)

5.2.5 Reducing the Worst Case: ReduceSelect

The worst case we have obtained by using the Filter choice in strategy RankSelect is
reasonable but it can be reduced using a different strategy.

This strategy, and the resulting protocol that we shall call ReduceSelect, is obtained
mainly by combining and integrating all the techniques we have developed so far for
reducing the search space with new, original ones.

Reduction Tools Let us summarize first of all the main basic tool we have used
so far.

Reduction Tool 1: Local Contraction If entity x has more than � items under
consideration, it can immediately discard any item greater than the local Kth smallest
element and any item smaller than the local (N −K + 1)th largest element.
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This tool is based on Property 5.2.2. The requirement for the application of this
tool is that each site must knowK andN . The net effect of the application of this tool
is that, afterwards, each site has at most � items under considerations that are stored
locally. Recall that we have used this reduction tool already when dealing with the
two sites case, as well as in Protocol RandomFlipSelect.

A different type of reduction is offered by the following tool.

Reduction Tool 2: Sites Reduction If the number of entities n is greater than K
(respectively,N −K + 1), then n−N entities (respectively n−N +K − 1) and all
their data items can be removed from consideration. This can be achieved as follows.

1. Consider the set Dmin = {Dx[1]} (respectively Dmax = {Dx[|Dx |]}) of the
smallest (respectively, the largest) item at each entity.

2. Find the Kth smallest (respectively, (N −K + 1)th largest) element, call it w, of
this set. NOTE: This set has n elements; hence this operation can be performed
using protocol Rank.

3. If Dx[1] > w (respectively Dx[|Dx |] < w) then the entire set Dx can be re-
moved from consideration.

This reduction technique immediately reduces the number of sets involved in the
problem to at most �. For example, consider the case of searching for the 7th largest
item when the N data items of D are distributed among n = 10 entities. Consider
now the largest element stored at each entity (they form a set of 10 elements), and
find the 7th largest of them. The 8th largest element of this set cannot possibly be the
7th largest item of the entire distributed set D; as it is the largest item stored at the
entity from which it originated, none of the other items stored at that entity can be the
7th largest element either; so we can remove from consideration the entire set stored
at that entity. Similarly we can remove also the sets where the 9th and the 10th largest
came from.

These two tools can obviously be used one after the other. The combined use of
these two tools reduces the problem of selection in a search space of sizeN distributed
amongn sites to that of selection among Min {n,�} sites, each with at most � elements.
This means that, after the execution of these two tools, the new search space contains
at most �2 data items.

Notice that once the tools have been applied, if the size of the search space and/or
the rank of f ∗ in that space have changed, it is possible that the two tools can be
successfully applied again.

For example, consider the case depicted in Table 5.1, where N = 10, 032 is dis-
tributed amongn = 5 entities,x1, . . . x5, and where we are looking for the Kth smallest
element in this set, where K = 4096. First observe that, when we apply the two
Reduction Tools, only the first one (Contraction) will be successful. The effect will
be to remove from consideration many elements from x1, all larger than f ∗. In other
words, we have significantly reduced the search space without changing the rank
of f ∗ in the search space. If we apply again the two Reduction Tools to the new
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TABLE 5.1: Repeated use of the Reduction Tools

N : size of K : rank of f ∗ x1 x2 x3 x4 x5

search space in search space

10, 032 4, 096 10, 000 20 5 5 2
4, 126 4, 096 4, 096 20 5 5 2

65 33 33 20 5 5 2

configuration, again only the first one (Contraction) will be successful; however the
second will further drastically reduce the size of the search space (the variable N )
from 4126 to 65 and the rank of f ∗ in the new search space (the variable K) from
4096 to 33.

This fact means that we can iterate Local Contraction until there will no longer
be any change in the search space and in the rank of f ∗ in the search space. This
will occur when at each site xi the number of items still under consideration n′i is not
greater than �′ = min{K ′, N ′ −K ′ + 1}, where N ′ is the size of the search space
and K ′ the rank of f ∗ in the search space. We will then use the Sites Reduction tool.

The reduction protocol REDUCE based on this repeated use of the two Reduction
Tools is shown in Figure 5.5.

Lemma 5.2.5 After the execution of Protocol REDUCE, the number of items left
under consideration is at most

� min{n,�}.
The single execution of Sites Reduction requires selection in a small set discussed

in Section 5.2.2.
Each execution of Local Contraction required by Protocol REDUCE requires a

broadcast and a convergecast, and costs 2(n− 1) messages and 2r(s) time. To de-
termine the total cost we need to find out the number of times Local Contraction is
executed. Interestingly, this will occur a constant number of times, three times to be
precise (Exercise 5.6.19).

REDUCE

begin
N ′ = N; K ′ = K; �′ = �; n′i = ni, 1 ≤ i ≤ n;
while ∃xi such that n′i > �′ do

perform Local Contraction;
* update the values of N ′,K ′,�′, n′i(1 ≤ i ≤ n)�

endwhile
if n > �′ then

perform Sites Reduction;
endif

end

FIGURE 5.5: Protocol REDUCE.



DISTRIBUTED SELECTION 295

Cutting Tools The new tool we are going to develop is to be used whenever the
number n of sets is at most � and each entity has at most � items; this is, for example,
the result of applying Tools 1 and 2 described before. Thus, the search space contains
at most �2 items. For simplicity, and without loss of generality, let K = � (the case
N −K + 1 = � is analogous).

To aid in the design, we can visualize the search space as an arrayD of size n× �,
where the rows correspond to the sets of items, each set sorted in an increasing order,
and the columns specify the rank of that element in the set. So, for example, di,j is
the jth smallest item in the set stored at entity xi . Notice that there is no relationship
among the elements of the same column; in other words, D is a matrix with sorted
rows but unsorted columns.

Each column corresponds to a set of n elements distributed among the n entities.
If an element is removed from consideration, it will be represented by +∞ in the
corresponding entry in the array.

Consider the set C(2), that is, all the second-smallest items in each site. Focus on
the kth smallest element m(2) of this set, where

k = �K/2	.
By definition, m(2) has exactly k − 1 elements smaller than itself in C(2); each

of them, as well as m(2), has another item smaller than itself in its own row (this
is because they are second-smallest in their own set). This means that, as far as we
know, m(2) has at least

(k − 1)+ k = 2k − 1 ≥ K − 1

items smaller than itself in the global set D; this implies that any item greater than
m(2) cannot be the Kth smallest item we are looking for. In other words, if we find
m(2), then we can remove from consideration any item larger than m(2).

Similarly, we can consider the set C(2i), where 2i ≤ K , composed of the 2i th
smallest items in each set. Focus again on the kth smallest element m(2i) of C(2i),
where

k = �K/2i	.

By definition, m(2i) has exactly k − 1 elements smaller than itself in C(2); each
of them, as well as m(2i), has another 2i − 1 items smaller than itself in its own row
(this is because they are the 2i th smallest in their own set). This means thatm(2i) has
at least

(k − 1)+ k (2i − 1) = k 2i − 1 ≥ K
2i

2i − 1 = K − 1

items smaller than itself in the global set D; this implies that any item greater than
m(2i) cannot be the Kth smallest item we are looking for. In other words, if we find
m(2i), then we can remove from consideration any item larger than m(2i).

Thus, we have a generic Reduction Tool using columns whose index is a power
of two.
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CUT

begin
k = �K/2	;
l := 2;
while k ≥ logK and search space is not small do

if in C(2l) there are ≥ k items still under
consideration then
* use the CuttingT ool : �
find the kth smallest element m(l) of C(l);
remove from consideration all the elements
greater than m(l).

endif
k := k/2;
l := 2l;

endwhile
end

FIGURE 5.6: Protocol CUT.

Cutting Tool Let l = 2i ≤ K and k = �K/l�. Find the kth smallest element m(l)
of C(l), and remove from consideration all the elements greater than m(l).

The Cutting Tool can be implemented using any protocol for selection in small
sets (recall that each C(l) has at most n elements), such as Rank; a single broadcast
will notify all entities of the outcome and allow each to reduce its own set if needed.

On the basis of this tool we can construct a reduction protocol that sequentially
uses the Cutting Tool first using C(2), then C(4), then C(8), and so on. Clearly, if at
any time the search space becomes small (i.e., O(n)), we terminate. This reduction
algorithm, that we will call CUT, is shown in Figure 5.6.

Let us examine the reduction power of Procedure CUT. After executing the Cutting
Tool on C(2), only one column, C(1), might remain unchanged; all others, including
C(2), will have at least half of the entries +∞. In general, after the execution of
Cutting Tool on C(l = 2i), only the l − 1 columns C(1), C(2), . . . , C(l − 1) might
remain unchanged; all others, including C(l) will have at least n−K/l of the entries
+∞ (Exercise 5.6.20). This can be used to show (Exercise 5.6.21) that

Lemma 5.2.6 After the execution of Protocol CUT, the number of items left under
consideration is at most

min{n,�} log �.

Each of the �log �� execution of the Cutting Tool performed by Protocol CUT
requires a selection in a set of size at most min{n,�}. This can be performed using
any of the protocols for selection in a small set, for example, Protocol Rank. In the
worst case, it will require O(n2) messages in each iteration. This means that, in the
worst case,

M[CUT ] = O(n2 log �), (5.16)

T [CUT ] = O(n log �). (5.17)
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ReduceSelect

begin
REDUCE;
if search space greater than O(�′) then CUT
if search space greater than O(n) then Filter
Rank;

end

FIGURE 5.7: Protocol ReduceSelect.

Putting It All Together We have examined a set of Reduction Tools. Summa-
rizing, Protocol REDUCE, composed of the application of Reduction Tools 1 and
2, reduces the search space from N to at most �2. Protocol CUT, composed of a
sequence of applications of the Cutting Tool, reduces the search space from �2 to at
most min{n,�} log �.

Starting from these reductions, to form a full selection protocol, we will first reduce
the search space from min{n,�} log � to O(n) (e.g. using Protocol Filter) and then
use a protocol for small sets (e.g. Rank) to determine the sought item.

In other words, resulting algorithm, Protocol ReduceSelect, will be as shown in
Figure 5.7, where �′ is the new value of � after the execution of REDUCE.

Let us examine the cost of Protocol ReduceSelect. Protocol REDUCE, as we have
seen, requires at most 3 iterations of Local Contractions, each using 2(n− 1) messages
and 2r(s) time, and one execution of Sites Reduction that consists in an execution
of Rank. Protocol CUT is used with N ≤ min{n,�}� and, as we have seen, thus,
requires at most log � iterations of the Cutting Tools, each consisting in an execution
of Rank. Protocol Filter, as we have seen, is used with N ≤ min{n,�} log � and,
as we have seen, thus, requires at most log log � iterations, each costing 2(n− 1)
messages and 2r(s) time plus an execution of Rank. Thus, in total, we have

M[ReduceSelect] = (log �+ 4.5 log log �+ 2)M[Rank]

+ (6+ 4.5 log log �)(n− 1), (5.18)

T [ReduceSelect] = (log �+ 4.5 log log �+ 2)T [Rank]

+ (6+ 4.5 log log �)2r(s). (5.19)

5.3 SORTING A DISTRIBUTED SET

5.3.1 Distributed Sorting

Sorting is perhaps the most well known and investigated algorithmic problem. In
distributed computing systems, the setting where this problem takes place as well
as its nature is very different from the serial as well as parallel ones. In particular,
in our setting, sorting must take place in networks of computing entities where no
central controller is present and no common clock is available. Not surprisingly, most
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{11, 22, 30, 34, 45} {68, 69, 71, 75}

{56, 57} {82, 85, 87}

{68, 69, 71, 75, 82}

{85, 87} {45, 56, 57}

{11, 22, 30, 34}

(a) (b)
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3
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FIGURE 5.8: Distribution sorted according to (a) π = 〈3124〉 and (b) π = 〈2431〉.

of the best serial and parallel sorting algorithms do very poorly when applied to a
distributed environment. In this section we will examine the problem, its nature, and
its solutions.

Let us start with a clear specification of the task and its requirements. As before
in this chapter, we have a distribution 〈Dx1 , . . . , Dxn〉 of a set D among the entities
x1, . . . , xn of a system with communication topologyG, whereDxi is the set of items
stored at xi . Each entity xi , because of the Distinct Identifiers assumption ID, has a
unique identity id(i), from a totally ordered sets. For simplicity, in the following we
will assume that the ids are the numbers 1, 2, . . . , n and that id(i) = i, and we will
denote Dxi simply by Di .

Let us now focus on the definition of a sorted distribution. A distribution is (quite
reasonably) considered sorted if, whenever i < j , all the data items stored at xi are
smaller than the items stored at xj ; this condition is usually called increasing order.
A distribution is also considered sorted if all the smallest items are in xn, the next
ones in xn−1, and so on, with the largest ones in x1; usually, we call this condition
decreasing order. Let us be precise.

Let π be a permutation of the indices {1, . . . , n}. A distribution 〈D1, . . . , Dn〉 is
sorted according to π if and only if the following Sorting Condition holds:

π (i) < π (j ) ⇒ ∀d ′ ∈ Di, d ′′ ∈ Dj d ′ < d ′′. (5.20)

In other words, if the distribution is sorted according toπ , then all the smallest items
must be inxπ (1), the next smallest ones inxπ (2), and so on, with the largest ones inxπ (n).
So the requirement that the data are sorted according to the increasing order of the ids
of the entities is given by the permutation π = 〈1 2 . . . n〉. The requirement of being
sorted in a decreasing order is given by the permutation π = 〈n (n− 1) . . . 1〉. For
example, in Figure 5.8(b), the set is sorted according to the permutationπ = 〈2 4 3 1〉;
in fact, all the smallest data items are stored at x2, the next ones in x4, the yet larger
ones in x3, and all the largest data items are stored at x1. We are now ready to define
the problem of sorting a distributed set.
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Sorting Problem Given a distribution 〈D1, . . . , Dn〉 of D and a permutation π ,
the distributed sorting problem is the one of moving data items among the entities so
that, upon termination,

1. 〈D′1, . . . , D′n〉 is a distribution of D, where D′i is the final set of data at xi ;

2. 〈D′1, . . . , D′n〉 is sorted according to π .

Note that the definition does not say anything about the relationship between the
sizes of the initial sets Dis and those of the final sets D′is. Depending on which
requirement we impose, we have different versions of the problem. There are three
fundamental requirements:

invariant-sized sorting: |Di | = |D′i |, 1 ≤ i ≤ n, that is, each entity ends up with
the same number of items it started with.

equidistributed sorting: |Dπ (i)| = �N/n	 for 1 ≤ i < n and |Dπ (n)| = N −
(n− 1)�N/n	, that is, every entity receives the same amount of data, except
for xπ (n) that might receive fewer items.

compacted sorting: |Dπ (i)| = min{w, N − (i − 1)w}, where w ≥ �N/n	 is the
storage capacity of the entities, that is, each entity, starting from xπ (1), receives
as many unassigned items as it can store.

Notice that equidistributed sorting is a compacted sorting with w = �N/n	. For
some of the algorithms we will discuss, it does not really matter which requirement is
used; for some protocols, however, the choice of the requirement is important. In the
following, unless otherwise specified, we will use the invariant-sized requirement.

From the definition, it follows that when sorting a distributed set the relevant factors
are the permutation according to which we sort, the topology of the network in which
we sort, the location of the entities in the network, as well as the storage requirements.
In the following two sections, we will examine some special cases that will help us
understand these factors, their interplay, and their impact.

5.3.2 Special Case: Sorting on a Ordered Line

Consider the case when we want to sort the data according to a permutation π , and
the network G is a line where xπ (i) is connected to xπ (i+1), 1 ≤ i < n. This case is
very special. In fact, the entities are located on the line in such a way that their indices
are ordered according to the permutation π . (The data, however, is not sorted.) For
this reason, G is also called an ordered line. As an example, see Figure 5.9, where
π = 〈1, 2, . . . , n〉.

A simple sorting technique for an ordered line is OddEven-LineSort, based on the
parallel algorithm odd-even-transposition sort, which is in turn based on the well
known serial algorithm Bubble Sort. This technique is composed of a sequence of
iterations, where initially j = 0.
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{10, 15, 16} {5, 11, 14}{1, 9, 13, 18}

{3, 6, 8, 20} {2, 7, 12}

51 2 3 4

FIGURE 5.9: A distribution on a ordered line of size n = 5.

Technique OddEven-LineSort:

1. In iteration 2j + 1 (an odd iteration), entity x2i+1 exchanges its data with neigh-
bour x2i+2, 0 ≤ i ≤ �n2 � − 1; as a result, x2i+1 retains the smallest items while
x2i+2 retains the largest ones.

2. In iteration 2j (an even iteration), entity x2i exchanges its data with neighbour
x2i+1, 1 ≤ i ≤ �n2 � − 1; as a result, x2i retains the smallest items while x2i+1
retains the largest ones.

3. If no data items change of place at all during an iteration (other than the first),
then the process stop.

A schematic representation of the operations performed by the technique OddEven-
LineSort is by means of the “sorting diagram”: a synchronous TED (time-event
diagram) where the exchange of data between two neighboring entities is shown
as a bold line connecting the time lines of the two entities. The sorting diagram for a
line of n = 5 entities is shown in Figure 5.10. In the diagram are clearly visible the
alternation of “odd” and “even” steps.

To obtain a fully specified protocol, we still need to explain two important opera-
tions: termination and data exchange.

Termination. We have said that we terminate when no data items change of place
at all during an iteration. This situation can be easily determined. In fact, at the end
of an iteration, each entity x can set a Boolean variable change to true or false to
indicate whether or not its data set has changed during that iteration. Then, we can
check (by computing the AND of those variables) if no data items have changed place
at all during that iteration; if this is the case for every entity, we terminate, else we
start the next iteration.

1x

x

x

x

x

2

3

4

5

. . . .

. . . .

. . . .

. . . .

FIGURE 5.10: Diagram of operations of OddEven-LineSort in a line of size n = 5.
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Data Exchange. At the basis of the technique there is the exchange of data between
two neighbors, say x and y; at the end of this exchange, that we will call merge, x
will have the smallest items and y the largest ones (or vice versa). This specification
is, however, not quite precise. Assume that, before the merge, x has p items while y
has q items, where possibly p �= q; how much data should x and y retain after the
merge ? The answer depends, partially, on the storage requirements.

� If we are to perform a invariant-sized sorting, x should retain p items and y
should retain q items.
� If we are to perform a compacted sorting, x should retainmin{w, (p + q)} items

and y retain the others.
� If we are to perform a equidistributed sorting, x should retain min{�N/n	,
p + q} items and y retain the others. Notice that, in this case each entity need
to know both n and N .

The results of the execution of OddEven-LineSort with an invariant-sized in the
sorted line of Figure 5.9 is shown in Table 5.2.

The correctness of the protocol, although intuitive, is not immediate (Exercises
5.6.23, 5.6.24, 5.6.25, and 5.6.26). In particular, the so-called “0− 1 principle” (em-
ployed to prove the correctness of the similar parallel algorithm) can not be used
directly in our case. This is due to the fact that the local data sets Di may contain
several items, and may have different sizes.

Cost The time cost is clearly determined by the number of iterations. In the worst
case, the data items are initially sorted the “wrong” way; that is, the initial distribution
is sorted according to permutation π ′ = 〈π (n), π (n− 1), . . . , π(1)〉. Consider the
largest item; it has to move from x1 to xn; as it can only move by one location per
iteration, to complete its move it requires n− 1 iterations. Indeed this is the actual
cost for some initial distributions (Exercise 5.6.27).

Property 5.3.1 OddEven-LineSort sorts an equidistributed distribution in n− 1
iterations if the required sorting is (a) invariant-sized, or (b) equidistributed, or (c)
compacted.

TABLE 5.2: Execution of OddEven-LineSort on the System of Figure 5.9

iteration x1 x2 x3 x4 x5

1 {1,9,13,18}→ ←{3,6,8,20} {2,7,12}→ ←{10,15,16} {5,11,14}
2 {1,3,6,8} {9,13,18,20}→ ←{2,7,10} {12,15,16}→ ←{5,11,14}
3 {1,3,6,8}→ ←{2,7,9,10} {13,18,20}→ ←{5,11,12} {14,15,16}
4 {1,2,3,6} {7,8,9,10}→ ←{5,11,12} {13,18,20}→ ←{14,15,16}
5 {1,2,3,6}→ ←{5,7,8,9} {10,11,12}→ ←{13,14,15} {16,18,20}
6 {1,2,3,5} {6,7,8,9}→ ←{10,11,12} {13,14,15}→ ←{16,18,20}
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Interestingly, the number of iterations can actually be much more than n− 1 if the
initial distribution is not equidistributed.

Consider, for example, an invariant-sized sorting when the initial distribution is
sorted according to permutation π ′ = 〈π (n), π (n− 1), . . . , π(1)〉. Assume that x1
and xn have each kq items, while x2 has only q items. All the items initially stored
in x1 must end up in xn; however, in the first iteration only q items will move from
x1 to x2; because of the “odd-even” alternation, the next q items will leave x1 in the
3rd iteration, the next q in the 5th, and so on. Hence, the total number of iterations
required for all data to move from x1 to xn is at least n− 1+ 2(k − 1). This implies
that, in the worst case, the time costs can be considerably high (Exercise 5.6.28):

Property 5.3.2 OddEven-LineSort performs an invariant-sized sorting in at most
N − 1 iterations. This number of iterations is achievable.

Assuming (quite unrealistically) that the entire data set of an entity can be sent in
one time unit to its neighbor, the time required by all the merge operations is exactly
the same as the number of iterations. In contrast to this, to determine termination,
we need to compute the AND of the Boolean variables change at each iteration. This
operation can be done on a line in time n− 1 at each iteration. Thus, in the worst
case,

T[OddEven− LineSortinvariant] = O(nN ). (5.21)

Similarly, bad time costs can be derived for equidistributed sorting and compacted
sorting.

Let us focus now on the number of messages for invariant-sized sorting. If we
do not impose any size constraints on the initial distribution then, by Property 5.3.2,
the number of iterations can be as bad as N − 1; as in each iteration we perform the
computation of the function AND, and this requires 2(n− 1) messages, it follows
that the protocol will use

2(n− 1)(N − 1)

messages just for computing the AND. To this cost we still need to add the number
of messages used for the transfer of data items. Hence, without storage constraints
on the initial distribution, the protocol has a very high cost due to the high number of
iterations possible.

Let us consider now the case when the initial distribution is equidistributed. By
property 5.3.1, the number of iterations is at mostn− 1 (instead ofN − 1). This means
that the cost of computing the AND is O(n2) (instead of O(Nn)). Surprisingly, even
in this case, the total number of messages can be very high.

Property 5.3.3 OddEven-LineSort can use O(Nn) messages to perform an
invariant-sized sorting. This cost is achievable even if the data is initially equidis-
tributed.
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To see why this is the case, consider an initial equidistribution sorted according
to permutation π ′ = 〈π (n), π (n− 1), . . . , π(1)〉. In this case, every data item will
change location in each iteration (Exercise 5.6.29), that is, O(N ) messages will be
sent in each iteration. As there can be n− 1 iterations with an initial equidistribution
(by Property 5.3.1), we obtain the bound. Summarizing:

M[OddEven− LineSort]invariant = O(nN ). (5.22)

That is, using Protocol OddEven-LineSort can costs as much as broadcasting all
the data to every entity. This results holds even if the data is initially equidistributed.
Similar bad message costs can be derived for equidistributed sorting and compacted
sorting.

Summarizing, Protocol OddEven-LineSort does not appear to be very efficient.

IMPORTANT. Each line network is ordered according to a permutation. However,
this permutation might not be π , according to which we need to sort the data. What
happens in this case?

The protocol OddEven-LineSort does not work if the entities are not positioned
on the line according to π , that is, when the line is not ordered according to π .
(Exercise 5.6.30). The question then becomes how to sort a set distributed on an
unsorted line. We will leave this question open until later in this chapter.

5.3.3 Removing the Topological Constraints: Complete Graph

One of the problems we have faced in the the line graph is the constraint that the
topology of the network imposes. Indeed, the line graph is one of the worst topologies
for a tree, as its diameter is n− 1. In this section we will do the opposite: We will
consider the complete graph, where every entity is directly connected to every other
entity; in this way, we will be able to remove the constraints imposed by the network
topology. Without loss of generality (since we are in a complete network), we assume
π = 〈1, 2, . . . , n〉.

As the complete graph contains every graph as a subgraph, we can choose to
operate on whichever graph suites best our computational needs. Thus, for example,
we can choose an ordered line and use protocol OddEven-LineSort we discussed
before. However, as we have seen, this protocol is not very efficient.

If we are in a complete graph, we can adapt and use some of the well known
techniques for serial sorting.

Let us focus on the classical Merge-Sort strategy. This strategy, in our distributed
setting becomes as follows: (1) the distribution to be sorted is first divided in two partial
distributions of equal size; (2) each of these two partial distribution is independently
sorted recursively using MergeSort; and (3) then the two sorted partial distributions
are merged to form a sorted distribution.

The problem with this strategy is that the last step, the merging step, is not an obvious
one in a distributed setting; in fact, after the first iteration, the two sorted distributions
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to be merged are scattered among many entities. Hence the question: How do
we efficiently “merge” two sorted distributions of several sets to form a sorted
distribution?

There are many possible answers, each yielding a different merge-sort protocol.
In the following we discuss a protocol for performing distributed merging by means
of the odd-even strategy we discussed for the ordered line.

Let us first introduce some terminology. We are given a distribution D =
〈D1, . . . , Dn〉. Consider now a subset {Dj1 , . . . , Djq } of the data sets, where ji <
ji+1 (1 ≤ i ≤ q). The corresponding distribution D′ = 〈Dj1 , . . . , Djq 〉 is called a
partial distribution ofD. We say that the partial distribution d ′ is sorted (according to
π = 〈1, . . . , n〉) if all the items inDji are smaller that the items inDji+1 , 1 ≤ i < q.
Note that it might happen that D′ is sorted while D is not.

Let us now describe how to odd-even-merge a sorted partial distribution
〈A1, . . . , Ap

2
〉 with a sorted partial distribution 〈Ap

2+1, . . . , Ap〉 to form a sorted
distribution 〈A1, . . . , Ap〉, where we are assuming for simplicity thatp is a power of 2.

OddEven-Merge Technique:

1. If p = 2, then there are two sets A1 and A2, held by entities y1 and y2, respec-
tively. To odd-even-merge them, each of y1 and y2 sends its data to the other
entity; y1 retains the smallest while y2 retains the largest items. We call this
basic operation simply merge.

2. If p > 2, then the odd-even-merge is performed as following:

(a) first recursively odd-even-merge the distribution 〈A1, A3, A5, . . . , Ap
2−1〉

with the distribution 〈Ap
2+1, Ap

2+3, Ap
2+5, . . . , Ap−1〉;

(b) then recursively odd-even-merge the distribution 〈A2, A4, A6, . . . , Ap
2
〉

with the distribution 〈Ap
2+2, Ap

2+4, Ap
2+6, . . . , Ap〉;

(c) finally, merge A2i with A2i+1 (1 ≤ i ≤ p
2 − 1)

The technique OddEven-Merge can then be used to generate the OddEven-MergeSort
technique for sorting a distribution 〈D1, . . . , Dn〉. As in the classical case, the
technique is defined recursively as follows:

OddEven-MergeSort Technique:

1. recursively odd-even-merge-sort the distribution 〈D1, . . . , Dn
2
〉 ,

2. recursively odd-even-merge-sort the distribution 〈Dn
2+1, . . . , Dn〉

3. odd-even-merge 〈D1, . . . , Dn
2
〉 with 〈Dn

2+1, . . . , Dn〉

Using this technique, we obtain a protocol for sorting a distribution 〈D1, . . . , Dn〉;
we shall call this protocol like the technique itself: Protocol OddEven-MergeSort.

To determine the communication costs of this protocol need to “unravel” the
recursion.
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FIGURE 5.11: Diagram of operations of OddEven-MergeSort with n = 8.

When we do this, we realize that the protocol is a sequence of 1+ log n iterations
(Exercise 5.6.32). In each iteration (except the last) every entity is paired with another
entity, and each pair will perform a simple merge of their local sets; half of the entities
will perform this operation twice during an iteration. In the last iteration all entities,
except x1 and xn, will be paired and perform a merge.

Example Using the sorting diagram to describe these operations, the structure of
an execution of Protocol OddEven-MergeSort when n = 8 is shown in Figure 5.11.
Notice that there are 4 iterations; observe that, in iteration 2, merge will be
performed between the pairs (x1, x3), (x2, x4), (x5, x7), (x6, x8); observe further that
entities x2, x3, x6, x7 will each be involved in one more merge in this same iteration.

Summarizing, in each of the first log n iterations, each entity sends is data to one or
two other entities. In other words the entire distributed set is transmitted in each itera-
tion. Hence, the total number of messages used by Protocol OddEven-MergeSort is

M[OddEven−MergeSort] = O(N log n). (5.23)

Note that this bound holds regardless of the storage requirement.

IMPORTANT. Does the protocol work ? Does it in fact sorts the data ? The answer
to these questions is: not always. In fact, its correctness depends on several factors,
including the storage requirements.

It is not difficult to prove that the protocol correctly sorts, regardless of the storage
requirement, if the initial set is equidistributed (Exercise 5.6.33).
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{4, 8} {1, 4}

{6} {3}

{7} {6} {6}

{1, 3} {3, 7} {7, 8} {7, 8}
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{3}{8}

{4, 6}

{1}

FIGURE 5.12: OddEven-MergeSort does not correctly perform an invariant sort for this
distribution.

Property 5.3.4 OddEven-MergeSort sorts any equidistributed set if the required
sorting is (a) invariant-sized, (b) equidistributed, or (c) compacted.

However, if the initial set is not equidistributed, the distribution obtained when
the protocol terminates might not be sorted. To understand why, consider performing
an invariant sorting in the system of n = 4 entities shown in Figure 5.12; items 1
and 3, initially at entity x4, should end up in entity x1, but item 3 is still at x4 when
the protocol terminates. The reason for this happening is the “bottleneck” created
by the fact that only one item at a time can be moved to each of x2 and x3. Recall
that the existence of bottlenecks was the reason for the high number of iterations of
Protocol OddEven-LineSort. In this case, the problem makes the protocol incorrect. It
is indeed possible to modify the protocol, adding enough appropriate iterations, so that
the distribution will be correctly solved. The type and the number of the additional
iterations needed to correct the protocol depends on many factors. In the example
shown in Figure 5.12, a single iteration consisting of a simple merge between x1 and
x2 would suffice. In general, the additional requirements depend on the specifics of
the size of the initial sets; see, for example, Exercise 5.6.34.

5.3.4 Basic Limitations

In the previous sections we have seen different protocols, examined their behavior,
and analyzed their costs. In this process we have seen that the amount of data items
transmitted can be very large. For example, in OddEven-LineSort the number of
messages is O(Nn), the same as sending every item everywhere. Even not worrying
about the limitations imposed by the topology of the network, protocol OddEven-
MergeSort still usesO(N log n) messages when it works correctly. Before proceeding
any further, we are going to ask the following question: How many messages need to
be sent anyway? we would like the answer to be independent of the protocol but to
take into account both the topology of the network and the storage requirements. The
purpose of this section is to provide such an answer, to use it to assess the solutions
seen so far, and to understand its implications. On the basis of this, we will be able to
design an efficient sorting protocol.

Lower Bound There is a minimum necessary amount of data movements that
must take place when sorting a distributed set. Let us determine exactly what costs
must be incurred regardless of the algorithm we employ.
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The basic observation we employ is that, once we are given a permutation π
according to which we must sort the data, there are some inescapable costs. In fact, if
entity x has some data that according to π must end up in y, then this data must move
from x to y, regardless of the sorting algorithm we use. Let us state these concepts
more precisely.

Given a networkG, a distribution D = 〈D1, . . . , Dn〉 ofD onG, and a permutation
π let D′ = 〈D′1, . . . , D′n〉 be the result of sorting D according to π . Then |Di ∩D′j |
items must travel from xi to xj ; this means that the amount of data transmission for
this transfer is at least

|Di ∩D′j | dG(xi, xj ).

How this amount translates into number of messages depends on the size of the
messages. A message can only contain a (small) constant number of data items; to
obtain a uniform measure, we consider just one data item per message. Then

Theorem 5.3.1 The number of messages required to sort D according to π in G is
at least

C(D,G, π ) = ∑

i �=j
|Di ∩D′j | dG(xi, xj ).

This expresses a lower bound on the amount of messages for distributed sorting;
the actual value depends on the topology G and the storage requirements. The deter-
mination of this value in specific topologies for different storage requirements is the
subject of Exercises 5.6.35–5.6.38.

Assessing Previous Solutions Let us see what this bound means for situations
we have already examined. In this bound, the topology of the network plays a role
through the distances dG(xi, xj ) between the entities that must transfer data, while
the storage requirements play a role through the sizes |D′i | of the resulting sets.

First of all, note that, by definition, for all xi, xj , we have

dG(xi, xj ) ≤ d(G);

furthermore,

∑

i �=j
|Di ∩D′j | ≤ N. (5.24)

To derive lower bounds on the number of messages for a specific network G, we
need to consider for that network the worst possible allocation of the data, that is, the
one that maximizes C(D,G, π ).

Ordered Line. OddEven-LineSort
Let us focus first on the ordered line network.
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If the data is not initially equidistributed, it easy to show scenarios where O(N )
data must travel aO(n) distance along the line. For example, consider the case when
xn initially contains the smallest N − n+ 1 items while all other entities have just
a single item each; for simplicity, assume (N − n+ 1)/n to be integer. Then for
equidistributed sorting we have |Dn ∩D′j | = (N − n+ 1)/n for j < n; this means
that at least

∑

j<n

|Dn ∩D′j | dG(xn, xj ) = ∑

j<n

j (N − n+ 1)/n = �(nN )

messages are needed to send the data initially in xn to their final destinations. The
same example holds also in the case of compact sorting.

In the case of invariant sorting, surprisingly, the same lower bound exists even
when the data is initially equidistributed; for simplicity, assume N/n to be integer
and n to be even. In this case, in fact, the worst initial arrangement is when the
data items are initially sorted according to the permutation 〈n2 + 1, n2 + 2, . . . , n− 1,
n, 1, 2, . . . , n2 − 1, n2 〉, while we want to sort them according to π = 〈1, 2, . . . , n〉.
In this case we have that all the items initially stored at xi , 1 ≤ i ≤ n/2, must end
up in xn

2+i , and vice versa, that is, D′i = Dn
2+i . Furthermore, in the ordered line,

d(xi, x n2+i) =
n
2 , 1 ≤ i ≤ n/2. This means that each item must travel distance n

2 .
That is the total amount of communication must be at least

∑

i �=j
|Di ∩D′j | dG(xi, xj ) = n

2N = �(nN ).

Summarizing, in the ordered line, regardless of the storage requirements, �(nN )
messages need to be sent in the worst case.

This fact has a surprising consequence. It implies that the complexity of the solution
for the ordered line, protocol OddEven-LineSort, was not bad after all. On the contrary,
protocol protocol OddEven-LineSort is worst-case optimal.

Complete Graph. OddEven-MergeSort
Let us turn to the complete graph. In this graph dG(xi, xj ) = 1 for any two distinct
entities xi and xj . Hence, the lower bound of Theorem 5.3.1 in the complete graph
K becomes simply

C(D,K, π ) =
∑

i �=j
|Di ∩D′j |. (5.25)

This means that, by relation 5.24, in the complete graph no more thanN messages
need to be sent in the worst case. At the same time, it is not difficult to find, for each
type of storage requirement, a situation where this lower bound becomes �(N ), even
when the set is initially equidistributed (Exercise 5.6.35).
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In other words, the number of messages that need to be sent in the worst case is
no more and no less than �(N ).

By Contrast, we have seen that protocol OddEven-MergeSort always uses
O(N logN ) messages; thus, there is a large gap between upper bound and lower
bound. This indicates that protocol OddEven-MergeSort, even when correct, is far
from optimal.

Summarizing, the expensive OddEven-LineSort is actually optimal for the ordered
line, while OddEven-MergeSort is far from being optimal in the complete graph.

Implications for Solution Design The bound of Theorem 5.3.1 expresses a
cost that every sorting protocol must incur. Examining this bound, there are two
considerations that we can make.

The first consideration is that, to design an efficient sorting protocol, we should
not worry about this necessary cost (as there is nothing we can do about it), but
rather focus on reducing the additional amount of communication. We must, however,
understand that the necessary cost is that of the messages that move data items to their
final destination (through the shortest path). These messages are needed anyway; any
other message is an extra cost, and we should try to minimize these.

The second consideration is that, as the data items must be sent to their final
destinations, we could use the additional cost just to find out what the destinations
are. This simple observation leads to the following strategy for a sorting protocol, as
described from the individual entity point of view:

Sorting Strategy

1. First find out where your data items should go.

2. Then send them there through the shortest-paths.

The second step is the necessary part and causes the cost stated by Theorem 5.3.1.
The first step is the one causing extra cost. Thus, it is an operation we should perform
efficiently.

Notice that there are many factors at play when determining where the final desti-
nation of a data item should be. In fact, it is not only due to the permutation π but also
to factors such as which final storage requirement is imposed, for example, on whether
the final distribution must be invariant-sized, or equidistributed, or compacted.

In the following section we will see how to efficiently determine the final destina-
tion of the data items.

5.3.5 Efficient Sorting: SelectSort

In this section our goal is to design an efficient sorting protocol using the strategy
of first determining the final destination of each data item, and only then moving the
items there. To achieve this goal, each entity xi has to efficiently determine the sets

Di ∩D′π (j ),
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that is, which of its own data items must be sent to xπ (j ), 1 ≤ j ≤ n. How can this be
done ? The answer is remarkably simple.

First observe that the final destination of a data item (and thus the final distribution
D′) depends on the permutationπ as well as on the final storage requirement. Different
criteria determine different destinations for the same data item. For example, in the
ordered line graph of Figure 5.9, the final destination of data item 16 is x5 in an
invariant-sized final distribution; x4 in an equidistributed final distribution; and x3 in
an compacted final distribution with storage capacity w = 5.

Although the entities do not know beforehand the final distribution, once they
know π and the storage requirement used, they can find out the number

kj = |D′π (j )|

of data items that must end up in each xπ (j ).
Assume for the moment that the kj s are known to the entities. Then, each xi knows

that D′π (1) at the end must contain the k1 smallest data items; D′π (2) at the end must
contain the next k2 smallest, etc., and D′π (n) at the end must contain the kn largest
item. This fact has an immediate implication.

Let b1 = D[k1] be the k1th smallest item overall. As xπ (1) must contain in the end
the k1 smallest items, then all the items d ≤ b1 must be sent to xπ (1). Similarly, let
bj = D[

∑
l≤j kl] be the (k1 + . . .+ kj )th smallest item overall; then all the items d

with bj−1 < d ≤ bj must be sent to xπ (j ). In other words,

Di ∩D′π (j ) = {d ∈ Di : bj−1 < d ≤ bj }.

Thus, to decide the final destination of its own data items, each xi needs only to
know the values of items b1, b2, . . . bn. To determine each of these values we just need
to solve a distributed selection problem, whose solution protocols we have discussed
earlier in this chapter.

This gives raise to a general sorting strategy, that we shall call SelectSort, whose
high-level description is shown in Figure 5.13. This strategy is composed of n− 1
iterations. Iteration j , 1 ≤ j ≤ n− 1 is started by xπ (j ) and it is used to determine
at each entity xi which of its own items must be eventually sent to xπ (j ) (i.e., to
determine Di ∩D′π (i)). More precisely:

1. The iteration starts with xπ (j ) broadcasting the number kj of items that, accord-
ing to the storage requirements, it must end up with.

2. The rest of the iteration then consists of the distributed determination of the
kj th smallest item among the data items still under consideration (initially, all
data items are under consideration).

3. The iterations terminates with the broadcast of the found item bj : Upon receiv-
ing it, each entity y determines, among the local items still under consideration,
those that are smaller or equal to b1; xi then assigns xπ (j ) to be the destination
for those items, and removes them from consideration.
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Strategy SelectSort

begin
for j = 1, . . . , n− 1 do

Collectively determine bj = D[kj ] using distributed
selection;
* Assign destination: �
Di,j := {d ∈ Di : bj−1 < d ≤ bj };

endfor
Di,n := {d ∈ Di : bn−1 < d};
for j = 1, . . . , n− 1 do

* Send all data items to their final destination: �
send Di,j to xπ (j );

endfor
end

FIGURE 5.13: Strategy SelectSort.

At the end of the (n− 1)th iteration, each entityxi assignsxπ (n) to be the destination
for any local item still under consideration. At this point, the final destination of each
data item has been determined; thus, they can be sent there.

To transform this technique into a protocol, we need to add a final step in which
each entity sends the data to their discovered destinations. We also need to ensure that
xπ (j ) knows kj at the beginning of the jth iteration; fortunately, this condition is easy
to achieve (Exercise 5.6.39). Finally, we must specify the protocol used for distributed
selection in the iterations. If we choose protocol ReduceSelect we have discussed in
Section 5.2.5, we will call the resulting sorting algorithm Protocol SelectSort (see
Exercise 5.6.40).

IMPORTANT. Unlike the other two sorting protocols we have examined, Protocol
SelectSort is generic, that is, it works in any network, regardless of its topology.
Furthermore, unlike OddEven-MergeSort, it always correctly sorts the distribution.

To determine the cost of protocol SelectSort, first observe that both the initial and
the final broadcast of each iteration can be integrated in the execution of ReduceSelect
in that iteration; hence, the only additional cost of these protocols (i.e., the cost to
find the final destination of each data item) is solely due to the n− 1 executions of
ReduceSelect. Let us determine these additional cost.

Let M[K,N] denote the number of messages used to determine the kth smallest
out of a distributed set of N elements. As we have chosen protocol ReduceSelect,
then ( recall expression 5.18) we have

M[K,N] = log(min{K,N −K + 1})M[Rank]+ l.o.t.

where M[Rank] is the number of messages required to select in a small set.
Let Ki =

∑
j≤i kj . Then, the total additional cost of the resulting protocol



312 DISTRIBUTED SET OPERATIONS

SelectSort is

∑

1≤i≤n−1

M[ki, N −Ki−1] = M[Rank]
∑

1≤i≤n−1

log(min{ki, N −Ki + 1})+ l.o.t..

(5.26)

IMPORTANT. Notice that M[Rank] is a function of n only, whose value depends
on the topology of the network G, but does not depend on N . Hence the additional
cost of the protocol SelectSort is always of the form O(fG(n) logN )). So as long as
this quantity is of the same order (or smaller) than the necessary cost forG, protocol
SelectSort is optimal.

For example, in the complete graph we have that M[Rank] = O(n). Thus,
Expression 5.26 becomes O(n2 logN/n). Recall (Equation 5.25) that the necessary
cost in a complete graph is at most N . Thus, protocol SelectSort is optimal, with to-
tal cost (necessary plus additional) of O(N ), whenever N >> n, for example, when
N ≥ n2 log n. In contrast, protocol OddEven-MergeSort has always worst-case cost
of O(N log n), and it might even not sort.

The determination of the cost of protocol SelectSort in specific topologies for
different storage requirements is the subject of Exercises 5.6.41–5.6.48.

5.3.6 Unrestricted Sorting

In the previous section we have examined the problem of sorting a distributed set
according to a given permutation. This describes the common occurrence when there
is some a priori ordering of the entities (e.g., of their ids), according to which the data
must be sorted.

There are, however, occurrences where the interest is to sort the data with no a
priori restriction on what ordering of the sites should be used. In other words, in these
cases, the goal is to sort the data according to a permutation. This version of the
problem is called unrestricted sorting.

Solving the unrestricted sorting problem means that we, as designers, have the
choice of the permutation according to which we will sort the data. Let us examine
the impact of this choice in some details.

We have seen that, for a given permutation π , once the storage requirement is
fixed, there is an amount of message exchanges that must necessarily be performed to
transfer the records to their destinations; this amount is expressed by Theorem 5.3.1.

Observe that this necessary cost is smaller for some permutations than for others.
For example, assume that the data is initially equidistributed sorted according to
π1 = 〈1, 2, . . . , n〉, where n is even. Obviously, there is no cost for an equidistributed
sorting of the set according toπ1, as the data is already in the proper place. By contrast,
if we need to sort the distribution according to π2 = 〈n, n− 1, . . . , 2, 1〉, then, even
with the same storage requirement as before, the operation will be very costly: At
least N messages must be sent, as every data item must necessarily move.
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Thus, it is reasonable to ask that the entities choose the permutation π , which
minimizes the necessary cost for the given storage requirement. For this task, we
express the storage requirements as a tuple k = 〈k1, k2, . . . , kn〉 where kj ≤ w and∑

1≤j≤n kj = N : The sites of the sorted distribution D′ must be such that |D′π (j )| =
kj . Notice that this generalized storage requirement includes both the compacted (i.e.,
kj = w) and equidistributed (i.e., kj = N/d) ones, but not necessarily the identical
requirement.

More precisely, the task we are facing, called dynamic sorting, is the following:
given the distribution D, a requirement tuple k = 〈k1, k2, . . . , kn〉, we need to deter-
mine the permutation π such that,

∀π,
n∑

i=1

n∑

j=1

|Di ∩D′j (π )| dG(xi, xj ) ≤
n∑

i=1

n∑

j=1

|Di ∩D′j (π )| dG(xi, xj ) (5.27)

where D′(π ) = 〈D′1(π ),D′2(π ), . . . , D′n(π )〉 is the resulting distribution sorted
according to π . To determine π we must solve an optimization problem. Most
optimization problems, although solvable, are computationally expensive as they are
in NP. Surprisingly, and fortunately, our problem is not. Notice that there might be
more than one permutation achieving such a goal; in this case, we just choose one
(e.g., the alphanumerically smallest).

To determine π we need to minimize the necessary cost over all possible permu-
tations π . Fortunately, we can do it without having to determine each D′(π ). In fact,
regardless of which permutation we eventually determine to be π , because of the
storage requirements we know that

kj = |D′π (j )|

data items must end up in xπ (j ), 1 ≤ j ≤ n. Hence, we can determine which items
of xi must be sent to xπ (j ) even without knowing π . In fact, let bj = D[

∑
l≤j kl] be

the (k1 + . . .+ kj )th smallest item overall; then all the items d with bj−1 < d ≤ bj
must be sent to xπ (j ). In other words,

Di,π (j ) = Di ∩D′π (j ) = {d ∈ Di : bj−1 < d ≤ bj }.

This means that we can use the same technique as before: the entities collectively
determine the items b1, b2, . . . bn employing a distributed selection protocol; then
each entity xi uses these values to determine which of its own data items must be sent
to xπ (j ). To be able to complete the task, we do need to know which entity is xπ (j ),
that is, we need to determine π . To this end, observe that we can rewrite expression
5.27 as

∀π,
n∑

i=1

n∑

j=1

|Di,π (j )| dG(xi, xπ (j )) ≤
n∑

i=1

n∑

j=1

|Di,π (j )| dG(xi, xπ (j )). (5.28)
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Strategy DynamicSelectSort

begin
for j = 1, . . . , n− 1 do

Collectively determine bj = D[kj ]
using distributed selection;
Di,j := {d ∈ Di : bj−1 < d ≤ bj };
ni(j ) := |Di,j |;

endfor
Di,n := {d ∈ Di : bn−1 < d};
ni(n) := |Di,n|;
if xi �= x then

send 〈ni(1), . . . , ni(n)〉 to x;
else

wait until receive information from all entities;
determine π and notify all entities;

endif
send Di(j ) to xπ (j ), 1 ≤ j ≤ n;

end

FIGURE 5.14: Strategy DynamicSelectSort.

Using this fact, π can be determined in low polynomial time once we know the
sizes |Di,π (j )| as well as the distances dG(x, y) between all pair of entities (Exercise
5.6.49).

Therefore, our overall solution strategy is the following: First each entity xi deter-
mines the local sets Di(j ) using distributed selection; then, using information about
the sizes |Di,j | of those sets and the distances dG(x, y) between entities, a single
entity x determines the permutation π that minimizes Expression 5.28; finally, once
π is made known, each entity send the data to their final destination. A high level
description is shown in Figure 5.14. Missing from this description is the collection at
the coordinator x of the distance information; this can be achieved simply by having
each entity x send to x the distances from its neighbors N (x).

Once all details have been specified, the resulting Protocol DynamicSelectSorting
will enable to sort a distribution according to the permutation, unknown a priori, that
minimizes the necessary costs. See Exercise 5.6.50.

The additional costs of the protocol are not difficult to determine. In fact, Protocol
DynamicSelectSorting is exactly the same as Protocol SelectSort with two additional
operations: (1) the collection at x of the distance and size information, and (2) the
notification by x of the permutation π . The first operation requires |N (xi)| + n items
of information to be sent by each entity x to x: The |N (xi)| distances from its neigh-
bors and the n sizes |Di,π (j )|. The second operation consists on sending π which is
composed of n items of information. Hence, the cost incurred by Protocol Dynamic-
SelectSorting in addition to that of Protocol SelectSort is:

∑

x

(|N (x)| + 2n) dG(x, x). (5.29)
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Notice that this cost does not depend on the size N of the distributed set, and it is
less than the total additional costs of Protocol SelectSort. This means that, with twice
the additional cost of Protocol SelectSort, we can sort minimizing the necessary costs.

So for example, if the data was already sorted according to some unknown permu-
tation, Protocol DynamicSelectSorting will recognize it, determine the permutation,
and no data items will be moved at all.

5.4 DISTRIBUTED SETS OPERATIONS

5.4.1 Operations on Distributed Sets

A key element in the functionality of distributed data is the ability to answer queries
about the data as well as about the individual sets stored at the entities. Because the
data is stored in many places, it is desirable to answer the query in such a way as to
minimize the communication. We have already discussed answering simple queries
such as order statistics.

In systems dealing mainly with distributed data, such as distributed database sys-
tems, distributed file systems, distributed objects systems, and so forth the queries
are much more complex, and are typically expressed in terms of primitive opera-
tions. In particular, in relational databases, a query will be an expression of join,
project, and select operations. These operations are actually operations on sets and
can be re-expressed in terms of the traditional operators intersection, union, and
difference between sets. So to answer a query of the form “Find all the computer
science students as well as those social science students enrolled also in anthropology
but not in sociology”, we will need to compute an expressions of the form

A ∪ ((B ∩ C)− (B ∩D)) (5.30)

whereA,B,C, andD are the sets of the students in computer science, social sciences,
anthropology, and sociology, respectively.

Clearly, if these sets are located at the entity x where the query originates, that
entity can locally compute the results and generate the answer. However, if the entity
x does not have all the necessary data, x will have to involve other entities causing
communication. It is possible that each set is actually stored at a different entity, called
the owner of that set, and none of them is at x.

Even assuming thatx knows which entities are the owners of the sets involved, there
are many different ways and approaches that can be used to perform the computation.
For example, all those sets could be sent by the owners to x, which will then perform
the operation locally and answer the query. With this approach, call itA1, the volume
of data items that will be moved is

Vol(A1) = |A| + |B| + |C| + |D| .

The actual number of messages will depend on the size of these sets as well as on
the distances between x(A), x(B), x(C), x(D), and x, where x(·) denotes the owner
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of the specified set. In some cases, for example in complete networks, the number of
messages is given precisely by these sizes.

Another approach is to have x(B) sending B to x(C); x(C) will then locally
compute B ∩ C and send it to x(D), which will locally compute (B ∩ C)− (B ∩
D) = (B ∩ C)−D and send it to x(A) that will compute the final answer and send
it to x. The amount of data moved with this approach, call it A2, is

Vol(A2) = |B| + |B ∩ C| + |(B ∩ C)−D| + |A ∪ ((B ∩ C)−D)|.

Depending on the sizes of the sets resulting from the partial computations, A1
could be better than A2.

Other approaches can be devised, each with its own cost. For example, as
(B ∩ C)−D = B ∩ (C −D), we could have x(C) send C to x(D), which will use
it to compute C −D and send the result to x(B); if we also have x(A) send A to
x(B), x(B) can compute Expression 5.30, and send the result to x. The volume of
transmitted items with this approach, call it A3, will be

Vol(A3) = |C| + |C −D| + |A| + |A ∪ ((B ∩ C)−D)| .

IMPORTANT. In each approach, or strategy, the original expression is broken down
into subexpressions, each to be evaluated just at a single site. For example, in approach
A2 expression 5.30 is decomposed into three sub-expressions: E1 = (B ∩ C) to be
computed by x(C), E2 = E1−D to be computed by x(D), and E3 = A ∪ E3 to be
computed by x(A). A strategy also specifies, for each entity involved in the computa-
tion, to what other sites it must send its own set or the results of local evaluations. For
example, in approach A2, x(B) must send B to x(C); x(C) must send E1 to x(D);
x(D) must send E2 to x(A); and x(A) must send E3 to the originator of the query x.

As already mentioned, the amount of items transferred by a strategy depends on
the size of the results of the subexpressions (e.g., |B ∩ C|). Typically these sizes are
not known a priori; hence, it is in general impossible to know beforehand which of
these approaches is better from a communication point of view. In practice, estimates
are used on those sizes to decide the best strategy to use. Indeed, a large body of
studies exists on how to estimate the size of an intersection or a union or a difference
of two or more sets. In particular, an entire research area, called distributed query
processing, is devoted to the study of the problem of computing the “best” strategy,
and related problems.

We can, however, express a lower bound on the number of data that must be moved.
As the entity x where the query originates must provide the answer, then, assuming
x has none of the sets involved in the query, it must receive the entire answer. That is

Theorem 5.4.1 For every expression E, if the set of the entity x where the query
originates is not involved in the expression, then for any strategy S

Vol(S) ≥ |E|.
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What we will examine in the rest of this section is how we can answer queries
efficiently by cleverly organizing the local sets. In fact, we will see how the sets can
be locally structured so that the computations of those subexpressions (and, thus,
the answer to those queries) can be performed minimizing the volume of data to be
moved. To perform the structuring, there is need of some information at each entity;
if not available, it can be computed in a prestructuring phase.

5.4.2 Local Structure

We first of all see how we can structure at each entity xi the local dataDi so to answer
operations of intersections and differences with the minimum amount of communi-
cation. The method we use to structure a local set is called Intersection Difference
Partioning (IDP).

The idea of this method is to store each setDi as a collectionZi of disjoint subsets
such that operations of union, intersection, and difference among the data sets can be
computed easily, and with the least amount of data transfers.

Let us see precisely how we construct the partition Zi of the data set Di . For sim-
plicity, let us momentarily rename the othern− 1 setsDj (j �= i) asS1, S2, . . . , Sn−1.

Let us start with the entire set

Zi0,1 = Di. (5.31)

We first of all partition it into two subsets: Zi1,1 = Di ∩ S1 and Zi1,2 = Di − S1.

Then recursively, we partition Zil,j into two subsets:

Zil+1,2j−1 = Zil,j ∩ Sl+1 (5.32)

Zil+1,2j = Zil,j − Sl+1. (5.33)

We continue this process until we obtain the sets Zin−1,j ’s; these sets form exactly

the partition ofDi we need. For simplicity, we will denoteZin−1,j simply asZij ; hence
the final partition of Di will be denote by

Zi = 〈Zi1, Zi2, . . . , Zim〉 (5.34)

where m = 2n−1.

Example Consider the three sets D1 = {a, b, e, f, g,m, n, q}, D2 = {a, e, f, g,
o, p, r, u, v} and D3 = {e, f, p, r,m, q, v} stored at entities x1, x2, x3, respectively.
Let us focus on D1; it is first subdivided into Zi1,1 = D1 ∪D2 = {a, e, f, g} and

Zi1,2 = D1 −D2 = {b,m, n, q}. These are then subdivided creating the final partition

Z1 composed of Z1
2,1 = {e, f }, Z1

2,2 = {a, g}, Z1
2,3 = {m, q}, and Z1

2,4 = {b, n}.
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D  = {a, e, f, g, o, p, r, u, v}

{p, r, v} {o, u}

{e, f} 

D  = {e, f, m, p, q, r, v}

{m, q} { }{p, r, v}

3

2

{o, p, r, u, v}{a, e, f, g}

D  = {a, b, e, f, g, m, n, q}1

{e, f}  {a, g} {e, f}  {a, g} {m, q} {b, n}

{b, m, n, q}{a, e, f, g}

{e, f, m, q} {p, r, v}

FIGURE 5.15: Trees created by DSP.

This recursive partitioning of the set Di creates a binary tree Ti . The root (con-
sidered to be at level 0) corresponds to the entire sets Di . Each node in the tree
corresponds to a subset (one of the Zil,j ’s) of this set; note that this subset is possibly
empty. For a node at level l − 1 corresponding to subset S, its left child corresponds
to the subset S ∩ Sj while the right child corresponds to the subset S − Sj . The trees
for the three sets of the example above are shown in Figure 5.15.

Notice that at each level of the tree (including the last level l = n− 1), the entire
set is represented:

Property 5.4.1 Di =
⋃

(1≤j≤2l ) Z
i
l,j

In other words, 〈Zil,1, Zil,2, . . . , Zil,2l 〉 is a partition of Di .
Further observe that each level l ≥ 1 of the tree describes the relationship between

elements ofDi and those in the set Sl . In particular, the sets corresponding to the left
children of level l are precisely the elements in common between Di and Sl :

Property 5.4.2
⋃

(1≤j≤2l−1) Z
i
l,2j−1 = Di ∩ Sl

By contrast, the sets corresponding to the right children of level l are precisely the
elements in Di that are not part of Sj :

Property 5.4.3
⋃

(1≤j≤2l−1) Zil,2j = Di − Sl

This means that, if we were to store at xi the entire tree Ti (i.e., all the sets Zil,j ’s),
then xi can immediately answer any query of the form Di −Dj and Di ∩Dj for
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any j . In other words, if each xi has available its tree Ti then any query of the form
Di −Dj and Di ∩Dj can be answered by xi without any communication.

We are going to see now that it is possible to achieve the same goal storing at xi
only the last partition Zi (i.e., the leaves of the tree).

Observe that each level l of the tree contains not only the entire set Di but also
information about the relationship between Di and all the sets S1, S2, . . . , Sl . In
particular, the last level l = n− 1 (i.e., the final partition), contains information about
the relationship between Di and all the other sets. More precisely, the information
contained in each node of the tree Ti is also contained in the final partition and can
be reconstructed from there:

Property 5.4.4 Zil,j =
⋃

(1≤k≤2n−1−l )
Zi
k + (j−1) 2n−1−l

Summarizing, each entity xi structures its local set Di as the collection Zi =
〈 Zi1, Zi2, . . . , Zim〉 of disjoint subsets created using the IDP method. This collection
contain all the information contained in each node of the tree Ti .

IMPORTANT. Notice that when structuring Di as the partition Zi , the number of
data items stored at xi is still |Di |, that is, no additional data items are stored anywhere.

5.4.3 Local Evaluation (�)

Locally Computable Expressions If each xi stores its setDi as the partitionZi ,
then each entity is immediately capable of computing the result of many expressions
involving set operations.

For example, we know that the partitionZi contains all the information contained in
each node of the tree Ti (Property 5.4.4), thus, by Properties 5.4.2 and 5.4.3 it follows
that xi can answer without any communication any query of the form Di −Dj and
Di ∩Dj . In fact,

Di ∩ Sl =
⋃

(1≤j≤2l−1, 1≤k≤2n−1−l )

Zi
k + (j−1) 2n−l (5.35)

Di − Sl =
⋃

(1≤j≤2l−1, 1≤k≤2n−1−l )

Zi
k + (2j−1) 2n−l−1 . (5.36)

Actually, xi has locally available the answer to any expression composed of dif-
ferences and intersections, involving any number of sets, provided that Di is the left
operand in the differences involving Di . So for example, the query (D1 −D2) ∩
(D3 − (D4 ∩D5)) can be answered immediately both at x1 and x3 (see Exercise
5.6.51). Also some queries involving unions as well as intersections and differences
can be answered immediately and locally. For example, both (D1 − (D2 ∩D3)) and
((D1 −D2) ∩ (D1 ∪D3)) can be answered by x1.
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Exactly what expressions can be answered by xi? To answer this question, observe
the following:

if expression E can be answered locally by xi , then xi can answer also E ∩ E′ and
E − E′, where E′ is an arbitrary expression on the local sets;

if two expressions E1 and E2 can be answered locally by xi , so can be the expressions
E1 ∪ E2.

Using these two facts and starting with Di , we can characterize the set E(xi) of
all the expressions that can be answered by xi directly without communication.

Local Evaluation Strategy Let us see now how can xi determine the an-
swer to a query in E(xi) from the information stored in the final partition Zi =
〈 Zi1, Zi2, . . . , Zim〉, where m = 2n−1.

First of all, let us introduce some terminology. We will call address of Zij the
Boolean representation b(j ) of j − 1 using n− 1 bits, for example, in Figure 5.15,
the subset Z1

2,3 = {m, q} has address 〈10〉, while 〈11〉 is the address of the subset

Z1
2,4.

An expression on k operands is sequential if it is of the form

((. . . (((O1 o1 O2) o2 O3) o3 O4) . . .) ok−1 Ok)

where theOj are the operands and oj are the set operators. An example of a sequential
expression is (((A ∪ B)− C) ∪ B).

First consider the set E−(xi) ⊂ E(xi) of sequential expressions in E(xi) where

1. Di is the first operand,

2. each of the other sets Sj appears at most once, and

3. the only operators are intersection and difference.

For example, the expression (((Di ∩ S3)− S1) ∩ S2) is in E−(xi). To answer
queries in E−(xi) there is a simple strategy that xi can follow:

Strategy Bitmask

1. Create a bitmask of size n− 1.

2. For each set Sj
(a) if Sj is the right operand of an intersection operator, then place 0 in the jth

position of the bitmask;

(b) if Sj is the right operand of a difference operator, then place a 1 in the jth
position of the bitmask;

(c) if Sj is not involved in the query at all, place the wildcard symbol � in the
jth position of the bitmask.
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3. Perform the union of all the subsets in the final partition whose address matches
the pattern of the bitmask, where wildcard symbol � is matched both by 0 and 1.

Example The bitmask associated to expression

(((Di ∩ S3)− S1) ∩ S4) (5.37)

when n = 6 will be 〈� 0 0 � 1〉. Entity xi will then calculate the union of the sets
in its final partition Zi whose addresses match the bitmask; that is, the sets with
address 〈00001〉, 〈00011〉, 〈10001〉, 〈10011〉. Thus, to answer query (5.37), xi will
just calculate

Zi2 ∪ Zi4 ∪ Zi34 ∪ Zi36. (5.38)

It is not difficult to verify that indeed by calculating (5.38) we obtain the answer to
precisely query (5.38); in fact, the Evaluation Strategy Bitmask is correct (Exercise
5.6.53).

Summarizing, using strategy Bitmask entity xi can directly evaluate any expression
in E−(xi); those are, however, only a small subset of all the expressions in E(xi).

Let us now examine how to extend to all queries in E(xi) the result we have just
obtained. The key to the extension is the fact that any expression of E(x) can be
re-expressed as the union of sub-expressions in E−(xi) (Exercise 5.6.54).

Property 5.4.5 For every Q ∈ E(x) there are Q(1), . . . ,Q(k) ∈ E−(xi), k ≥ 1,
such that Q =⋃1≤j≤k Q(j ).

For example, (Di − (S2 ∪ S4)) can be re-expressed as (Di − S2) ∪ (Di − S4). Sim-
ilarly

((S1 ∩ S2) ∪Di)− (S4 ∩ S5) = ((Di ∪ S1)− S4 − S5) ∩ ((Di ∪ S2)− S4 − S5).

Thus, to answer a query in E(xi), entity xi will first re-formulate it as union of
expressions inE−(xi), evaluate each of them using strategy Bitmask and then perform
their union.

Strategy Local Evaluation

1. Re-formulate Q as union of expressions Q(1), . . . ,Q(k) in E−(xi).

2. Evaluate each Q(j ) using strategy Bitmask.

3. Perform the union of all the obtained results.

Notice that all this can be done by xi locally, without any communication.
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5.4.4 Global Evaluation

Let us now examine the problem of answering a query Q originating at an entity x
once every local setDi has been stored as the partitionZi . If the query can be answered
directly (i.e.,Q ∈ E(x)), x will do so. Otherwise, the query will be decomposed into
subqueries that can be locally evaluated at one or more entities, the results of these
partial evaluations are then collected at x so that the original query can be answered.
Our goal is to ensure that the volume of data items to be moved is minimized. To
achieve this goal, we use the following property

Property 5.4.6 For every expression Q there are k ≤ n subexpressions Q(1), Q(2),
. . . ,Q(k) such that

1. ∀Q(j ) ∃yj Q(j ) ∈ E(yj ),

2. Q(i) ∩Q(j ) = ∅ for i �= j ,

3. Q =⋃1≤j≤k Q(j ).

That is, any query Q can be re-expressed as the union of subqueries
Q(1), . . . ,Q(k), where each subquery can be answered directly by just one entity,
once its local set has been stored using the partitioning method; furthermore, the
answer to any two different subqueries is disjoint (Exercise 5.6.55). This gives raise
to our strategy for evaluating an arbitrary query:

Strategy Global

1. x decomposes Q into Q(1),Q(2), . . . ,Q(k) satisfying Property 5.4.6, and in-
forms each yj of Q(j );

2. yj locally and directly evaluates Q(j ) and sends the result to x; and

3. x computes the union of all the received items.

To understand the advantages of this strategy, let us examine again the implications
of Property 5.4.6. As the results of any two subqueries are disjoint, while the union
of all results of the subqueries is precisely what we are asking for, we have that:

Property 5.4.7 Let Q(1),Q(2), . . . ,Q(k) satisfy Property 5.4.6 for Q. Then

|Q| = ∑

1≤j≤k
|Q(j )|.

This means that, for every queryQ, in our Strategy Global the only data items that
might be moved to x are those in the final answer, that is,

Vol[Global] ≤ |Q|.
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In other words, strategy Global is optimal. This optimality is with regards to the
amount of data items that will be moved.

There are different possible decompositions of a queryQ into subqueries satisfying
Property 5.4.6. All of them are equally acceptable to our strategy, and they all provide
optimal volume costs.

IMPORTANT. To calculate the cost in terms of messages we need to take into
account also the distances between the nodes in the network. In this regard, some
decompositions may be better than others. The problem of determining the decom-
position that requires less messages is a difficult one, and no solution is known till
date.

5.4.5 Operational Costs

An important consideration is that of the cost of setting up the final partitions at each
entity. Once in this format, we have seen how complex queries can be handled with
minimal communication. But to get it in this format requires communication; in fact
each entity must somehow receive information from all the other entities about their
sets. In a complete network this can require just a single transmission of each set to a
predetermined coordinator that will then compute and send the appropriate partition
to each entity; hence, the total cost will beO(N ) whereN is the total amount of data.
By contrast, in a line network the total cost can be as bad asO(N2), for example, if all
sets have almost the same size. It is true that this cost is incurred only once, at set-up
time. If the goal is only to answer a few queries, the cost of setup may exceed that of
simply performing the queries without using the partitioned sets. But for persistent
distributed data, upon which many queries may be placed, this is an efficient solution.

Another consideration is that of the addition or removal of data from the distributed
sets. As each entity contains some knowledge about the contents of all other entities,
any time an item is added to or removed from one of the sets, every entity must update
its partition to reflect this fact. Fortunately, the cost of doing this does not exceed the
cost of broadcasting the added (or removed) item to each entity. Clearly this format
is more effective for slowly changing distributed data sets.

5.5 BIBLIOGRAPHICAL NOTES

The problems of distributed selection and distributed sorting were studied for a small
set by Greg Frederickson in special networks (exercises 5.6.1–5.6.3) [4], and by
Shmuel Zaks [23]. Always in a small set, the cost using bounded messages and, thus,
the bit complexity has been studied by Mike Loui [8] in ring networks; by Ornan
Gerstel, Yishay Mansour, and Shmuel Zaks in a star [5]; and in trees by Ornan Gerstel
and Shmuel Zaks [6] , and by Alberto Negro, Nicola Santoro, and Jorge Urrutia [12].
Selection among two sites was first studied by Michael Rodeh [14]; his solution was
later improved by S. Mantzaris [10], and by Francis Chin and Hing Ting [3].

Reducing the expected costs of distributed selection has been the goal of several
investigations. Protocol RandomSelect was designed by Liuba Shrira, Nissim Francez,
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and Michael Rodeh [21]. Nicola Santoro, Jeffrey Sidney, and Stuart Sidney designed
Protocol RandomFlipSelect [19]. Protocol RandomRandomSelect is due to Nicola
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by Doron Rotem, Nicola Santoro, and Jeffrey Sidney [16], and by Nicola Santoro
and Jeffrey Sidney [18]. The more efficient protocol Filter was developed by John
Marberg and Eli Gafni [11]. The even more efficient protocol ReduceSelect was later
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The sorting protocols Odd-Even Mergesort algorithm, on which Protocols
OddEven-LineSort and OddEven-MergeSort are based, was developed by Kenneth
Batcher [1].

The first general distributed sorting algorithm is due to Lutz Wegner [22]. More
recent but equally costly sorting protocols have been designed by To-Yat Cheung [2],
and by Peter Hofstee, Alain Martin, and Jan van de Snepscheut [7]; experimental
evaluations were performed by Wo-Shun Luk and Franky Ling [9]. The optimal
SelectSort was designed by Doron Rotem, Nicola Santoro, Jeffrey B. Sidney [15], who
also designed protocol DynamicSelectSort. Other protocols include those designed
by Hanmao Shi and Jonathan Schaeffer [20].

There is an extensive amount of investigations on database queries, whose com-
putation requires the use of distributed set operations like union, intersection and
difference. The entire field of distributed query processing is dedicated to this topic,
mostly focusing on the estimation of the size of the output of a set operation and thus
of the entire query. The IDP structure for minimum-volume operations on distributed
sets was designed and analyzed in this context by Ekow Otoo, Nicola Santoro, Doron
Rotem [13].

5.6 EXERCISES, PROBLEMS, AND ANSWERS

5.6.1 Exercises

Exercise 5.6.1 (�) Consider a ring network where each entity has just one item.
Show how to perform selection using O(n log3 n) messages.

Exercise 5.6.2 (�) Consider a mesh network where each entity has just one item.

Show how to perform selection using O(n log
3
2 n) messages.

Exercise 5.6.3 (�) Consider a network whose topology is a complete binary tree
where each entity has just one item. Show how to perform selection usingO(n log n)
messages.

Exercise 5.6.4 Prove that after discarding the elements greater than mx from Dx
and discarding the elements greater thanmy fromDy , the overall lower median is the
lower median of the elements still under considerations.
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Exercise 5.6.5 Write protocol Halving so that it works with any two arbitrarily sized
sets with the same complexity.

Exercise 5.6.6 Prove that the K-selection problem can be reduced to a median-
finding problem regardless of K and of the size of the two sets.

Exercise 5.6.7 Modify protocol Halving as follows: In iteration i,

(a) discard from both Di
x and Di

y , all elements greater than max{mix,miy} and all
those smaller than min{mix,miy}, whereDi

x andDi
y denote the set of elements

ofDx andDy still under consideration at the beginning of stage i, andmix and
miy denote their lower medians;

(b) transform the problem again into a median finding one.

Write the corresponding algorithm, GeneralHalving, prove its correctness, and
analyze its complexity.

Exercise 5.6.8 Implement protocol GeneralHalving of Exercise 5.6.7, throughly
test it, and run extensive experiments. Compare the experimental results with the
theoretical ones.

Exercise 5.6.9 (��) Extend the technique of protocol Halving to work with three
sets, Dx , Dy , and Dz. Write the corresponding protocol, prove its correctness, and
analyze its complexity.

Exercise 5.6.10 Random Item Selection (�) Modify the protocol of Exercise
2.9.52 so that it can be used to select uniformly at random an element still under
consideration in each iteration of Strategy RankSelect. Your protocol should use at
most 2(n− 1)+ dT (s, x) messages and 2r(s)+ dT (s, x) ideal time units in each
iteration. Prove both correctness and complexity.

Exercise 5.6.11 (�) Prove that the expected number of iterations performed by
Protocol RandomSelect until termination is at most 1.387 logN +O(1).

Exercise 5.6.12 (�) Determine the number of iterations if we terminate protocol
RandomSelect, as soon as the search space contains at most cn items, where c is a
fixed constant. Determine the total cost of this truncated execution followed by an
execution of protocol Rank.

Exercise 5.6.13 Prove that in the worst case, the number of iterations performed by
Protocol RandomFlipSelect until termination is N .

Exercise 5.6.14 (��) Prove that the expected number of iterations performed by
Protocol RandomFlip until termination is less than ln(�)+ ln(n)+O(1).
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Exercise 5.6.15 (�) Determine the number of iterations if we terminate protocol
RandomFlipSelect, as soon as the search space contains at most cn items, where c is
a fixed constant. Determine the total cost of this truncated execution followed by an
execution of protocol Rank.

Exercise 5.6.16 Write Protocol RandomRandomSelect ensuring that each iteration
uses at most 4(n− 1)+ r(s) messages and 5r(s) ideal time units. Implement the
protocol and throughly test your implementation.

Exercise 5.6.17 (��) Prove that the expected number of iterations performed by
Protocol RandomRandomSelect until there are less than n items left under consider-
ation is at most 4

3�log log �+ 1�.

Exercise 5.6.18 Prove that the number of iterations performed by Protocol Filter
until there are no more than n elements left under consideration is at most
2.41 log(N/n).

Exercise 5.6.19 Prove that in the execution of Protocol REDUCE, Local Contraction
is executed at the most three times.

Exercise 5.6.20 Prove that after the execution of Cutting Tool on C(l = 2i), only
the l − 1 columns C(1), C(2), . . . , C(l − 1) might remain unchanged; all others,
including C(l) will have at least n−K/l of the entries +∞.

Exercise 5.6.21 Prove that after the execution of Protocol CUT there will be at most
min{n,�} log � items left under consideration.

Exercise 5.6.22 Consider the system shown in Figure 5.9. How many items will x5
have

(a) after a compacted sorting with w = 5?

(b) after an equidistributed sorting?

Justify your answer.

Exercise 5.6.23 Prove that OddEven-LineSort performs an invariant-sized sort of
an equidistribution on an ordered line.

Exercise 5.6.24 (�) Prove that OddEven-LineSort performs an invariant-sized sort
of any distribution on an ordered line.

Exercise 5.6.25 (�) Prove that OddEven-LineSort performs a compacted sort of
any distribution on an ordered line.
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Exercise 5.6.26 (�) Prove that OddEven-LineSort performs an equidistributed sort
of any distribution on an ordered line.

Exercise 5.6.27 Prove that OddEven-LineSort sorts an equidistributed distribution
in n− 1 iterations regardless of whether the required sorting is invariant-sized,
equidistributed, or compacted with all entities having the same capacity.

Exercise 5.6.28 Prove that there are some initial conditions under which protocol
OddEven-LineSort usesN − 1 iterations to perform invariant-size sorting ofN items
distributed on a sorted line, regardless of the number n of entities.

Exercise 5.6.29 Consider an initial equidistribution sorted according to permutation
π ′ = 〈π (n), π (n− 1), . . . , π(1)〉. Prove that, executing protocol OddEven-LineSort
in this case, every data item will change location in each iteration.

Exercise 5.6.30 Prove that when n > 3, if the line is not sorted according to π , then
protocol OddEven-LineSort terminates but does not sort the data according to π .

Exercise 5.6.31 Write the set of rules of protocol OddEven-MergeSort. Implement
the protocol and throughly test it.

Exercise 5.6.32 Prove that protocol OddEven-MergeSort is a sequence of 1+ log n
iterations and that in each iteration (except the last) every data item is sent once or
twice to another entity.

Exercise 5.6.33 Prove that protocol OddEven-MergeSort correctly sorts, regardless
of the storage requirement, if the initial set is equidistributed.

Exercise 5.6.34 Consider an initial distribution where x1 and xn have the same
number K = (N − n+ 2)/2 of data items, while all other entities have just a single
data item. Augment protocol OddEven-MergeSort so as to perform an invariant sort
when π = 〈1, 2, . . . , n〉. Show the corresponding sorting diagram. How many addi-
tional simple merge operations are needed? How many operations does your solution
perform? Determine the time and message costs of your solution.

Exercise 5.6.35 For each of the three storage requirements (invariant, equidis-
tributed, compacted) show a situation where �(N ) messages need to be sent to sort
in a complete network, even when the data are initially equidistributed.

Exercise 5.6.36 Determine for each of the three storage requirements (invariant,
equidistributed, compacted) a lower bound, in terms of n and N on the amount of
necessary messages for sorting in a ring. What would be the bound for initially
equidistributed sets?
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Exercise 5.6.37 (�) Determine for each of the three storage requirements (invariant,
equidistributed, compacted) a lower bound, in terms of n and N on the amount of
necessary messages for sorting in a labeled hypercube. What would be the bound for
initially equidistributed sets?

Exercise 5.6.38 (�) Determine for each of the three storage requirements (invariant,
equidistributed, compacted) a lower bound, in terms of n and N on the amount of
necessary messages for sorting in an oriented torus. What would be the bound for
initially equidistributed sets?

Exercise 5.6.39 Show how xπ (i) can find out ki at the beginning of the ith iteration
of strategy SelectSort. Initially, each entity knows only its index in the permutation
(i.e., xπ (i) knows i) as well as the storage requirements.

Exercise 5.6.40 Write the set of rules of Protocol SelectSort. Implement and test
the protocol. Compare the experimental costs with the theoretical bounds.

Exercise 5.6.41 Establish for each of the storage requirements the worst-case cost
of protocol SelectSort to sort an equidistributed set in a ordered line. Determine under
what conditions the protocol is optimal for this network. Compare this cost with the
one of protocol OddEven-LineSort.

Exercise 5.6.42 Establish for each of the storage requirements the worst-case cost
of protocol SelectSort to sort a distributed set in a ordered line. Determine under what
conditions the protocol is optimal for this network. Compare this cost with the one of
protocol OddEven-LineSort.

Exercise 5.6.43 Establish for each of the storage requirements the worst-case cost
of protocol SelectSort to sort an equidistributed set in a ring. Determine under what
conditions the protocol is optimal for this network (Hint: Use result of Exercise
5.6.36).

Exercise 5.6.44 Establish for each of the storage requirements the worst-case cost of
protocol SelectSort to sort a distributed set in a ring. Determine under what conditions
the protocol is optimal for this network (Hint: Use result of Exercise 5.6.36).

Exercise 5.6.45 Establish for each of the storage requirements the worst-case cost of
protocol SelectSort to sort an equidistributed set in a labeled hypercube of dimension
d . Determine under what conditions the protocol is optimal for this network (Hint:
Use result of Exercise 5.6.37).

Exercise 5.6.46 Establish for each of the storage requirements the worst-case cost
of protocol SelectSort to sort a distributed set in a labeled hypercube of dimension d.
Determine under what conditions the protocol is optimal for this network (Hint: Use
result of Exercise 5.6.37).
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Exercise 5.6.47 Establish for each of the storage requirements the worst-case cost
of protocol SelectSort to sort an equidistributed set in a oriented torus of dimension
p × q. Determine under what conditions the protocol is optimal for this network.
(Hint: Use result of Exercise 5.6.38).

Exercise 5.6.48 Establish for each of the storage requirements the worst-case cost
of protocol SelectSort to sort a distributed set in a oriented torus of dimension p × q.
Determine under what conditions the protocol is optimal for this network (Hint: Use
result of Exercise 5.6.38).

Exercise 5.6.49 Show how in strategy DynamicSelectSort the coordinator x can
determine π from the received information in O(n3) local processing activities.

Exercise 5.6.50 Write the set of rules of Protocol DynamicSelectSorting. Implement
and test the protocol. Compare the experimental costs with the theoretical bounds.

Exercise 5.6.51 Prove that the query (D1 −D2) ∩ (D3 − (D4 ∩D5)) can be an-
swered immediately at both x1 and x3 if each of the sets is stored by its entity using
the DSP method.

Exercise 5.6.52 Show that expressions 5.38 and 5.38 are equal.

Exercise 5.6.53 Prove that using strategy Bitmask, entity xi can directly evaluate
any expression in E−(xi).

Exercise 5.6.54 (�) Prove Property 5.4.5: Any expression of E(x) can be re-
expressed as the union of sub-expressions in E−(xi).

Exercise 5.6.55 (�) Prove Property 5.4.6.

5.6.2 Problems

Problem 5.6.1 (���) Design a generic protocol to perform selection in a small set
using o(n2) messages in the worst case.

5.6.3 Answers to Exercises

Partial Answer to Exercise 5.6.4.
Among the 2p−1 elements removed from consideration, exactly 2p−2 are greater
than the median while exactly 2p−2 are smaller than the median.

Answer to Exercise 5.6.13.
Without loss of generality, let K ≤ N −K + 1. Then, for the first N − 2K + 2
iterations, the adversary will choose d(i) to be the largest item in the search space.
In this way, only d(i) will be removed from the search space in that iteration;
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furthermore, we still have K(i + 1) ≤ N (i + 1)−K(i + 1)+ 1 where K(i) and
N (i) are the rank of d∗ and the size of the search space at the beginning of iteration
i. As in these iterations we are removing only elements larger than d∗, after
the N − 2K + 1 iterations d∗ is the median of the search space. At this point, the
adversary will alternate selecting d(i) to be the smallest item in the search space
in one iteration and the largest item in the next one. In this way, only d(i) will
be removed and d∗ continues to be the (lower) median of the search space. Hence,
the additional number of iterations is exactly 2K − 2, for a total of N iterations.

Partial Answer to Exercise 5.6.18.
Show that at least 1/4 of the items are removed from consideration at each iteration.

Partial Answer to Exercise 5.6.19.
Let K(j ) and N (j ) be the rank of f ∗ in the search space and the size of the
search space at the end of iteration j of the while loop in Protocol REDUCE.
Call an iteration a flip if �(j ) = N (j − 1)− �(j − 1)+ 1 < �(j − 1). First of
all observe that if the (j + 1)th iteration is not a flip, then it is the last iteration.
Let the (j + 1)th iteration be a flip, and let q(j + 1) be the number of entities
whose local search space is reduced in this iteration; q(j + 1) must be at least
1, otherwise the iteration would not be a flip. We will show that q(j + 1) = 1.
By contradiction, if q(j + 1) > 1, there must be at least two entities x and y that
will have their search space reduced in iteration (j + 1). That is, N (x, j ) > �(j )
and N (y, j ) > �(j ) where N (x, j ) and N (y, j ) denote the number of items still
under consideration at x and y, respectively, at the end of the jth iteration. Then
N (j ) ≥ N (x, j )+N (y, j ) ≥ 2�(j ). This means that N (j )− �(j )+ 1 > �(j ),
which implies that �(j + 1) = min{�(j ), N (j )− �(j )+ 1} = �(j ), contradicting
the fact that iteration (j + 1) is a flip. Hence, q = 1, that is, if iteration (j + 1) is a
flip, only one entity will reduce its search space in that iteration. To complete the
proof, we must prove that the jth and the (j + 1)th iterations cannot both be flips.

Answer to Exercise 5.6.22.
(a) none; (b) one.

Answer to Exercise 5.6.28.
Consider the initial condition where the initial distribution is sorted according to
〈n, n− 1, . . . , 1〉. Let x1 and xn each contain (N − n+ 2)/2 items, while all other
entities have only one item each. Then trivially, in the each odd iteration only one
item can leave x1. Hence, the last item to move from x1 to xn will do so in the
(N − n+ 2)/2th odd iteration, which is the (N − n+ 1)th iteration overall; this
item reaches xn after an additional n− 2 iterations. Hence, the claimed N − 1 total
number of iterations before termination.

Answer to Exercise 5.6.30.
Without loss of generality let π = 〈1, 2, . . . , n〉. If the line is not sorted according
to π , then there is an entity xi whose neighbors in the line, y and z, have indices



BIBLIOGRAPHY 331

“greater” (respectively “smaller”) than it, that is, y = xj and z = xk where both
j and k are greater (respectively, smaller) than i. Without loss of generality let
j > k (respectively, j < k); that is, once sorted, the data stored in y must be greater
(respectively smaller) than the data stored in z. Among the data initially stored at
z, include the largest data item D[N ] (respectively the smallest item D[1]). For the
data to be sorted, this item must move from z = xk to y = xj , passing through xi .
However, as k > i (respectively k < i), according to the protocol z will never send
D[N ] (respectively D[1]) to xi .

Answer to Exercise 5.6.39.
If the storage requirement is invariant sized, then ki = |Dπ (i)|, which is known to
xπ (i).

If the requirement is equidistributed, then the entities need to know �N/n	; both
n and N , if not already known can be easily acquired (e.g., using saturation on a
spanning-tree). Then, ki = �N/n	 for 1 ≤ i ≤ n− 1.

If the storage requirement is compacted with parameter w, then ki = w for
1 ≤ i ≤ �N/w	, while ki = 0 for i > �N/w	. Again, knowing N allows each entity
to know what the size of its final set of data items.

Answer to Exercise 5.6.49.
Observe that if π (j ) = k, then to transfer to xk all the data items that must end up
there requires the transmission of βj→k =

∑n
j=1 |Di,j | dG(xi, xk) messages. Define

variables zj,k to be equal to 1 if π (j ) = k, 0 otherwise. Then minimization of e ex
pression 5.28 reduces to finding a 0− 1 solution for the linear programming
assignment problem:

Minimize g[Z] =
n∑

j=1

n∑

k=1
βj→kzj,k

n∑

k=1
zj,k = 1 (1 ≤ j ≤ n)

n∑

j=1
zj,k = 1 (1 ≤ k ≤ n)

zj,k ≥ 0 (1 ≤ j, k ≤ n).

A single entity can solve this problem in O(n3) local processing activities once
the βj→k’s are available at that entity.
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CHAPTER 6

Synchronous Computations

6.1 SYNCHRONOUS DISTRIBUTED COMPUTING

6.1.1 Fully Synchronous Systems

In the distributed computing environments we have considered so far, we have not
made any assumption about time. In fact, from the model, we know only that in
absence of failure, a message transmitted by an entity will eventually arrive to its
neighbor: the Finite Delays axiom. Nothing else is specified, so we do not know for
example how much time will a communication take. In our environment, each entity
is endowed with a local clock; still no assumption is made on the functioning of these
clocks, their rate, and how they relate to each other or to communication delays.

For these reasons, the distributed computing environments described by the basic
model are commonly referred to as fully asynchronous systems. They represent one
extreme in the spectrum of message-passing systems with respect to time.

As soon as we add temporal restrictions, making assumptions on the the local
clocks and/or communication delays, we describe different systems within this spec-
trum.

At the other extreme are fully synchronous systems, distributed computing envi-
ronments where there are strong assumptions both on the local clocks and on com-
munication delays. These systems are defined by the following two restrictions about
time: Synchronized Clocks and Bounded Transmission Delays.

Restriction 6.1.1 Synchronized Clocks
All local clocks are incremented by one unit simultaneously.

In other words, all local clocks ‘tick’ simultaneously. Notice that this assumption
does not mean that the clocks have the same value, but just that their value is incre-
mented at the same time. Further notice that the interval of time between consecutive
increments in general need not be constant. For simplicity, in the following we will
assume that this is the case and denote by δ the constant; see Figure 6.1.

Design and Analysis of Distributed Algorithms, by Nicola Santoro
Copyright © 2007 John Wiley & Sons, Inc.
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FIGURE 6.1: In a fully synchronous system, all clocks tick periodically and simultaneously,

and there is a known upperbound � on communication delays.

By Convention,

1. entities will transmit messages (if needed) to their neighbors only at the strike
of a clock tick;

2. at each clock tick, an entity will send at most one message to the same neighbor.

Restriction 6.1.2 Bounded Communication Delays
There exists a known upper bound on the communication delays experienced by a
message in absence of failures.

In other words, there is a constant � such that in absence of failures, every message
sent at time T will arrive and be processed by time T + �. In terms of clock ticks,
this means that in absence of failures, every message sent at local clock tick t will

arrive and be processed by clock tick t + ⌈�
δ

⌉
(sender’s time); see Figure 6.1.

Summarizing, a fully synchronous system is a distributed computing environment
where both the above restrictions hold. Notice that knowledge of � can be replaced

by knowledge of
⌈�
δ

⌉
.

6.1.2 Clocks and Unit of Time

In a fully synchronous system, two consecutive clock ticks constitute a unit of time,
and we measure the time costs of a computation in terms of the number of clock ticks
elapsed from the time the first entity starts the computation to the time the last entity
terminates its participation in the computation.

Notice that, in this “clock time,” there is an underlying notion of “real time” (or
physical time), one that exists outside the system (and independent of it), in terms
of which we express the distance δ between clock ticks as well as the bound � on
communication delays.

We can redefine the unit of time to be composed of u > 1 consecutive clock ticks.
In other words, we can define new clock ticks, each comprising u old ones, and act
accordingly. In particular, each entity will only send messages at the beginning of
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FIGURE 6.2: Redefine the clock ticks so that the delays are unitary.

a new time unit and does not send more than one message to the same neighbor
in each new time unit. Clearly, the entities must agree on when the new time unit
starts.

After the transformation, we can still measure time costs of a computation cor-
rectly: If the execution of a protocol lastsK new time units, its time cost is uK original
clock ticks.

Observe that if we choose u = ⌈�
δ

⌉
(Figure 6.2), then with the new clocks com-

munication delays become unitary: If an entity x sends a message at the (new) local
clock tick t to a neighbor, in absence of failures, the message is received and processed
there at the (new) clock tick t + 1 (sender’s time). In other words,

any fully synchronous system can be transformed so as to have unitary delays.

This means that we can assume, without loss of generality, that the following
restriction holds:

Restriction 6.1.3 Unitary Communication Delays
In absence of failures, a transmitted message will arrive and be processed after at
most one clock tick.

The main advantage of doing this redefinition of unit of time is that it greatly
simplifies the design and analysis of protocols for fully synchronous systems. In fact,
it is common to find fully synchronous systems defined directly as having unitary
delays.

IMPORTANT. In the following, the pair of Restrictions 6.1.1 and 6.1.3, defining a
fully synchronous system with unitary delay, will be denoted simply by Synch.
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6.1.3 Communication Delays and Size of Messages

A fully synchronous system, by definition, guarantees that, in absence of failures,
any allowed message will encounter bounded delays. More precisely, by definition,
for any message M, the communication delay τ (M) encountered by M in absence of
failures will always be

τ (M) ≤ �. (6.1)

Notice that this must hold regardless of the size (i.e., the number of bits) of M.
Let us examine this fact carefully. By Restriction 6.1.2, � is bounded. For � to be
bounded τ (M) must be bounded. This fact implies that the size of M must be bounded:
To assume otherwise means that the system allows communication of unbounded
messages in bounded time, an impossibility. This means,

Property 6.1.1 Bounded messages
In fully synchronous systems, messages have bounded length.

In other words, there exists a constant c (depending on the system) such that each
message will contain at most c bits. Bounded messages are also called packets and
the constant c is called packet size.

IMPORTANT. The packet size c is a system parameter. It could be related to other
system parameters such as n (the network size) or m (the number of links). However,
it cannot depend on input values (unless they are also bounded).

The bounded messages property has important practical consequences. It implies
that if the information an entity x must transmit does not fit in a packet, that infor-
mation must be “split up” and transmitted using several packets. More precisely, the
transmission of w > c bits to a neighbor actually requires the transmission of M[w]
messages where

M[w] ≥ ⌈w
c

⌉
.

This fact affects not only the message costs but also the time costs. As at most one
message can be sent to a neighbor at a given clock tick, the number of clock ticks
required by the transmission of w > c bits is

CT[w] ≥ ⌈w
c

⌉
.

6.1.4 On the Unique Nature of Synchronous Computations

Fully synchronous computing environments are dramatically different from the asyn-
chronous ones we have considered so far. The difference is radical and provides

1 that is, it goes to the roots
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the protocol designer working in a fully synchronous environment with computa-
tional means and tools that are both unique and very powerful. In the following we
will briefly describe two situations providing an insight in the unique nature of syn-
chronous computations.

Overcoming Lower Bounds: Different Speeds As a first example of a syn-
chronous algorithm, we will discuss a protocol for leader election in synchronous
rings. We assume the standard restrictions for elections (IR), as well as Synch; the
goal is to elect as leader the candidate with the smallest value. The protocol is essen-
tially AsFar with an interesting new idea.

Recall that in AsFar each entity originates a message with its own id, forwards
only messages with the smallest id seen so far, and trashes all the other incoming
messages. The message with the smallest value will never be trashed; hence it will
make a full tour of the ring and return to its originator; every other message will
be trashed by the first entity with a smaller id it encounters. We have seen that this
protocol has an optimal message complexity on the average but uses O(n2) messages
in the worst case.

The interesting new idea is to have each message travel along the ring at a different
speed, proportional to the id it contains, so that messages with smaller ids travel faster
than those with larger values. In this way, a message with a small id can “catch up”
with a slower message (containing a larger id); when this happens, the message with
the larger id will be trashed. In other words, a message with a large id is trashed not
only if it reaches an entity aware of a smaller id but also if it is reached by a message
with a smaller id.

However, in a synchronous system, every message transmission will take at most
one time unit; so, in a sense, all messages travel at the same speed. How can we
implement variable speeds in a synchronous system? The answer is simple:

(a) When an entity x receives a message with a value i smaller than any seen so
far by x, instead of immediately forwarding the message along the ring (as the
protocol AsFar would require), x will hold this message for an amount of time
(i.e., a number of clock ticks) f (i) directly proportional to the value i.

(b) If a message with a smaller value arrives at x during this time, x will remove
i from consideration and process the new value. Otherwise, after holding i for
f (i) clock ticks, x will forward it along the ring.

The effect is that a message with value i will be effectively traveling along the ring
at speed 1+ f (i): If originally sent at time 0, it will be sent at time 1+ f (i) to the
next entity, and again at time 2+ 2f (i), 3+ 3f (i), and so on, until it is trashed or
completes the tour of the ring.

In this simple way, a we have implemented both variable speeds and the “catch-up”
of slow messages by faster ones!

The correctness of this new protocol follows from the fact that again, the message
with the smallest id will never be trashed and will thus return to its originator; every
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other message will be trashed either because of arriving to an entity that has seen a
smaller id or because of being reached by a message with a smaller id.

To determine the cost of the protocol, called Speed, obviously we must take care
of several implementation details (variables, bookkeeping, start, speed, etc.), but the
basic mechanism is there. Let us assume for the moment that all entities are initially
candidates and start at the same time.

For every choice of the monotonically increasing speed function f we will obtain
a different cost. In particular, by choosing

f (i) = 2i,

we have a very interesting situation. In fact, by the time (the message with) the small-
est id i1 has traveled all along the ring causing n transmissions, the second smallest
i2 could have traveled at most halfway the ring causing n/2 transmissions, the third
smallest could have traveled at most n/4, and in general the j th smallest could have
traveled at most distance n

2j−1 . In other words, with this choice of speed function, the
total number of transmissions until the entity with smallest value becomes leader is

n∑

j=1

n

2j−1 < 2n.

As the protocol will just need an additional n messages for the final notification,
we have

M[Speed] = O(n). (6.2)

This result is remarkable: This message complexity is lower than the �(n log n)
lowerbound for leader election in asynchronous rings ! It clearly shows a fundamental
complexity difference between synchronous and asynchronous systems.

To achieve this result, we have used time directly as a computational tool: to
implement the variable speeds of the messages and to select the appropriate waiting
function f .

The result must be further qualified; in fact, it is correct assuming that the entity
values are small enough to fit into a packet. In other words, it is correct but only
if provided that the input values are bounded by 2c; we will denote this additional
restriction on the size of the input by InputSize(2c).

To have a better understanding of the amount of transmissions, we can measure
the number of bits:

B[Speed] = O(n log i), (6.3)

where i is the range of the input values.
We have assumed that all entities start at the same time. This assumption is not

essential: It suffices that we first perform a wake-up, and elect a leader only among
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PROTOCOL Speed

� States: S = {ASLEEP, CANDIDATE, RELAYER, FOLLOWER, LEADER};
SINIT = {ASLEEP};
STERM = {FOLLOWER, LEADER}.
� Restrictions: RI ∪ Synch ∪ Ring ∪ InputSize(2c).

ASLEEP
Spontaneously
begin

min:= id(x);
send("FindMin", min) to right;
become CANDIDATE;

end

Receiving("FindMin", id$)
begin

min:= id$;
send("FindMin", min) to other;
become RELAYER;

end

CANDIDATE
Receiving("FindMin", id$)
begin

if id$ < min then
PROCESS-MESSAGE;
become RELAYER

else
if id$ = id(x) then

send(Notify) to other;
become LEADER

endif;
endif

end

When(c(x) = alarm)
begin

send("FindMin", min) to direction;
end

Receiving(Notify)
begin

send(Notify) to other;
become FOLLOWER;

end

FIGURE 6.3: Protocol Speed.

the spontaneous initiators (i.e., the others will not originate a message but will still
actively participate in the trashing and waiting processes). The election messages
themselves can act as “wake-up” messages, traveling at normal (i.e., unitary) speed
until they reach the first spontaneous initiator, and only then traveling at the as-
signed speed. In this way, we still obtain a O(n) message complexity (Exercise
6.6.3).
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RELAYER
Receiving("FindMin", id$)
begin

if id$ < min then
PROCESS-MESSAGE;

endif
end

When(c(x) = alarm)
begin

send("FindMin", min) to direction;
end

Receiving(Notify)
begin

send(Notify) to other;
become FOLLOWER;

end

Procedure PROCESS-MESSAGE
begin

min:= id$;
direction:= sender;
set alarm:= c(x)+ f (id*);

end

FIGURE 6.4: Rule for Relayer and Procedure Process-Message used by protocol Speed.

The modified protocol Speed is shown in Figures 6.3 and 6.4; c(x) denotes the
local clock of the entity x executing the protocol, and When denotes the external
event of the alarm clock ringing.

Beyond the Scenes The results expressed by Equations 6.2 and 6.3 do not tell the
whole story. If we calculate the time consumed by protocol Speed we find (Exercise
6.6.4) that

T[Speed] = O(n2i). (6.4)

In other words,

the time is exponential.

It is actually worse than it sounds. In fact, it is exponential not inn (a system parameter)
but in the range i of the input values.

Overcoming Transmission Costs: 2-bit Communication We have seen
how, in a synchronous environment, the lowerbounds established for asynchronous
problems do not necessarily hold. This is because of the additional computational
power of fully synchronous systems.
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FIGURE 6.5: Entity x sends only two packets.

The most clear and (yet) surprising example of the difference between synchronous
and asynchronous environments is the one we will discuss now.

Consider an entity x that wants to communicate to a neighbor y some information,
unknown to y. Recall that in a fully synchronous system messages are bounded: If I
want to transmit w bits, I will have to send

⌈w
c

⌉
packets and therefore at least

⌈w
c

⌉

time units or clock ticks. Still, x can communicate the information to y transmitting
only two packets (!), regardless of the packet size (!!) and regardless of the information
(!!!), provided it is finite.

Property 6.1.2 In absence of failures, any finite sequence of bits can be communi-
cated transmitting two messages, regardless of the message size.

Let us see how this extraordinary result is possible. Let α be the sequence of bits
that x wants to communicate to y; let 1α be the sequence α prefixed by the bit 1 (e.g.,
if α = 011, then 1α = 1011. Let I (1α) denote the integer whose binary encoding is
1α; for example, T (1011) = 11. Consider now the following protocol:

PROTOCOL TwoBits.

1. Entity x (see Figure 6.5):

(a) it sends to y a message “Start-Counting”;

(b) it waits for I (1α) clock ticks, and then

(c) sends a message “Stop-Counting”.

2. Entity y (Figure 6.6) :

(a) upon receiving the “Start-Counting” message, it records the current value
c1 of the local clock;

(b) upon receiving the “Start-Counting” message, it records the current value
c2 of the local clock. Clearly c2 − c1 = I (1α), from which α can be
reconstructed.

As the message size is irrelevant and the string 1α is finite but arbitrary, the property
states that in absence of failures,

any finite amount of information can be communicated by transmitting just 2 bits!
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FIGURE 6.6: Entity y can reconstruct the information.

IMPORTANT. In synchronous computing there is a difference between communi-
cation and transmission. In fact, unlike asynchronous systems where transmission of
messages is the only way in which neighboring entities can communicate, in syn-
chronous systems absence of transmission can be used to communicate information,
as we have just seen. In other words, in synchronous systems silence is expressive.
This is the radical difference between synchronous and asynchronous computing en-
vironments. We will investigate how to exploit it in our designs.

Beyond the Scenes The property, as stated, is incomplete from a complexity
point of view. In fact, in a synchronous system, time and transmission complexities are
intrinsically related to a degree nonexistent in asynchronous systems. In the example
above, the constant bit complexity is achieved at the cost of a time complexity that is
exponential in the length of the sequence of bits to be communicated, In fact, x has
to wait I (1α) time units, but

2|α| ≤ I (1α) ≤ 2|α|+1 − 1,

where |α| denotes the size (i.e., the number of bits) of α.
Once again, there is an exponential time cost to be paid for the the remarkable use

of time.

6.1.5 The Cost of Synchronous Protocols

In a fully synchronous system, time and transmission complexities are intrinsically
related to a degree nonexistent in asynchronous systems. As we have discussed in the
subsection “Beyond the Scenes” of Section 6.1.4, to say “we can solve the election in
a ring with O(n) messages” or “we can communicate the Encyclopædia Britannica
transmitting 2 bits” is correct but incomplete. We have been able to achieve those
results because we have used time as a computational element; however, time must
be charged, and the protocol must pay for it.
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In other words, the cost of a fully synchronous protocol is both time and transmis-
sions. More precisely, the communication cost of a fully synchronous protocol P is
a couple 〈P,T〉, where P denotes the number of packets and T denotes the number
of time units. We will more often use the number of bits B instead of P; thus, our
common measure will be the couple

Cost[P ] = 〈B[P ], T[P ]〉.

So, for example, the complexity of Protocol Speed is

Cost[Speed(i)] = 〈O(n log i), O(n2i)〉

and that of Protocol TwoBits is

C[TwoBits(α)] = 〈2, O(2|α|)〉.

Summarizing, the cost of a fully synchronous protocol is both time and bits. In
general, we can trade off one for the other, transmitting more bits to use less time, or
vice versa, depending on our design goals.

6.2 COMMUNICATORS, PIPELINE, AND TRANSFORMERS

In a system of communicating entities, the most basic and fundamental problem is
obviously the process of an entity, the sender efficiently and accurately communicat-
ing information to another entity, the receiver. If these two entities are neighbors, this
problem is called Two-Party Communication (TPC) problem. In an asynchronous
system, this problem has only one solution: The sender puts the information into
messages and transmits those messages.

In fully synchronous systems, as we have already observed, transmission of bits is
not the only way of communicating information; for example, in a fault-free system,
if no bit is received at local time t + 1, then none was transmitted at time t . Hence,
absence of transmission, or silence, is detectable and can be used to convey infor-
mation. In fact, there are many possible solutions to the Two-Party Communication
problem, called communicators, each with different costs. We have already seen one,
Protocol TwoBits.

In this section we will examine the design of efficient communicators. Owing to
the basic nature of the process, the choice of a communicator will greatly affect the
overall performance of the higher level protocols employed in the system.

We will then discuss the problem of communicating information at a distance,
that is, when the sender and the receiver are not neighbors. We will see how this and
related problems can be efficiently solved using a technique well known in very large
scale integration (VLSI) and parallel systems: pipeline.

We will also examine the notion of asynchronous-to-synchronous transformer,
a “compiler” that given in input an asynchronous protocol solving a problem P
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FIGURE 6.7: For the sender, a quantum is the number of clock ticks between two successive
transmissions; for the receiver, it is the interval between two successive arrivals.

generates an efficient synchronous protocol solving P . Such a transformer is a
useful tool to solve problems for which an asynchronous solution is already known.
Communicators are an essential component of a transformer; in fact, as we will
see, different communicators result in different costs for the generated synchronous
protocol. This is one more reason to focus on the design of efficient communicators.

In the following, we will assume that no failure will occur, that is, we operate under
restriction Total Reliability.

6.2.1 Two-Party Communication

Consider the simple task of an entity, the sender, communicating information to a
neighbor, the receiver.

At each time unit, the sender can either transmit a packet or remain silent; a packet
transmitted by the sender at time t will be received and processed by the receiver at
time t + 1 (sender’s time). The interval of time between two successive transmissions
by the sender is called a quantum of silence (or, simply, quantum); if there are no
failures, the interval of time between the two arrivals will be the same for the receiver
(see Figure 6.2.1). The quantum is zero if the packets are sent at two consecutive
clock ticks.

Thus, to communicate information, the sender can use not only the transmission
of several packets, but also the quanta of silence between successive transmissions.
For example, in the TwoBits protocol, the sender was using the transmission of two
packets as well as the quantum of silence between them. In general, the transmission
of k packets p0, p1, . . . , pk−1 defines k − 1 quanta q1,q2, . . . ,qk−1, where qi is
the interval between the transmissions of pi−1 and pi , 1 ≤ i ≤ k − 1. The ordered
sequence

〈p0 : q1 : p1 : ... : qk−1 : pk−1〉

we will called communication sequence.
Clearly, there are many different ways in which we can design a protocol for the

two entities to communicate using transmissions and silence, depending on the value
of k we choose, the content of the packets, the size c of the packets, and so forth. Each
design will yield a different cost.
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The problem of performing this task is called the Two-Party Communication prob-
lem, and any solution protocol is called a communicator.

A communicator must specify the operations of the sender and of the receiver. In
particular, a communicator is composed of

� an encoding function, specifying how to encode the information into the com-
munication sequence of packets and silence;
� a decoding function, specifying how to reconstruct the information from the

communication sequence of packets and silence.

Associated with any communicator are clearly two related cost measures: the total
number of packets transmitted and the total number of clock ticks elapsed during
the communication; as we will see, the study of the two-party communication prob-
lem in synchronous networks is really the study of the trade-off between time and
transmissions.

IMPORTANT. To simplify the discussion, in the following, we will consider that
a packet contains just a single bit, that is, c = 1. Everything we will say is easily
extendable to the case c > 1.

2-bit Communicators We have already seen the most well known communicator,
Protocol TwoBits. This protocol, also known as C2, belongs to a class of communica-
tors called k-bit Communicators where the number of transmitted packets is a constant
k fixed a priori and known to both entities.

In C2, to communicate a positive integer i, the sender transmits two packets, b0
and b1, waiting i time units between the two transmissions; the receiver computes the
quantum of silence q1 between the two transmissions and decodes it as the informa-
tion. In other words, the communication pattern is

〈b0 : q1 : b1〉.

The encoding function is

encode(i) = 〈b0 : i : b1〉

and the decoding function is

decode(b0 : q1 : b1) = q1.

Thus, the total amount of time from the time the sender starts the first transmission
to the time the receiver decodes the information is the quantum of silence plus the
two time units used for transmitting the bits. Thus, the cost of the protocol is

Cost[ C2(i)] = 〈2, i+ 2〉. (6.5)



346 SYNCHRONOUS COMPUTATIONS

Hacking. We can improve the time complexity by exploiting the fact that the two
transmitted bits b0 and b1 can be used to convey some information about i. In fact, it is
possible to construct a communicator, calledR2, that communicates i transmitting 2
bits and only 2+ i

4 time units (Exercise 6.6.6). Clearly, a better time complexity will
be obtained if packets contain more than a single bit; that is, c > 1 (Exercise 6.6.7).

3-bit Communicators Let us examine what difference transmitting an extra
packet has on the overall cost of communication. First of all, observe that with three
packets b0, b1 and b2, we have two quanta of silence: the interval of time q1 between
the transmission of b0 and b1 and the interval q2 between the transmission of b1 and
b2. In other words, the communication pattern is

〈b0 : q1 : b1 : q2 : b2〉.

With this extra quantum to our disposal, consider the following strategy. If the sender
could communicate

√
i using a single quantum, the receiver can reconstruct i by

squaring the received quantum, and the entire process will cost still 2 bits (to delimit
the quantum) but only

√
i+ 2 time ! The problem with this strategy is that

√
i might

not be an integer, while a quantum must be an integer. The sender can obviously use
a quantum q1 =

⌊√
i
⌋

, which is an integer, and the receiver can compute q2
1, which,

however, might be smaller than i. What the sender can do is to use the second quantum
q2 to communicate how far q2

1 is from i, that is, q2 = i− q2
1. In this way, the receiver

is capable to reconstruct i: It simply computes q2
1 + q2.

In other words, the encoding function is

encode(i) = 〈b0 :
⌊√

i
⌋

: b1 : i− (⌊√i
⌋)2 : b2〉.

For example, encode(8, 425) = 〈b0 : 91 : b1 : 144 : b2〉. The decoding function
is

decode(b0 : q1 : b1 : q2 : b2) = q2
1 + q2.

The time required by this protocol is clearly q1 + q2 + 3; asx − ⌊√x⌋2 ≤ 2
⌊√

x
⌋

,
we have

q1 + q2 + 3 = ⌊√i
⌋+ i− ⌊√i

⌋2 + 3 ≤ 3
⌊√

i
⌋+ 3.

In other words, this protocol, called C3, has sublinear time complexity. The resulting
cost is

Cost[C3(i)] = 〈3 , 3
⌊√

i
⌋+ 3〉. (6.6)
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FIGURE 6.8: Constructing the encoding of 33,703 when k = 5.

Hacking. We can improve the time complexity by exploiting the fact that the trans-
mitted packets can be used to convey some information about i. In fact, it is possible
to construct a communicator, calledR3, that communicates I transmitting 3 bits and
only √i� + 3 time units (Exercise 6.6.8). Again, the more bits a packet contains, the
better will be the time costs (Exercise 6.6.9).

(2d+1)-bit Communicators A solution protocol using k = 2d + 1 bits can be
easily obtained extending the idea employed for k = 21 + 1 = 3. The encoding of i
can be defined recursively as follows:

encoding (i) = 〈b : E(I1) : b〉

E(Ii) =
{
E(I2i) : b : E(I2i+1) if 1 < i < k − 1

quantum of length Ii if k − 1 ≤ i ≤ 2k − 3,

where
I1 = i, I2i =

⌊√
Ii
⌋

, and I2i+1 = Ii − I 2
2i , and b is an arbitrary packet. So, for

example, the encoding of i = 33, 703 when k = 5 is 〈b 13 b 14 b 14 b 18 b〉 (see
Figure 6.8).

To obtain i = I1, the receiver will recursively compute

Ii = I 2
2i + I2i+1.

Exactly k − 1 quanta will be used, and k bits will be transmitted. The time costs will

be O(i
1
k ) (Exercise 6.6.10).

Optimal (k+1)-bit Communicators ($) When designing efficient communi-
cators, several questions arise naturally: How good are the communicators we have
designed so far? In general, if we use k + 1 transmissions, what is the best time that
can be achieved and which communicator will be able to achieve it?

In this section we will answer these questions. We will design a general class of
solution protocols and analyze their cost; we will then establish lower bounds and
show that the proposed protocols achieve these bounds and are therefore optimal.
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Our goal is now to design protocols that can communicate any positive integer
I transmitting k + 1 packets and using as little time as possible. Observe that with
k + 1 packets the communication sequence is

〈b0 : q1 : b1 : q2 : b2 : . . . : qk : bk〉.

We will first of all make a distinction between protocols that do not care about the
content of the transmitted protocols (like C2 and C3) and those (likeR2 andR3) that
use those packets to convey information about I .

The first class of protocols are able to tolerate the type of transmission failures
called corruptions. In fact, they use packets only to delimit quanta; as it does not
matter what the content of the packet is (but only that it is being transmitted), these
protocols will work correctly even if the value of the bits in the packets is changed
during transmission. We will call them as corruption-tolerant communicators.

The second class exploits the content of the packets to convey information about
I ; hence, if the value of just one of the bits is changed during transmission, the entire
communication will become corrupted. In other words, these communicators need
reliable transmission for their correctness.

Clearly, the bounds and the optimal solution protocols are different for the two
classes.

We will consider the first class in details; the second types of communicators will
be briefly sketched at the end. As before, we will consider for simplicity the case
when a packet is composed of a single bit, that is c = 1; the results can be easily
generalized to the case c > 1.

Corruption-Tolerant Communication If transmissions are subject to corrup-
tions, the value of the received packets cannot be relied upon, and so they are used only
to delimit quanta. Hence, the only meaningful part of the communication sequence
is the k−tuple of quanta

〈q1,q2, . . . ,qk〉.

Thus, the (infinite) set Qk of all possible k-tuples 〈q1,q2, . . . ,qk〉, where the qi
are nonnegative integers, describes all the possible communication sequences.

What we are going to do is to associate to each communication sequence Q[I ] ∈
Qk a different integer I . Then, if we want to communicate I , we will use the unique
sequence of quanta described by Q[I ].

To achieve this goal we need a bijection between k-tuples and nonnegative integers.
This is not difficult to do; it is sufficient to establish a total order among tuples as
follows.

Given two k-tuples Q = 〈q1, q2, . . . , qk〉 and Q′ = 〈q ′1, q ′2, . . . , q ′k〉 of positive
integers, we say that Q < Q′ if

1.
∑

i qi <
∑

i q
′
i or

2.
∑

i qi =
∑

i q
′
i and qj = q ′j for 1 ≤ j < l, and ql < q ′l for some index l, 1 ≤

l ≤ k + 1.
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I 0 1 2 3 4 5 6 7 8 9 10
Q[I] 0,0,0 0,0,1 0,1,0 1,0,0 0,0,2 0,1,1 0,2,0 1,0,1 1,1,0 2,0,0 0,0,3

11 12 13 14 15 16 17 18 19 20 21 22
0,1,2 0,2,1 0,3,0 1,0,2 1,1,1 1,2,0 2,0,1 2,1,0 3,0,0 0,0,4 0,1,3 0,2,2

23 24 25 26 27 28 29 30 31 32 33 34
0,3,1 0,4,0 1,0,3 1,1,2 1,2,1 1,3,0 2,0,2 2,1,1 2,2,0 3,0,1 3,1,0 4,0,0

FIGURE 6.9: The first 35 elements of Q3 according to the total order.

That is, in this total order, all the tuples where the sum of the quanta is t are smaller
than those where the sum is t + 1; so, for example 〈2, 0, 0〉 is smaller than 〈1, 1, 1〉.
If the sum of the quanta is the same, the tuples are lexicographically ordered; so, for
example, 〈1, 0, 2〉 is smaller than 〈1, 1, 1〉. The ordered list of the first few elements
of Q3 is shown in Figure 6.9.

In this way, if we want to communicate integer I we will use the k-tuple Q whose
rank (starting from 0) in this total order is I . So, for example, inQ3, the triple 〈1, 0, 3〉
has rank 25, and the triple 〈0, 1, 4〉 corresponds to integer 36.

The solution protocol, which we will callOrderk , thus uses the following encoding
and decoding schemes.

Protocol Orderk

Encoding Scheme: Given I , the Sender

(E1) finds Qk[I ] = 〈a1, a2, . . . , ak〉;
(E2) it sets encoding(I ) := 〈b0 : a1 : b1 : . . . , : ak : bk〉, where the bi are

bits of arbitrary value.

Decoding Scheme: Given (〈b0 : a1 : b1 : . . . , : ak : bk〉), the receiver

(D1) extracts Q = 〈a1, a2, . . . , ak〉;
(D2) it finds I such that Qk[I ] = Q;

(D3) it sets decoding(〈b0 : a1 : b1 : . . . , : ak : bk〉): = I .

The correctness of the protocol derives from the fact that the mapping we are using
is a bijection. Let us examine the cost of protocol Orderk .

The number of bits is clearly k + 1.

B[Orderk](I ) = k + 1. (6.7)

What is the time? The communication sequence 〈b0 : q1 : b1 : q2 : b2 : . . . :
qk : bk〉 costs k + 1 time units spent to transmit the bits b0, . . . , bk , plus

∑k
i=1 qi time
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units of silence. Hence, to determine the time T [Orderk](I ) we need to know the sum

of the quanta in Qk[I ]. Let f (I, k) be the smallest integer t such that I ≤
(
t + k

k

)

.

Then (Exercise 6.6.12),

T[Orderk](I ) = f (I, k)+ k + 1. (6.8)

Optimality We are now going to show that protocol Orderk is optimal in the worst
case. We will do so by establishing a lower bound on the amount of time required to
solve the two-party communication problem using exactly k + 1 bit transmissions.
Observe that k + 1 time units will be required by any solution algorithm to transmit
the k + 1 bits; hence, the concern is on the amount of additional time required by the
protocol.

We will establish the lower bound assuming that the values I we want to transmit
are from a finite set U of integers. This assumption makes the lower bound stronger
because for infinite sets, the bounds can only be worse.

Without any loss of generality, we can assume that U = Zw = {0, 1, . . . ,w− 1},
where |U | = w.

Let c(w, k) denote the number of additional time units needed in the worst case
to solve the two-party communication problem for Zw with k + 1 bits that can be
corrupted during the communication.

To derive a bound on c(w, k), we will consider the dual problem of determining
the size ω(t, k) of the largest set for which the two-party communication problem
can always be solved using k + 1 corruptible transmissions and at most t additional
time units. Notice that with k + 1 bit transmissions, it is only possible to distinguish
k quanta; hence, the dual problem can be rephrased as follows:

Determine the largest positive integer w = ω(t, k) such that every x ∈ Zw can be
communicated using k distinguished quanta whose total sum is at most t .

This problem has an exact solution (Exercise 6.6.14):

ω(t, k) =
(
t + k

k

)

. (6.9)

This means that if U has size ω(t, k), then t additional time units are needed (in
the worst case) by any communicator that uses k + 1 unreliable bits to communicate
values of U . If the size of U is not precisely ω(t, k), we can still determine a bound.
Let f (w, k) be the smallest integer t such that ω(t, k) ≥ w. Then

c(w, k) = f (w, k). (6.10)
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That is

Theorem 6.2.1 Any corruption-tolerant solution protocol using k + 1 bits to com-
municate values from Zw requires f (w, k)+ k + 1 time units in the worst case.

In conjunction with Equation 6.8, this means that

protocol Orderk is a worst case optimal.

We can actually establish a lower bound on the average case as well (Exercise
6.6.15), and prove (Exercise 6.6.16) that

protocol Orderk is average-case optimal

Corruption-Free Communication ($$) If bit transmissions are error free, the
value of a received packet can be trusted. Hence it can be used to convey information
about the value I the sender wants to communicate to the receiver. In this case, the
entire communication sequence, bits and quanta, is meaningful.

What we do is something similar to what we just did in the case of cor-
ruptible bits. We establish a total order on the set Wk of the 2k + 1 tuples
〈b0, q1, b1, q2, b2, . . . , qk, bk〉 corresponding to all the possible communication se-
quences. In this way, each tuple 2k + 1-tuple W [i] ∈Wk has associated a distinct
integer: its rank i. Then, if we want to communicate I , we will use the communica-
tion sequence described by W [I ].

In the total order we choose, all the tuples where the sum of the quanta is t are
smaller than those where the sum is t + 1; so, for example, in W2, 〈1, 2, 1, 0, 1〉
is smaller than 〈0, 0, 0, 3, 0〉. If the sum of the quanta is the same, tuples (bits and
quanta) are lexicographically ordered; so, for example, inW2, 〈1, 1, 1, 1, 1〉 is smaller
than 〈1, 2, 0, 0, 0〉.

The resulting protocol is called Order+k . Let us examine its costs. The number of

bits is clearly k + 1. Let g(I, k) be the smallest integer t such that I ≤ 2k+1

(
t + k

k

)

.

Then (Exercise 6.6.13),

B[Order+k](I ) = k + 1 (6.11)

T[Order+k](I ) = g(I, k)+ k + 1. (6.12)

Also, protocol Order+k is worst-case and average-case optimal (see exercises
6.6.17, 6.6.18, and 6.6.19).

Other Communicators The protocols Orderk and Order+k belong to the class
of k + 1-bit communicators where the number of transmitted bits is fixed a priori
and known to both the entities. In this section, we consider arbitrary communicators,
where the number of bits used in the transmission might not be not predetermined
(e.g., it may change depending on the value I being transmitted).



352 SYNCHRONOUS COMPUTATIONS

With arbitrary communicators, the basic problem is obviously how the receiver
can decide when a communication has ended. This can be achieved in many different
ways, and several mechanisms are possible. Following are two classical ones:

Bit Pattern. The sender uses a special pattern of bits to notify the end of commu-
nication. For example, the sender sets all bits to 0, except the last, which is set to 1;
the drawback with this approach is that the bits cannot be used to convey information
about I .

Size Communication. As part of the communication, the sender communicates the
total number of bits it will use. For example, the sender uses the first quantum to
communicate the number of bits it will use in this communication; the drawback of
this approach is that the first quantum cannot be used to convey information about I .

We now show that, however ingenious the employed mechanism be, the results
are not much better than those obtained just using optimal k + 1-bit communicators.
In fact, an arbitrary communicator can only improve the worst-case complexity by an
additive constant.

This is true even if the receiver has access to an oracle revealing (at no cost) for
each transmission the number of bits the sender will use in that transmission.

Consider first the case of corruptible transmissions. Let γ (t, b) denote the size of
the largest set for which an oracle-based communicator uses at most b corruptible
bits and at most t + b time units.

Theorem 6.2.2 γ (t, b) < ω(t + 1, b)

Proof. As up to k + 1 corruptible bits can be transmitted, by Equation 6.9,

γ (t, b) =∑k
j=1 ω(t, j ) =∑k

j=1

(
t + j

j

)

=
(
t + k + 1

k

)

− 1 <

(
t + 1+ k

k

)

= ω(t + 1, b). �

This implies that, in the worst case, communicator Orderk requires at most one time
unit more than any strategy of any type which uses the same maximum number of
corruptible bits.

Consider now the case of incorruptible transmissions. Let α(t, b) denote the size
of the largest set for which an oracle-based communicator uses at most b reliable bits
and at most t + b time units. To determine a bound on α(t, b), we will first consider
the size β(t, k) of the largest set for which a communicator without an oracle uses
always at most b reliable bits and at most t + b time units. We know (Exercises 6.6.17)
that

Lemma 6.2.1 β(t, k) = 2k+1

(
t + k

k

)

.

From this, we can now derive

Theorem 6.2.3 α(t, b) < β(t + 1, b).
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Proof. As up to k + 1 incorruptible bits can be transmitted, α(t, b) =∑k
j=1 β(t, j ).

By Lemma 6.2.1,
∑k

j=1 β(t, j ) =∑k
j=1 2j+1

(
t + j

j

)

< 2k+1

(
t + 1+ k

k

)

= β(t + 1, k). �

This implies that, in the worst case, communicator Order+k requires at most one time
unit more than any strategy of any type which uses the same maximum number of
incorruptible bits.

6.2.2 Pipeline

Communicating at a Distance With communicators we have addressed the
problem of communicating information between two neighboring entities. What hap-
pens if the two entities involved, the sender and the receiver, are not neighbors?
Clearly the information from the sender x can still reach the receiver y, but other
entities must be involved in this communication. Typically there will be a chain of
entities, with the sender and the receiver at each end; this chain is, for example, the
shortest path between them. Let x1, x2, . . . , xp−1, xp be the chain, where x1 = x and
xp = y; see Figure 6.10.

The simplest solution is that first x1 communicates the information I to x2, then
x2 to x3, and so on until xp−1 has the information and communicates it to xp. Using
communicator C between each pair of neighbors, this solution will cost

(p − 1) Bit(C, I )

bits and

(p − 1) Time(C, I )

time, where Bit(C, I ) and Time(C, I ) are the bit and time costs, respectively of com-
municating information I using C. For example, using protocol TwoBits, x can com-
municate I to y with 2(p − 1) bits in time I (p − 1). There are many variations of
this solutions; for example, each pair of neighbors could use a different type of com-
municator.

There exists a way of drastically reducing the time without increasing the number
of bits. This can be achieved using a well known technique called pipeline.

The idea behind pipeline is very simple. In the solution we just discussed, x1 waits
until it receives the information from x0 and then communicates it to x2. In pipeline,
instead of waiting, x1 will start immediately to communicate it to x2. In fact, each xj

FIGURE 6.10: Communicating information from x to y through a line.
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FIGURE 6.11: Time–Event diagram showing the communication of I in pipeline from x1 to x4.

will start communicating the information to xj+1 without waiting to receive it form
xj−1; the crucial point is that xj+1 starts exactly one time unit after xj−1.

To understand how can an entity xj communicate an information it does not yet
have, consider x2 and assume that the communicator being used is TwoBits. Let x1
start at time t ; then x2 will receive the “Start-Counting” signal at time t + 1. Instead
of just waiting to receive the “Stop-Counting” message from x1, x2 will also start
immediately the communication: It sends a “Start-Counting” signal to x3 and starts
waiting the quantum of silence. It is true that x2 does not know I , so it does not
know how long it has to wait. However, at time t + I , entity x1 will send the “Stop-
Counting” signal that will arrive at x2 one time unit later, at time t + I + 1. This is
happening exactly I time units after x2 sent the “Start-Counting” signal to x3. Thus,
if x2 now forwards the “Stop-Counting” signal to x3, it acts exactly like if it had the
information I from the start!

The reasoning we just did to explain why pipeline works at x2 applies to each
of the xj . So, the answer to the question above is that each entity xj will know the
information it must communicate exactly in time. An example is shown in Figure
6.11, where p = 4. The sender x1 will start at time 0 and send the “Stop-Counting”
signal at time I . Entities x2, x3 will receive and send the “Start-Counting” at time 1
and 2, respectively; they will receive and send the “Stop-Counting” at time I + 1 and
I + 2, respectively.

Summarizing, the entities will start staggered by one time unit and will terminate
staggered by one time unit. Each will be communicated the value I communicated
by the sender.

Regardless of the communicator C employed (the same by all entities), the overall
solution protocol CommLine is composed of two simple rules:

PROTOCOL CommLine

1. x1 communicates the information to x2.

2. Whenever xj receives a signal from xj−1, it forwards it to xj+1 (1 < j < p).
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How is local termination detected ? As each entity uses the same communicator C,
each xj will know when the communication from xj−1 has terminated (1 < j ≤ p).

Let us examine the cost of this protocol. Each communication is done using com-
municator C; hence the total number of bits is the same as in the nonpipelined case:

(p − 1) Bits(C, I ). (6.13)

However, the time is different as the p − 1 communications are done in pipeline and
not sequentially. Recall that the entities in the line start a unit of time one after the other.
Consider the last entity xp. The communication of I from xp−1 requires Time(C, I );
however, xp−1 starts this communication only p − 2 time units after x1 starts its com-
munication to x2. This means that the total time used for the communication is only

(p − 1) + Time(C, I ). (6.14)

That is, the term p − 1 is added to and not multiplied by Time(C, I ). In the example
of Figure 6.11, where p = 4 and the communicator is TwoBits, the total number
of bits is 6 = 2(p − 1). The receiver x4 receives “Start-Counting” at time 3 and the
“Stop-Counting” at time i + 3; hence the total time is I + 3 = I + p − 1;

Let us stress that we use the same number of bits as a nonpipelined (i.e., sequential)
communication; the improvement is in the time costs.

Computing in Pipeline Consider the same chain of entities x1, x2, . . . , xp−1, xp
we have just examined. We have seen how information can be efficiently communi-
cated from one end of the chain of entities to the other by pipelining the output of
the communicators used by the entities. We will now see how we can use pipeline in
something slightly more complex than plain communication.

Assume that each entity xj has a value Ij , and we want to compute the largest of
those values. Once again, we can solve this problem sequentially: First x1 communi-
cates I1 to x2; each xj (1 < j < p) waits until it receives from xj−1 the largest value
so far, compares it with its own value Ij , and forwards the largest of the two to xj+1.
This approach will cost

(p − 1) Bit(C, Imax)

bits, whereC is the communicator used by the entities and Imax is the largest value. The
time will depend on where Imax is located; in the worst case, it is x1 and the time will be

(p − 1) Time(C, Imax).

Let us see how pipeline can be used in this case. Again, we will make all entities
in the chain start staggered by one unit of time, and each entity will start waiting a
quantum of time equal to its own value.
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Let t the time when x1 (and thus the entire process) starts; for simplicity, assume
that they use protocol TwoBits. Concentrate on x2. At time t + 1 it receives the “Start-
Counting” signal from x1 and sends it to x3. Its goal is to communicate to x3 the largest
of I1 and I2; to do so, it must send the “Stop-Counting” signal to x3 exactly at time
t ′ = t + 1+Max{I1, I2}. The question is how can x2 know Max{I1, I2} in time. The
answer is fortunately simple.

The “Stop-Counting” message from x1 arrives at x2 at time t + 1+ I1 (i.e., I1 time
units after the “Start-Counting” signal). There are three possible cases.

1. If I1 < I2, this message will arrive while x2 is still counting its own value I2;
thus, x2 will know that its value is the largest. In this case, it will just keep on
waiting its value and send the “Stop-Counting” signal to x3 at the correct time
t + 1+ I2 = t + 1+Max{I1, I2} = t ′.

2. If I1 = I2, this message will arrive exactly when x2 finishes counting its own
value I2; thus, x2 will know that the two values are identical. The “Stop-
Counting” signal will be sent to x3 immediately, that is, at the correct time
t + 1+ I2 = t + 1+Max{I1, I2} = t ′.

3. If I1 > I2, x2 will finish waiting its value before this message arrives. In this
case, x2 will wait until it receives “Stop-Counting” signal from x1, and then
forward it. Thus, the “Stop-Counting” signal will be sent to x3 at the correct
time t + 1+ I1 = t + 1+Max{I1, I2} = t ′.

That is, x2 will always send Max{I1, I2} in time to x3.
The same reasoning we just used to understand how x2 can know Max{I1, I2} in

time can be applied to verify that indeed each xj can know Max{I1, I2, . . . , Ij−1} in
time (Exercise 6.6.23). An example is shown in Figure 6.12.

We have described the solution using TwoBits as the communicator. Clearly any
communicator C can be used, provided that its encoding is monotonically increasing,

FIGURE 6.12: Time–Event diagram showing the computation of the largest value in pipeline.



COMMUNICATORS, PIPELINE, AND TRANSFORMERS 357

that is, if I > J , then in C the communication sequence for I is lexicographically
smaller than that forJ . Note that protocols Orderk and Order+k are not monotonically
increasing; however, it is not difficult to redefine them so that they have such a property
(Exercises 6.6.21 and 6.6.22).

The total number of bits will then be

(p − 1) Bits(C, Imax), (6.15)

the same as that without pipeline. The time instead is at most

(p − 1)+ Time(C, Imax). (6.16)

Once again, the number of bits is the same as that without pipeline; the time costs
are instead greatly reduced: The factor (p − 1) is additive and not multiplicative.

Similar reductions in time can be obtained for other computations, such as com-
puting the minimum value (Exercise 6.6.24), the sum of the values (Exercise 6.6.25),
and so forth.

The approach we used for these computations in a chain can be generalized to
arbitrary tree networks; see for example Problems 6.6.5 and 6.6.6.

6.2.3 Transformers

Asynchronous-to-Synchronous Transformation The task of designing a
fully synchronous solution for a problem can be easily accomplished if there is al-
ready a known asynchronous solution A for that problem. In fact, since A makes no
assumptions on time, it will run under every timing condition, including the fully syn-
chronous ones. Its cost in such a setting would be the number of messages M(A) and
the “ideal” time T (A). Note that this presupposes that the size m(A) of the messages
used byA is not greater than the packet size c (otherwise, the message must be broken
into several packets, with a corresponding increasing message and time complexity).

We can actually exploit the availability of an asynchronous solution protocol A
in a more clever way and with a more efficient performance than just running A in
the fully synchronous system. In fact, it is possible to transform any asynchronous
protocol A into an efficient synchronous one S, and this transformation can be
done automatically. This is achieved by an asynchronous-to-synchronous transformer
(or just transformer), a “compiler” that, given in input an asynchronous protocol solv-
ing a problem P , generates an efficient synchronous protocol solving P .

The essential component of a transformer is the communicator. Let C be a uni-
versal communicator (i.e., a communicator that works for all positive integers). An
asynchronous-to-synchronous transformer τ [C] is obtained as follows.

Transformer τ [C] Given any asynchronous protocol A, replace the asynchronous
transmission-reception of each message in A by the communication, using C, of the
information contained in that message.
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In other words, we replace each “send message” instruction in algorithmAby an in-
struction “communicate content of message,” where the communication is performed
using the communicator C. It is not difficult to verify that if A solves problemP for a
class G of system topologies (i.e., graphs), then τ [C](A) = S is a fully synchronous
protocol that solves P for the graphs in G. Note that in a practical implementation,
we must take care of several details (e.g., overlapping arrival of messages) that we
are not discussing here.

Let us calculate now the cost of the obtained protocol S = τ [C](A) in a graph
G ∈ G ; let M(A), Tcasual(A), and m(A) denote the message complexity, the causal
time complexity, and the size of the largest message, respectively, of A in G. Recall
that the causal time complexity is the length of the longest chain of causally related
message transmissions over all possible executions. For some protocols, it might be
difficult to determine the causal time; however, we know that Tcasual(A) ≤ M(A);
hence we always have an upperbound.

In the transformation, the transmission (and corresponding reception) of I in A

is replaced by the communication of I using communicator C; this communication
requires Time(C, I ) time and Packets(C, I ) packets.

As at most Tcasual(A) messages must be sent sequentially (i.e., one after the other)
and I ≤ 2m(A), the total number of clock ticks required by S will be

Time(S) ≤ Tcasual(A)× Time(C, 2m(A)). (6.17)

As the information of each of the M(A) messages must be communicated, and the
messages have size at most m(A), the total number of packets P(S) transmitted by
the synchronous protocol S is just

P(S) ≤ M(A)× Packets(C,m(A)). (6.18)

In other words,

Lemma 6.2.2 Transformation Lemma For every universal communicator C

there exists an asynchronous-to-synchronous transformer τ [C]. Furthermore, for
every asynchronous protocol A, the packet-time cost of τ [C](A) is at most

Cost[ τ [C](A) ] ≤ 〈M(A) Packets(C,m(A)) , Tcasual(A) Time(C, 2m(A))〉.

This simple transformation mechanism might appear to yield inefficient solutions
for the synchronous case. To dispel this false appearance, we will consider an inter-
esting application.

Application: Election in a Synchronous Ring Consider the problem of elect-
ing a leader in a synchronous ring. We assume the standard restrictions for elections
(IR), as well as Synch. We have seen several efficient election algorithms for asyn-
chronous ring networks in previous chapters. Let us choose one and examine the
effects of the transformer.
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Consider protocol Stages. Recall that this protocol uses M(Stages) = 2n log n+
O(n); each message contains a value; hence,m(Stages) = log i, where i is the range of
the input values; regarding the causal time, as Tcasual(A) ≤ M(A) for every protocol
A, we have Tcasual(Stages) ≤ 2n log n+O(n).

To apply the Transformation Lemma, we need to choose a universal communicator.
Let us choose a not very efficient one: TwoBits; recall that the cost of communicating
integer I is 2 bits and I + 2 time units. Let us now apply the transformation lemma. We
then have a new election protocol SynchStages= τ [TwoBits](Stages) for synchronous
ring; as

Time(TwoBits, 2m(Stages)) = 2log i + 2 = i+ 2,

by Lemma 6.2.2, we have

T(SynchStages) ≤ 2n log(n) (i+ 2)+ l.o.t (6.19)

and

B(SynchStages) = 2M(Stages) ≤ 2n log(n)+O(n). (6.20)

This result must be compared with the bounds of the election algorithm Speed
specifically designed for synchronous systems (see Figure 6.13): The transformation
lemma yields bounds that are order of magnitude better than those previously obtained
by specifically designed algorithm.

Once we have obtained a solution protocol using a transformer, both the bits and the
time complexity of this solution depend on the communicator employed by the trans-
former. Sometimes, the time complexity can be further reduced without increasing the
number of bits by using pipeline. For example, during every stage of protocol Stages
and thus of protocol SynchStages, the information from each candidate must reach
the neighboring candidate on each side. This operation, as we have already seen, can
be efficiently done in pipeline, yielding a reduction in time costs (Exercise 6.6.26).

Design Implications The transformation lemma gives a basis of comparison
for designing efficient synchronous solutions to problems for which there already
exist asynchronous solutions. To improve on the bounds obtained by the use of the
transformation lemma, it is necessary to more explicitly and cleverly exploit the
availability of “time” as a computational tool. Some techniques that achieve this goal
for some specific problems are described in the next sections.

Protocol Bits Time
Speed O(n log i) O(2i n)

SynchStages O(n log n) O(i n log n)

FIGURE 6.13: The transformer yields a more efficient ring election protocol
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When designing a protocol, our aim must be to avoid the transmission of unbounded
messages; in particular, if the input values are drawn from some unbounded universe
(e.g., positive integers) and the goal of the computation is the evaluation of a function
of the input values, then the messages cannot contain such values. For example,
the “trick” on which the transformation lemma is based is an instance of a simple
and direct way of exploiting time by counting it; in this case, the actual value is
communicated but not transmitted.

6.3 MIN-FINDING AND ELECTION: WAITING AND GUESSING

Our main goal as protocol designers is to exploit the fact that in synchronous systems,
time is an explicit computational tool, so as to develop efficient solutions for the
assigned task or problem. Let us consider again two problems that we have extensively
studied for asynchronous networks: minimum-finding and election. We assume the
standard restrictions for minimum-finding (R), as well as Synch; in the case of election,
we obviously assume Initial Distinct Values (ID) also.

We have already seen a solution protocol, Speed, designed for synchronous ring
networks; we have observed how its low message costs came at the expense of a time
complexity that is exponential in the range of the input values.

The Transformation Lemma provides a tool that automatically produces a syn-
chronous solution when an asynchronous one is already available. We have seen how
the use of a transform leads to an election protocol for rings, SynchStages, with reduced
bits and time costs. By integrating pipeline, we can obtain further improvements.

The cost of minimum-finding and election can be significantly reduced by using
other types of “temporal” tools and techniques. In this section, we will describe two
basic techniques that make an explicit use of time, waiting and guessing. We will
describe and use them to efficiently solve MinFinding and Election in rings and
other networks.

6.3.1 Waiting

Waiting is a technique that uses time not to transmit a value (as in the communicators),
but to ensure that a desired condition is verified.

Waiting in Rings Consider a ring network where each entity x has as initial value
a positive integer id(x). Let us assume, for the moment, that the ring is unidirectional
and that all entities start at the same time (i.e., simultaneous initiation). Let us further
assume that the ring size n is known.

The way of finding the minimum value using waiting is surprisingly simple. What
an entity x will initially do is nothing, but just wait. More precisely,

Waiting

1. The entity x waits for a certain amount of time f (id(x), n).

2. If nothing happens during this time, the entity determines “I am the smallest”
and sends a “Stop” message.



MIN-FINDING AND ELECTION: WAITING AND GUESSING 361

3. If, instead, while waiting the entity receives a “Stop” message, it determines “I
am not the smallest” and forwards the message.

With the appropriate choice of the waiting function f , this surprisingly simple
protocol works correctly!

To make the process work correctly, the entities with the smallest value must finish
waiting before anybody else does (in this way, each of them will correctly determine
“I am the minimum”). In other words, the waiting function f must be monotonically
decreasing: if id(x) < id(y) then

f (id(x), n) < f (id(y, n)).

This is, however, not sufficient. In fact, it is also necessary that every entity whose
value is not the smallest receives a “Stop” message while still waiting (in this way,
each of them will correctly determine “I am not the minimum”). To achieve this, it
is necessary that if x originates a “Stop” message, this message would reach every
entity y with id(x) < id(y) while y is still waiting, that is, if id(x) < id(y), then

f (id(x), n)+ d(x, y) < f (id(y), n), (6.21)

where d(x, y) denotes the distance of y from x in the ring. This must hold regardless
of the distance d(x, y) and regardless of how small id(y) is (provided id(y) > id(x)).
As d(x, y) ≤ n− 1 for every two entities in the ring, and the smallest value larger
than id(x) is clearly id(x)+ 1, any function f satisfying the following inequality

{
f (0) = 0

f (v, n)+ n− 1 < f (v+ 1, n)
(6.22)

will make protocol Wait function correctly. Such is, for example, the waiting function

f (i, n) = i n. (6.23)

As an example, consider the ring topology shown in Figure 6.14(a) where n = 6.
The entities with the smallest value, 3, will finish waiting before all others: After
6× 3 = 18 units of time they send a message along the ring. These messages travel
along the ring encountering the other entities while they are still waiting, as shown in
Figure 6.14(b).

IMPORTANT. Protocol Wait solves the minimum-finding problem, not the election:
Unless we assume initial distinct values, more than one entity might have the same
smallest value, and they will all correctly determine that they are the minimum.
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FIGURE 6.14: (a) The time when an entity x would finish waiting; (b) the messages send by
the entities with value 3 at time 6× 3 = 18 reach the other entities while they are still waiting.

As an example of execution of waiting under the (ID) restriction, consider the ring
topology shown in Figure 6.15 where n = 6, and the values outside the nodes indicate
how long each entity would wait. The unique entity with the smallest value, 3, will
be elected after 6× 3 = 18 units of time. Its “Stop” message travels along the ring
encountering the other entities while they are still waiting.

FIGURE 6.15: Execution with Initial Distinct Values: a leader is elected.
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Protocol Bits Time Notes
Speed O(n log i) O(2i n)

SynchStages O(n log n) O(i n log n)
Wait O(n) O(i n) n known

FIGURE 6.16: Waiting yields a more efficient ring election protocol

What is the cost of such a protocol?
Only an entity that becomes minimum originates a message; this message will only

travel along the ring (forwarded by the other entities that become large) until the next
minimum entity. Hence the total number of messages is just n; as these messages are
signals that do not contain any value, we have that Wait uses only O(n) bits. This is
the least amount of transmissions possible ever.

Let us consider the time. It will take f (imin, n) = iminn time units for the entities
with the smallest value to decide that they are the minima; at most, n− 1 additional
time units are needed to notify all others. Hence, the time is O(i, n), where i is
the range of the input values. Compared with the other protocols we have seen for
election in the ring, Speed and SynchStages, the bit complexity is even better (see
Figure 6.16).

Without Simultaneous Initiation We have derived this surprising result assuming
that the entities start simultaneously. If the entities can start at any time, it is possible
that an entity with a large value starts so much before the others that it will finish
waiting before the others and incorrectly determine that it is the minimum.

This problem can be taken care of by making sure that although the entities do
not start at the same time, they will start not too far away (in time) from each other.
To achieve this, it is sufficient to perform a wake-up: When an entity spontaneously
wants to start the protocol, it will first of all send a “Start” message to its neighbor and
then start waiting. An inactive entity will become active upon receiving the “Start”
message, forward it, and start its waiting process.

Let t(x) denote the time when entityx becomes awake and starts its waiting process;
then, for any two entities x and y,

∀x, y t(y)− t(x) ≤ d(x, y); (6.24)

in particular, no two entities will start more than n− 1 clock ticks off from each other.
The waiting function f must now take into account this fact. As before, it is

necessary that if id(x) < id(y), then x must finish waiting before y and its message
should reach y while still waiting; but now this must happen regardless of at what
time t(x) entity x starts and at what time t(y) entity y starts; that is, if id(x) < id(y),

t(x)+ f (id(x), n)+ d(x, y) < t(y)+ f (id(y), n). (6.25)
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As d(x, y) < n for every two entities in the ring, by Equation 6.24, and by setting
f (0) = 0, it is easy to verify that any function f satisfying the inequality

{
f (0) = 0

f (v, n)+ 2n− 1 < f (v+ 1, n)
(6.26)

will make protocol Wait function correctly even if the entities do not start simultane-
ously. Such is, for example, the waiting function

f (v, n) = 2 n v. (6.27)

The cost of the protocol is slightly bigger, but the order of magnitude is the same.
In fact, in terms of bits we are performing also a wake-up that, in a unidirectional
ring, costs n bits. As for the time, the new waiting function is just twice as the old
one; hence, the time costs are at most doubled. In other words, the costs are still those
indicated in Figure 6.16.

In Bidirectional Rings We have considered unidirectional rings. If the ring is bidi-
rectional, the protocol requires marginal modifications, as shown in Figure 6.17. The
same costs as the unidirectional case can be achieved with the same waiting functions.

On the Waiting Function We have assumed that the ring size n is known to the
entities; it is indeed used in the requirements for waiting functions (Expressions 6.22
and 6.26).

An interesting feature (Exercise 6.6.31) is that those requirements would work
even if a quantity n is used instead of n, provided n ≥ n. Hence, it is sufficient that
the entities know (the same) upperbound n on the network size.

If the entities have all available a value n that is, however, smaller than n, its
use in a waiting function instead of n would in general lead to incorrect results.
There is, however, a range of values for n that would still guarantee the desired result
(Exercise 6.6.32).

A final interesting observation is the following. Consider the general case when
the entities have available neither n nor a common value n, that is, each entity only
knows its initial value id(x). In this case, if each entity uses in the waiting function its
value id(x) instead of n, the function would work in some cases, for example, when
all initial values id(x) are not smaller than n. See Exercise 6.6.33.

Universal Waiting Protocol The waiting technique we have designed for rings
is actually much more general and can be applied in any connected network G,
regardless of its topology. It is thus a universal protocol.

The overall structure is as follows:

1. First a reset is performed with message “Start.”

2. As soon as an entity x is active, it starts waiting f (id(x), n) time units.
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PROTOCOL Wait

� States: S = {ASLEEP, CANDIDATE, LARGE, MINIMUM};
SINIT = {ASLEEP};
STERM = {LARGE, SMALL}.
� Restrictions: R ∪ Synch ∪ Ring ∪ Known(n).

ASLEEP

Spontaneously
begin

set alarm:= c(x)+ f (id(x),n);
send("Start") to right;
direction := right;
become CANDIDATE;

end

Receiving("Start")
begin

set alarm:= c(x)+ f (id(x),n);
send("Start") to other;
direction := other;
become CANDIDATE;

end

CANDIDATE

When(c(x) = alarm)
begin

send("Over") to direction;
become MINIMUM;

end

Receiving("Over")
begin

send("Over") to other;
become LARGE;

end

FIGURE 6.17: Protocol Wait.

3. If, nothing happens while x is waiting, x determines that “I am the minimum”
and initiates a reset with message “Stop.”

4. If, instead, a “Stop” message arrives while x is waiting, then it stops its waiting,
determines that “I am not the minimum” and participates in the reset with
message “Stop.”

Again, regardless of the initiation times, it is necessary that the entities with the
smallest value finish waiting before the entities with larger value and that all those
other entities receive a “Stop” message while still waiting. That is, if id(x) < id(y),
then

t(x)+ f (id(x))+ dG(x, y) < t(y)+ f (id(y)),
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where dG(x, y) denotes the distance between x and y in G, and t(x) and t(y) are the
times when x and y start waiting.

Clearly, for all x, y,

|t(x)− t(y)| ≤ dG(x, y);

hence, setting f (0) = 0, we have that any function satisfying

{
f (0) = 0

f (v)+ 2dG < f (v+ 1)
(6.28)

makes the protocol correct, where dG is the diameter of G. This means that, for
example, the function

f (v) = 2 v (dG + 1) (6.29)

would work. As n− 1 ≥ dG for every G, this also means that the function

f (v) = 2 v n

we had determined for rings actually works in every network; it might not be the most
efficient though (Exercises 6.6.29 and 6.6.30).

Applications of Waiting We will now consider two rather different applications
of protocol Wait. The first is to compute two basic Boolean functions, AND and OR;
the second is to reduce the time costs of protocol Speed that we discussed earlier in
this chapter. In both cases we will consider unidirectional ring for the discussion; the
results, however, trivially generalize to all other networks.

In discussing these applications, we will discover some interesting properties of
the waiting function.

Computing AND and OR Consider the situation where every entity x has a Boolean
value b(x) ∈ {0, 1}, and we need to compute the AND of all those values. Assume as
before that the size n of the ring is known. The AND of all the values will be 1 if and
only if ∀x b(x) = 1, that is, all the values are 1; otherwise the result is 0.

Thus, to compute AND it suffices to know if there is at least one entity x with value
b(x) = 0. In other words, we just need to know whether the smallest value is 0 or 1.

With protocol Waiting we can determine the smallest value. Once this is done, the
entities with such a value know the result. If the result of AND is 1, all the entities
have value 1 and are in state minimum, and thus know the result. If the result of AND
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is 0, the entities with value 0 are in state minimum (and thus know the result), while
the others are in state large (and thus know the result).

Notice that if an entity x has value b(x) = 0, using the waiting function of expres-
sion 6.27, its waiting time will be f (b(x)) = 2 b(x) n = 0. That is, if an entity has
value 0, it does not wait at all. To determine the cost of the overall protocol is quite
simple (Exercise 6.6.35).

In a similar way we can use protocol Waiting to compute the OR of the input
values (Exercise 6.6.36).

Reducing Time Costs of Speed The first synchronous election protocol we have
seen for ring networks is Speed, discussed in Section 6.1.4. (NOTE: to solve the
election problem it assumes initial distinct values.) On the basis of the idea of messages
traveling along the ring at different speeds, this protocol has unfortunately a terrifying
time complexity: exponential in the (a priori unbounded) smallest input value imin
(see Figure 6.16). Protocol Waiting has a much better complexity, but it requires
knowledge of (an upperbound on) n; on the contrary, protocol Speed requires no such
knowledge.

It is possible to reduce the time costs of Speed substantially by adding Waiting as
a preliminary phase.

As each entity x knows only its value id(x), it will first of all execute Waiting using
2id(x)2 as the waiting function.

Depending on the relationship between the values and n, the Waiting protocol
might work (Exercise 6.6.33), determining the unique minimum (and hence electing
a leader). If it does not work (a situation that can be easily detected; see Exercise
6.6.34), the entities will then use Speed to elect a leader.

The overall cost of this combine protocol Wait+ Speed clearly depends on whether
the initial Waiting succeeds in electing a leader or not.

If Waiting succeeds, we will not execute Speed and the cost will just be O(i2min)
time and O(n) bits.

If Waiting does not succeed, we must also run Speed that costs O(n) messages
but O(n2i

min) time. So the total cost will be O(n) messages and O(i2min + n2imin ) =
O(n2imin ) time. However, if Waiting does not succeed, it is guaranteed that the smallest
initial value is at most n, that is imin < n (see again Exercise 6.6.33). This means that
the overall time cost will be only O(n2n).

In other words, whether the initial Waiting succeeds or not, protocol Wait+Speed
will use O(n) messages. As for the time, it will cost either O(i2min) or O(n2n), de-
pending on whether the waiting succeeds or not. Summarizing, using Waiting we can
reduce the time complexity of Speed from O(n2i) to

O( Max{i2, n2n} )

adding at most O(n) bits.
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Application: Randomized Election If the assumption on the uniqueness of
the identities does not hold, the election problem cannot be solved obviously by any
minimum-finding process, including Wait. Furthermore, we have already seen that
if the nodes have no identities (or, analogously, all have the same identity), then
no deterministic solution exists for the election problem, duly renamed symmetry
breaking problem, regardless of whether the network is synchronous or not. This
impossibility result applies to deterministic protocols, that is, protocols where every
action is composed only of deterministic operations.

A different class of protocols are those where an entity can perform operations
whose result is random, for example, tossing a dice, and where the nature of the ac-
tion depends on outcome of this random event. For example, an entity can toss a coin
and, depending on whether the result is “head” or “tail,” perform a different operation.
These types of protocols will be called randomized; unlike their deterministic coun-
terparts, randomized protocols give no guarantees, either on the correctness of their
result or on the termination of their execution. So, for example, some randomized
protocols always terminate but the solution is correct only with a given probability;
this type of protocols is called Monte Carlo. Other protocols will have the correct
solution if they terminate, but they terminate only with a given probability; this type
of protocols are called Las Vegas.

We will see how protocol Wait can be used to generate a surprisingly simple and
extremely efficient Las Vegas protocol for symmetry breaking. Again we assume that
n is known. We will restrict the description to unidirectional rings; the results can,
however, be generalized to several other topologies (Exercises 6.6.37-6.6.39).

1. The algorithm is composed of a sequence of rounds.

2. In each round, every entity randomly selects an integer between 0 and b as its
identity, where b ≤ n.

3. If the minimum of the chosen values is unique, that entity will become leader;
otherwise, a new round is started.

To make the algorithm work, we need to design a mechanism to find the minimum
and detect if it is unique. But this is exactly what protocol Wait does. In fact, protocol
Wait not only finds the minimum value but also allows an entity x with such a value
to detect if it is the only one. In fact,

– If x is the only minimum, its message will come back exactly after n time units;
in this case, x will become leader and send a Terminate message to notify all
other entities.

– If there are more than one minimum, x will receive a message before n time
units; it will then send a “Restart” message and start the next round.

In other words, each round is an execution of protocol Wait; thus, it costs O(n)
bits, including the “Restart” (or “Termination”) messages. The time used by protocol
Wait is O(ni). In our case the values are integers between 0 and b, that is, i≤ b. Thus,
each round will cost at most O(nb) time.
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We have different options with regard to the value b and how the random choice of
the identities is made. For example, we can set b = n and choose each value with same
probability (Exercise 6.6.40); notice, however, that the larger the b is, the larger the
time costs of each round will be. We will use instead b = 1 (i.e., each entity randomly
chooses either 0 or 1) and employ a biased coin. Specifically, in our protocol, which
we will call Symmetry, we will employ the following criteria:

Random Selection Criteria In each round, every entity selects 0 with probability
1
n

, and 1 with probability n−1
n

.

Up to now, except for the random selection criteria, there has been little difference
between Symmetry and the deterministic protocols we have seen so far. This is going
to change soon.

Let us compute the number of rounds required by the protocol until termination.
The surprising thing is that this protocol might never terminate, and thus the number
of rounds is potentially infinite.

In fact, with a protocol of type Las Vegas, we know that if it terminates, it solves
the problem, but it might not terminate. This is not a good news for those looking for
protocols with a guaranteed performance. The advantage of this protocol is instead
in the low expected number of rounds before termination.

Let us compute this quantity. Using the random selection criteria described above,
the protocol terminates as soon as exactly one entity chooses 0. For this to happen,
one entity x must choose 0 (this happens with probability 1

n
), while the other n− 1

entities must choose 1 (this happen with probability (n−1
n

)n−1). As there are

(
n

1

)

= n

choices for x, the probability of exactly one entity chooses 0 is

(
n

1

)
1
n

(n−1
n

)n−1 = (n−1
n

)n−1.

For n large enough, this quantity is easily bounded; in fact

lim
n→∞

(
n− 1

n

)n−1

= 1

e
, (6.30)

where e ≈ 2.7 . . . is the basis of the natural logarithm. This means that with probability
1, protocol Symmetry will terminate after e rounds. In other words,

with probability 1, protocol Symmetry will elect a leader with O(n) bits
in O(n) time.

Obviously, there is no guarantee that a leader will be elected with this cost or will
be elected at all, but with high probability it will and at that cost. This shows the
unique nature of randomized protocols.
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6.3.2 Guessing

Guessing is a technique that allows some entities to determine a value not by trans-
mitting it but by guessing it. Again we will consider the minimum finding and election
problems in ring networks. Let us assume, for the moment, that the ring is unidirec-
tional and that all entities start at the same time (i.e., simultaneous initiation). Let us
further assume that the ring size n is known.

Minimum-Finding as a Guessing Game At the base of the guessing technique
there is a basic utility protocol Decide(p), where p is a parameter available to all
entities. Informally, protocol Decide(p) is as follows:

Decide (p): Every entity x compares its value id(x) with the protocol parameter p.
If id(x) ≤ p, x sends a message; otherwise, it will forward any received message.

There are only two possible situations and outcomes:

S1: All local values are greater than p; in this case, no messages will be trans-
mitted: There will be “silence” in the system.

S2: At least one entity x has id(x) ≤ p ; in this case, every entity will send and
receive a message: There will be “noise” in the system.

The goal of protocol Decide is to make all entities know in which of the two
situations we are. Let us examine how an entity y can determine whether we are in
situation S1 or S2. If id(y) ≤ p, then y knows immediately that we are in situation
S2. However, if id(y) > p, then y does not know whether all the entities have values
greater than p (situation S1) or some entities have a value smaller than or equal to p

(situation S2). It does know that if we are in situation S2, it will eventually receive a
message; by contrast, if we are in situation S1, no message will ever arrive.

Clearly, to decide, y must wait; also clearly, it cannot wait forever. How long should
y wait? The answer is simple: If a message was sent by an entity, say x, a message
will arrive at y within at most d(x, y) < n time units from the time it was sent. Hence,
if y does not receive any message in the first n time units since the start, then none
is coming and we are in situation S1. For this reason, n time units after the entities
(simultaneously) start the execution of protocol Decide(p), all the entities can decide
which situation (S1 or S2) has occurred. The full protocol is shown in Figure 6.18.

IMPORTANT. Consider the execution of Decide(p).

– If situation S1 occurs, it means that all the values, including imin = Min{id(x)},
are greater than p, that is, p < imin. We will say that p is an underestimate
on imin.

– If situation S2 occurs, it means that there are some values that are not greater
than imin; thus, p ≥ imin. We will say that p is an overestimate on imin.
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SUBPROTOCOL Decide(p)

� Input: positive integer p;
� States: S = {START, DECIDED, UNDECIDED};
SINIT = {START};
STERM = {DECIDED}.
� Restrictions: R ∪ Synch ∪ Ring ∪ Known(n) ∪ Simultaneous Start.

START
Spontaneously
begin

set alarm:= c(x)+ n;
if id(x) ≤ v then

decision:= high;
send("High") to rigth;
become DECIDED;

else
become UNDECIDED;

endif
end

UNDECIDED
Receiving("High")
begin

decision:= high;
send("High") to other;
become DECIDED;

end

When(c(x) = alarm)
begin

decision:= low;
become DECIDED;

end
FIGURE 6.18: SubProtocol Decide(p).

These observations are summarized in Figure 6.19.

NOTE. The condition p = imin is also considered an overestimate.

Using this fact, we can reformulate the minimum-finding problem in terms of a
guessing game:

� Each entity is a player. The minimum value imin is a number, previously chosen
and unknown to the player, that must be guessed.
� The player can ask question of type “Is the number greater than
p?”

Situation Condition Name Time Bits
S1 p < imin “underestimate” n 0
S2 p ≥ imin “overestimate” n n

FIGURE 6.19: Results and costs of executing protocol Decide.
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� Each question corresponds to a simultaneous execution of Decide(p). Situa-
tions S1 and S2 correspond to a "YES" and a "NO" answer to the question,
respectively.

A guessing protocol will just specify which questions should be asked to discover
imin. Initially, all entities choose the same initial guess p1 and simultaneously perform
Decide(p1). Aftern time units, all entities will be aware of whether or not imin is greater
than p1 (situation S1 and situation S2, respectively). On the basis of the outcome,
a new guess p2 will be chosen by all entities that will then simultaneously perform
Decide(p2). In general, on the basis of the outcome of the execution of Decide(pi),
all entities will choose a new guess pi+1. The process is repeated until the minimum
value imin is unambiguously determined.

Depending on which strategy is employed for choosing pi+1 given the outcome
of Decide(pi), different minimum-finding algorithms will result from this technique.

Before examining how to best play (and win) the game, let us discuss the costs of
asking a question, that is, of executing protocol Decide.

Observe that the number of bits transmitted when executing Decide depends on the
situation, S1 or S2, we are in. In fact in situation S1, no messages will be transmitted
at all. By contrast, in situation S2, there will be exactly n messages; as the content
of these messages is not important, they can just be single bits. Summarizing, If our
guess is an overestimate, we will pay n bits; if it is an underestimate, it will cost
nothing.

As for the time costs, each execution of Decide will cost n time units regardless of
whether it is an underestimate or overestimate.

This means that we pay n time units for each question; however, we pay n bits
only if our guess is an overestimate. See Figure 6.19.

Our goal must, thus, be to discover the number, asking few questions (to minimize
time) of which as few as possible are overestimates (to minimize transmission costs).
As we will see, we will unfortunately have to trade off one cost for the other.

We will first consider a simplified version of the game, in which we know an
upperbound M on the number to be guessed, that is, we know that imin ∈ [1,M] (see
Figure 6.20). We will then see how to easily and efficiently establish such a bound.

Playing the Game We will now investigate how to design a successful strategy
for the guessing game. The number imin to be guessed is known to be in the interval
[1,M] (see Figure 6.20).

Let us denote by q the number of questions and by k ≤ q the number of overes-
timates used to solve the game; this will correspond to a minimum-finding protocol
that uses qn time and kn bits. As each overestimate costs us n bits, to design an overall

FIGURE 6.20: Guessing in an interval.
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FIGURE 6.21: Linear search is the only possibility when k = 1.

strategy that uses only O(n) bits in total (like we did with protocol Waiting), we must
use only a constant (i.e., O(1)) number of overestimates; clearly, we want to use as
few questions as possible.

Let us first solve the problem with k = 1, that is, we want to find the minimum with
only one overestimate. As the number (i.e., when p= imin) is already an overestimate
when we find it, k = 1 means that we can never use as a guess a value greater than imin.

For this setting, there is only one possible solution strategy, linear search: The
guesses will be p1 = 1, p2 = 2, p3 = 3, · · ·All these guesses will be underestimates;
when we hit pimin

, there will be our first and only overestimate. See Figure 6.21. The
number of questions will be exactly imin; that is, in the worst case, the cost will be

k = 1 ; q = M.

Let us now allow one more overestimate, that is, k = 2. Several strategies are now
possible. A solution is to partition the interval into

⌈√
M
⌉

consecutive pieces of size⌈√
M
⌉

. (If M is not a perfect square, the last interval will be smaller than the others.)
See figure 6.22.

We will first search sequentially among the points a1 =
⌈√

M
⌉− 1, a2 =

2
⌈√

M
⌉− 2, · · · , until we hit an overestimate. At this point we know the interval

where imin is.
The second overestimate is then spent to find imin inside that interval using sequential
search (as in the case k = 1). In the worst case, we have to search all the aj and all
of the last interval, that is, in the worst case the cost will be

k = 2 ; q = 2
√
M.

Notice that by allowing a single additional overestimate (i.e., using an additional
n bits) we have been able to reduce the time costs from linear to sublinear. In other
words, the trade-off between bits and time is not linear.

It is easy to generalize this approach (Exercise 6.6.43) so as to find imin with a
worst-case cost of

k ; q = k M1/k.

FIGURE 6.22: Dividing the interval when k = 2.
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IMPORTANT. Notice that the cost is a trade-off between questions and overesti-
mates: The more overestimates we allow, the fewer questions we need to ask. Fur-
thermore, the trade-off is nonlinear: The reduction in number of questions achieved
by adding a single overestimate is rather dramatic.

As every overestimate costs n bits, the total number of bits is O(n k). The total
amount of time consumed with this approach is at most O(n k M1/k).

The Optimal Solution We have just seen a solution strategy for our guessing
game when the value to be guessed is in a known interval. How good is this strategy?

In the case k = 1, there is only one possible solution strategy. However, for k > 1
several strategies and solutions are possible. Thus, as usual, to answer the above
question we will establish a lower bound. Surprisingly, in this process, we will also
find the (one and only) optimal solution strategy.

To establish a lower bound (and find out if a solution is good) we need to answer
the following question:

Q1: What is the smallest number of questions q needed to always win the game in
an interval of size M using no more than k overestimates?

Instead of answering this question directly, we will “flip its arguments” and for-
mulate another question:

Q2: With q questions of which at most k are overestimates, what is the largest M so
that we can always win the game in an interval of that size ?

We will answer this one. The answer will obviously depend on both q and k, that
is, M will be some function h(q, k). Let us determine this function.

Some things we already know. For example, if we allow only one overestimate
(i.e., k = 1), the only solution strategy is linear search, that is,

h(q, 1) = q. (6.31)

On the contrary, if we allow every question to be an overestimate (i.e., k = q),
then we can always win in a much larger interval, in fact (Exercise 6.6.44),

h(q, q) = 2q − 1. (6.32)

Before we proceed, let us summarize the problem we are facing:

1. We have at our disposal q questions of which only k can be overestimates.

2. We must always win.

3. We want to know the size h(q, k) of the largest interval in which this is possible.
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FIGURE 6.23: If the initial guess p is an underestimate, the largest interval has size
p + h(q − 1, k).

Whatever the strategy be, it must start with a question. Let p be this first guess.
There are two possibilities; this is either an underestimate or an overestimate.

If p is an underestimate (i.e., imin > p), we are left with q − 1 questions, but we
still have k overestimates at our disposal. Now, the largest interval in which we can
always win with q − 1 questions of which k can be overestimates is h(q − 1, k). This
means that if p is the first question (Figure 6.23), the largest interval has size

h(q, k) = p + h(q − 1, k).

On the basis of this, it would seem that to make the interval as large as possible,
we should choose our first guess p to be as large as possible. However, we must take
into account the possibility that our first guess turns out to be an overestimate.

If p is an overestimate, we have spent both one question and one overestimate;
furthermore, we know that the number is in the interval [1, p]. This means that the
initial guess p we make must guarantee that we always win in the interval [1, p] with
q − 1 questions and k − 1 overestimates. Thus, the largest p can be

p = h(q − 1, k − 1).

This means that

h(q, k) = h(q − 1, k)+ h(q − 1, k − 1), (6.33)

where the boundary conditions are those of expressions 6.31 and 6.32; see Figure 6.24.
Solving this recurrence relation (Exercise 6.6.45), we obtain the unique solution

h(q, k) =
∑

j=0,k−1

(
q

j

)

. (6.34)

FIGURE 6.24: The initial guess p could be an overestimate; this cannot be larger than
h(q − 1, k).
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We have found the answer to question Q2. If we now “flip the answer,” we can
answer also question Q1 and determine a lower bound on q given M and k.

In fact, if M = h(q, k), then the minimum number of questions to always win in
[1,M] with at most k overestimates (our original problem) is precisely q. In general,
the answer is the smallest q such that M ≤ h(q, k).

IMPORTANT. In the process of finding a lower bound, we have actually found the
(one and only) optimal solution strategy to guess in the interval [1,M] with at most
k overestimates.

Let us examine this strategy.

Optimal Search Strategy To optimally search in [1,M] with at most k overesti-
mates:

1. use as a guess p = h(q − 1, k − 1), where q ≥ k is the smallest integer such
that M ≤ h(q, k);

2. if p is an underestimate, then optimally search in [p + 1,M] with k overesti-
mates;

3. if it is an overestimate, then optimally search in [1, p] with k − 1 overestimates.

This strategy is guaranteed to use the fewest questions.

Unbounded Interval We have found the optimal solution strategy using at most
k overestimates but assuming that the interval in which imin lies is known. If this is not
the case, we can always first of all establish an upperbound on imin, thus determining
an interval and then search in that interval.

To bound the value imin, again we use guesses, g(1), g(2), g(3), . . ., where g :
N → Z is a monotonically increasing function. The first time we hit an overestimate,
say with g(t), we know that g(t − 1) < imin ≤ g(t) and hence the interval to search
is [g(t − 1)+ 1, g(t)]. See Figure 6.25. This process requires exactly t questions and
one overestimate.

We are now left to guess imin in an interval of sizeM = �(t) = g(t)− g(t − 1)+ 1
with k − 1 overestimates. (Recall, we just spent one to determine the interval.) Using
the optimal solution strategy, this can be done with h(�(t), k − 1) questions. The
entire process will thus require at most

t + h(�(t), k − 1)

questions of which at most k are overestimates.

FIGURE 6.25: In an unbounded interval, we first establish an upper bound on imin.
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Protocol Bits Time Notes

Speed O(n log i) O(2i n)
SynchStages O(n log n) O( i n log n )

Wait O(n) O( i n ) n known

Guess O(kn) O( i1/k kn) n known

FIGURE 6.26: Using k = O(1), Guessing is more efficient than other election protocols.

Depending on which function g we use, we obtain different costs. For example,
choosing g(j ) = 2j (i.e., doubling our guess at every step), t = �log imin� and �(t) <
imin. This means that the number of questions used by the entire process is at most

�log imin� + h( imin, k − 1).

Better performances are possible using different functions g; for example (Exercise
6.6.46), with k overestimates, it is possible to reduce the total number of questions to

2 h( imin, k)− 1.

Recall that each question costs n time units and if it is an overestimate it also costs n
bits. Thus, the complexity of the resulting minimum-finding protocol Guess becomes
O(kn) bits andO(kn ik). This means that for any fixed k, the guessing approach yields
an election protocol that is far more efficient than the ones we have considered so far,
as shown in Figure 6.26.

Removing the Assumptions

Knowledge of n We have assumed that n is known. This knowledge is used only
in procedure Decide, employed as a timeout for those entities that do not know if
a message will arrive. Clearly the procedure will work even if a quantity n ≥ n is
used instead of n, provided. Hence, it is sufficient that the entities know (the same)
upperbound n on the network size.

Network Topology We have described our protocol assuming that the network is
a ring. However, the optimal search strategy for the guessing game is independent
of the network topology. To be implemented, it requires subprotocol Decide(p) that
has been described only for rings. This protocol can be made universal, and can thus
work in every network, by simple modifications. In fact (Exercise 6.6.47), it suffices:

1. to transform it into a reset with message “High” started by those entities with
id(x) ≤ p; and

2. to use as the timeout an upperbound d on the diameter d of the network.
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Notice that each question will now cost d time units. The number w of bits trans-
mitted if the guess is an overestimate depends on the situation; it is, however, always
bounded as follows:

m ≤ w ≤ 2m.

Simultaneous Start We have assumed that all entities start the first execution of
Decide simultaneously. This assumption can actually be removed by simply using a
wake-up procedure at the very beginning (so to bound the delays between initiation
times) and using a longer delay between successive guesses (Exercise 6.6.48).

6.3.3 Double Wait: Integrating Waiting and Guessing

We have seen two basic techniques, Waiting and Guessing. Their use has led to bit-
optimal and time-efficient solutions for the minimum-finding and election problems;
we have described them for ring networks, but we have seen that they are indeed
universal. Their only drawback is that they require knowledge of n (or of some up-
perbound on the diameter d). In contrast, both Speed and SynchStages did not require
such an a priori knowledge.

If this knowledge is not available, it can, however, be acquired somehow during
the computation. We are going to see now how this can be done using both waiting
and guessing. We will focus solely on the election problem; thus, we will be operating
under restrictions of initial distinct values. Once again, we will restrict the description
to unidirectional ring networks. We also assume that all entities start within n− 1
time units from each other (e.g., they first execute a wake-up).

What we are going to do is to still use the waiting technique to find the small-
est value; as we do not know n (nor an upperbound on it), we are going to use
the guessing strategy to discover an upperbound on n. Let us discuss it in some
details.

Overall Strategy Each entity is going to execute protocol Wait using a guess g(1)
on n. We know that if g(1) ≥ n, then protocol Wait works (Exercise 6.6.31), that is,
the entity with smallest value finishes waiting before all other entities, it becomes
small, it sends a message, and its message reaches all other entities while they are
still waiting.

The problem occurs if g(1) < n; in fact, in this case, it is possible that two or
more entities with different ids will stop waiting, become small, and send a mes-
sage. If we are able to detect if g(1) < n, we can then restart with a different,
larger guess g(2) > g(1). In general, if g(j − 1) fails (i.e., g(j − 1) < n), we can
restart with a larger guess g(j ) > g(j − 1); this process will terminate as soon as
g(j ) ≥ n.

Consider now an entity x that in step j finishes waiting, becomes small, and
sends a message. If g(j ) ≥ n, no other entity sends any message, so, after n time
units, x receives its own message. By contrast, if g(j ) < n, several entities might
become small and originate messages, each traveling along the ring until it reaches
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a small entity; hence x would receive the message transmitted by some other entity.
Summarizing, in the first case, x receives its own message; in the second case, the
message was originated by somebody else.

Without knowing n, how can x know whether the received message is its own?

Clearly, if each message contains the id of its originator, the problem is trivially
solved. However, the number of bits transmitted by just having such a message trav-
eling along the ring will be O(n log i), resulting in an unbounded quantity (see Figure
6.26).

The answer is provided by understanding how transmission delays work in a syn-
chronous ring.

Consider the delay nx(j ) from the time x transmits its message to the time a
message arrives at x. If x receives its own message, then nx(j ) = n. By contrast, if x
receives the message of somebody else, this will happen before n time units. That is,
nx(j ) < n.

So what x needs to do is to verify whether or not nx(j ) = n. This can be done by
employing the waiting technique again, using nx(j ) for n in the waiting function. If
indeed nx(j ) = n, x will again finish waiting without receiving any message and send
a new message, and this message will travel along the ring after exactly nx(j ) = n

time units. If instead nx(j ) < n, as we will see, x will notice that something is wrong
(i.e., it will receive a message while waiting, it will receive a message before nx(j )
time units, or it will receive no message nx(j ) time units after it sent one, etc.); in this
case, it will start the (j + 1)th iteration.

Informally the strategy, called DoubleWait, is as follows:

Strategy DoubleWait:

1. Each entity will execute a first Wait using the current guess g(j ) on the unknown
n. Consider an entity x that finishes waiting without receiving any message. It
will send a message “Wait1,” become testing, and wait for a message to arrive
keeping track of the time. Let nx(j ) be the delay from when x sent its “Wait1”
message to when x received one. If the guess was correct (i.e., g(j ) ≥ n >

g(j − 1)), then this message would be the one it sent and nx(j ) = n.

2. If x notices something wrong (e.g., nx(j ) ≤ g(j − 1), or nx(j ) > g(j ), etc.),
it will send a “Restart” message to make everybody restart with a new guess
g(j + 1).

3. If x does not notice anything wrong, x will assume that indeed tx(j ) = n and
will start a second Wait (with a different waiting function) to verify the guess.
If the guess is correct, x is the only entity doing so; it should thus finish waiting
without receiving any message. Furthermore, the message “Wait2” it sends now
should arrive exactly after nx(j ) time units.

4. If x now notices something wrong (i.e., a message arrives while waiting; a
message does not arrive exactly after nx(j ) time units), it will send a “Restart”
message to make everybody start with a new guess g(j + 1).
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5. Otherwise, x considers the guess verified, becomes the leader, and sends a
“Terminate” message.

6. An entity receiving a “Wait1’ message while doing the first Waiting will forward
received messages and wait for either a “Restart” or “Terminate.” In the first
case it restarts with a new guess; in the second case, it becomes defeated.

What we have to show now is that with the appropriate choice of waiting functions,
it is impossible for an entity x to be fooled. That is, if x does not notice anything wrong
in the first and in the second waiting and becomes leader, then indeed the message x
receives is its own and nobody else will become leader.

Choosing the Waiting Functions What we have to do now is to choose the
two waiting functions f and h so that it is impossible for an entity x to be fooled.
In other words, it is impossible that the “Wait1” and “Wait2” messages x receives
have actually been sent by somebody else, say y and z, and that by pure coinci-
dence both these messages arrived nx(j ) time units after x sent its corresponding
messages.

IMPORTANT. These functions must satisfy the properties of waiting functions, that
is, if g(j ) ≥ n, then for all u and v with id(u) < id(v),

f (id(u), j )+ 2(n− 1) < f (id(v), j )

h(id(u), j )+ 2(n− 1) < h(id(v), j ).

NOTE. We can assume that the entities start the current stage using guess g(j )
within n− 1 time units from each other; this is enforced in the first stage by the initial
wake-up, and in the successive stages by the “Reset” messages.

To determine the waiting functions f and h we need, let us consider the situation
in more details, and let us concentrate on x and see under what conditions it would
be fooled. Denote by t(x, j ) the delay between the time the first entity starts the j th
iteration and the time x starts it.

Entity x starts at time t(x, j ), waits f (id(x), j ) time, and then sends its “Wait1”
message; it receives one at time

t(x, j )+ f (id(x), j )+ nx(j ).

Notice that to “fool” x, this “Wait1” message must have been sent by some other
entity, y. This means that y must also have waited without receiving any message;
thus it sent its message at time t(y, j )+ f (id(y), j ). This message arrives at x at
time

t(y, j )+ f (id(y), j )+ d(y, x),
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where, as usual, d(y, x) is the distance from y to x. Hence, for x to be “fooled,” it
must be

t(x, j )+ f (id(x), j )+ nx(j ) = t(y, j )+ f (id(y), j )+ d(y, x). (6.35)

Concentrate again on entity x. After it receives the “Wait1” message, x waits
again for an additional h(id(x), j ) time units, and then it sends its “Wait2” message;
it receives one after nx(j ) time units, that is, at time

t(x, j ) + f (id(x), j )+ nx(j )+ h(v, j )+ nx(j )

= t(x, j )+ f (id(x), j )+ h(id(x), j )+ 2tx(j ).

At this point it becomes leader and sends a “Terminate” message.
If x has been fooled the first time, then also message “Wait2” was sent by some

other entity z. It is not difficult to verify that if x has been fooled, then there is only
one fooling entity, that is, y = z (Exercise 6.6.49). To have sent a “Wait2” message, y
must have not noticed anything wrong (otherwise it would have set a “Reset” instead).
This means that similarly to x, y received a “Wait1” message ny(j ) time units after it
sent one, that is, at time t(y, j )+ f (id(y), j )+ ny(j ). It waited for another h(y, j )
time units and then sent the “Wait2” message; this message thus arrived at x at time

t(y, j )+ f (id(y), j )+ ny(j )+ h(y, j )+ d(y, x).

So, if x has been fooled, it must by accident happen that

t(x, j ) + f (id(x), j )+ h(id(x), j )+ 2tx(j )

= t(y, j )+ f (id(y), j )+ ny(j )+ h(id(y), j )+ d(y, x). (6.36)

Subtracting Equation 6.35 from Equation 6.36, we have

h(id(x), j )+ nx(j ) = h(id(y), j )+ ny(j ). (6.37)

Summarizing, x will be fooled if and only if the condition of Equation 6.37 occurs.
Notice that this condition does not depend on the first waiting function f but only on
the second one h. What we have to do is to choose a waiting function h that makes
the condition of Equation 6.37 impossible. For example, the function

h(id(x), j ) = 2 g(j ) id(x) + g(j ) − nx(j )

is a correct waiting function and will cause Equation 6.37 to become

id(x) = id(y). (6.38)
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As the identities are distinct (because of ID restriction), this means that x = y, that
is, the messages x receives are its own. In other words, with this waiting function,
nobody will be fooled.

Summarizing, regardless of the waiting function f and of the monotonically in-
creasing guessing function g, with the appropriate choice of the second waiting func-
tion h, protocol DoubleWait correctly elects a leader. (Exercises 6.6.50, 6.6.51, and
6.6.52.)

The Cost of DoubleWait Now that we have established the correctness of the
protocol, let us examine its costs.

The protocol consists of a sequence of iterations. In iteration j , a guess g(j ) is
made on the unknown ring size n. The terminating condition is simply g(j ) ≥ n; in
this case, the entity with the smallest value becomes leader; in all other cases, a new
iteration is started.

The number of iterations j required by the protocol is easily determined. As the
protocol terminates as soon as g(j ) ≥ n,

j = �g−1(n)�, (6.39)

where g−1 is the inverse of g, that is, j is the smallest positive integer j such that
g(j ) ≥ n.

In an iteration, the guess g(j ) is employed in the execution of a first waiting, using
waiting function f (x, j ). As a result, either a new iteration is started or a second
waiting, using function h(x, j ), is executed; as a result of this other waiting, either
the algorithm terminates or a new iteration is started, depending on whether or not
g(j ) ≥ n.

The overall cost of the protocol depends on the two waiting functions, f and h, as
well as on the monotonically increasing function g : N → Z specifying the guesses.

To determine the cost, we will first examine the number of bits and then determine
the time. As we will see, we will have available many choices and, again, we will be
facing a trade-off between time and bits.

Bits Each iteration consists of at most two executions of the waiting technique (with
different waiting functions). Each iteration, except the last, will be aborted and a
“Restart” message will signal the start of the next iteration.

In other words, each iteration j ≤ j is started by a “Restart” (in the very first
one it acts as the wake-up); this costs exactly n signals. As part of the first waiting,
“Wait1” messages will be sent, for a total of n signals. In the worst case there will also
be a second waiting with “Wait2” message, causing no more than n signals. Hence,
each iteration except the last will cost at most 3n signals. The last iteration has also
a “Terminate” message costing exactly n signals.

Hence, the total number of bits transmitted by DoubleWait will be at most

B[DoubleWait] = 3 c n j + c n = 3 c n �g−1(n)� + c n,
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where c = O(1) is the number of bits necessary to distinguish between the “Restart,”
“Wait1,” “Wait2,” and “Terminate” messages.

Time Consider now the time costs of DoubleWait. Obviously, the time complexity of
an iteration is directly affected by the values of the waiting functions f and h, which
are in turn affected by the value g(j ) they must necessarily use in their definition. The
overall time complexity is also affected by the number of iterations j= ⌈g−1(n)

⌉
that

depends on the choice of the function g.
Let us first of all choose the waiting functions f and h. The ones we select are

f (id(x), j ) = 2 g(j ) id(x), (6.40)

which is the standard waiting function when the entities do not start at the same
time and where g(j ) is used instead of n; and

h(id(x), j ) = 2 g(j ) id(x)+ g(j )− nx(j ), (6.41)

which is the one that, we have already seen, makes “fooling” impossible. With these
choices made, we can determine the amount of time the protocol uses until termination.
In fact, it is immediate to verify (Exercise 6.6.53) that the number of time units till
termination is less than

T[DoubleWait] = 2(n− 1)+ (4 imin + 2)
j∑

j=1
g(j ).

Again, this quantity depends solely on the choice of the guessing function g.

Trade-offs: Choosing The Guessing Function The results we have obtained for
the number of bits and the amount of time are expressed in terms of the guessing
function g. This is the only parameter we have not yet chosen. Before we proceed,
let us examine what is the impact of such a choice.

The protocol terminates as soon as g(j ) ≥ n, that is, after j = ⌈g−1(n)
⌉

iterations.
If we have a fast-growing function g, this will happen rather quickly, requiring few
iterations. For example, if we choose g(j ) = 2 g(j − 1) (i.e., we double every time),
then j = ⌈ log n

⌉
; we could choose something faster, say g(j ) = g(j − 1)2 (i.e., we

square every time) obtaining j= ⌈ log log n
⌉

, or g(j ) = 2g(j−1) (i.e., we exponentiate
every time) obtaining j = ⌈ log$ n

⌉
, where log$ denotes the number of times you

must take a log before the value becomes 1. So it would seem that to reduce the bit
complexity, we need f to grow as fast as possible.

By contrast, the value g(j ) is a factor in the time complexity. In particular, the larger
is g(j ), the more we have to wait. To understand how bad this impact can be, consider
just the very last iteration j and assume that we just missed n, that is g(j− 1) = n− 1.
In this last iteration we wait for roughly 4 id(x) g(j) = 4 id(x) g(�g−1(n)�) time units.



384 SYNCHRONOUS COMPUTATIONS

g(j ) Bits Time
g(j ) = 2g(j − 1) O(n log n) O(n i)
g(j ) = g(j − 1)2 O(n log log n) O(n2 i)
g(j ) = 2g(j−1) O(n log$ n) O(2n i)

FIGURE 6.27: Some of the trade-offs offered by the choice of g in DoubleWait.

This does not appear to be too bad; after all, g(g−1(n)) = n. How much bigger than n
can g(�g−1(n)�) be ? It depends on how fast g grows. If we choose g(j ) = 2 g(j − 1),
then g(�g−1(n)�) = 2 (n− 1). However, if we choose g(j ) = g(j − 1)2, then we have
g(�g−1(n)�) = (n− 1)2, and the choice g(j ) = 2g(j−1) would give us g(�g−1(n)�) =
2(n−1). Thus clearly, from the time-complexity point of view, we want a function g

that does not grow very fast at all.
To help us in the decisional process, let us restrict to a class of functions. A function

g is called superincreasing if for all j > 1

g(j ) ≥
j−1∑

s=1

g(s). (6.42)

If we restrict ourselves to superincreasing functions, then the bit and time costs of
DoubleWait become (Exercise 6.6.54)

B[DoubleWait] ≤ 3 c n
⌈
g−1(n)

⌉+ c n (6.43)

T[DoubleWait] ≤ 2(n− 1)+ (8 imin + 2) g
(⌈
g−1(n)

⌉)
. (6.44)

These bounds show the existence and the nature of the trade-off between time and
bits. Some interesting choices are shown in Figure 6.27.

Examining the trade-off, we discover two important features of protocol Double-
Wait:

1. the bit complexity is always independent of the entities values and, thus,
bounded;

2. the time complexity is always linear in the smallest entity value.

Comparing the cost of Double Wait with the cost of the other ring election protocols
that do not require knowledge of (an upperbound on) n, it is clear that DoubleWait
outperforms Speed that has an unbounded bit complexity and a time complexity
exponential in the input values. As for SynchStages, notice that by choosing g(j ) =
2g(j − 1), DoubleWait has the same bit costs but a better time complexity (see Figure
6.28); with a different choice of g, it is possible to have the same time of SynchStages
but with a smaller bit complexity (Exercise 6.6.55).
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Protocol Bits Time Notes

Speed O(n log i) O(n 2i)
SynchStages O(n log n) O(n log n i)
DoubleWait O(n �g−1(n)�) O(g(�g−1(n)�) i)

Wait O(n) O(n i) n known

Guess O(kn) O(k n i1/k) n known

Symmetry O(n) O(n) n known; randomized

FIGURE 6.28: Summary of Election techniques for synchronous rings.

Notice that the bit complexity can be asymptotically reduced to O(n), match-
ing the one obtained by the protocols, Wait and Guess that assume knowledge of
an upperbound on n; clearly this is achieved at the expense of an exorbitant time
complexity.

An exact O(n) bit complexity with a reasonable time can, however, be achieved
without knowing n using DoubleWait in conjunction with other techniques (Problem
6.6.9).

6.4 SYNCHRONIZATION PROBLEMS: RESET, UNISON,
AND FIRING SQUAD

A fully synchronous system is by definition highly synchronized, so it might appear
strange to talk about the need for synchronization in the system and the computational
problems related to it. Regardless of the oddity, the need and the problems exist and
are quite important.

There is first of all a synchronization problem related to the local clocks them-
selves. We know that in a synchronous environment all local clocks tick at the same
time; however, they might not sign the same value. A synchronous system is said to
be in unison if indeed all the clock values are the same. Notice that once a sys-
tem is in unison, it will remain so unless the values of some clocks are locally
altered. The unison problem is how to achieve such a state, possibly with several
independent initiators.

Then there two synchronization problems related to the computational states of
the entities. The first of them we have already seen, the wake-up or reset problem:
All entities must enter a special state (e.g., awake); the process can be started by any
number of entities independently. Notice that in this specification there is no mention
of when an individual entity must enter such a state; in fact, in the solutions we have
seen, entities become awake at different times.

Also, in the firing squad problem all entities must enter a special state (usually
called firing), but they must do so at the same time and for the first time.

Firing squad synchronization is obviously stronger than reset. It is also stronger
than unison: With unison, all entities arrive at a point where they are operating with
the same clock value, and thus, in a sense, they are in the same “state” at the same
time; however, the entities do not necessarily know when.
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We are going to consider all three problems and examine their nature and interplay
in some details. All of them will be considered under the standard set of restriction
R plus obviously Synch.

6.4.1 Reset/Wake-Up

In reset, all entities must enter the same state within finite time. One important appli-
cation of reset is when a distributed protocol is only initiated by a subset of the entities
in the system, and we need all entities in the system to eventually begin executing
the protocol. When reset is applied at the first step of a protocol, it is called wake-up.
The wake-up or reset problem is a fundamental problem and we have extensively
examined in asynchronous systems.

In fully synchronous systems it is sometimes also called weak unison; its solution
is usually a preliminary step in larger computations (e.g, Wait, Guess, DoubleWait),
and it is mostly used to keep the initiation times of the main computation bounded. For
example, in protocol Wait applied to a network G (not necessarily a ring) of known
diameter d , the initial wake-up ensures that all entities become awake within d time
units from the start.

For computations that use wake-up as a tool, their cost obviously depends on the
cost of the wake-up. Consider for example electing a leader in a complete graph Kn

using the waiting technique. Not counting the wake-up, the election will cost only
n− 1 bits, and it can be done in 4imin + 1 time units (see Equation 6.29); recall that
in a complete graph, d = 1. Also, the wake-up can be done fast, in 1 time unit, but
this can cost O(n2) bits. In other words, the dominant bit cost in the entire election
protocol is the one of the wake-up, and it is unbearably high. Sometimes it is desirable
to obtain wake-up protocols that are slower but use fewer transmissions.

In the rest of this section we will concentrate on the problem of wake-up in a
complete network. The difficulty of waking up in asynchronous complete networks,
which we discussed in Section 2.2, does not disappear in synchronous complete
networks. In fact, in complete networks where the port numbers are arbitrary, �(n2)
signals must be sent in the worst case.

Theorem 6.4.1 In a synchronous complete network with arbitrary labeling, wake-up
requires �(n2) messages in the worst case.

To see why this is true, consider any wake-up protocol W that works for any
complete networks regardless of the labeling. By contradiction, letW useo(n2) signals
in every complete network of size n.

We will first consider a complete networkK1
n with chordal labeling: A Hamiltonian

cycle is identified, and a link (x, y) is labeled with the distance from x to y according
to that cycle. The links incident on x will, thus, be labeled 1, 2, . . . , n− 1. On this
network, we will consider the following execution:

� E1: Every entity starts the wake-up simultaneously.
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Concentrate on an entity x; letL(x) be the set of port numbers on which a message was
sent or received by x during this execution. Observe that because all entities start at the
same time and because of the symmetry of the labeling, L(x) = L(y) for all entities
x and y. In fact, if x sends a signal via port number j , so will everybody else, and all
of them will receive it from port number n− j . As protocol W is correct, within a
finite number t of time time units, all the entities terminate. As, by assumption, every
execution uses only o(n2) signals, |L(x)| = l = o(n).

We construct now a complete networkK2
n with a different labeling. In this network,

we select l + 1 entities x0, x1, . . . , xl, and label the links between them with a “almost
chordal” labeling using the labels in L(x). All others links in the network are labeled
arbitrarily without violating local orientation (this can always be done: Exercises
6.6.57 and 6.6.58). In this network consider the following execution:

� E2: Only the selected entities will start and will do so simultaneously.

In this execution only few (|L(x)| + 1 = o(n)) entities start. From the point of view
of these initiators, everything in this execution happens exactly as if they were in the
other execution in the other network: Messages will be sent and received exactly from
the same ports in the same steps in both executions. In particular, none of them will
send a signal outside its “little clique.” Hence, none of the other nodes will receive any
signal; as those entities did not wake up spontaneously, this means that none of them
will wake up at all. In particular, none of them will send any signal to the initiators;
hence no initiator will receive a signal from outside the “little clique.” Therefore, the
initiators will act as if they are inK1

n and the execution isE1; thus, at time t the initiators
will all terminate the execution of the protocol. However, the majority of the nodes is
not awake, nor will it ever become awake, contradicting the correctness of the protocol.

In other words, there is no correct wake-up protocol for the complete networks
that will always require less than O(n2) transmissions.

Summarizing, regardless of the protocol and the techniques (e.g., communicator,
pipeline, waiting, guessing, etc.), and regardless of the fact that we can use time as a
computational tool, wake-up will cost �(n2) signals in the worst case.

6.4.2 Unison

A synchronous system is said to be in unison if all the clock values are the same.
The unison problem is how to achieve such a state, possibly with several independent
initiators. Notice that once a system is in unison, it will remain so unless the values
of some clocks are locally altered.

Let us examine a very simple protocol for achieving unison. Each entity will exe-
cute a sequence of stages, each taking one unit of time, starting either spontaneously
or upon receiving a message from another entity.

Protocol MaxWave:

1. An initiator x starts by sending to all its neighbors the value of its local
clock cx .
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2. A noninitiator y starts upon receiving messages from neighbors: It increases
those values by one time unit, computes the largest among these values and
its own clock value, resets its clock to such a maximum, and sends it to all its
neighbors.

3. In stage j > 1, an entity (initiator or not) checks the clock values it receives from
its neighbors and increases each one of them by one time unit; it then compares
these values with each other as well as with its own. If the value of the local
clock is maximum, no message is sent; else, the local clock is set to the largest of
all values, and this value is sent to all the neighbors (that sent a smaller value).

Consider the largest value tmax among the local clocks when the protocol starts. It is
not difficult to see that this value (increased by one unit at each instant of time) reaches
every entity, and every entity will set its local clock to such a time value (Exercise
6.6.59). In other words, with this simple protocol, that we shall call MaxWave, the
entities are guaranteed to operate in unison within finite time.

Let us discuss how long this process takes. Unison happens as soon as every entity
whose initial clock value was smaller than tmax receives tmax (properly incremented).
In the worst case, only one entity z has tmax at the beginning, and this entity is the
last one to start. This value (properly incremented) has to reach every other entity in
the network; this propagation will require at most a number of time units equal to the
diameter d of the network; as z will start at most d time units after the first entity, this
means that

the system operates in unison after at most 2d time units from the start.

How can an entity detect termination ? How does it know whether the system is
now operating in unison ? Necessarily, an entity must know d (or an upperbound on
d , e.g., n) to be able to know when the protocol is over.

The amount 2d is from the (global) time t the first entities started the execution
of the protocol. An entity x starts participating at some (global) time t(x) ≥ t . Thus,
assuming that (an upperbound on) d is known a priori to all entities, at time t(x)+ 2d
entity x knows for sure that the system is operating in unison. (this time can actually
be reduced; see Exercise 6.6.60). In other words, entities may terminate at different
times; their termination will, however, be within at most d time units from each other.

What is the number of messages that will be transmitted? A very rough overestimate
is easily obtained by assuming that each entity x transmits to all its |N (x)| neighbors
in each of the 2d time units; this gives

2 d
∑

x

|N (x)| = 4 d m.

This is a gross overestimate. In fact, once an entity receives the max time, it will
transmit only in this step and no more. So the entities with the largest value will
transmit to their neighbors only once; their neighbors will transmit only twice; in
general, the entities at distance j from the entities with the largest value will transmit
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only j + 1 time. We also know that an entity does not send the max time to those
neighbors from which it received it. The actual cost depends on the topology of the
network and the actual initiation times. For some networks, the cost is not difficult to
determine (Exercises 6.6.61 and 6.6.62).

Assuming that we are operating not on an arbitrary graph but on a tree (e.g.,
a previously constructed spanning tree of the network), we immediately have m =
n− 1; we can make accurate measurements (Exercise 6.6.63).

In all this discussion, we have made an implicit assumption that the clock values
we are sending are bounded and fit inside a message. However, time and thus the
clock values are unbounded. In fact, clock values increase at each time unit; in our
protocol, the transmitted values were increased at each time unit and the largest was
propagated. Therefore, the solution we have described is not feasible.

To ensure that the values are bounded, we concentrate on the definition of the
problem: Our goal is to achieve unison, that is, we want all local clocks to sign the
same value. Notice that the definition does not care for what that value is, but only
for that it is the same for all entities. Armed with this understanding, we make a very
simple modification to the MaxWave protocol:

When an entity starts MaxWave, it first resets its local clock to 0.

In this way, the maximum value transmitted is at most 2d (Exercise 6.6.64), which
is bounded.

6.4.3 Firing Squad

Firing squad synchronization is a problem stricter than unison. It requires that all
entities enter a predefined special state, firing, for the first time simultaneously. More
precisely, all the entities are initially in active state, and each active entity can at any
time spontaneously become excited. The goal is to coordinate the entities so that,
within finite time from the time the first entity becomes excited, all entities become
firing simultaneously and for the first time.

In its original form, the problem was described for synchronous cellular automata
(i.e., computational entities with O(1) memory) placed in a line of unknown length n,
and where the leftmost entity in the line is the sole initiator, known as the “general”.
Note that as cellular automata only have a constant memory size, they cannot represent
(nor count up to) nonconstant values such as n or d.

We are interested in solving this problem in our setting, where the entities have at
least O(logn) bits of local memory, and thus they can count up to n. Again we are
looking for a protocol that can work in any network; observe that the entities need to
know or to compute (an upperbound on) d to terminate.

If the network is a tree, or we have available a spanning tree of the network, then
a simple efficient solution exists, on the basis of saturation (Exercise 6.6.68). This
protocol uses at most 3n− 2 signals and n− 2 messages each containing a value of
at most d , for a total of O(n log n) bits; the time is at most 3d − 3. The bit complexity
can be reduced to O(n) still using only O(n) time (Exercise 6.6.69). That is, firing
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squad can be solved in networks with an available spanning tree in optimal time and
bits.

What happens if there is no spanning tree available? Even worse, what happens if
no spanning tree is constructible (e.g., in anonymous network)? The problem can still
be solved. To do so, let us explore the relationship between firing squad and unison.
First observe that as all entities become firing simultaneously, if each entity resets its
local clock when it becomes firing, all local clocks will have the same value 0 at the
same time. In other words,

any solution to the firing squad problem will also solve the unison problem.

The converse is not necessarily true. In unison, all the local clocks will at some point
sign the same value; however, the entities might not know exactly when this happens.
They might become aware (i.e., terminate) at different times; but for firing squad
synchronization we need that they make a decision simultaneously, that is, with no
difference in time.

Surprisingly, protocol MaxWave actually solves the firing squad problem in net-
works where no spanning tree is available. To see why this is true, consider the
modification we made to ensure that the transmitted values are bounded: When an
entity starts the protocol, it first resets its local clock to 0.

Let t be the global time when the protocol starts, that is, t is the time when the
first entities rest their clock to 0. We will call such entities “initiators.” Two simple
observations (Exercises 6.6.70 and 6.6.71):

Property 6.4.1

1. If a message originated by an initiator reaches entity y at time t + w, then the
value of that message (incremented by 1) is exactly w.

2. Regardless of whether y has already independently started or starts now, the
current value of its local clock will be smaller than w; thus, y will set its clock
in unison with the clocks of the initiators.

Summarizing, every noninitiator receives a message from the initiators, and as
soon as an entity receives a message originated by the initiators (i.e., carrying the
max reset time), it will become in unison with the initiators. Thus, an entity x is
in unison with the initiators at time t + d(x, I ), where d(x, I ) denotes the distance
between x and the closest initiator. As d(x, I ) ≤ d, this means that

all clocks will be in unison after at most d time units from the start.

Once the clocks are in unison, unless someone resets them, they keep on being in
unison. As nobody is resetting the clocks again, this means that all entities will be in
unison at time t + d . The value of the clocks at that time is exactly d.

This means that when the reset local clock signs time d, the entity knows that
indeed the entire system is in unison; if the entity enters state firing at this time, it
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is guaranteed that all other entities will do the same simultaneously, and for the first
time, solving the firing squad problem.

Summarizing, protocol MaxWave solves the firing squad problem in d time units:

T[MaxWave] = d, (6.45)

and this is worst-case optimal. The number of messages is less than 2 d m and each
contains at most log d bit, that is,

B[MaxWave] < 2 m d log d. (6.46)

The bit complexity can be reduced at the expense of time, by using communicators
to communicate the content of the messages (Exercises 6.6.66 and 6.6.67).

6.5 BIBLIOGRAPHICAL NOTES

Some of the work on synchronous computing was done very early on in the con-
text of Cellular Automata and Systolic Arrays; in particular, pipeline is a common
computational tool in VLSI systems (which include systolic arrays).

In the framework of distributed computing, the first important result on (fault-
free) synchronous computations is protocol Speed designed by Greg Frederickson
and Nancy Lynch [9], and independently by Paul Vitanyi [26] (whose version of the
protocol actually works with a weaker form of full synchrony, called Archimedean
Time Assumption or ATA).

This result has alerted algorithmic researchers to the existence of the field. Some of
the first improvements were due to Eli Gafni [11] and Alberto Marchetti-Spaccamela
[17], who reduced the time but still kept the unbounded bit complexity. Subsequent
improvements to bounded bit complexity and to reduced time costs were obtained by
using (and combining) communicators, waiting and guessing.

Communicators have been used for a while. The so-called “one-bit” protocol (e.g.,
see Problem 6.6.1) was originally proposed and used by Hagit Attiya, Marc Snir,
and Manfred Warmuth [3] and later rediscovered by Amotz Bar-Noi, Joseph Naor,
and Moni Naor [4]. The size communicator is due to Bernd Schmeltz [24]. C2 is
“folk” knowledge, while C3 is due to Paul Vitanyi [unpublished]. The optimal k-
communicators have been designed by Una-May O’Reilly and Nicola Santoro [20].

The first combined use of communicators and pipeline is due to B. Schmeltz
[24]. The computations in trees using pipeline are due to Paola Flocchini [8]. The
asynchronous-to-synchronous transform is due to Una-May O’Reilly and Nicola
Santoro [19].

The waiting technique was independently discovered by Eli Gafni [11], who used
it to reduce the time costs of Speed, and by Nicola Santoro and Doron Rotem [23],
who designed protocol Wait. Protocol Guess has been designed by Jan van Leeuwen,
Nicola Santoro, Jorge Urrutia, and Shmuel Zaks [16]. Double Waiting is due to Mark
Overmars and Nicola Santoro [21].
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The first bit-optimal election protocol for rings is due to Hans Bodlaender and
Gerard Tel [5]; it does, however, require exponential time. The time has been subse-
quently drastically reduced (Problem 6.6.9) without increasing the bit complexity by
Mark Overmars and Nicola Santoro [21].

The problem of symmetry breaking was first studied for rings by Alon Itai and
Michael Rodeh [14] and for other networks by Doron Rotem and Nicola Santoro
[23]. The simpler and more efficient protocol Symmetry has been designed by Greg
Frederickson and Nicola Santoro [10]. These results have been extended to environ-
ments with ATA-synchrony by Paul Spirakis and Basil Tampakas [25]. The maximum-
finding protocol for rings of Problem 6.6.7 has been designed by Paola Alimonti, Paola
Flocchini, and Nicola Santoro [1].

The trade-offs for wake-up in complete graphs with chordal labeling are due to
Amos Israeli, Evangelos Kranakis, Danny Krizanc, and Nicola Santoro [13]. The
unison problem has been first studied (in a slightly different context) by Shimon Even
and Sergio Rajsbaum [6, 7], and in the context of self-stabilization by Mohamed
Gouda and Ted Herman [12]. Bounding the message size was studied by Anish Arora,
Shlomi Dolev, and Mohamed Gouda [2], always in the context of self-stabilization.

The firing squad problem was originally proposed for Cellular Automata by J.
Myhill and reported by E. Moore [18]. In our context, the problem was first studied
for synchronous trees by Raul Ramirez and Nicola Santoro [22]; the optimal solution
has been designed by Ephraim Korach, Doron Rotem, and Nicola Santoro [15]. The
universal protocol MaxWave is a simple extension of existing unison solutions.

6.6 EXERCISES, PROBLEMS, AND ANSWERS

6.6.1 Exercises

Exercise 6.6.1 Determine the number of messages of protocol Speed if the waiting
function is f (v) = cv, for an integer c > 2.

Exercise 6.6.2 Determine the number of messages of protocol Speed if the waiting
function is f (v) = vc, for an integer c > 1.

Exercise 6.6.3 Modify protocol Speed so that even if the entities do not start simul-
taneously, a leader is elected with O(n) messages.

Exercise 6.6.4 Prove that Protocol Speed requires 2in time units.

Exercise 6.6.5 Modify protocol C2 so that it communicates any integer i, positive
or negative, transmitting 2 bits and O(|i|) time units.

Exercise 6.6.6 Construct a protocol R2 that communicates any positive integer I
transmitting 2 bits and only 2+ I

4 time units.
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Exercise 6.6.7 Consider protocol TwoBits when each packet contains c > 1 bits. Use
the content of the packets to convey information about the value i to be communicated.
Determine the time costs that can be achieved.

Exercise 6.6.8 Construct a protocol R3 that communicates any positive integer I
transmitting 3 bits and only √I� + 3 time units.

Exercise 6.6.9 Consider a system where packets contain c > 1 bits. Modify protocol
R3 using the content of the packets so as to reduce the time costs. Determine the
amount of savings that can be achieved.

Exercise 6.6.10 Prove that the communicator described in Section 6.2.1 uses at

most O(i
1
k ) time units.

Exercise 6.6.11 Use the content of the transmitted bits so as to reduce the time
costs of the communicator described in Section 6.2.1. Show how a time cost of at
most (k − 1)(I/4)

1
k−1 + k clock ticks can be achieved.

Exercise 6.6.12 Prove that communicator Orderk uses f (I, k)+ k + 1 time to com-

municate I , where f (I, k) is the smallest integer t such that I ≤
(
t + k

k

)

.

Exercise 6.6.13 Prove that communicator Orderk+ uses g(I, k)+ k + 1 time to

communicate I , where g(I, k) is the smallest integer t such that I ≤ 2k+1

(
t + k

k

)

.

Exercise 6.6.14 Prove that ω(t, k) =
(
t + q

q

)

.

Exercise 6.6.15 Prove that any protocol using k + 1 corruptible bits to communicate
values from U requires

(

f
(|U |, k)2

(

|U | − ∑

0≤i<t
i

(
i + k − 1

k − 1

))

+ ∑

0≤i<f (|U |,k)
i

(
i + k − 1

k

))

|U |−1

additional time on the average.

Exercise 6.6.16 Prove that protocol Orderk is average-case optimal.

Exercise 6.6.17 Let β(t, k) denote the size of the largest set for which the two-party
communication problem can always be solved transmitting k + 1 reliable bits and at

most t additional time units. Prove that β(t, k) = 2k+1

(
t + k

k

)

.
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Exercise 6.6.18 Let r(w, k) denote the number of additional time units needed in
the worst case to solve the two-party communication problem for Zw with k + 1 bits,
in absence of corruptions. Let β(t, k) be as in Exercise 6.6.17, and let g(w, k) be the
smallest integer t such that β(t, k) ≥ x. Prove that r(w, k) = g(w, k).

Exercise 6.6.19 Let β(t, k) be as in Exercise 6.6.17, and let g(w, k) be the small-
est integer t such that β(t, k) ≥ x. Prove that r(w, k) = g(w, k). Prove that any so-
lution protocol using k + 1 reliable bits to communicate values from U requires

∑
i




i + k − 1

k − 1





2k+1




g(|U |, k)+ k

k





time on the average.

Exercise 6.6.20 Prove that protocol Order+k is average-case optimal.

Exercise 6.6.21 ($) A communicator is monotonically increasing if, whenever
I > J , the communication sequence for I is lexicographically smaller than that for
J . Communicators Orderk are optimal and corruption tolerant; however, they are not
monotonically increasing for k > 2; thus, they cannot be used in pipeline for comput-
ing the minimum. Determine a class MonotoneOrderk of optimal corruption-tolerant
communicators that are monotonically increasing.

Exercise 6.6.22 Communicators Order+k are optimal but not monotonically in-
creasing for k > 2; thus, they can not be used in pipeline for computing the minimum.
Determine a class MonotoneOrder+k of optimal communicators that are monotoni-
cally increasing.

Exercise 6.6.23 Write a protocol for finding the largest value in a chain using the
2-bit communicator and pipeline. Prove its correctness.

Exercise 6.6.24 Minimum-Finding in Pipeline. Write a protocol for finding the
smallest value in a chain using the 2-bit communicator and pipeline. Prove its cor-
rectness. Determine its costs.

Exercise 6.6.25 Sum-Finding in Pipeline. Write a protocol for finding the sum
of all the values in a chain using the 2-bit communicator and pipeline. Prove its
correctness. Determine its costs.

Exercise 6.6.26 Protocol SynchStages is the transformation of Stages using commu-
nicator TwoBits. Add pipeline to this protocol to convey information from a candidate
to a neighboring one. Prove its correctness. Analyze its costs; in particular, determine
the reduction in time with respect to the nonpipelined version.

Exercise 6.6.27 Modify protocol Wait so that it finds the minimum value only among
the initiators.
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Exercise 6.6.28 Determine the smallest waiting function that allows protocol Wait
to work correctly without simultaneous initiation: (a) in a unidirectional ring; (b) in
a bidirectional ring.

Exercise 6.6.29 Determine the smallest waiting function that allows protocol Wait
to work correctly with simultaneous initiation: (1) in a a × b mesh; (2) in a a × b

torus; (3) in a k-dimensional hypercube; (4) in a complete network.

Exercise 6.6.30 Determine the smallest waiting function that allows protocol Wait
to work correctly without simultaneous initiation: (1) in a a × b mesh; (2) in a a × b

torus; (3) in a k-dimensional hypercube.

Exercise 6.6.31 Prove that protocol Wait would work even if a quantity n ≥ n is
used instead of n.

Exercise 6.6.32 Determine under what conditions protocol Wait would work if a
quantity n > n is used instead of n in the waiting function.

Exercise 6.6.33 Assuming distinct initial values, characterize what would happen
to protocol Wait in a ring network if each entity x uses 2id(x)2 as its waiting function.
In particular, determine under what conditions the protocol would certainly work.

Exercise 6.6.34 Under the conditions of Exercise 6.6.33, show how all the entities
can efficiently detect whether the protocol does not work.

Exercise 6.6.35 Determine the cost of computing the AND of all input values in a
synchronous ring of known size n using protocol Waiting.

Exercise 6.6.36 Describe how to efficiently use protocol Wait to compute the OR
of the input values in a synchronous ring of known size n. Determine its cost.

Exercise 6.6.37 Modify protocol Symmetry so that it works efficiently in a bidirec-
tional square torus of known dimension. Determine its exact costs.

Exercise 6.6.38 Modify protocol Symmetry so that it works efficiently in a unidi-
rectional square torus of known dimension. Determine its costs.

Exercise 6.6.39 Prove that with simultaneous initiation, protocol Symmetry can be
modified so as to work correctly in every network of known girth. (Hint: Use the girth
instead of n in the waiting function.)

Exercise 6.6.40 Determine the complexity of protocol Symmetry if we use in random
selection criteria b = n and choose each value with the same probability 1

n
.
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Exercise 6.6.41 Modify protocol Decide so as to compute the OR of the input
values in a synchronous ring of known size n. Prove its correctness and determine its
cost.

Exercise 6.6.42 Write protocol Guess and implement it; throughly test your imple-
mentation.

Exercise 6.6.43 Show how to find imin with k overestimates using q = k M1/k

questions.

Exercise 6.6.44 Show how we can always win the guessing game in an interval of
size 2q − 1 with q question if they are all allowed to be overestimates.

Exercise 6.6.45 Show how to obtain a unique solution to the recurrence relation of
expression 6.33.

Exercise 6.6.46 Determine a function g to bound imin so that the total time for
finding with k overestimates is at most 2 h( imin, k)− 1.

Exercise 6.6.47 Modify subprotocol Decide(p) so that it will work in every network,
regardless of its topology. Assume that an upperbound on the diameter of the network
is known a priori. Prove its correctness.

Exercise 6.6.48 Modify subprotocol Decide(p) so that protocol Guess works cor-
rectly even if the entities do not start simultaneously.

Exercise 6.6.49 Prove that, in DoubleWait, if x is being “fooled,” then both the
“Wait1” and the “Wait2” message it receives are sent by the same entity.

Exercise 6.6.50 Let the entities start the j th iteration of DoubleWait within n− 1
time units from each other. Prove that the entity with the smallest value becomes
leader and all other will become defeated in that iteration.

Exercise 6.6.51 Let the entities start the j th iteration of DoubleWait within n− 1
time units from each other. Prove that if an entity x becomes leader in this iteration,
then g(j ) ≥ n > g(j − 1).

Exercise 6.6.52 Let the entities start the j th iteration of DoubleWait within n− 1
time units from each other. Prove that if g(j ) < n, then all entities start the (j + 1)th
iteration within n− 1 time units from each other.

Exercise 6.6.53 Prove that the time used by protocol DoubleWait, with the choices
of f and h specified by Expressions 6.40 and 6.41, is at most 2(n− 1) + (4 imin + 2)
∑j

j=1 g(j ).



EXERCISES, PROBLEMS, AND ANSWERS 397

Exercise 6.6.54 Consider protocol DoubleWait, where f and h are as in Expressions
6.40 and 6.41, and g is superincreasing. Prove that the time is at most 2(n− 1) +
(8 imin + 2) g(�g−1(n)�).

Exercise 6.6.55 Consider protocol DoubleWait, where f and h are as in Expressions
6.40 and 6.41. Determine the number of bits if the time is O(n log n i).

Exercise 6.6.56 ($$) Determine whether or not there is a choice of g that makes
DoubleWait more efficient than SynchStages in both time and bits.

Exercise 6.6.57 Let L = (a1, b1), . . . , (ak, bk) be the k pairs of distinct labels
ai, bi ∈ {1, . . . , n}. Consider now a complete network of n nodes; in this network,
select 2k + 1 nodes x0, x1, , . . . , x2k . Show that it is always possible

1. to label the links between these nodes only with pairs from L (e.g., the link
(x0, x1) will be labeled a3 at x0 and b3 at x1), and

2. to label all others links in the network with labels in {1, . . . , n}without violating
local orientation anywhere.

Exercise 6.6.58 Consider exactly the same question as in Exercise 6.6.57, where,
however, n is even and exactly one pair in L, say (a1, b1) is composed of identical
labels, i.e., a1 = b1.

Exercise 6.6.59 Prove that in protocol MaxWave, the largest of the local clock
values (when the execution starts) will reach (properly increased) every entity, and
each entity will set its local clock to such a (properly increased) time value.

Exercise 6.6.60 Consider protocol MaxWave when the entities do not start neces-
sarily at the same time, and let d be known. Let t be the (global) time the first entities
start the execution of the protocol and let t(x) ≥ t be the global time when x starts.
Modify the protocol so that (eventhough x does not know t) at time t + 2d it knows
for sure that the system is operating in unison.

Exercise 6.6.61 Determine the message cost of protocol MaxWave

a. in a unidirectional ring,

b. in a bidirectional ring.

You may assume that n is known.

Exercise 6.6.62 Determine the message cost of protocol MaxWave in a k-
dimensional hypercube.

Exercise 6.6.63 Determine the worst-case and average-case message costs of pro-
tocol MaxWave in a tree network.



398 SYNCHRONOUS COMPUTATIONS

Exercise 6.6.64 Let, in protocolMaxWave, each entity reset its local clock to 0 when
it starts the protocol. Prove that in this way, the maximum value transmitted is at
most 2d .

Exercise 6.6.65 Consider the unison protocol MinWave where instead of setting the
clocks to and propagating the largest value, we set the clock to and propagate the
smallest value. Prove correctness, termination, and costs of protocolMinWave.

Exercise 6.6.66 Determine the bit and time costs of protocol MaxWave if the content
of a message is communicated using the 2-bit communicator.

Exercise 6.6.67 Determine the bit and time costs of protocol MaxWave if the content
of a message is communicated using a k-bit communicator.

Exercise 6.6.68 Show how to solve the firing squad problem on a tree using at most
4n− 4 messages, each containing a value of at most d, and in time at most 3d − 3.

Exercise 6.6.69 ($) Show how to solve the firing squad problem on a tree using
only O(n) bits in O(d) time.

Exercise 6.6.70 In protocol MaxWave, let a message originated by an initiator reach
another entity y at time t + w. Prove that the value of that message (incremented by 1)
is exactly w.

Exercise 6.6.71 In protocol MaxWave, let a message originated by an initiator
reach another entity y at time t + w. Prove that regardless of whether y has already
independently started or starts now, the current value of its reset local clock will be
smaller than w; thus, y will set its clock in unison with the clocks of the initiators.

6.6.2 Problems

Problem 6.6.1 (OneBit Protocol) Determine under what conditions information can
be communicated using only 1 bit and describe the corresponding OneBit protocol.

Problem 6.6.2 (BitPattern Communicator) Consider the class of communicators
that use a bit set to 1 to denote termination. Determine the minimum cost that can be
achieved and design the corresponding protocol.

Problem 6.6.3 (2-BitPattern Communicator) ($) Consider the class of commu-
nicators that use two successive transmissions of 1 to denote termination. Determine
the minimum cost that can be achieved and design the corresponding protocol.

Problem 6.6.4 (Size Communicator) Consider the class of communicators that use
the first quantum to communicate the total number of bits that will be transmitted.
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Determine the minimum cost that can be achieved and design the corresponding
protocol.

Problem 6.6.5 (Pipeline in Trees: Max) Write the protocol for finding the maxi-
mum of all the values in a tree using the 2-bit communicator and pipeline. Prove its
correctness. Determine its costs.

Problem 6.6.6 (Pipeline in Trees: Min) Write the protocol for finding the mini-
mum of all the values in a tree using the 2-bit communicator and pipeline. Prove its
correctness. Determine its costs.

Problem 6.6.7 (Maximum Finding I) ($$) Consider a ring of known size n. Each
entity has a positive integer value; they all start at the same time, but their values
are not necessarily distinct. The maximum-finding problem is the one of having all
the entities with the largest value become maximum and all the other small. Design a
protocol to solve the maximum-finding problem in time linear in imax using at most
O(n log n) bits.

Problem 6.6.8 (Maximum Finding II) ($$$) Determine whether the maximum-
finding problem in a ring of known size can be solved in time linear in imax with O(n)
bits.

Problem 6.6.9 (Bit-Optimal Election I) ($$) Show how to elect a leader in a ring
with only O(n) bits without knowing n. Possibly the time should be polynomial in i
or exponential in n. (Hint: Use a single iteration of DoubleWait as a preprocessing
phase.)

Problem 6.6.10 (Bit-Optimal Election II) ($$$) Determine whether or not it is
possible to elect a leader without knowing n with �(n) bits in time sublinear in i, that
is, to match the complexity achievable when n is known.

Problem 6.6.11 (Unison without knowing d) ($$) Consider the unison problem
when there is no known upperbound on the diameter d of the network. Prove or dis-
prove that in this case the unison problem cannot be solved with explicit termination.

Problem 6.6.12 (Firing in a Line of CA with 6 States) ($$) Finite cellular
automata (CA) can only have a constant memory size, which means they cannot store
a counter. The goal is thus to solve the firing squad problem with the least amount
of time and to do so with the least amount of memory. The measure we use for the
memory is the max number of different values that can to be stored in the memory, and
it is called the number of states of the automaton. Consider a line ofCAwith only one
initiator (located at the end of the line). Develop a solution that uses only six states.

Problem 6.6.13 (Firing in a Line of CA with 5 States) ($$$) Consider a line of
CA with only one initiator (located at the end of the line). Develop a solution using
only five states or prove it can not be done.
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6.6.3 Answers to Exercises

Answer to Exercise 6.6.4
Consider the entity x that will become leader. It did spontaneously initiate the proto-
col; its message traveled along the ring at the speed of f (ix)+ 1 = 2ix + 1, where ix
is the input value of x; hence, its message returned after (n− 1)(2ix + 1) time units;
another n time units are required for the notification message.

Answer to Exercise 6.6.6
Let

b0 =
{

0 if I even

1 if I odd
.

If we were to encode I in the sequence 〈b1 |
⌊
I
2

⌋| b0〉, the receiver can reconstruct
I using as a decoding function decode(b0| q1| b1) = 2q1 + b0, where b0 is used as
an integer value. In this way, we have effectively cut the quantum of time in half: The
waiting time becomes 2+ I

2 . It can be actually further reduced. Let

b1 =
{

0 if  I2 � even

1 if  I2 � odd
.

If we were to encode I in the sequence 〈b1 |
⌊  I2 �

2

⌋ | b0〉, the receiver can
reconstruct I using as a decoding function decode(b0 | q1| b1) = 2(2q1 + b1)+ b0,
where both b0 and b1 are treated as integer values. The waiting time then becomes
2+ I

4 .

Answer to Exercise 6.6.6
Consider the following communicator R3: The first bit, b0, is used to indicate
whether y = ⌊√I⌋ is odd; the second bit, b2, is used to indicate whether z =
I − ⌊√

I
⌋2 is odd; the third bit, b3, is used to indicate whether w = ⌊ z2

⌋
is odd.

The two quanta waited are q1 =
⌊ y

2

⌋
and q2 =

⌊w
2

⌋
. To obtain I the receiver

simply computes (2q1 + b0)2 + (4q2 + 2b1 + b2), where the bits are treated as
integer values. For example, if I = 7387, we have y = 85, z = 162, and w =
81; thus, the two quanta are q1 = 42 and q2 = 40, while the bits are b0 = 1,
b1 = 0, and b2 = 1. The quantity (2q0 + b0)2 + (4q1 + 2b1 + b2) computed by

the receiver is indeed I . Notice that q0 =
⌊ y

2

⌋ =
⌊⌊√

I
⌋

2

⌋
and, as z ≤ 2

⌊√
I
⌋

,

q1 =
⌊w

2

⌋ =
⌊⌊

z
2

⌋

2

⌋
≤
⌊√

I
⌋

2 ; thus, this protocol has time-bits complexity at most

〈3, ⌊√I⌋+ 3〉.
The protocol is correct (Exercise 6.6.11). Exactly k − 1 quanta will be used, and

k bits will be transmitted. It is easy to verify that I2i+1 ≤
⌊√

Ii
⌋

; since I2i =
⌊√

Ii
⌋
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by definition, it as follows that each quantum is at most
(
x
4

) 1
k−1 . Hence, the time

complexity is at most

(k − 1)(I/4)
1

k−1 + k.

Partial Answer to Exercise 6.6.11
The encoding of I can be defined recursively as follows:

E(I ) = 〈b0 | E(I1) | bk−1〉,
where

E(Ii) =
{
E(I2i) | bi | E(I2i+1) if 1 < i < k − 1

quantum of length Ii if k − 1 ≤ i ≤ 2k − 3

I1 =
⌊⌊

I
2

⌋

2

⌋

, I2i =
⌊√

Ii
⌋
, I2i+1 =

⌊
Ii − I 2

2i

2

⌋

, and

bi = I2i+1 mod 2, bk−1 =
⌊
I

2

⌋
mod 2.

To obtain I , the receiver will recursively compute Ii = I 2
2i + (2I2i+1 + bi) until I1

is determined; then, I = 4I1 + 2bk−1 + b1.

Answer to Exercise 6.6.14

We want to prove that ω(t, k) =
(
t + q

q

)

. Let w = ω(t, k); by definition, it must

be possible to communicate any element in Zw = {0, 1, . . . ,w} using q = k − 1
distinguished quanta requiring at most time t . In other words, ω(t, q + 1) is equal
to the number of distinct q-tuples 〈t1, t2, . . . , tq〉 of positive integers such that∑

1≤i≤k ti ≤ t . Given a positive integer x, let Tk[x] denote the number of compo-
sitions of x of size q, that is,

Tq [x] = |{〈x1, x2, . . . , xq〉 :
∑

xj = x, xj ∈ Z+}|.

As Tq [x] =
(
x + q − 1

q − 1

)

, it follows that

ω(t, q + 1) =
∑

i

Tq [i] =
∑

i

(
i + q − 1

q − 1

)

=
(
t + q

q

)

,

which proves that ω(t, k) =
(
t + q

q

)

.



402 SYNCHRONOUS COMPUTATIONS

Answer to Exercise 6.6.15
Let f (|U |, q) = t . First of all we prove that for any solution protocol P for
Cq+1 (U ), there exists a partition of U into t + 1 disjoint subsets U0, U1, . . . , Ut ,
such that

1. |Ui | =
(
i + q − 1

q − 1

)

, 0 ≤ i < t, |Ut | ≤
(
t + q − 1

q − 1

)

,

2. the time P (x) required by P to communicate x ∈ Ui is P (x) ≥ i.

As f (|U |, q) = t, by Equation 6.9, U is the largest set for which the two-party
communication problem can always be solved using b = q + 1 transmissions and
at most t additional time units. Given a protocol P for Cq+1(U ), order the ele-
ments x ∈ U according to the time P (x) required by P to communicate them; let
Ü be the corresponding ordered set. Define Üi to be the subset composed of the
elements of Ü whose ranking, with respect to the ordering defined above, is in

the range
∑

0≤j<i

(
j + q − 1

q − 1

)

,
∑

0≤j≤i

(
j + q − 1

q − 1

)

. As f (|U |, q) = t , it fol-

lows that |Üi | =
(
i + q − 1

q − 1

)

for 0 ≤ i < t and |Üt | ≤
(
t + q − 1

q − 1

)

,which proves

part 1.
We will now show that for every x ∈ Üi , P (x) ≥ i. By contradiction, let

this not be the case. Let j ≤ t be the smallest index for which there exists an
x ∈ Üi such that P (x) < j . This implies that there exists a j ′ < t such that

|{x ∈ U : P (x) = j ′}| >
(
j ′ + q − 1

k − 1

)

. In other words, in protocol P , the number

of elements that are uniquely identified using q quanta for a total of j ′ time is

greater than the number Tq [j ′] =
(
j ′ + q − 1

q − 1

)

compositions of j ′ of size k: a

clear contradiction. Hence, for every x ∈ Üi , P (x) ≥ i, proving part 2. At this point,
the rest of the proof easily follows.

Answer to Exercise 6.6.17
The number of distinct assignment of values to q + 1 distinguished bits is 2q+1.
The number of distinct q-tuples 〈t1, t2, tq〉 of positive integers such that

∑
j tj ≤ t is

ω(t, k) (from 6.9). Therefore, β(t, k) = 2q+1ω(t, k) = 2q+1

(
t + q

q

)

.

Partial answer to Exercise 6.6.19
First prove the following: Let µ(|U |, q) = t ; for any solution protocol P using k

reliable bits to communicate values from U , there exists a partition of U into t + 1
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disjoint subsets U0, U1, . . . , Ut , such that

1. |Ui | = 2q+1

(
i + q − 1

q − 1

)

, 0 ≤ i < t , and |Ut | = 2q+1

(
t + q − 1

q − 1

)

,

2. the time P (x) required by P to communicate x ∈ Ui is P (x) ≥ i.

Then the rest of the proof easily follows.

Answer to Exercise 6.6.44
Hint: Use binary search.

Answer to Exercise 6.6.49
Letx be fooled and incorrectly become leader at the end of the j th iteration. According
to the algorithm the only way that x has for becoming leader is the following:

1. At time t(x, j ), x starts waiting for f (x, j ). Note that during this time x must
not receive any message to become a leader later.

2. At time t(x, j )+ f (x, j ), x sends a “Wait1” message and becomes checking.

3. At time t(x, j )+ f (x, j )+ nx(j ), it receives a Wait1 message and starts the
second waiting. Note that during this time, x must not receive any message in
order to become a leader later.

4. At time t(x, j )+ f (x, j )+ nx(j )+ h(x, j ), it sends a “Wait2” message and
becomes checking-again.

5. At time t(x, j )+ f (x, j )+ g(x, j )+ 2nx(j ), it receives a “Wait2” message
and becomes leader.

Let y �= x and z �= x be the entities that originated the “Wait1” and “Wait2” mes-
sages, respectively, received by x. Notice that to originate these messages, y and z

can not be passive (they might become so later, though).
The “Wait1” message is sent by y only after it successfully finished the waiting

f (y, j ) time units. That is, the “Wait1” message will be sent by y at time t(y, j )+
f (y, j ). This message requires d(y, x) unit times to reach x. Therefore, t(x, j )+
f (x, j )+m(x, j ) = t(y, j )+ f (y, j )+ d(y, x).

The “Wait2” message will arrive at x at time t(x, j )+ f (x, j )+ 2m(x, j )+
g(x, j ).

By contradiction, let z �= y. Consider first the case when y is located in the path
from z to x. In this case, the “Wait2” message originated by z will reach y be-
fore x. If y is still waiting to receive a “Wait1” message, the reception of this
not forward the “Wait2” message and “Wait2” message will alert it to something
wrong; it will not forward the “Wait2” message to x and send a “Restart” instead,
and thus, x will not become leader. Therefore, z is located on the path from y to
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x. In this case, the “Wait1” message originated by y reaches z before arriving to x.
As we have assumed that this message will arrive to x, it means that z must have
forwarded it; the only way it could have done so is by becoming passive, but in this
case zwill not originate a Wait2 message, contradicting the assumption we have made.

Answer to Exercise 6.6.50
Let x be the entity with the smallest id, and denote this value by i.

Entity x will start at time t(x, j ) and would stop waiting at time t(x, j )+ f (x, j ).
As the entities start the iteration within time units from each other, for every other
entity j t(x, j )− t(y, j ) ≤ n− 1; as d(x, y) ≤ n− 1, this means that

t(x, j )+ f (x, j )+ d(x, y) ≤ f (x, j )+ 2(n− 1).

Recall that f is a waiting function; this means that as x has the smallest identity and
g(j ) ≥ n, f (x, j )+ 2(n− 1) < f (y, j ) for every other entity y. Thus,

t(x, j )+ f (x, j )+ d(x, y) < f (y, j ).

That is, x will finish waiting before anybody else; its message will travel along the
ring transforming into passive all other entities and will reach x after nx = n time
units. Thus, x will be the only entity starting the second waiting, and its “Wait2”
message will reach x again after nx = n time units. Hence, x will validate its guess,
become leader, and notify all other entities of termination.

Answer to Exercise 6.6.52
We know (Exercises 6.6.50 and 6.6.51) that if n /∈ ∂(j − 1), then no entity becomes a
leader in the (j−1)th iteration. According to the leader election algorithm, if an entity
becomes neither leader nor passive during the (j −1) iteration, it becomes active and
unconditionally sends an R message for the jth iteration. At this point the jth iteration
starts with bounded delays.

The proof of this Lemma is based on the proof that is impossible for all the entities
in the (j− 1)th iteration become passive and, therefore, no leader is elected and there
is no active entities that can send the R message.

First, let x be the entity with the smallest ix , called i. And let all the entities become
passive in the (j −1)th iteration. Note that according to the algorithm the only way
for an entity to become passive is receiving a C message when is in the waiting state,
that is, during f (x, j −1) the entity x must receive a C message in order to become
passive. Let y denote the entity that originates the C message. The C message will be
arriving to x in exactly t(y, j −1 ) + f (y, j −1) + d(y, x) time units. Thus, in order that
x becomes passive, it follows that

t(x, j − 1)+ f (x, j − 1) > t(y, j − 1)+ f (y, j − 1)+ d(y, x)

t(x, j − 1)+ i(bj−1 + 1) > t(y, j − 1)+ iy(bj−1 + 1)+ d(y, x).
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As i is the smallest value, i < iy and, therefore, i(bj−1 + 1) < iy(bj−1 + 1). Then
to hold (3), it must be

t(x, j − 1) > t(y, j − 1)+ d(y, x),

contradicting the fact that all the entities start the (j −1)th iteration with bounded
delay. Therefore, it is impossible that all the entities become passive in any iteration.
In conclusion, if n /∈ ∂(j − 1) an R message is sent by an active entity and the next
iteration start with bounded delays proving in this way the Lemma 3.

Answer to Exercise 6.6.53
Let x be the entity with the smallest value, and let i be that value. Entity x starts
executing the protocol at most n− 1 time units after the other entities. It starts the
(j + 1)th iteration less than f (x, j )+ 2nx(j )+ h(x, j ) time units after x started the
j th iteration. As

f (x, j )+ g(x, j )+ 2nx(j ) = 2g(j )i+ 2g(j )i+ g(j )− nx(j )+ 2nx(j )
= (4i+ 1)g(j )+ nx(j ),

the total time required until x becomes leader is at most

n− 1+
j∑

j=1
((4i+ 1)g(j )+ nx(j )).

As there are also the n− 1 time units before the “Terminate” message notifies all
entities, the total time for the algorithm is at most

2(n− 1)+
j∑

j=1
((4i+ 1)g(j )+ nx(j )).

Notice that if g(j ) < nx(j ), then x would detect the anomaly and send a
“Restart”; thus, we can assume that in the expression above the actual time spent
is Min{g(j ), nx(j )}. Then the above expression becomes: 2(n− 1)+ (4i+ 2)
∑j

j=1 g(j ).

Answer to Exercise 6.6.54
The last iteration is j = �g−1(n)�; as g is superincreasing, g(j) ≥∑j−1

i=1 g(j ). The

algorithm terminates in less than 2(n− 1)+ (4 imin + 2)
∑j

j=1 g(j ) time units.

Now, (4imin + 2)
∑j

j=1 g(j ) ≤ 2(n− 1)+ (4imin + 2)2g(j).

Answer to Exercise 6.6.60
Sketch: Use a counter, initially set to 0; in each step, set it to the largest of the
received counters increased by one and add it to any message sent in that step. When
the counter is equal to 2d , stop.
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Answer to Exercise 6.6.68
Use saturation: Each of the two saturated nodes computes its eccentricity; the largest
of the two is communicated to their subtrees, starting a “countdown.” When the
furthermost entity receives the message, their value becomes simultaneously 0 and
they all enter state firing at the same time. This protocol uses at most 3n− 2 signals for
the wake-up and saturation and an additional n− 2 messages for the countdown, each
containing a value of at most d . The time is at most 2d for wake-up and saturation;
at most, additional d time units are needed for the countdown.
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CHAPTER 7

Computing in Presence of Faults

7.1 INTRODUCTION

In all previous chapters, with few exceptions, we have assumed total reliability, that
is, the system is failure free. Unfortunately, total reliability is practically nonexistent
in real systems. In this chapter we will examine how to compute, if possible, when
failures can and do occur.

7.1.1 Faults and Failures

We speak of a failure (or fault) whenever something happens in the systems that
deviates from the expected correct behavior. In distributed environments, failures and
their causes can be very different in nature. In fact, a malfunction could be caused
by a design error, a manufacturing error, a programming error, physical damage,
deterioration in the course of time, harsh environmental conditions, unexpected inputs,
operator error, cosmic radiations, and so forth. Not all faults lead (immediately) to
computational errors (i.e., to incorrect results of the protocol), but some do. So the goal
is to achieve fault-tolerant computations, that is, our aim is to design protocols that will
proceed correctly in spite of the failures. The unpredictability of the occurrence and
nature of a fault and the possibility of multiple faults render the design of fault-tolerant
distributed algorithms very difficult and complex, if at all possible. In particular, the
more components (i.e., entities, links) are present in the system, the greater is the
chance of one or more of them being/becoming faulty.

Depending on their cause, faults can be grouped into three general classes:

� execution failures, that is, faults occurring during the execution of the protocol
by an entity; examples of protocol failures are computational errors occurring
when performing an action, as well as execution of the incorrect rule.
� transmission failures, due to the incorrect functioning of the transmission

subsystem; examples of transmission faults are the loss or corruption of a trans-
mitted message as well as the delivery of a message to the wrong neighbor.

Design and Analysis of Distributed Algorithms, by Nicola Santoro
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� component failures, such as the deactivation of a communication link between
two neighbors, the shutdown of a processor (and thus of the corresponding
entity), and so forth.

Note that the same fault can occur because of different causes, and hence classified
differently. Consider, for example, a message that an entity x is supposed to send
(according to the protocol) to a neighbor y but never arrives. This fault could have
been caused by x failing to execute the “send” operation in the protocol: an execution
error; by the loss of the message by the transmission subsystem: a transmission error;
or by the link (x, y) going down: a component failure.

Depending on their duration, faults are classified as transient or permanent.

� A transient fault occurs and then disappears of its own accord, usually within a
short period of time. A bird flying through the beam of a microwave transmitter
may cause lost bits on some network. A transient fault happens once in a while;
it may or may not reoccur. If it continues to reoccur (not necessarily at regular
intervals), the fault is said to be intermittent. A loose contact on a connector will
often cause an intermittent fault. Intermittent faults are difficult to diagnose.
� A permanent failure is one that continues to exist until the fault is repaired.

Burnout chips, software bugs, and disk head crashes often cause permanent
faults.

Depending on their geographical “spread”, faults are classified as localized or
ubiquitous.

� Localized faults occur always in the same region of the system, that is, only
a fixed (although a priori unknown) set of entities/links will exhibit a faulty
behavior.
� Ubiquitous faults will occur anywhere in the system, that is, all entities/links

will exhibit at some point or another a faulty behavior.

Note that usually transient failures are ubiquitous, while intermittent and perma-
nent failures tend to be localized.

Clearly no protocol can be resilient to an arbitrary number of faults. In particular,
if the entire system collapses, no protocol can be correct. Hence, the goal is to design
protocols that are able to withstand up to a certain amount of faults of a given type.

Another fact to consider is that not all faults are equally dangerous. The danger of a
fault lies not necessarily in the severity of the fault itself but rather in the consequences
that its occurrence might have on the correct functioning of the system. In particular,
danger for the system is intrinsically related to the notion of detectability. In general,
if a fault is easily detected, a remedial action can be taken to limit or circumvent the
damage; if a fault is hard or impossible to detect, the effects of the initial fault may
spread throughout the network creating possibly irreversible damage. For example,
the permanent fault of a link going down forever is obviously more severe than if that
link failure is just transient. In contrast, the permanent failure of the link might be more
easily detectable, and thus can be taken care of, than the occasional mulfanctioning
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of the link. In this example, the less severe fault (the transient one) is potentially more
dangerous for the system.

With this in mind, when we talk about fault-tolerant protocols and fault-resilient
computations, we must always qualify the statements and clearly specify the type and
number of faults that can be tolerated. To do so, we must first understand what are the
limits to the fault tolerance of a distributed computing environment, expressed in terms
of the nature and number of faults that make a nontrivial computation (im)possible.

7.1.2 Modeling Faults

Given the properties of the system and the types of faults assumed to occur, one
would like to know the maximum number of faults that can be tolerated. This number
is called the resiliency. To establish the resiliency, we need to be more precise on the
types of faults that can occur. In particular, we need to develop a model to describe
the failures in the system.

Faults, as mentioned before, can be due to execution errors, transmission errors,
or component failures; the same fault could be caused by any of those three causes
and hence could be in any of these three categories. There are several failure models,
each differing on what is the factor “blamed” for a failure.

IMPORTANT. Each failure model offers a way of describing (some of the) faults
that can occur in the system. A model is not reality, only an attempt to describe it.

Component Failure Models The more common and most well known models
employed to discuss and study fault tolerance are the component failures models.

In all the component failure models, the blame for any fault occurring in the system
must be put on a component, that is, only components can fail, and if something goes
wrong, it is because one of the involved components is faulty. Depending on which
components are blamed, there are three types of component failure models: entity,
link, and hybrid failure models.

� In the entity failure (EF) model, only nodes can fail. For example, if a node
crashes, for whatever reason, that node will be declared faulty. In this model,
a link going down will be modeled by declaring one of the two incident nodes
to be faulty and to lose all the message to and from its neighbor. Similarly, the
corruption of a message during transmission must be blamed on one of the two
incident nodes that will be declared to be faulty.
� In the link failure (LF) model, only links can fail. For example, the loss of a

message over a link will lead to that link being declared faulty. In this model,
the crash of a node is modeled by the crash of all its incident links. The event of
an entity computing some incorrect information (because of a execution error)
and sending it to a neighbor, will be modeled by blaming the link connecting the
entity to the neighbor; in particular, the link will be declared to be responsible
for corrupting the content of the message.
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Send/Receive Omission

FIGURE 7.1: Hierarchy of faults in the EF model.

� In the hybrid failure (HF) model, both links and nodes can be faulty. Although
more realistic, this model is little known and seldom used.

NOTE. In all three component failure models, the status faulty is permanent and is
not changed, even though the faulty behavior attributed to that component may be
never repeated. In other words, once a component is marked with being faulty, that
mark is never removed; so, for example, in the link failure model, if a message is lost
on a link, that link will be considered faulty forever, even if no other message will
ever be lost there.

Let us concentrate first on the entities failure model. That is, we focus on systems
where (only) entities can fail. Within this environment, the nature of the failures of the
entities can vary. With respect to the danger they may pose to the system, a hierarchy
of failures can be identified.

1. With crash faults, a faulty entity works correctly according to the protocol, then
suddenly just stops any activity (processing, sending, and receiving messages).
These are also called fail-stop faults. Such a hard fault is actually the most
benign from the overall system point of view.

2. With send/receive omission faults, a faulty entity occasionally loses some re-
ceived messages or does not send some of the prepared messages. This type
of faults may be caused by buffer overflows. Notice that crash faults are just
a particular case of this type of failure: A crash is a send/receive omission in
which all messages sent to and and from that entity are lost. From the point of
view of detectability, these faults are much more difficult than the previous one.

3. With Byzantine faults, a faulty entity is not bound by the protocol and can
perform any action: It can omit to send or receive any message, send incorrect
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information to its neighbors, behave maliciously so as to make the protocol
fail. Undetected software bugs often exhibit Byzantine faults. Clearly, dealing
with Byzantine faults is going to be much more difficult than dealing with the
previous ones.

A similiar hierarchy between faults exists in the link as well as in hybrid failures
models.

Communication Failures Model A totally different model is the communica-
tion failure or dynamic fault (DF) model; in this model, the blame for any fault is
put on the communication subsystem. More precisely, the communication system can
lose, corrupt, and deliver to the incorrect neighbor. As in this model, only the commu-
nication system can be faulty, a component fault such as the crash failure of a node, is
modeled by the communication system losing all the messages sent to and from that
node. Notice that in this model, no mark (permanent or otherwise) is assigned to any
component.

In the communication failure model, the communication subsystem can cause only
three types of faults:

1. An omission: A message sent by an entity is never delivered.

2. An addition: A message is delivered to an entity, although none was sent.

3. A corruption: A message is sent but one with different content is received.

While the nature of omissions and corruptions is quite obvious, that of additions is
less so. Indeed, it describes a variety of situations. The most obvious one is when sud-
den noise in the transmission channel is mistaken for transmission of information by
the neighbor at the other end of the link. The more important occurrence of additions in
sytems is rather subtle, as an addition models the reception of a “nonauthorized mes-
sage” (i.e., a message not transmitted by any authorized user). In this sense, additions
model messages surreptitiously inserted in the system by some outside, and possibly
malicious, entity. Spam being sent from an unsuspecting site clearly fits the descrip-
tion of an addition. Summarizing, additions do occur and can be very dangerous.

These three types of faults are quite incomparable with each other in terms of
danger. The hierarchy comes into place when two or all of these basic fault types can
simultaneously occur in the system. The presence of all three types of faults creates
what is called a Byzantine faulty behavior. The situation is depicted in Figure 7.2.

Clearly, no protocol can tolerate any number of faults of any type. If the entire
system collapses, no computation is possible. Thus, when we talk about fault-tolerant
protocols and fault-resilient computations, we must always qualify the statements and
clearly specify the type and number of faults that can be tolerated.

1 The term “Byzantine” refers to the Byzantine Empire (330–1453 AD), the long-lived eastern component
of the Roman Empire whose capital city was Byzantium (now Istanbul), in which endless conspiracies,
intrigue, and untruthfulness were alleged to be common among the ruling class.
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FIGURE 7.2: Hierarchy of combinations of fault types in the DF model.

7.1.3 Topological Factors

Our goal is to design protocols that can withstand as many and as dangerous faults as
possible and still exhibit a reasonable cost. What we will be able to do depends not
only on our ability as designers but also on the inherent limits that the environment
imposes. In particular, the impact of a fault, and thus our capacity to deal with it and
design fault-tolerant protocols, depends not only on the type and number of faults but
also on the communication topology of the system, that is, on the graph G.

This is because all nontrivial computations are global, that is, they require the
participation of possibly all entities. For this reason, Connectivity is a restriction
required for all nontrivial computations. Even when initially existent, in the lifetime
of the system, owing to faults, connectivity may cease to hold, rendering correctness
impossible. Hence, the capacity of the topological structure of the network to remain
connected in spite of faults is crucial.

There are two parameters that directly link topology to reliability and fault toler-
ance:

� edge connectivity cedge(G) is the minimum number of edges whose removal
destroys the (strong) connectivity of G;
� node connectivity cnode(G) is the minimum number of nodes whose removal

destroys the (strong) connectivity of G.

NOTE. In the case of a complete graph, the node connectivity is always defined as
n− 1.

Clearly, the higher the connectivity, the higher the resilience of the system to
component failures. In particular,

Property 7.1.1 If cedge(G) = k, then for any pair x and y of nodes there are k
edge-disjoint paths connecting x to y.
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Network Node Connectivity Edge Connectivity Max Degree
G cnode(G) cedge(G) deg(G)

Tree T 1 1 ≤ n− 1
Ring R 2 2 2

Torus T r 4 4 4
Hypercube H log n log n log n
Complete K n− 1 n− 1 n− 1

FIGURE 7.3: Connectivity of some networks.

Property 7.1.2 If cnode(G) = k, then for any pair x and y of nodes there are k
node-disjoint paths connecting x to y.

Let us consider some examples of connectivity. A treeT has the lowest connectivity
of all undirected graphs: cedge(T ) = cnode(T ) = 1, so any failure of a link or a node
disconnects the network. A ring R faces little better as cedge(R) = cnode(R) = 2.
Higher connectivity can be found in denser graphs. For example, in a hypercube H ,
both connectivity parameters are log n. Clearly the highest connectivity is to be found
in the complete network K . For a summary, see Figure 7.3.

Note that in all connected networks G the node connectivity is not greater than
the edge connectivity (Exercise 7.10.1) and neither can be better than the maximum
degree:

Property 7.1.3 ∀G, cnode(G) ≤ cedge(G) ≤ deg(G)

As an example of the impact of edge connectivity on the existence of fault-tolerant
solutions, consider the broadcast problem Bcast.

Lemma 7.1.1 If k arbitrary links can crash, it is impossible to broadcast unless the
network is (k + 1)-edge-connected.

Proof. If G is only k-edge-connected, then there are k edges whose removal dis-
connects G. The failure of those links will make some nodes unreachable from the
initiator of the broadcast and, thus, they will never receive the information. By con-
trast, if G is (k + 1)-edge-connected, then even after k links go down, by Property
7.1.1, there is still a path from the initiator to all other nodes. Hence flooding will
correctly work. �

As an example of the impact of node-connectivity on the existence of fault-tolerant
solutions, consider the problem of an initiator that wants to broadcast some informa-
tion, but some of the entities may be down. In this case, we just want the nonfaulty
entities to receive the information. Then (Exercise 7.10.2),

Lemma 7.1.2 If k arbitrary nodes can crash, it is impossible to broadcast to the
nonfaulty nodes unless the network is (k + 1)-node-connected.
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7.1.4 Fault Tolerance, Agreement, and Common Knowledge

In most distributed computations there is a need to have the entities to make a local
but coordinated decision. This coordinated decision is called an agreement.

For example, in the election problem, every entity must decide whether it is the
leader or not. The decision is local but must satisfy some global constraint (only one
entity must become leader); in other words, the entities must agree on which one is
the leader. For any problem requiring an agreement, the sets of constraints defining
the agreement are different. For example, in minimum finding, the constraint is that
all and only the entities with the smallest input value must become minimum. For
example, in ranking when every entity has an initial data item, the constraint is that
the value decided by each entity is precisely the rank of its data item in the overall
distributed set.

When there are no faults, reaching these agreements is possible (as we have seen in
the other chapters) and often straightforward. Unfortunately, the picture changes dra-
matically in presence of faults. Interestingly, the impact that faults have on problems
requiring agreement for their solution has common traits, in spite of the differences
of the agreement constraints. That is, some of the impact is the same for all these
problems.

For these reasons, we consider an abstract agreement problem where this common
impact of faults on agreements is more evident.

In the p-Agreement Problem (Agree(p)), each entity x has an input value v(x) from
some known set (usually {0, 1}) and must terminally decide upon a value d(x) from
that set within a finite amount of time. Here, “terminally” means that once made, the
decision cannot be modified. The problem is to ensure that at least p entities decide
on the same value. Additional constraints, called nontriviality (or sometimes validity
constraints), usually exist on the value to be chosen; in particular, if all values are
initially the same, the decision must be on that value. This nontriviality constraint
rules out default-type solutions (e.g., “always choose 0”).

Depending on the value of p, we have different types of agreement problems. Of
particular interest is the case of p = �n2 	 + 1 that is called strong majority.

When p = n, we have the well known Unanimity or Consensus Problem (Con-
sensus) in which all entities must decide on the same value, that is,

∀x, y ∈ E, d(x) = d(y). (7.1)

The consensus problem occurs in many different applications. For example, consider
an aircraft where several sensors are used to decide if the moment has come to drop
a cargo; it is possible that some sensors detect “yes” while others “not yet.” On the
basis of these values, a decision must be made on whether or not the cargo is to be
dropped now. A solution strategy for our example is to drop the cargo only if all
sensors agree; another is to decide for a drop as soon as at least one of the sensors
indicates so. Observe that the first solution corresponds to computing the AND of the
sensors’ values; in the consensus problem this solution corresponds to each entity x
setting d(x) = AND({v(y) : y ∈ E}). The second solution consists of determining the
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OR of those values, that is, d(x) = OR({v(y) : y ∈ E}). Notice that in both strategies,
if the initial values are identical, each entity chooses that value. Another example is in
distributed database systems, where each site (the entity) of the distributed database
must decide whether to accept or drop a transaction; in this case, all sites will agree
to accept the transaction only if no site rejects the transaction. The same solutions
strategy apply also in this case.

Summarizing, if there are no faults, consensus can be easily achieved (e.g., by
computing the AND or the OR of the values). Lower forms of agreement, that is,
when p < n, are even easier to resolve.

In presence of faults, the situation changes drastically and even the problem must
be restated. In fact, if an entity is faulty, it might be unable to participate in the
computation; even worse, its faulty behavior might be an active impediment for the
computation. In other words, as faulty entities cannot be required to behave correctly,
the agreement constraint can hold only for the nonfaulty entities. So, for example,
a consensus problem we are interested in is Entity-Fault-Tolerant Consensus (EFT-
Consensus).

Each nonfaulty entity x has an input value v(x) and must terminally decide upon
a value d(x) within a finite amount of time. The constraints are

1. agreement: all nonfaulty entities decide on the same value;

2. nontriviality: if all values of the nonfaulty elements are initially the same, the
decision must be on that value.

Similarly, we can define lower forms (i.e., when p < n) of agreement in presence
of entity failures (EFT-Agree(p)).

For simplicity (and without any loss of generality), we can consider the Boolean
case, that is when the values are all in {0, 1}. Possible solutions to this problem are, for
example, computing AND or the OR of the input values of the nonfaulty entities, or
the value of an elected leader. In other words, consensus (fault tolerant or not) can be
solved by solving any of a variety of other problems (e.g., function evaluation, leader
election, etc.). For this reason, the consensus problem is elementary: If it cannot be
solved, then none of those other problems can be solved either.

Reaching agreement, and consensus in particular, is strictly connected with the
problem of reaching common knowledge. Recall (from Section 1.8.1) that common
knowledge is the highest form of knowledge achievable in a distributed computing
environment. Its connection to consensus is immediate. In fact, any solution protocol
P to the (fault-tolerant) consensus problem has the following property: As it leads all
(nonfaulty) entities to decide on the same value, say d, then within finite time the value
d becomes common knowledge among all the nonfaulty entities. By contrast, any
(fault-tolerant) protocol Q that creates common knowledge among all the nonfaulty
entities can be used to make them decide on a same value and thus achieve consensus.

IMPORTANT. This implies that common knowledge is as elementary as consensus:
If one cannot be achieved, neither can be other.
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7.2 THE CRUSHING IMPACT OF FAILURES

In this section we will examine the impact that faults have in distributed computing
environments. As we will see, the consequences are devastating even when faults
are limited in quantity and danger. We will establish these results assuming that the
entities have distinct values (i.e., under restriction ID); this makes the bad news even
worse.

7.2.1 Node Failures: Single-Fault Disaster

In this section we examine node failures. We consider the possibility that entities may
fail during the computation and we ask under what conditions the nonfaulty entities
may still carry out the task. Clearly, if all entities fail, no computation is possible;
also, we have seen that some faults are more dangerous than others. We are interested
in computations that can be performed, provided that at most a certain number f of
entities fail, and those failures are of a certain type τ (i.e., danger).

We will focus on achieving fault-tolerant consensus (problem EFT-Consensus
described in Section 7.1.4), that is, we want all nonfailed entities to agree on the same
value. As we have seen, this is an elementary problem.

A first and immediate limitation to the possibility of achieving consensus in pres-
ence of node failures is given by the topology of the network itself. In fact, by Lemma
7.1.2, we know that if the graph is not (k + 1)-node-connected, a broadcast to non-
faulty entities is impossible if k entities can crash. This means that

Lemma 7.2.1 If k ≥ 1 arbitrary entities can possibly crash, fault-tolerant consensus
can not be achieved if the network is not (k + 1)-node-connected.

This means, for example, that in a tree, if a node goes down, consensus among the
others cannot be achieved.

Summarizing, we are interested in achieving consensus, provided that at most a
given number f of entities fail, those failures are of at most a certain type τ of danger,
and the node-connectivity of the network cnode is high enough. In other words, the
problem is characterized by those three paramenters, and we will denote it by EFT-
Consensus(f, τ, cnode).

We will start with the simplest case:

� f = 1, that is, at most one entity fails;
� τ = crash, that is, if an entity fails, it will be in the most benign way;
� cnode = n− 1, that is, the topology is not a problem as we are in the complete

graph.

In other words, we are in a complete network (every entity is connected to every
other entity); at most one entity will crash, leaving all the other entities connected to
each other. What we want is that these other entities agree on the same value, that is,
we want to solve problem EFT-Consensus(1, crash, n− 1). Unfortunately,
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Theorem 7.2.1 (Single-Fault Disaster) EFT-Consensus (1, crash, n− 1) is un-
solvable.

In other words, fault-tolerant consensus cannot be achieved even under the best of
conditions. This really means that it is impossible to design fault-tolerant solutions
for practically all important problems, as each could be used to achieve fault-tolerant
consensus.

Before proceeding further with the consequences of this result, also called FLP
Theorem (after the initials of those who first proved it), let us see why it is true.

What we are going to do is to show that no protocol can solve this problem, that
is, no protocol always correctly terminate within finite time if an entity can crash. We
will prove it by contradiction. We assume that a correct solution protocol P indeed
exists and then show that there is an execution of this protocol in which the entities
fail to achieve consensus in finite time (even if no one fails at all).

The proof is neither simple nor complex. It does require some precise terminology
and uses some constructs that will be very useful in other situations also. We will need
not only to describe the problem but also to define precisely the entire environment,
including executions, events, among others. Some of this notation has already been
introduced in Section 1.6.

Terminology Let us start with the problem. Each entity x has an input register Ix ,
a write-once output register Ox , as well as unlimited internal storage. Initially, the
input register of an entity is a value in {0, 1}, and all the output registers are set to the
same value b /∈ {0, 1}; once a value dx ∈ {0, 1} is written in Ox , the content of that
register is no longer modifiable. The goal is to have all nonfailed entities set, in finite
time, their output registers to the same value d ∈ {0, 1}, subject to the nontriviality
condition (i.e., if all input values are the same, then d must be that value).

Let us consider next the status of the system and the events being generated during
an execution of the solution protocol P .

An entity reacts to external events by executing the actions prescribed by the
protocol P . Some actions can generate events that will occur later. Namely, when an
entity x sends a message, it creates the future event of the arrival of that message;
similarly, when an entity sets the alarm clock, it creates the future event of that alarm
ringing. (Although an entity can reset its clock as part of its processing, we can assume,
without loss of generality, that each alarm will always be allowed to ring at the time
it was originally set for.)

In other words, as described in Chapter 1, at any time t during the execution
of a protocol, there is a set Future(t) of the events that have been generated so far
but have not happened yet. Recall that initially, Future(0) contains only the set of
the spontaneous events. To simplify the discussion, we assume that all entities are
initiators (i.e., the set Future(0) contains an impulse for each entity), and we will treat
both spontaneous events and the ringing of the alarm clocks as the same type of events
and call them timeouts. We represent by (x,M) the event of x receiving messageM ,
and by (x,∅) the event of a timeout occurring at x.
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As we want to describe what happens to the computation if an entity fails by
crashing, we add special system events called crashes, one per entity, to the initial set
of events Future(0), and denote by (x, crash) the crash of entity x. As we are interested
only in executions where there is at most one crash, if event (x, crash) occurs at time t ,
then all other crash events will be removed from Future(t). Furthermore, if x crashes,
all the messages sent to x but not arrived yet will no longer be processed; Similarly,
any timeout set by x but not occurred yet, will no longer occur. In other words, if
event (x, crash) occurs at time t , all events (arrivals and timeouts) involving x will
be removed from all Future(t ′) with t ′ ≥ t .

Recall from Section 1.6 that the internal state of an entity is the value of all its
registers and internal storage. Also recall that the configuration C(t) of the system
at time t is a snapshot of the system at time t; it contains the internal state of each
entity and the set Future(t) of the future events that have been generated so far.
A configuration is nonfaulty if no crash event has occured so far, faulty otherwise.
Particular configurations are the initial configuration, when all processes are at their
initial state and Future is composed of all and only the spontaneous and crash events;
by definition, all initial configurations are nonfaulty.

When an arrival or a timeout event ε occurs at x, x will act according to the protocol
P : It will perform some local processing (thus changing its internal state); it might
send some messages and set up its alarm clock; in other words, there will be a change
in the configuration of the system (because event ε has been removed from Future,
the internal state of x has changed, and some new events have been possibly added to
Future). Clearly the configuration changes also if the event ε is a crash; notice that this
event can occur only if no crash has occured before. Regardless of the nature of event
ε, we will denote the new configuration as ε(C) where C was the configuration when
the event occurred; we will say that ε is applicable to C and that the configuration
ε(C) is reachable from C.

We can extend this notation and say that a sequence of events ψ = ε1ε2 . . . εk is
applicable to configuration C if εk is applicable to C, and εk−1 is applicable to εk(C),
and εk−2 is applicable to εk−1(εk(C)), . . ., and ε1 is applicable to ε2(. . . (εk(C)) . . .);
we will say that the resulting configuration C′ = ε1(ε2(. . . (εk(C)) . . .)) = ψ(C) is
reachable from C.

If an entity x sets the output registerOx to either 0 or 1, we say that x has decided
on that value, and that state is called a decision state. The output register value cannot
be changed after the entity has reached a decision state, that is, once x has made a
decision, that decision cannot be altered. A configuration where all nonfailed entities
have decided on the same value is called a decision configuration; depending on the
value, we will distinguish between a 0-decision and a 1-decision configuration.

Notice that once an entity makes a decision it cannot change it; hence, all config-
urations reachable by a 0-decision configuration are also 0-decision (similarly in the
case of 1-decision).

Consider a configuration C and the set C(C) of all configurations reachable from
C. If all decision configurations in this set are 0-decision (respective 1-decision), we
say thatC ia 0-valent (respective 1-valent); in other words, in a v-valent configuration,
whatever happens, the decision is going to be on v. If, instead, there are both 0-decision
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FIGURE 7.4: Commutativity of disjoint sequences of events.

and 1-decision configurations in C(C), then we say that C is bivalent; in other words,
in a bivalent configurations, which value is going to be chosen depends on the future
events.

An important property of sequences of events is the following. Suppose that from
some configuration C, the sequences of events ψ1 and ψ2 lead to configurations C1
and C2, respectively. If the entities affected by the events in ψ1 are all different from
those affected by the events in ψ2, then ψ2 can be applied to C1 and ψ1 to C2, and
both lead to the same configuration C3 (see Figure 7.4). More precisely,

Lemma 7.2.2 Let ψ1 and ψ2 be sequences of events applicable to C such that

1. the sets of entities affected by the events inψ1 andψ2, respectively, are disjoint;
and

2. at most one of ψ1 and ψ2 includes a crash event.

Then, both ψ1ψ2 and ψ2ψ1 are applicable to C. Furthermore, ψ1(ψ2(C)) =
ψ2(ψ2(C)).

If a configuration is reachable from some initial configuration, it will be called
accessible; we are interested only in accessible configurations. Consider an accessible
configuration C; a sequence of events applicable to C is deciding if it generates a
decision configuration; it is admissible if all messages sent to nonfaulty entities are
eventually received. Clearly, we are interested only in admissible sequences.

Proof of Impossibility Let us now proceed with the proof of Theorem 7.2.1.
By contradiction, assume that there is a protocolP that correctly solves the problem

EFT-Consensus(1, crash, n− 1), that is, in every execution of P in a complete graph
with at most one crash, within finite time all nonfailed entities decide on the same
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value (subject to the nontriviality condition). In other words, if we consider all the
possible executions of P , every admissible sequence of events is deciding.

The proof involves three steps. We first prove that among the initial configurations,
there is at least one that is bivalent (i.e., where, depending on the future events,
both a 0 and a 1 decision are possible). We then prove that starting from a bivalent
configuration, it is always possible to reach another bivalent configuration. Finally,
using these two results, we show how to construct an infinite admissible sequence
that is not deciding, contradicting the fact that all admissible sequence of events in
the execution of P are deciding.

Lemma 7.2.3 There is a bivalent initial configuration.

Proof. By contradiction, let all initial configurations be univalent, that is, either
0- or 1-valent. Because of the nontriviality condition, we know that there is at least
one 0-valent initial configuration (the one where all input values are 0) and one 1-
valent initial configuration (the one where all input values are 0). Let us call two initial
configurations adjacent if they differ only in the initial value of a single entity.

For any two initial configurations C and C′, it is always possible to find a chain
of initial configurations, each adjacent to the next, starting with C and ending with
C′. Hence, in this sequence there exists a 0-valent initial configuration C0 adja-
cent to a 1-valent initial configuration C1. Let x be the entity in whose initial value
they differ. Now consider an admissible deciding sequence ψ for C0 in which the
first event is (crash, x). Then, ψ can be applied also to C1, and the corresponding
configurations at each step of the sequence are identical except for the internal state
of entity x. As the sequence is deciding, eventually the same decision configuration
is reached. If it is 1-decision, then C0 is bivalent; otherwise, C1 is bivalent. In either
case, the assumed nonexistence of a bivalent initial configuration is contradicted. �

Lemma 7.2.4 Let C be a nonfaulty bivalent configuration, and let ε = (x,m) be a
noncrash event that is applicable to C. Let A be the set of nonfaulty configurations
reachable from C without applying ε, and let B = ε(A) = {ε(A) | A ∈ A and ε is
applicable to A} (See Figure 7.5). Then,B contains a nonfaulty bivalent configuration.

Proof. First of all, observe that as ε is applicable toC, by definition ofA and because
of the unpredictability of communication delays, ε is applicable to every A ∈ A.

Let us now start the proof. By contradiction, assume that every configuration
B ∈ B is univalent. In this case, B contains both 0-valent and 1-valent configurations
(Exercise 7.10.4).

Call two configurations neighbors if one is reachable from the other after a single
event, and x-adjacent if they differ only in the internal state of entity x. By an easy
induction (Exercise 7.10.5), there exist two x-adjacent (for some entity x) neighbors
A0, A1 ∈ A such that D0 = ε(A0) is 0-valent and D1 = ε(A1) is 1-valent. Without
loss of generality, let A1 = ε′(A0) where ε′ = (y,m′).

Case I. If x �= y, then D1 = ε′(D0) by Lemma 7.2.2. This is impossible as any
successor of a 0-valent configuration is also 0-valent (see Figure 7.6).
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FIGURE 7.5: The situation of Lemma 7.2.4.

Case II. If x = y, then consider the two configurations E0 = cx(D0) and E1 =
cx(D1), where cx = (x, crash); as both ε and ε′ are noncrash events involving x, and
the occurrence of cx removes fromFuture all the future events involving x, it follows
that E0 and E1 are x-adjacent. Therefore, if we apply to both the same sequence of
events not involving x, they will remain x-adjacent. As P is correct, there must be a
finite sequence ψ of (noncrash) events not involving x that, starting fromE0, reaches
a decision configuration; as E0 is 0-valent, ψ(E0) is 0-decision (see Figure 7.7). As
the events in ψ are noncrash and do not involve x, they are applicable also to E1 and
ψ(E0) and ψ(E1) are x-adjacent. This means that all entities other than x have the
same state inψ(E0) and inψ(E1); hence, alsoψ(E1) is 0-decision. AsE1 is 1-valent,

A1

A0

D0

D1

FIGURE 7.6: The situation in Case 1 of Lemma 7.2.4.
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FIGURE 7.7: The situation in Case 2 of Lemma 7.2.4. The valency of the configuration, if

known, is in square brackets.

ψ(E1) is also 1-valent, a contradiction. So B contains a bivalent configuration; as, by
definition, B is only composed of nonfaulty configurations, the lemma follows. �

Any deciding sequence ψ of events from a bivalent initial configuration goes
to a univalent configuration, so there must be some single event in that sequence
that generates a univalent configuration from a bivalent one; it is such an event that
determines the eventual decision value. We now show that using Lemmas 7.2.4 and
7.2.3 as tools, it is always possible to find a fault-free execution that avoids such
events, creating a fault-free admissible but nondeciding sequence.

We ensure that the sequence is admissible and nondeciding in the following way.

1. We maintain a queue Q of entities, initially in an arbitrary order.

2. We remove from the set of initial events all the crash events, that is, we consider
only fault-free executions.

3. We maintain the future events sorted (in increasing order) according to the time
they were originated.

4. We construct the sequence in stages as follows:

(a) The execution begins in a bivalent initial configurationCb whose existence
is assured by Lemma 7.2.3.

(b) Starting stage i from a bivalent configuration C, say at time t , consider the
first entity x in the queue that has an event in Future(t). Let ε be the first
event for x in Future(t).

(c) By Lemma 7.2.4, there is a bivalent configuration C′ reachable from C

by a sequence of events, say ψ , in which ε is the last event applied. The
sequence for stage i is precisely this sequence of events ψ .

(d) We execute the constructed sequence of events, ending in a bivalent con-
figuration.

(e) We move x and all preceeding entities to the back of the queue and start
the next stage.
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In any infinite sequence of such stages every entity comes to the front of the queue
infinitely many times and receives every message sent to it. The sequence of events
so constructed is therefore admissible. As each stage starts and ends in a bivalent
configuration, a decision is never reached. The sequence of events so constructed is
therefore nondeciding.

Summarizing, we have shown that there is an execution in which protocol P never
reaches a decision, even if no entity crashes. It follows that P is not a correct solution
to our consensus problem.

7.2.2 Consequences of the Single-Fault Disaster

The Single-Failure Disaster result of Theorem 7.2.1 dashes any hope for the design of
fault-tolerant distributed solution protocols for nontrivial problems and tasks. Because
the consensus problem is an elementary one, the solution of almost every nontrivial
distributed problem can be used to solve it, but as consensus cannot be solved even if
just a single entity may crash, also all those other problems cannot be solved if there
is the possibility of failures.

The negative impact of this fact must not be underestimated; its main consequence
is that

it is impossible to design fault-tolerant communication software.

This means that to have fault tolerance, the distributed computing environment
must have additional properties. In other words, while in general not possible (because
of Theorem 7.2.1), some degree of fault tolerance might be achieved in more restricted
environments.

To understand which properties (and thus restrictions) would suffice we need to
examine the proof of Theorem 7.2.1 and to understand what are the particular condi-
tions inside a general distributed computing environment that make it work. Then, if
we disable one of these conditions (by adding the appropriate restriction), we might
be able to design a fault-tolerant solution.

The reason why Theorem 7.2.1 holds is that, as communication delays are finite
but unpredictable, it is impossible to distinguish between a link experiencing very
long communication delays and a failed link. In our case, the crash failure of an entity
is equivalent to the simultaneous failure of all its links. So, if entity x is waiting for
a reply from y and it has not received one so far, it cannot decide whether y has
crashed or not. It is this “ambiguity” that leads, in the proof, to the construction of an
admissible but nondeciding infinite sequence of events.

This means that to disable that proof we need to ensure that this fact (i.e., this
“ambiguity”) cannot occur. Let us see how this can be achieved.

First of all observe that if communication delays were bounded and clock syn-
chronized, then no ambiguity would occur: As any message would take at most �
time, if entity x sends a message to y and does not receive the expected reply from
y within 2� time, it can correctly decide that y has crashed. This means that, in

2 Recall that communication delays include both transmission and processing delays.
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synchronous systems, the proof of Theorem 7.2.1 does not hold; in other words, the
restrictions Bounded Delays and Synchronized Clocks together disable that proof.

Next observe that the reason why in a synchronous environment the ambiguity is
removed is because the entities can use timeouts to reliably detect if a crash failure
has occurred. Indeed, the availability of any reliable fault detector would remove
any ambiguity and thus disable that proof of Theorem 7.2.1. In other words, either
restriction Link-Failure Detection or restriction Node-Failure Detection would disable
that proof even if communication delays are unbounded.

Observing the proof, another point we can make is that it assumes that all initial
bivalent configuration are nonfaulty, that is, the fault has not occurred yet. This is
necessary in order to give the “adversary” the power to make an entity crash when
most appropriate for the proof. (Simple exercise question : Where in the proof does
the adversary exercise this power?) If the crash has occurred before the start of the
execution, the adversary loses this power. It is actually sufficient that the faulty entity
crashes before it sends any message, and the proof does no longer hold. This means
that it might still be possible to tolerate some crashes if they have already occurred, that
is, they occur before the faulty entities send messages. In other words, the restriction
Partial Reliability stating that no faults will occur during the execution of the protocol
would disable the proof, even if communication delays are unbounded and there are
no reliable fault detectors.

Notice that disabling the proof we used for Theorem 7.2.1 does not imply that
the Theorem does not hold; indeed a different proof could still work. Fortunately, in
those restricted environments we have just indicated that the entire Theorem 7.2.1 is
no longer valid, as we will see later.

Finally, observe that the unsolvability stated by Theorem 7.2.1 means that there is
no deterministic solution protocol. It does not, however, rule out randomized solutions,
that is, protocols that use randomization (e.g., flip of a coin) inside the actions. The
main drawback of randomized protocols is that they do not offer any certainty: Either
termination is not guaranteed (except with high probability) or correctness is not
guaranteed (except with high probability).

Summarizing, the Single-Failure Disaster result imposes a dramatic limitation on
the design of fault-tolerant protocols. The only way around (possibly) is by substan-
tially restricting the environment: investing in the software and hardware necessary
to make the system fully synchronous; constructing reliable fault detectors (unfor-
tunately, none exists so far except in fully synchronous systems); or, in the case of
crash faults only, ensuring somehow that all the faults occur before we start, that is,
partial reliability. Alternatively, we can give up certainty on the outcome and use
randomization.

7.3 LOCALIZED ENTITY FAILURES: USING SYNCHRONY

In fully synchronous environment, the proof of the Single-Failure Disaster theorem
does not hold. Indeed, as we will see, synchronicity allows a high degree of fault
tolerance.
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Recall from Chapter 6 that a fully synchronous system is defined by two restric-
tions: Bounded Delays and Synchronized Clocks. We can actually replace the first
restriction with the Unitary Delays one, without any loss of generality. These restric-
tions together are denoted by Synch.

We consider again the fault-tolerant consensus problem EFT-Consensus (intro-
duced in Section 7.1.4) in the complete graph in case of component failures, and
more specifically we concentrate on entity failures, that is, the faults are localized
(i.e., restricted) to a set of entities (eventhough we do not know beforehand which
they are). The problem asks for all the nonfaulty entities, each starting with an ini-
tial value v(x), to terminally decide on the same value in finite time, subject to the
nontriviality condition: If all initial values are the same, the decision must be on that
value.

We will see that if the environment is fully synchronous, under some additional
restrictions, the problem can be solved even when almost one third of the entities are
Byzantine. In the case of crash failures, we can actually solve the problem tolerating
any number of failures.

7.3.1 Synchronous Consensus with Crash Failures

In a synchronous system in which the faults are just crashes of entities, under some
restrictions, consensus (among the nonfailed entities) can be reached regardless of
the number f of entities that may crash. The restrictions considered here are

Additional Assumptions

1. Connectivity, Bidirectional Links;

2. Synch;

3. the network is a complete graph;

4. all entities start simultaneously;

5. the only type of failure is entity crash.

Note that an entity can crash while performing an action, that is, it may crash after
sending some but not all the messages requested by the action.

Solution Protocols In this environment there are several protocols that achieve
consensus tolerating up to f ≤ n− 1 crashes. Almost all of them adopt the same
simple mechanism, Tell All(T ), where T is an input parameter. The basic idea behind
the mechanism is to collect at each nonfaulty entity enough information so that all
nonfaulty entities are able to make the same decision by a given time.

Mechanism Tell All (T )

� At each time step t ≤ T , every nonfailed entity x sends to all its neighbors a
message containing a “report” on everything it knows and waits for a similar
message from each of them.
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TellAll-Crash.

begin
for t = 0, . . . , f do

compute rep(x, t);
send rep(x, t) to N (x);

endfor
Ox := rep(x, f + 1);

end

FIGURE 7.8: Protocol TellAll-Crash.

� If x has not received a message from neighbor y by time t + 1, it knows that
y has crashed; if it receives a message from y, it will know a “report” on what
y knew at time t (note that in case of Byzantine faults, this “report” could be
false).

For the appropriate choice of T and with the appropriate information sent in the
“report,” this mechanism enables the nonfaulty entities to reach consensus. The actual
value of T and the nature of the report depend on the types and number of faults the
protocol is supposed to tolerate.

Let us now see a fairly simple consensus protocol, called TellAll-Crash and on the
basis of this mechanism, that tolerates up to f ≤ n− 1 crashes. The algorithm is just
mechanism Tell All where T = f and the “report” consists of the AND function of
all the values seen so far. More precisely,

rep(x, t) =
{

v(x) if t = 0

AND(rep(x, t − 1),M(x1, t), . . . ,M(xn−1, t)) otherwise
, (7.2)

where x1, . . . , xn−1 are the neighbors of x andM(xi, t) denotes the message received
by x from xi at time t if any, otherwise M(xi, t) = 1. The protocol is shown in
Figure 7.8.

To see how and why protocol TellAll-Crash works, let us make some observations.
Let F be the set of enties that crashed before or during the execution of the protocol,
and S the others. Clearly, |F | ≤ f and |F | + |S| = n.

Property 7.3.1 If all entities start with initial value 1, all entities in S will decide
on 1.

Property 7.3.2 If an entity x ∈ S has or receives a 0 at time t ≤ f , then all entities
in S will receive a 0 at time t + 1.

Property 7.3.3 If an entity x ∈ S has or receives a 0 during the execution of the
protocol, it will decide on 0.
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These three facts imply that all nonfailed entities will decide on 0 if at least one of
them has initial value 0 and will decide on 1 if all entities have initially 1.

The only case left to consider is when all entities in S have initially 1 but some
entities in F have initially 0. If any of the latter does not crash in the first step, by time
t = 1 all entities in S will receive 0 and thus decide on 0 at time f + 1. This means
that the nonfailed entities at time t = f + 1 will all decide on 0 unless

1. up to time f they have seen and received only 1; and

2. at time f + 1 some (but not all) of them receive 0.

In fact, in such a case, as the execution terminates at time f + 1, there is no time for
the nonfailed entities that have seen 0 to tell the others.

Can this situation occur in reality ?
For this situation to occur, the 0 must have been sent at time f by some entity yf ;

note that this entity must be in F and crash in this step, sending the 0 only to some
of its neighbors (otherwise all entities in S and not just some would have received
0 at time f + 1). Also, yf must have initially had 1 and received 0 only at time f
(otherwise it would have sent it before and as it had not crashed yet, everybody would
have received it). Let yf−1 be one of the entities that sent the 0 received by yf at
time f ; note that this entity must be in F and crashed in that step, sending the 0
only to yf and other entities not in S (otherwise all entities in S would receive 0 by
time f + 1). Also, yf−1 must have initially had 1 and received 0 only at time f − 1
(otherwise it would have sent 0 before and as it had not crashed yet, everybody would
have received it).

Using the same type of reasoning, for the situation to occur, there must be a
sequence of entities yf , yf−1, yf−2, . . . where entity yf−j (j ≤ f − 1) sent 0 to
yf−j+1 and crashed at time f − j before transmitting 0 to entities in S (otherwise
all entities in S would receive 0 by time f − j + 1); furthermore, yf−j initially had
1 and received only 1 until time f − j (otherwise it would have sent 0 before and
as it had not crashed yet, everybody would have received it). There must also be an
entity y0 that initially had 0, sent it to y1 at time t = 0, and crashed before any other
transmission. However, this implies that at least f + 1 entities crashed during the
execution (y0, . . . , yf ), which is absurd as by definition at most f entities crash.

Summarizing, this situation cannot occur. Hence,

Theorem 7.3.1 Protocol TellAll-Crash solves EFT-Consensus (f, crash, n− 1) in
a fully synchronous complete network with simultaneous start for all f ≤ n− 1.

Let us now look at the cost of protocol TellAll-Crash. It comprises f + 1 rounds
in which each nonfailed entity sends a single bit to all its neighbors. Hence,

B(TellAll− Crash) ≤ n(n− 1)(f + 1) (7.3)

T(TellAll− Crash) = f + 1. (7.4)



LOCALIZED ENTITY FAILURES: USING SYNCHRONY 429

Hacking The bit complexity can be reduced somehow. Let us understand why and
how.

First observe that the reason the nonfailed entities transmit in each round of protocol
TellAll-Crash is only to propagate the 0 value one of them might have seen (and of
which the other entities migh not yet be aware). In fact, if none of the entities sees
a 0, they will only see and transmit 1 and decide on 1. In a sense, 1 is the default
value and it will be decided upon unless a nonfailed entity sees a 0. This means that
as long as an entity sees just 1, it is not going to change the default situation. Observe
next that once an entity x sends 0 in a round t , there is no need for x to send it in
the next rounds: If x does not crash in round t , the 0 will reach all nonfailed entities;
if x crashes, it cannot send it anyway. Summarizing, sending 1 is useless, and so is
sending 0 for more than one round.

On the basis of this fact, we can modify the protocol so that a nonfailed entity sends
a message to its neighbor only the first time it sees 0. Interestingly, Facts 7.3.1–7.3.3
still hold for the new protocol, called TellZero-Crash, as shown in Figure 7.9. In fact,
the proof of Theorem 7.3.1, with almost no modifications, can be used to show that

Theorem 7.3.2 Protocol TellZero-Crash solves EFT-Consensus (f, crash, n− 1)
in a fully synchronous complete network with simultaneous start for all f ≤ n− 1.

Protocol TellZero-Crash still comprisesf + 1 rounds. However, an entity transmits
only the first time, if any, it sees 0. This means that

B(TellZero− Crash) ≤ n(n− 1) (7.5)

T(TellZero− Crash) = f + 1. (7.6)

Notes and Remarks These bounds have been established assuming that both
the initial and the decision values are in {0, 1}. If this is not the case, we can still
solve the problem with simple modifications to the original protocols. See Exercises
7.10.8 –7.10.10.

These bounds are established assuming that all entities start simultaneously. If this
is not the case, we can still solve the problem by first performing a wake-up (with
possibility of crashes). See Exercises 7.10.6 and 7.10.7.

TellZero-Crash

begin
if Ix = 0 then send 0 to N (x);
for t = 1, . . . , f do

compute rep(x, t);
if (rep(x, t) = 0 and rep(x, t − 1) = 1) then send 0 to N (x);

endfor
Ox := rep(x, f + 1);

end

FIGURE 7.9: Protocol TellZero-Crash.
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These bounds are established assuming that the network is a complete graph. If
this is not the case, and the network is a graph G, the problem can still be solved,
provided

f < cnode(G), (7.7)

with exactly the same protocols. See Exercises 7.10.11 and 7.10.12.

7.3.2 Synchronous Consensus with Byzantine Failures

A Byzantine entity can send what it wants at any time it wants to any neighbor
it wants. We should assume that the Byzantine entities are actually malicious, that
is, they can send false information, tell lies, and generally act so as to make our
protocol fail. The presence of Byzantine entities clearly makes the task of achieving
a consensus among the nonfaulty entities quite difficult. Still, the fact that the system
is synchronous makes this task possible in spite of a large number of faults. In fact,
as we will see, in a synchronous complete graph, fault-tolerant consensus is possible
even with (n3 − 1) Byzantine entities.

This and related results are established under the following set BA of restrictions :

Additional Assumptions (BA)

1. Connectivity, Bidirectional Links;

2. Synch;

3. each entity has a unique id;

4. the network is a complete graph;

5. all entities start; simultaneously;

6. each entity knows the ids of its neighbors.

Achieving Byzantine Consensus In this section, we present a fairly simple
algorithm for Boolean consensus, that is, when initial and decision values are in
{0, 1}; we will see later how to transform it into an algorithm for a general value
consensus with the same cost.

We will use the same idea of protocol TellZero-Crash we described in the previous
section when dealing with crash failures: We will use information messages only to
propagate the value 0, if any; after an appropriate amount of steps, each nonfaulty
entity will decide on 0 if one of the received values was 0.

Protocol TellZero-Crash was simply a “wake-up” process with the value 0 being
the “wake-up message”: Initially “awake” if the initial value is 0, an “awake” entity
would send immediately and only once the “wake-up message” 0 to all its neighbors.
As we are assuming that entities have distinct ids, we can differenciate 0s sent by
different senders; furthermore, as we assume simultaneous start, we can also put
the time step inside the message. This means that our wake-up messages are of the
form〈0, id(s), t〉, where s is the sender, id(s) its unique id, and t the time step when
the message is sent.
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Let us see what can go wrong if we were to use the same technique in a Byzantine
setting.

� A Byzantine entity z can lie and forge messages; thus, z could send 〈0, id(x), t〉
to y, with x �= z. (It can also lie about the time t , but as the system is synchronous
that would expose z as a faulty entity.)
� A Byzantine entity z can send different information to different neighbors; so,

at the same time step t , it can send 〈0, id(z), t〉 to x and nothing at all to y. As
a consequence, some nonfaulty entities may decide 0 while others 1, violating
consensus.

The first problem is not really severe; in fact, as each entity knows the identity of
its neighbors (restrictions BA), when x receives a message it can detect whether the
id inside is the correct one and trash the message if it is forged.

The second problem is, however, severe; as a consequence, a nonfaulty x can not
simply accept any wake-up message it receives.

To see how to deal with this problem, note that what matters is not if a wake-up
message was originated by a Byzantine entity, but rather if the same message was
received by all nonfaulty entities. In fact, if all nonfaulty entities accept the same
information, then (regardless of its origin) they will take the same decision.

Therefore, what we need is a mechanism, to be used by the protocol, that allows x
to decide whether all the other nonfaulty entities also received this wake-up message;
only then, x will accept the wake-up message, even if originated by a Byzantine entity.
In other words, this mechanism must ensure that if the originator is nonfaulty, then the
wake-up is accepted; if the originator is faulty, then it is accepted only if all nonfaulty
entities received it.

The mechanism that we will call RegisteredMail and describe below dictates what
actions must be taken when a nonfaulty entity wants to send a wake-up message, and
when a nonfaulty entity receives this message.

Mechanism RegisteredMail:

1. To send a registered wake-up 〈0, id(x), t〉 at time t , a nonfaulty entity x transmits
a message 〈“init”, 0, id(x), t〉 to all entities at time t .

2. If a nonfaulty entity y receives 〈“init”, 0, id(x), t〉 from x at time t + 1, it
transmits 〈“echo”, 0, id(x), t〉 to all entities at time t + 1.

3. If a nonfaulty entity y receives 〈“init”, 0, id(x), t〉 at time t ′, it ignores the
message if t ′ �= t + 1 or the message is not from x or it already received a
〈“init”, 0, id(x), t”〉 with t”�= t .

4. If a nonfaulty entity y by time t ′ ≥ t + 2 has received 〈“echo”, 0, id(x), t〉 from
at least f + 1 different entities, then y transmits 〈“echo”, 0, id(x), t〉 (if it has
not already done so) at time t ′ to all entities.

5. If a nonfaulty entity y by time t ′ ≥ t + 1 has received 〈“echo”, 0, id(x), t〉
messages from at least n− f different entities, then y accepts the registered
wake-up 〈0, id(x), t〉 (if it has not already done so) at time t ′.
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Let us now verify that RegisteredMail is exactly the mechanism we are looking
for.

Theorem 7.3.3 Let n > 3f ; then Mechanism RegisteredMail satisfies the following
conditions with respect to registered wake-up 〈0, id(x), t〉:

1. if x is nonfaulty and sends the registered wake-up 〈0, id(x), t〉, then the wake-up
is accepted by all nonfaulty entities by time t + 2;

2. if the wake-up 〈0, id(x), t〉 is accepted by any nonfaulty entity at time t ′ > t ,
then it is accepted by all nonfaulty entities by time t ′ + 1;

3. if x is nonfaulty and does not send the registered wake-up 〈0, id(x), t〉, then the
wake-up is not accepted by the nonfaulty entities.

Proof. (1) Suppose that a nonfaulty entity x starts RegisteredMail at time t : It sends
〈“init”, 0, id(x), t〉 to all entities at time t ; all the n− f nonfaulty entities receive it
and send 〈“echo”, 0, id(x), t〉 at time t + 1. Thus, by time t + 2, each nonfaulty entity
receives 〈“echo”, 0, id (x), t〉 from at least n− f entities and accepts the wake-up
message 〈0, id(x), t〉.

(2) Suppose that a registered wake-up 〈0, id(x), t〉 is accepted by a nonfaulty
entity y at time t ′ > t . Then y must have received at least n− f 〈“echo”, 0, id(x), t〉
messages by time t ′. These messages were sent at time t ′ − 1 or before. Among the
n− f senders of these messages, at least (n− f )− f ≥ f + 1 are nonfaulty. As
nonfaulty entities send the same message to all entities, every nonfaulty entity must
have received at least f + 1 〈“echo”, 0, id(x), t〉messages by time t ′. This means that
all the nonfaulty entities have sent 〈“echo”, 0, id(x), t〉 by time t ′; as a consequence,
every nonfaulty entity receives at least n− f 〈“echo”, 0, id(x), t〉 messages by time
t ′ + 1. Therefore, the registered wake-up 〈0, id(x), t〉 is accepted by all nonfaulty
entities by time t ′ + 1.

(3) If a nonfaulty entity x does not start RegisteredMail at time t , then it sends
no 〈“init”, 0, id(x), t〉 messages; thus, any message 〈“init”, 0, id(x), t〉 sent in the
system is a forgery, that is, sent by a faulty entity. Therefore, if a nonfaulty en-
tity y receives 〈“init”, 0, id(x), t〉 at time t + 1, because of restrictions BA, it can
detect that the sender is not x and will not consider the message at all. In other
words, the nonfaulty entities do not transmit 〈“echo”, 0,id(x), t〉 messages. As a
consequence, the only 〈“echo”, 0, id(x), t〉 messages a nonfaulty entity receives
are sent by faulty ones; as there are only f faulty entities and n− f > f , by
Rule 3 of RegisteredMail, a nonfaulty entity never accepts the registered wake-up
〈0, id(x), t〉. �

Now we describe a simple binary Byzantine agreement algorithm, called TellZero-
Byz, that uses RegisteredMail for sending and accepting wake-up messages.

The algorithm operates in f + 2 stages, 0, . . . , f + 1, where stage i is composed
of two time steps, 2i and 2i + 1. In the first stage, at time 0, every nonfaulty entity
with initial value 0 starts RegisteredMail to send a registered wake-up of a stage.
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IMPORTANT. For simplicity, in the description of the protocol and in its analysis,
when an entity sends a message, we will assume that it will send it also to itself (i.e.,
it will receive it in the next time unit).

Protocol TellZero-Byz:

1. At time 0, every nonfaulty entity x with Ix = 0 (i.e., whose initial value is 0)
starts RegisteredMail to send 〈0, id(x), 0〉.

2. At time 2i (i.e., in the first step of stage i), 1 ≤ i ≤ f + 1, a nonfaulty entity x
starts RegisteredMail to send 〈0, id(x)), 2i〉 if and only if x has accepted wake-
up messages from at least f + i − 1 different entities by time 2i , and x has
not yet originated a wake-up message.

3. At time 2(f + 2) (i.e., in the first step of stage f + 2), a nonfaulty entity x
decides on 0 if and only if by that time x has accepted wake-up messages from
at least 2f + 1 different entities. Otherwise, x decides 1.

Observe that the mechanism RegisteredMail is started only at even time steps. Let
us now analyze the correctness and complexity of the protocol.

Theorem 7.3.4 Protocol TellZero-Byz solves EFT-Consensus (f,Byzantine,
n− 1) with Boolean initial values in a synchronous complete network under
restrictions BA for all f ≤ n

3 − 1.

Proof. By construction, the protocol terminates after 2(f + 2) time units. To prove
the theorem we need to show that both nontriviality and agreement conditions hold.

Let us first consider nontriviality. If all nonfaulty entities have initial value 0, they
all start RegisteredMail at time 0, and, by Theorem 7.3.3(1), they all accept these
messages by time 2. In other words, each nonfaulty entity accepts wake-up messages
from at least n− f ≥ 2f + 1 different entities by time 2. Thus, according to the
Protocol, they will all decide 0 when the protocol terminates.

If all nonfaulty entities have initial value 1, they do not send a registered wake-up.
Actually, in this case, each nonfaulty entity never starts RegisteredMail at any time. In
fact, to start RegisteredMail at time t ′ > 0, a nonfaulty entity needs to have accepted at
least f + 1 wake-ups, but only the f faulty entities may possibly have sent one. Thus,
according to the protocol, the nonfaulty entities will all decide 1 when the protocol
terminates.

Let us now consider agreement. We need to show that, if a nonfaulty entity x
decides 0, then all the other nonfaulty entities also decide 0. Let x decide 0; this
means that by time t = 2(f + 2), x must have accepted wake-up messages from at
least 2f + 1 different entities, some faulty and some not. LetR be the set of nonfaulty
entities among these; then |R| ≥ (2f + 1)− f = f + 1.

If all the entities in R have initial values 0, then each starts RegisteredMail at
time 0 to send its wake-up message; thus, by Theorem 7.3.3(1), all nonfaulty entities
accepted these messages by time 2. In other words, at time 2, each nonfaulty entity
has accepted messages from |R| ≥ f + 1 different entities; by rule 2 of TellZero-Byz,
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each nonfaulty entity y (that has not yet sent its own wakeup message) will now
start RegisteredMail to send its wake-up message 〈0, y, 2〉. By Theorem 7.3.3(1), all
nonfaulty entities will accept these messages by time 4. Thus, they will all decide 0
when the protocol terminates, at time 2(f + 2) ≥ 4.

Summarizing, if all the entities inR have initial values 0, by time 4 every nonfaulty
entity x accepts wake-up messages from at least n− f ≥ 2f + 1 different entities.
Thus, they will all decide 0 when the protocol terminates at time 2(f + 2) ≥ 4.

Consider now the case when one of the entities in R, say y, has initial value 1,
and thus does not start RegisteredMail at time 0. As its message was accepted by x,
y must have started RegisteredMail at some time 2i, where 1 ≤ i ≤ f + 1. Notice
that by rule 2 of TellZero-Byz, to have started RegisteredMail at time 2i, y must have
accepted by that time at least f + i − 1 different wake-up messages (none of them
originated by itself). Further observe that, by Theorem 7.3.3(2), thesef + i − 1 wake-
up messages are accepted by all nonfaulty entities by time 2i + 1. Finally observe
that the wake-up message originated by y at time 2i, by Theorem 7.3.3(1), is accepted
by all nonfaulty entities by time 2i + 2. Summarizing, each nonfaulty entity accepts
at least (f + i − 1)+ 1 = f + i wake-up messages by time 2i + 2.

This means that if i ≤ f , all nonfaulty entities that have not started RegisteredMail
already will do so by time 2i + 2. Thus, by time 2i + 4 ≤ 2f + 4 = 2(f + 2) every
nonfaulty entity has accepted at least n− f ≥ 2f + 1 different wake-up messages;
therefore, it will decide 0 when the protocol terminates.

By contrast, if i = f + 1, then every nonfaulty entity has acceptedf + i ≥ 2f + 1
different wake-up messages by time 2(f + 1)+ 2 = 2(f + 2), and, thus, they will
all decide 0 when the protocol terminates at that time. �

Let us now examine the complexity of Protocol TellZero-Byz.
The protocol terminates after 2(f + 2) time units. During this time, a nonfaulty

entity x will start the execution of RegisteredMail at most once. Each of these execu-
tions uses n− 1 “init” messages and at most n(n− 1) “echo” messages; hence, the
overall total of messages generated by the nonfaulty entities is at most

(n− f )(n− 1)(n+ 1).

A faulty entity z can send messages to all its neighbors at each time unit, for a
total of 2(f + 2)(n− 1). Of these messages, the ones sent at even time units can be
used by z to start the execution of RegisteredMail so as to generate more message
transmissions. However, by rule 3 of RegisteredMail, only one attempt would be taken
into account by a nonfaulty entity; hence, the number of additional messages caused
by z is at most n(n− 1). This means that, in total, the number of messages sent or
generated by the faulty entities is at most

f (2(f + 2)(n− 1)+ n(n− 1)).
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Summarizing, as each message contains the entity’s id, we have

B(TellZero− Byz) ≤ (2f 2 + 4f + n+ n2 − f n+ n− f )(n− 1)

= O(n3 log i) (7.8)

T(TellZero− Byz) = 2(f + 2), (7.9)

where i denotes the range of the ids of the entities.

7.3.3 Limit to Number of Byzantine Entities for Agreement

We have seen that if the system is fully synchronous, then under restrictions BA,
consensus is possible even if almost one third of the entities are faulty and their
failure is Byzantine. In this section we are going to see that indeed n

3 − 1 is the limit
to the number of Byzantine entities the system can tolerate even under BA.

We will first consider the case n = 3 and show that it is not possible to tolerate a
single faulty entity.

Theorem 7.3.5 If n = 3, EFT-Consensus (1,Byzantine, n− 1) is unsolvable even
if the system is fully synchronous and restrictions BA hold.

Proof. When n = 3, the system is a synchronous ringR of three entities 〈a, b, c〉 (see
Figure 7.10(a)). We show that it is impossible to tolerate a single Byzantine entity.
By contradiction, let P be a solution protocol.

We will first of all construct a different network, a ring R of 6 nodes,
〈a1, b1, c1, a2, b2, c2〉; see Figure 7.10(b), where

� id(a1) = id(a2) = id(a); id(b1) = id(b2) = id(b); and id(c1) = id(c2) = id(c).
� Ia1 = Ib1 = Ic1 = 0; Ia2 = Ib2 = Ic2 = 1.
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FIGURE 7.10: Two networks used in the proof of Theorem 7.3.5.
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The entities in R do not know that the network they are in is not R. On the contrary,
they all think to be in R; both a1 and a2 think to be a; similarly, b1 and b2 think to be
b, and c1 and c2 think to be c.

We now let all these entities simultaneously start executing protocol P , without
any faults. Call this execution α; we denote by α(x, y) the behavior of x toward its
neighbor y in this execution, and by α(x) the behavior of x (with respect to itself and
to its neighbors) in this execution. So, for example, α(c1, a2) denotes the behavior of
c1 towards a2 in α.

We now consider the original ring R and focus on three different executions of
protocol P ; in each of these executions, two entities are nonfaulty and the third one is
Byzantine. The behavior of the nonfaulty entities is fully determined by the protocol.
For the Byzantine entity we chose a special (but possible) behavior, which is connected
to the execution α in R.

Execution E1: In this execution, entities a and b are nonfaulty and have initial value
0, while c is faulty. In this execution, c behaves toward a as c2 behaves toward a1 in
R, and toward b as c1 behaves toward b1. See Figure 7.11. In other words E1(c, a) =
α(c2, a1) and E1(c, b) = α(c1, b1). Notice that, the behavior of a (respective b) in
this execution is identical to the one of a1 (respective b1) in α. That is,E1(a) = α(a1)
and E1(b) = α(b1).

As we are assuming thatP is correct, then inE1, within finite time, a and b decide;
as both have initial value 0, their decision will be 0. This means that a1 and b1 will
also decide 0 in execution α.

Execution E2: In this execution, entities b and c are nonfaulty and have initial value
1, while a is faulty. In this execution, a behaves toward b as a2 behaves toward b2
in R, and toward c as a1 behaves toward c2, In other words E2(a, b) = α(a2, b2) and
E2(a, c) = α(a1, c2) (see Figure 7.11). Notice that, the behavior of b (respective c) in
this execution is identical to the one of b2 (respectively c2) inα. That is,E2(b) = α(b2)
and E2(c) = α(c2).
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FIGURE 7.11: Executions E1, E2, and E3 in the proof of Theorem 7.3.6.
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As we are assuming that P is correct, then inE2, within finite time, b and c decide;
as both have initial value 1, their decision will be 1. This means that b2 and c2 will
also decide 1 in execution α.

Execution E3: In this execution, entities a and c are nonfaulty, with initial value 0 and
1, respectively; b is faulty. In this execution, b behaves toward a as b1 behaves toward
a1 inR, and toward c as b2 behaves toward c2, In other wordsE3(b, a) = α(b1, a1) and
E3(b, c) = α(b2, c2) (see Figure 7.11). Notice that, the behavior of a (respective c) in
this execution is identical to the one of a1 (respective c2) in α. That is,E3(a) = α(a1)
and E3(c) = α(c2).

As we are assuming that P is correct, then inE3, within finite time, b and c decide
on the same value; as both have different initial values their decision will be either 1
or 0.

If a and c decide 1 in E4, then a1 and c2 decide 1 in execution α, but we have
just seen (from the discussion on Execution E1) that a1 decides 0 in execution α: a
contradiction.

If a and c decide 0 in E4, then a1 and c2 decide 0 in execution α, but we have
just seen (from the discussion on Execution E2) that c2 decides 1 in execution α: a
contradiction. �

Using this result, we can show that n3 − 1 is the limit for any n.

Theorem 7.3.6 If f ≥ n
3 , EFT-Consensus (f,Byzantine, n− 1) is unsolvable even

if the system is fully synchronous and restrictions BA hold.

Proof. Consider a synchronous complete network Kn of n > 3 entities under re-
strictions BA. Assume by contradiction that there is a solution protocol P for this
system when f ≥ n

3 .
Consider the synchronous ring R of three entities 〈a, b, c〉 under restrictions BA

(see Figure 7.10(a)).
We will now construct, starting from P , an agreement protocol for R with one

Byzantine faults as follows:

1. We first divide the entities of Kn into three sets, A, B, and C, of size at least 1
and at most f each;

2. we then set the initial values of the entities in A to Ia , those in B to Ib, and
those in C to Ic;

3. entities a, b, and c now simulate the execution of P in Kn as follows:

(a) entity a simulates all the entities in A, b simulates those in B, and c those
in C;

(b) messages within the same set are simulated, and messages between differ-
ent sets are sent explicitly.

This protocol, Sim(P ), actually is a solution protocol for R. In fact, the Byzantine
failure of an entity inR corresponds to the Byzantine failure of the assigned simulated
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set of entities ofKn; as each set contains at most f entities, protocol P will be able to
tolerate such failures. In other words, if P is correct in Kn, Sim(P ) works correctly
in the presence of a single Byzantine entity in R; however, by Theorem 7.3.5, this is
impossible. Therefore, no such a P exists. �

7.3.4 From Boolean to General Byzantine Agreement

We have seen how to reach Boolean agreement in fully synchronous complete graphs.
In this section, we are going to examine the cases when the input values are not
Boolean.

We will see that it is possible to transform any solution protocol for the Boolean
case into the one that works for an arbitrary, but a priori known, set of initial values IV.

We will call the resulting algorithm FromBoolean(·) where the input parameter is
the Boolean Byzantine consensus protocol to be transformed. The transformation is
achieved by adding four simple steps to the Boolean protocol, three before the start
of its execution, the fourth upon its termination.

Let us now describe the algorithm. Given the set IV of values, let v ∈ IV be
a distinguished element, which will be our default value; let ι, ø /∈ IV be two other
distinguished values with ι �= ø. In the protocol, each entity x uses four local variables
a · x, b · x, c · x, and d · x. As before, we assume that when an entity sends a message
to all other entities, it sends it also to itself (and it will receive it by the next time step).
Let BP be the Boolean Byzantine consensus protocol employed by our algorithm.

Algorithm FromBoolean(BP):

1. At time 0, each nonfaulty entity x sets a · x = Ix and b · x = c · x = d · x = ι
and sends 〈“first”,a · x〉 to all entities.

2. At time 1, each nonfaulty entity x:

(a) sets b · x := v if it has received n− f or more copies of the same message
〈‘first”,v〉, v ∈ IV ; otherwise it sets b.x = ø,

(b) sends 〈“second”, b · x〉 to all entities.

3. At time 2, each nonfaulty entity x:

(a) sets c · x to the value, different from ι, that occurs most often among the
received “second” messages, with ties broken arbitrarily; if all received
“second” messages contain ι, no change is made to c · x (i.e., c · x = ø);

(b) sets d · x = 1 if it has received n− f or more copies of the same message
〈“second”,v〉 with v ∈ IV; otherwise it will set d · x = 0. Note: The value
of d · x is Boolean;

(c) starts the execution of the Boolean Byzantine consensus protocol BP using
the Boolean value d · x as its initial value.

4. When the execution of BP terminates, each nonfaulty entity x:

(a) decides c · x if the Boolean decision is 1 and c · x �= ø;

(b) otherwise decides the default value v.
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An interesting property of the protocol is that in the “second” message all the
nonfaulty entities send the same value (if any) from I .

Lemma 7.3.1 Let x be a nonfaulty entity. If b · x ∈ IV , then for any nonfaulty entity
y, b · x = b · y.

Proof. By contradiction, assume that nonfaulty entities x and y send 〈“second ”,
b ·x〉 and 〈“second ”, b ·y〉, respectively, where b · x, b · y ∈ IV but b · x �= b · y.

Entity x sent 〈“second”,b ·y〉 because (according to the algorithm) it received
at least n− f “first” messages containing b · x; of these, at least (n− f )− f =
n− 2f ≥ f + 1 were sent by nonfaulty entities. As each nonfaulty entity sends the
same message to all entities, then also y receives at least f + 1 messages containing
b · x.

Observe that y sent 〈“second ”, b ·y〉 because (according to the algorithm) it
received at least n− f “first” messages containing b · y. This means that at time
2, entity y received in total at least f + 1+ n− f > n “first” messages, which is
impossible. �

Let us now examine the correctness of protocol FromBoolean when used in con-
junction with a Boolean Byzantine consensus protocol BP (e.g., TellZero-Byz).

Theorem 7.3.7 Protocol FromBoolean(BP) solves EFT-Consensus (f, Byzantine,
n−1) in a synchronous complete network under restrictions BA for all f ≤ n

3 − 1.

Proof. Let us first consider nontriviality. If all nonfaulty entities have the same initial
value v, each of them will send 〈“first ”,v〉 and receive at least n− f such messages.
Hence, they will set all their b· variable to v, send 〈 “second ”,v 〉, and receive at least
n− f such messages. As a consequence, each nonfaulty entity x will set c · x = v
and d · x = 1. As all nonfaulty entities have the the same initial Boolean value 1, in
the execution of protocol BP, they will all choose 1. Hence, they will all decide v.

Consider now agreement. First observe that if in the execution of protocol BP
the decision is 0, then all nonfaulty entities decide v by default, and agreement
holds.

Let us then consider the case when in the execution of protocol BP the deci-
sion is 1. To be so, at least a nonfaulty entity x must have had d · x = 1. This
means that x has received at least n− f “second” messages with the same value,
say v; of these, at least (n− f )− f = n− 2f ≥ f + 1 are sent by nonfaulty enti-
ties. This implies that any nonfaulty entity y receives at least n− 2f 〈“second ”,v〉
messages. Observe that by Lemma 7.3.1, only faulty entities will send a “second”
message with a value w ∈ I with w �= v. In other words, each nonfaulty entity y
receives at least f + 1 “second” messages with value v and at most f “second”
messages with values other than v; therefore, y sets c · y = v before starting the
Boolean protocol BP and, as the Boolean decision value is 1, upon termination y
decides v. �
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Let us now the cost of protocol FromBoolean(BP). In particular, let us examine
the cost that FromBoolean adds to BP .

As BP is started at time 2, and the final decision in FromBoolean is taken im-
mediately upon termination of BP , the total time overhead is two additional time
steps.

In each of these additional steps, every entity sends a message to all other enti-
ties. Hence, the total message overhead is 2n(n− 1). Observe, however, that these
messages contain values in IV and not in {0, 1}.

Summarizing, let v denote the range of the values; then

B(FromBoolean(BP)) ≤ 2n(n− 1) log v + B(BP) (7.10)

T(FromBoolean(BP)) = 2+ T(BP). (7.11)

For example, if we use the Boolean protocol TellZero-Byz, we will have

B(FromBoolean(TellZero-Byz)) = O(n2 log v + n3 log i) (7.12)

T(FromBoolean(TellZero-Byz)) = 2f + 6, (7.13)

where i denotes the range of the ids of the entities.

7.3.5 Byzantine Agreement in Arbitrary Graphs

Until now, when discussing localized Byzantine entity failures, we have been working
under the restriction that the network topology is that of a complete graphKn. In this
section we are going to examine what happens if we remove this assumption from
the list of additional restrictions BA, that is, we consider the problem of reaching
consensus in a generic network G localized Byzantine entity failures. The new set
of assumptions is the same as before except that knowledge of being in a complete
graph is replaced with complete topological knowledge of the graph.

Additional Assumptions (GA)

1. Connectivity, Bidirectional Links;

2. Synch;

3. each entity has a unique id;

4. all entities have complete knowledge of the topology of the graph and of the
identities of the entities;

5. all entities start simultaneously.

As the complete graph contains any graphG ofn nodes as a subgraph, the limitation
f < n

3 on the total number of failures tolerable inKn (recall Theorem 7.3.6) obviously
holds also for G. In other words, we cannot expect to do better (i.e., tolerate more
faults) inG than in the complete graph. On the contrary, the reduced communication
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capabilities existing inGwill create more limitations on the number of faults that can
be tolerated in the complete graph.

We know that there is a link between the connectivity of the network and its
fault tolerance. As Byzantine failures include crashes as special cases, the limitation
f < cnode(G) on the total number of crash failures tolerable inG (recall Equation 7.7)
obviously holds in our case. Indeed, in the case of Byzantine failures the limitation
becomes more severe (Exercise 7.10.17):

Theorem 7.3.8 If f ≥ cnode(G)
2 , then EFT-Consensus (f,Byzantine, cnode(G)) is

unsolvable even if G is fully synchronous and restrictions GA hold.

Summarizing, by Theorems 7.3.6 and 7.3.8, the total number f of Byzantine faults
in G can not be more than

f ≤ Min

{
n

3
,
cnode(G)

2

}
− 1. (7.14)

In other words, fewer than one third of the entities must be faulty, and the graph
must be more than 2f -node-connected. The interesting thing is that we can actually
design a consensus protocol that tolerates those many faults in such networks. Let us
see how.

By Property 7.1.2, we know that if G is 2f + 1-node-connected, then between
any two pair of nodes x and y there are at least 2f + 1 node-disjoint paths. This fact
can be used to establish reliable two-party communication mechanism as follows.

Mechanism Two-Parties ByzComm

� Each pair of nonfaulty entitiesx andy select 2f + 1 node-disjoint paths connect-
ing them (they can do so because by Restrictions GA, they both have complete
topological knowledge); then, whenever x wants to communicate a message to
y, it will send the message along all (and only) those paths.
� As at most f entities are faulty, at most f of those paths are dangerous and

messages along them can be corrupted; in contrast, f + 1 are not faulty and the
message is delivered correctly. In other words, a majority of the copies of the
message from x to y will be correct. Thus, y can determine the correct message
from x.

Observe that using Mechanism Two-Parties ByzComm any pair of nonfaulty enti-
ties x and y can simulate the existence of a direct communication link (x, y) between
them (as if they were in a complete network). In other words, we can use any solu-
tion protocol P for a complete network Kn (e.g., TellZero-Byz) and execute it in G:
Whenever an entity x is requested by P to send a message to y in Kn, x will use
Mechanism Two-Parties ByzComm to achieve the same goal in G.

In the simulation, we need to redefine the unit of time; this is because, while in
Kn the transmission of a message from x to y requires one time unit, in G the time
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involved is the length of the longest of the node-disjoint paths used by Two-Parties
ByzComm to communicate messages from x to y. As the maximum distance between
any two nodes is diam(G), we will make a time unit of protocol P correspond to
diam(G) time units in the simulation of P in G (we can do that because the network
is synchronous and by Restrictions GA, all nonfaulty entities start at the same time).
The resulting protocol, that we will call ByzComm(P), thus achieves the desired goal:

Theorem 7.3.9 Protocol ByzComm(P) solves EFT-Consensus (f,Byzantine,
2f + 1) in a synchronous (2f + 1)-node-connected network G under restrictions
GA for all f ≤ n

3 − 1.

The cost of ByzComm(P) depends obviously on the cost of protocol P and on the
topology ofG. Each time unit ofP costs diam(G) ≤ n− 1 time units in ByzComm(P),
where diam(G) as usual denotes the diameter of G.

Each message sent in P now requires the transmission of the same message over
the 2f + 1 predetermined paths, each of the length at most diam(G) ≤ n− 1, for a
total cost of at most (2f + 1)diam(G) messages. Additionally consider that the f
faulty entities can send messages to all their neighbors at each time instant; this adds
at most f deg(G) messages per time unit, where deg(G) as usual denotes the degree
(i.e. the maximum number of neighbors of a node) of G. Observe that each message
needs to specify both the sender x and the destination y and requires 2 log n bits.
Summarizing,

B(ByzComm(P)) = O(f n B(P )+ f n2 log n T(P ) ) (7.15)

T(ByzComm(P)) ≤ diam(G)T(P ). (7.16)

For example, in the case of Boolean consensus, if we use TellZero-Byz, we will
have

B(ByzComm(TellZero− Byz)) = O( f n4 log n ) (7.17)

T(ByzComm(TellZero− Byz)) = O( f n ). (7.18)

Let us see what are the practical implications of Theorems 7.3.8 and 7.3.9. These
two theorems together state that the presence of f < n

3 Byzantine entities can be
tolerated if and only if the network is at least (2f + 1)-node connected, that is, if
and only if f ≤ 1

2 (cnode(G)− 1). What does this mean for fault-tolerant computing
in common interconnection networks in presence of Byzantine entity faults ? The
answers are not very comforting.

For example, in a ring network R, as cnode(R) = 2, not even a single Byzantine
entity can be tolerated, regardless of the size of the ring!

In a torus T r we have cnode(T r) = 4; hence at most a single Byzantine entity can
be tolerated.
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FIGURE 7.12: Number f of Byzantine entities tolerated in common networks.

Slightly better is fared in denser networks, such as the hypercube H ; in fact, as
cnode(H ) = log n, up to 1

2 log n
2 Byzantine entities can be tolerated. These observa-

tions are summarized in Figure 7.12.

Theorem 7.3.10 In a completely synchonous system, any deterministic f-resilient
algorithm for Byzantine agreement requires f + 1 rounds of communication.

7.4 LOCALIZED ENTITY FAILURES: USING RANDOMIZATION

7.4.1 Random Actions and Coin Flips

In a general asynchronous system, as we know, it is not possible to deal with even a
single crash failure in the system even if the network is fully connected. This fact, the
Single-Failure Disaster, holds for protocols where the operations performed by the
entities in their actions are all deterministic.

By contrast, if we empower and allow the entities to perform random operations
during their actions, then the proof of the Single-Failure Disaster theorem no longer
holds.

Hence, a way to construct fault-tolerant protocols is to provide randomness to the
entities. This can be achieved by providing the entities with the ability to flip coins
during their actions; entities can then use the outcome to guide their operations.

For example, an entity in a ring network may flip a two-headed coin to decide to
which neighbor it will send a prepared message: To the “left” if the outcome is “head,”
and to the “right” if the outcome is “tail.” In this way, the choice of the neighbor is
not specified by the algorithm (i.e., it is not deterministic), but it is rather the result
of a “random” event (i.e., it is randomized).

Summarizing, coin flips return “random” values according to some specified prob-
ability distribution, and they may be used by the entities to determine their next move.

IMPORTANT. There are some important consequences about using randomization
in protocols.

1. As the outcome of a coin flip is not known a priori, the number of possible
executions depends not only on time delays but also on the outcome of the coin
flips (which might be different in two different executions). This means that we
must define a probability distribution on executions, assigning to executions
probabilities according to the outcomes of the coin flips that generate them.
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2. It might be possible to have executions that terminate with an incorrect result.
The existence of incorrect executions might still be acceptable and permitted,
provided they all occur with very low probability.

3. It might be possible to have executions that never terminate. The existence of
nonterminating executions might still be acceptable and permitted, provided
they all occur with very low probability.

Indeed, randomized protocols fit into three categories: Monte Carlo, Las Vegas,
and Hybrid protocols.

� Monte Carlo protocols are distributed algorithms such that

– they always terminate;

– upon termination, the problem is solved correctly with high probability.
� Las Vegas protocols are distributed procedures such that

– they terminate with high probability;

– upon termination, the problem is always solved correctly.
� Hybrid protocols are distributed procedures such that

– they terminate with high probability;

– upon termination, the problem is solved correctly with high probability.

In other words, with randomization we must give up either the guarantee on cor-
rectness (in the Monte Carlo case) or the guarantee on termination (in the Las Vegas),
or on both (if we so design). Indeed,

with randomization we give up certainty.

Thus randomization might be appropriate for situations and applications where the
concern is on overall system performance rather than that of a single execution. By
contrast, it might be unacceptable in critical systems and applications (e.g., nuclear
power plant control, cardiovascular monitoring system, etc.) where correctness is of
outmost importance.

In the rest of this chapter, we will see how to employ randomization to achieve some
level of fault tolerance. Clearly our achievement can only be with high probability,
with no other guarantee.

7.4.2 Randomized Asynchronous Consensus: Crash Failures

In this section we are going to consider an asynchronous complete graph where
entities can crash. As we know, no deterministic solution protocol exists even if only
one entity may crash.

For this setting, we are going to design a Las Vegas protocol that terminates with
high probability and such that upon termination, consensus is achieved by the non-
faulty entities in spite of up to f < n/2 crash failures. This result will be derived
under the following set of restrictions:
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Additional Assumptions (RA)

1. Connectivity, Bidirectional Links;

2. each entity has a unique id;

3. the network is a complete graph;

4. each entity has access to a fair coin;

5. the only type of failures is entity crash;

6. Message Ordering (i.e., FIFO links).

A Las Vegas Solution: Rand-Omit The randomized protocol we will design
will be a (possibly endless) sequence of asynchronous rounds. With high probability,
n− f entities will decide on the same value in some round; when this occurs the
protocol will terminate.

In each round, every entity will broadcast a value, starting with its input value.
Each entity keeps track of its own round r; during this round, the entity processes
only the received messages with round number r; messages with round number r ′ < r

are discarded, and those with round number r ′′ > r are saved and processed at the
appropriate round (as if they had arrived just then).

Each round is composed of two stages, a voting stage and a ratification
stage.

In the voting stage each entity transmits its current preference pref to all entities
by sending a message of the form 〈VOTE, r, pref〉 and then waits to receive n− f
such messages; initially, the preference of an entity is its input value. As we will see,
if any entity receives more than n/2 votes for a single value, all nonfaulty entities will
decide on this value in the second stage.

In the ratification stage, any entity that has observed a majority of votes for value
v sends a message 〈RATIFY, r, v〉 to all entities. An entity that has not observed a
majority for either value sends instead a message 〈RATIFY, r, ?〉. As in the first stage,
each entity waits to receive at least n− f ratification messages. Any nonfaulty entity
that receives even a single 〈RATIFY, r, v〉 message in round r changes its prefer-
ence for round r + 1 to v. If, in addition, it receives more than f such messages,
it immediately decides on v (if a decision has not been already made). If, by con-
trast, it receives only 〈RATIFY, r, ?〉 messages, it flips a fair coin (i.e., at random
with uniform probability) to choose the new preference to be 0 or 1 for the next
round.

The process then continues with the entity starting the next round r + 1.
Although the protocol goes on forever, the decision value of an entity is unique:

Once a decision is made it cannot be changed. As described, each entity continues
to run the protocol even after the decision is made; however, the protocol can be
modified so that each entity terminates its execution at most one round after first
setting its output value (Exercise 7.10.18). In the following, we assume that this is
the case.

IMPORTANT. For simplicity, in the description of the protocol and in its analysis,
when an entity sends a message, we will assume that it will send it also to itself.
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Algorithm Rand-Omit

begin
pref = Ix; r := 1; decide = FALSE;
repeat
STAGE 1

send 〈VOTE, r, pref 〉 to all;
receive n− f messages 〈VOTE, r, ∗〉.
if all these messages contain the same value v then

f ound := v;
else

f ound :=?
endif

STAGE 2
send 〈RAT IFY, r, f ound〉 to all.
receive n− f messages 〈RAT IFY, r, ∗〉.
if one or more contain a value w �=? then

pref := w;
if ( (all contain the same value w �=?) and not(decide) ) then

Ox := w; /* i.e., decide on that value */
decide := T RUE;

endif
else

pref := CoinFlip()
endif
r:= r+1;

endrepeat
end

FIGURE 7.13: Algorithm Rand-Omit.

Let us now examine the correctness of the decision process if/when the protocol
terminates.

Let prefx(r) denote the value variable pref of entity x at the beginning of round r ,
and let foundx(r) denote the value of variable found in that round.

Lemma 7.4.1 (Nontriviality) If, at the beginning of stage r, prefx(r) = v for every
correct entity x, then all correct entities decide on v in that round.

Proof. Let all correct entities have the same preference at the beginning of round r.
Then each correct entity x broadcasts 〈VOTE, r, v 〉; as at most f entities are faulty,
every correct entity receives at least n− f messages 〈VOTE, r, v〉. Hence, every
correct entity sets broadcasts 〈RATIFY, r, v 〉. Again, every correct entity receives at
least n− f messages 〈RATIFY, r, v 〉 and decides on v. �

We will make use of a simple but important observation.

Property 7.4.1 In every round r, either

1. foundx(r) ∈ {1, ?} for all correct x, or

2. foundx(r) ∈ {0, ?} for all correct x.
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Proof. Suppose to the contrary that, at some round r , there are two correct entities x
and y such that foundx(r) = 0 and foundy(r) = 1. From the rule of Stage 1, it follows
that x received 〈VOTE, r, 0 〉 from n− f > n

2 distinct entities and y received 〈VOTE,
r, 0〉 from n− f 〉n2 distinct entities. This means that the number of distinct entities
in the system is at least n ≥ 2(n− f ), but this implies 2f > n: a contradiction. �

This means that it is impossible that two entities decide at the same round on two
different values.

We are now going to prove that all nonfaulty entities, if they decide, will decide
on the same value.

Lemma 7.4.2 (Agreement) Let r be the first round in which nonfaulty entities make
a decision, and let x be such an entity. If x decides on v at round r, then every nonfaulty
entity decides v by round r +1.

Proof. Suppose without loss of generality that at round r entity x decides on 0. First
observe that, because of Property 7.4.1, any other entity y that decides at round r must
also decide on 0. As x decides on 0, it must have received 〈RATIFY, r, 0〉 from n− f
distinct entities. This means that every other correct entity receives 〈RATIFY, r, 0〉
from at leastn− 2f ≥ 1 entities at round r . Hence, every noncrashed entity (including
x) will set its new preference for round r + 1 to 0. Therefore at the beginning of Stage
1 of round r + 1, every nonfailed entity sends 〈VOTE, r+ 1, 0 〉 to all. This means
that every nonfailed entity will receive at least n− f such messages and will decide
on 0 if it has not already done so. �

It then remains to prove that the protocol terminates with high probability.
First of all observe that in a round r the preferences are not necessarily chosen

at random; in fact, some entity x may set pref(x) to a nonrandom value (because,
in Stage 2 it received a message 〈RATIFY, r,w〉 with w �= ?). However, by Property
7.4.1, all nonrandom preferences of correct entities are identical.

This means that in every round r there is a positive probability that the preferences
(random or not) of all correct entities are identical, an event that we will call a success.
When this happens, by Lemma 7.4.1, every correct entity will decide on the same
value within that round.

As entities flip coins independently, the probability that a success happens within
the first k rounds is (Exercise 7.10.19)

Lemma 7.4.3 Pr[success within k rounds] ≥ 1− (1− 2−(n−f ))k.

The good news is that this probability goes to 1 as k goes to infinity. Hence,

Lemma 7.4.4 (Probabilistic Termination) Protocol Rand-Omit terminates with
probability 1.
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The bad news is that it takes exponentially many rounds for the probability to
become close to 1. Indeed, if we run the protocol for k = c 2n−f rounds, where c is
a chosen constant, then

Pr[success within k rounds] ≥ 1− 1

ec
. (7.19)

In this case, this probability goes very quickly to 1 as c grows.

NOTE. If the number f is rather small, a success will be achieved in a constant
number of rounds. In fact (Exercise 7.10.20),

Lemma 7.4.5 Let f = O(
√
n); then the expected number of rounds to achieve a

success is 0(1).

NOTE. To terminate, it is not necessary that all correct entities start the same round
with the same preference. It is sufficent that a large enough majority of them will do
so; in fact, �n/2� + f + 1 suffices (Exercise 7.10.21).

Hacking: Reducing the Number of Rounds We can use randomization fur-
ther so as to reduce the expected number of rounds from exponential to sublinear
when the number of faults is nearly one third.

We will do so in an efficient simulation of protocol Rand-Omit.
We will first translate our system of n entities, of which f < n

3 are faulty, into a
system of k > n entities, of which up to r k are faulty, 1 > r > 0. The translation is
accomplished by creating k committees, each composed of s entities, where the values
of parameters k and s will be discussed later; note that an entity may belong to several
committees. This assignment of entities to committees creates a new “virtual” system
composed of k entities: the committees. We then simulate the execution of protocol
Rand-Omit in the new system of size k: Each committee will simulate a single entity
running the protocol in this new system. We will call the resulting protocol Committee.

To correctly simulate the execution in the virtual system, the entities in a given
committee must be able to agree on the messages received and messages to be sent
by the committee. Call a committee faulty if one third or more of its members are
faulty, nonfaulty otherwise. Then a nonfaulty committee must also be able to flip a
reasonably unbiased coin global to that committee and independent of the coins of
other nonfaulty committees.

All these factors can indeed be taken into account, and the correctness of the
resulting Protocol Committee can be ensured (Problem 7.10.2).

We must still choose the values of parameters k and s; this will be done so as to
minimize the costs of Protocol Committee.

We know that in a system of k entities, if the number of faulty entities is f =
O(
√
k), then the expected number of rounds before termination of Protocol Rand-

Omit is constant (Lemma 7.4.5). In this case, the expected number k of rounds of
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protocol Committee for the simulation is linear in the number r of rounds it takes a
committee to simulate a single round of protocol Rand-Omit.

The quantity r is actually dominated by the cost of flipping a coin in each commit-
tee, which is dominated in turn by the maximum number f of faulty entities within
a nonfaulty committee (Exercise 7.10.22). Thus, to minimize the cost of Committee,
we need to choose a value of k that yields an appropriate value of f . To do so, we use
the following property (Exercise 7.10.23):

Lemma 7.4.6 For any 1 > r > 0 and c > 0, there exists an assignment of n entities
to k = O(n2) committees such that for all choices of f < n/(3+ c) faulty entities, at
most O(r k) committees are faulty, and each committee has size s = O(log n).

Using this property, if we choose k = O(n2), we have,

f < n/(3+ c) = O(n) = O(
√
k).

A first consequence is that protocol Rand-Omit will have a constant expected
number of rounds in the simulated system of size k. The other consequence is that
for f = O(n), the number f of faulty entities in nonfaulty committees is O(s); this
means that each simulated round needs only O(log n) rounds in the real system.

Summarizing, the total number of expected rounds of protocol Committee will be
O(log n).

7.4.3 Concluding Remarks

If all entities had access to a global source of random bits (unbiased and visible to
all entities), then Byzantine Agreement could be achieved in constant expected time
(Exercise 7.10.24). Unfortunately, such a source does not exist.

To implement something with similar properties is indeed possible by imposing
additional assumptions, such as the existence of both digital signatures and a trusted
dealer, or private channels and a trusted dealer (Problems 7.10.3 and 7.10.4).

In the case of synchronous systems, in addition to these general results, it is also
possible to implement a global source of random bits by using digital signatures and
secrete sharing (Problem 7.10.5).

7.5 LOCALIZED ENTITY FAILURES: USING FAULT DETECTION

The proof of the Single-Failure Disaster result is based on the fact that in an asyn-
chronous system it is impossible to distinguish a slow entity from a failed one. This
means that the availability of any reliable fault detector would remove any such
ambiguity and thus disable that proof. So, for example, the presence of restriction
Link-Failure Detection and/or restriction Node-Failure Detection would disable the
proof of Theorem 7.2.1 even if communication delays are unbounded.



450 COMPUTING IN PRESENCE OF FAULTS

The problem is how to construct reliable fault detectors. We have seen how in fully
synchronous systems the Single-Failure Disaster result does not hold. One reason is
that if messages are never lost, synchrony yields a perfect failure detector for crash
failures: As the absence of an anticipated message can be detected, a missing message
indicates a faulty sender. To date, the only reliable fault detectors are those obtained in
fully synchronous systems, and in a fully synchronous system we already have seen
how to deal with failures. The real problem is that in systems that are not synchronous
there are only unreliable fault detectors.

At this point, we have several intriguing and important questions. In particular,
without synchrony,

� do we really need a completely reliable crash detector to achieve consensus?
� what is the “weakest” (i.e., the least reliable) detector we can usefully employ?

In this section we will discuss some of these questions and the connected problems.
In our discussion and solutions, we will use an additional set of assumptions:

Additional Assumptions (FDA)

1. Connectivity, Bidirectional Links;

2. the network is a complete graph;

3. entities have unique ids;

4. entities can fail only by crashing;

5. each entity knows the ids of its neighbors.

7.5.1 Failure Detectors and Their Properties

A distributed detector of entity failures is a set of n failure-detection modules, one per
entity, providing to each entity (possibly incorrect) information about the failures that
occur in an execution. In particular, each module keeps a list of entities it suspects to
be faulty. It can be consulted during any action of the protocol; upon consultation, the
module returns a list of entities that the module currently suspects to have crashed.

As the failure modules can make mistakes, each module may be continually adding
and removing entities from its list. For example, an entity may use its local clock to
implement a failure module based on timeouts (even if the system is asynchronous).
If x times out entity y because, for example, y failed to respond in a timely fashion
to a message sent by x, it may be the case that y has not failed (e.g., the message
is just slow). If x were to receive later a message from y, then x would know it had
suspected y in error and would remove y from its list of suspects.

Furthermore, the failure-detection modules of two different entities need not agree
on the list of entities that are suspected to have crashed.

Failure detectors are defined in terms of the properties they satisfy, rather than
in terms of the actual implementation. In particular, two properties are considered:
completeness (i.e., the assurance that faulty entities are indeed reported) and accuracy
(i.e., the assurance that correct entities are not reported as faulty).
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To see that both properties are necessary, note that the trivial failure detector
Paranoid, in which each entity permanently suspects every other entity, will satisfy
any completeness property: All faulty entities are indeed reported; however, Paranoid
provides no real information about the actual failures. Similarly, the trivial failure
detector Naive, in which each entity never suspects any other entity, will satisfy
any accuracy property: No correct entity will ever be incorrectly reported as faulty;
however, Naive too provides no real information about the failures. Thus, neither
accuracy nor completeness suffices by itself.

Let us examine these two properties in more detail.

Completeness

We have two natural forms of this property:

1. strong completeness: eventually every entity that crashes is permanently sus-
pected by every correct entity;

2. weak completeness: eventually every entity that crashes is permanently sus-
pected by some correct entity (each failed entity may be suspected by a different
correct entity).

Accuracy

The natural accuracy properties are

1. perpetual strong accuracy: no entity is suspected before it crashes;

2. perpetual weak accuracy: some correct entity is never suspected (by anyone);

3. eventual strong accuracy: there is a time after which correct entities are not
suspected by any correct entity;

4. eventual weak accuracy: there is a time after which some correct entity is never
suspected by any correct entity.

Perpetual strong accuracy is difficult (if not impossible) to achieve in many practi-
cal systems. Actually, perpetual weak accuracy is not very weak, because it guarantees
that at least one correct entity is never suspected. Suppose that, as is frequently the
case in real systems, the failure detector is implemented by a “heart beat” protocol in
which entities repeatedly broadcast “I am alive” messages. Then even weak accuracy
cannot be achieved (for example, it might be foiled if the network traffic is high and
messages are delayed for too long). Thus in general (regardless of how the failure
detector is implemented) even weak accuracy may be too strong a requirement for
any failure detector to achieve. Fortunately, it is not necessary that the system always
behave but only that it behave eventually, and even then only long enough for the
entities to reach agreement, hence, the eventual accuracy properties.

A failure detector is said to be perfect if it satisfies strong completeness and per-
petual strong accuracy: Every faulty entity is detected by every correct entity, and no
correct entity is ever suspected faulty.
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Note that in any fully synchronous system there is a perfect failure detector enjoying
simultaneously the strong completeness and strong accuracy properties. In particular,
in a fully synchronous system, every entity can broadcast “I am alive” at every time
unit. If at some time unit entity x does not receive an “I am alive” message from entity
y, then x knows y has failed.

Far from perfect are those failure detectors that satisfy only weak completeness and
eventual weak accuracy. Still, any such detector is powerful enough for our purposes.
In fact (Exercise 7.10.25),

Theorem 7.5.1 Any failure detector that satisfies only weak completeness and even-
tual weak accuracy is sufficient for reaching consensus if at most f < n

2 entities can
crash.

We denote by � any failure detector that satisfies only weak completeness and
eventual weak accuracy.

7.5.2 The Weakest Failure Detector

We will now answer the question of what is the “weakest” detector we need to achieve
consensus in spite of crash failures. The answer is proved by designing an algorithm
that allows to reduce a failure detector to another.

Before we proceed, we need to introduce some terminology.
A failure pattern F is a function describing the set of entities that have crashed

through time: F (t) is the set of entities that have crashed through time t , and clearly
for all t , F (t) ⊆ F (t + 1). Let crashed(F ) = ∪tF (t) denote the set of entities that
crash under the failure pattern F , while correct(F ) = E − crashed(F ) denotes the set
of entities that do not crash under F . We consider only failure patterns F such that at
least one entity is correct, that is, correct(F ) �= ∅.

Typically, for any system and for any failure pattern F occurring in this system,
there may be many executions with the same failure pattern. LetD(F ) denote the set
of all failure detector histories that can occur in executions with failure pattern F and
failure detector D; given a particular execution r and a variable v, let vr denote the
history of that variable during that execution.

We now define what it means for an algorithm T to transform a failure detector
D into another failure detectorD′; such an algorithm is called a reduction algorithm.
First of all, algorithm T must use D to maintain a variable output(x) at every entity
x; this variable, which is part of the local state of x, emulates the output of D′ at x.

Algorithm T transforms D into D′ if and only if for every execution ε of T using
D, outputε = {output(x)ε} ∈ D′(F ), that is, for every execution ε, the histories of the
variables output(x) in execution r can actually occur in some executions with detector
D′ and pattern F . Note that T need not emulate all the failure detector histories of
D′; it suffices that all the failure detector histories it emulates be histories of D′.

If there is an algorithm T that transformsD intoD′, we writeD ≥ D′ and say that
D is reducible to D′; we also say that D is weaker than D′. The intuition is that as
T is able to useD to emulateD′,D must provide at least as much information about
entity failures as D′ does.
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If a reduction algorithm T is available that transforms D into D′, then generally
speaking, any problem that can be solved using failure detectorD′ can be solved using
D instead. Suppose an algorithm A using failure detectorD′ solves our problem, but
only D is available. The availability of T allows us to still execute A to solve the
problem. This is achieved as follows:

1. Concurrently with A, entities run T to transform D into D′.
2. Modify algorithm A at entity x as follows: Whenever A requires that x query

its failure detector module, x reads the current value of output(x) (which is
concurrently maintained by T ) instead.

We now describe a reduction algorithm REDUCE that transforms any given failure
detector D that satisfies weak completeness into a failure detector D′ that satisfies
strong completeness. Furthermore, if D satisfies an accuracy property, then W does
so as well.

Informally, REDUCE works as follows. Every entity x periodically sends
〈x, suspects(x)〉 to every entity, where suspects(x) denotes the set of entities that
x suspects according to its local failure detector module V [x]. When x receives a
message of the form 〈y, suspects(y)〉, it adds suspects(y) to output(x) and removes
y from output(x) (recall that output(x) is the variable emulating the output of the
failure detector module D).

More precisely, every entity x in REDUCE executes the following:

� Initially:
output(x)← ∅
� Repeatedly:

/* x queries its local failure detector module Dx */
suspects(x)← Dx ;
send 〈x, suspects(x)〉 to N (x);
� Receiving 〈y, suspects(y)〉 from y :

/* output(x) emulates D′x */
output(x) := output(x) ∪ suspects(y)− {y};

Let ε be an arbitrary execution of REDUCE using failure detector D. In the fol-
lowing, the execution ε and its failure pattern F are fixed. Thus, when we say that
an entity crashes, we mean that it crashes in F . Similarly, when we say that an entity
is correct, we mean that it is correct in ε. Let H ∈ D(F ) denote a history of failure
detector D for pattern F .

We can show that REDUCE satisfies the following property:

Lemma 7.5.1 (Transforming weak completeness into strong completeness)
Let z be any entity that crashes; if eventually some correct entity permanently suspects
y in H, then eventually all correct entities permanently suspect y in outputε .
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Proof. Let y be any entity that crashes. Suppose that there is a time t after which
some correct entity x permanently suspects y inH . We must show that there is a time
after which every correct entity suspects y in outputε . As y crashes, there is a time t ′
after which no entity receives a message from y. Consider the execution by entity x
after time t ′′ = max(t, t ′). Entity x sends a message of the type 〈(x, suspects(x)〉 with
y∈ suspects(x) to all entities. Eventually, every correct entity receives 〈 x, suspects(x)〉
and adds y to its output. As no correct entity receives any messages from y after time
t ′ and t ′′ ≥ t ′, no correct entity removes y from its output after time t ′′. Thus, there
is a time after which every correct entity permanently suspects y in outputε . �

Similarly, we can show (Exercises 7.10.26 and 7.10.27) that REDUCE satisfies
the following two other properties:

Lemma 7.5.2 (Preserving perpetual accuracy)
Let y be any entity; if no entity suspects y in H before time t, then no entity suspects
y in outputε before time t.

Lemma 7.5.3 (Preserving eventual accuracy)
Let y be any correct entity; if there is a time after which no correct entity suspects y
in H, then there is a time after which no correct entity suspects y in outputε .

From Lemmas 7.5.1, 7.5.2, and 7.5.3, it follows that REDUCE transforms any
failure detector D that satisfies weak completeness into a failure detector D′ that
satisfies strong completeness, and if D satisfies an accuracy property, then D′ does
so as well. In other words,

Theorem 7.5.2 REDUCE strengthens completeness while preserving accuracy.

As a consequence, � is reducible to any failure detector that can be used to achieve
consensus in an asynchronous system. In other words,

Theorem 7.5.3 � is the weakest failure detector that can possibly be used to achieve
consensus in presence of crash failures.

7.6 LOCALIZED ENTITY FAILURES: PREEXECUTION FAILURES

7.6.1 Partial Reliability

We have seen that even in a complete graph, it is impossible to achieve consensus
among the nonfaulty entities if just one entity may crash. The proof of the Single
Failure Disaster relies heavily on the fact that the “adversary” can choose which
entity fails as well as the moment when the failure occurs. In fact, if all the failure
occur before the execution of the algorithm, the proof does not hold. Indeed, it might
be possible to achieve complex tasks requiring consensus in spite of multiple failures,
provided they have all occurred before the task starts.
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NOTE. The condition that all faults, if any, occur before the computation takes place
is expressed by the restriction Partial Reliability that states, “No faults will occur
during the computation.” Recall that the standard set of restrictions included instead
Total Reliability that states, “No faults have occurred nor will occur.”

7.6.2 Example: Election in Complete Network

Consider as an example the Election problem in the complete graph where some
entities might have crashed. Under Partial Reliability, it is indeed possible to perform
the election without synchrony, without randomization, and without fault detection
even if f ≤ �n2 	 − 1 entities have crashed.

We will construct the algorithm by adapting the protocol CompleteElect we have
designed for complete networks under Total Reliability in Section 3.6.

The changes we will make are essentially two:

1. In the original protocol, a candidate entity x starts by sending a “Capture”
message to a single neighbor and waits for its reply. In our setting, this entity
could have crashed, so x would never receive the reply. To overcome this, as
at most f entities have crashed, at the beginning x will send the “Capture”
message to f + 1 entities, to ensure that at least one of them is alive. As soon
as x receives an “Accept” from one of them, it enters the next stage and sends
its message to another entity. In other words, at any stage (except the last), a
candidate entity will have f + 1 pending requests.

2. In the original protocol, a candidate entity x has only one pending “Capture”
message and waits for its reply; if the reply is “Reject,” x becomes passive. In
our setting, x has f + 1 pending “Capture” messages and is waiting for a reply
from each one of them (we know that at least one will arrive because at most f
entities are faulty). So it may happen that while waiting for the reply from y, x
receives several “Accept” messages whose effect is to increase the stage number
of x. This means that if y sends a “Reject” to x, it is based on the old stage
number of x. In particular, if the stage of y (enclosed in the received “Reject”
message) is smaller than the current one of x or they are the same but the id of
x is smaller than that of y (also enclosed in the received “Reject” message), x
must reject the “Reject” command. What we will do instead is to have x settle
its score with y once and for all. This settlement is achieved as follows: x will
send a new “Capture” message to y with its new stage number and close all
its other ports waiting for the reply from y. (That will arrive because we know
that y is alive.) Note that the effect of closing the other ports is that the stage
number and the status of x will not change before the reply from y arrives.
When the reply arrives, x will either increase its stage (if it is “Accept”) or
become passive (if it is “Reject”) before reopening all the ports.

Note that the total number of pending “Capture” messages for x will still be
f + 1: The previous one to y (no longer pending) is now replaced by the new
one to y.
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Few other details have to be taken care of when completing the description of the
adapted protocol that we shall call FT-CompleteElect (Exercise 7.10.28).

In proving the correctness of the protocol, we must consider the effects of the
changes we have made on the original protocol. Consider in particular the settlement
process (change 2): x resends to y a “Capture” message with the new stage number and
closes all its other ports; if only x is performing a settlement, this operation will not
cause problems because y is alive and will respond. However, several entities may be
doing settlements (closing all their ports but one and waiting for a reply from that one);
so, for example, ymight have closed the link to x waiting for a reply from another alive
entity z. To ensure correctness, we must prove that x will indeed receive a reply from
y. In other words, settlements must not create deadlocks, neither by themselves nor in
combination with the closing of links when sending “Warning” messages. Fortunately,
this is the case (Exercise 7.10.29). Thus every request (“Capture” or “Warning”) sent
to a nonfaulty entity receives a reply; in particular, after a settlement (e.g. between x
and y) at most one of them is still candidate and if so it has increased its stage.

If an entity x has an owner, then both x and its owner are nonfaulty. A nonfaulty
entity always replies to a “Warning” message; thus, when x sends a “Warning” to its
owner and closes all its ports except the one to the owner, it will receive a reply from
y and will thus reopen all its ports.

The rest of the correctness follows from some simple lemmas, whose proof is left
as an exercise (Exercises 7.10.30 - 7.10.32):

Lemma 7.6.1 Every entity eventually reaches stage greater than n
2 , or it ceases to

be a candidate.

Lemma 7.6.2 Assume an entity x ceases to be candidate as a result of a message
originated by candidate y. Then, at any time after the time this message is processed
by x, either the stage of y is greater than the stage of x or x and y are in the same
stage, but id(x) < id(y).

Lemma 7.6.3 At least one entity always remains a candidate.

Lemma 7.6.4 Let x be a candidate and s be its final size. The total number of times
a “Capture” message was sent by x is at most 2s + f .

Proof. When x initiates the algorithm, it sends f + 1 “Capture” messages. Every
other “Capture” message it sends follows the reception of either an “Accept” or a
“Reject” message. The number of “Accept” messages it receives as a candidate is
s − 1. The number of “Reject” messages it receives as a candidate is at most s. �

Let us now turn to the costs of Protocol FT-CompleteElect. First of all observe that
(Exercise 7.10.33)

Lemma 7.6.5 For every l ≥ 2, if there are l − 1 candidates whose final size is not
smaller than that of a candidate x, then the stage of x is at most ln.
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Now the number of messages can be easily determined. Let k denote the number
of spontaneous initiators. The number of messages used for the leader announcement
is n− 1. The total number of the other messages sent during an execution is bounded
by four times the number of “Capture” messages sent by a candidate. In fact, exactly
like in the original protocol FT-CompleteElect, a “Capture” message from x to y, in
addition to the reply (either “Accept” or “Reject”) from y, will cause at most two
additional messages: a “Warning” from y to its owner z and the corresponding reply
(“Yes” or “No”).

Let s be the final size of a candidate x that initiated the algorithm. By Lemma 7.6.4,
the number of times this candidate has sent a “Capture” message does not exceed
2s + f . Entities that did not wake up spontaneously never become candidates. Thus
by Lemma 7.6.4 the total number of messages is bounded by

n− 1+ 4
∑

1≤j≤k
(2 n

j
+ f ),

which gives us

M[FT − CompleteElect] = O(n log k + kf ). (7.20)

This cost is actually optimal. Let us see why. Examining this bound we notice
that there are two components: O(n log k) and O(kf ). We do know that �(n log k)
messages are needed for election in complete networks even in the absence of failures;
thus, the first component of the upperbound is indeed necessary. For the second
component, consider first the case of a single initiator, that is, k = 1; this entity must
send at least f + 1 messages, otherwise there is no guarantee that the algorithm will
make any progress. Consider now the general case of k ≥ 1 entities; as none of them
knows k, each must act taking into account the possibility of being the only one; in
other words, the adversary can slow down messages so that each of them will send at
least f + 1 messages, for a total of at least �(kf ). Hence, also the second component
is necessary. In other words, the complete lowerbound

�(n log k + kf )

matches the upperbound (7.20), and hence protocol FT-CompleteElect is worst-case
optimal.

7.7 LOCALIZED LINK FAILURES

We have seen the devastating impact of node failures in the general asynchronous
environments. In this section, we study the impact of link failures by means of a tale.
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We then see an example of how to design an application protocol that can tolerate
link failures.

7.7.1 A Tale of Two Synchronous Generals

Imagine a military campaign a long time ago (before the radio communication was dis-
covered). Two allied armies, each with its own general, are positioned on two opposite
hilltops overlooking a valley from which a large enemy army will approach. Together,
the allied forces can overwhelm the enemy if they attack at the appropriate time; by
contrast, attacking at the inappropriate time or separately would clearly lead to a mas-
sacre of the attackers. Having decided beforehand not to be massacred, neither general
will command his army to attack, unless sure that the allied army will also attack.

General A can see from his hilltop the enemy army. After many observations and
calculations, A determines that dawn is the only time when a simultaneous attack by
the allies will be successful. General A must now communicate this information to
generalB who, from the other hilltop, is unable to perform such calculations. In order
not to alert the enemy, fires or torches cannot be used; so to communicate, a messenger
must be employed. So general A deploys a messenger to deliver the message “Let us
attack at dawn” to general B. Notice that as A does not want to be massacred, he will
not attack unless he knows that general B has received this message and will attack
at dawn.

To go from one hill to the other, the messenger has to traverse the valley and it
takes no more than 1 hour. The problem is that there are enemy scouts patrolling the
valley, and obviously there is the risk that the messenger is caught during the trip.
See Figure 7.14. In spite of the danger, the messenger safely performs the trip and
delivers the message to general B. Knowing that A will not attack unless he gets
confirmation, B sends the messenger back with the message “Message received; let
us attack at dawn.”

Is this transmission of messages enough for the two generals to attack at dawn?
The answer is No. In fact, if the messenger gets caught now, A will never get the
message, and, not knowing whether or not B has received the first message, he will
not risk being massacred by attacking alone.

BA

FIGURE 7.14: The path (in bold) between the two hilltops is unsafe because of the presence
of enemy scouts (black circles) in the valley.
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Fortunately, the messenger safely performs the trip back and delivers the message
to general A. Will now the two generals attack at dawn? The answer again is No.

In fact, B does not know whether or not his confirmation message has reached A;
he, however, knows that, if it did not, A will not attack; therefore, B, not wanting to
risk a massacre, will not attack. Thus A must tell B that indeed the confirmation has
arrived, sending again the messenger with the message “Confirmed. Let us attack at
dawn.”

The lucky messenger gets through again, delivering the message to B. But again,
B reflects that A does not know that this message has arrived and therefore he would
not attack.

Interestingly, continuing to send messages back and forth is not going to lead the
two generals to attack at dawn, ever, even if the messenger is never intercepted by
the enemy. In fact, the Two Generals problem of ensuring that both A and B attack
at dawn is unsolvable:

Theorem 7.7.1 The Two Generals problem has no solution even if the system is
fully synchronous.

Proof. To see why this is true, let us be a bit more precise about the formulation of
the problem. General A has an input register IA initialized with a value in {0, 1}, and
a write-once output registerOA initially set to b /∈ {0, 1}; once a value dA ∈ {0, 1} is
written in OA, the content of that register is no longer modifiable. It is the same for
general B. The goal is to have both generals set, in finite time, their output registers
to the input value of A.

First of all observe that, in any execution of any solution protocol in which the
two generals decide to attack (i.e., in which IA = 1), at least one message must be
delivered. Otherwise, B cannot distinguish this scenario from an execution in which
A decides not to attack (i.e., in which IA = 0), but no messages are delivered because
the link is down.

Incidentally, this means that the link must deliver at least a message before it fails
for the problem to be solvable. Let us assume that this is the case; we will see that,
even so, the problem is unsolvable.

Suppose, by contradiction, that there exists a solution protocol. Among the execu-
tions of P that lead to the two general attacking, consider the executionE of minimal
length (number of messages delivered), say k; from what said before, k ≥ 1.

Without loss of generality, assume that the last (i.e., the kth) message delivered in
E is from A to B (see Figure 7.15(a)). Let t be a time, after the message is received,
when both generals decide to attack, that is, at time t , OA = OB = 1.

We will now show that the two generals could have made their decision earlier.
Consider now the execution E′ that is exactly the same as E except that this last
message is lost because the link went down (see Figure 7.15(b)).

GeneralA cannot distinguish betweenE andE′; asAwill attack (i.e., setOA = 1)
in E, he will also attack in E′, that is, at time t we have OA = 1 also in E′. As the
protocol is correct, if a general attacks, so will the other; thus B, within finite time,
must decide to attack (i.e., set OB = 1) also in E′.
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(a)

(b)

A

B

A

B

FIGURE 7.15: (a) Execution E: The two generals decide to attack. (b) Execution E′: They
must decide to attack also in this case.

In E′ the number of messages that are delivered is k − 1. First consider the case
k − 1〉0; then inE′ we send one less message than inE, contradicting the assumption
thatE is of minimal length. Consider now the case k − 1 = 0; then inE′ no messages
are delivered, contradicting the fact that at least one message must be delivered for
an attack decision to be made. �

The problem here is that, to attack together, the two generals need to reach common
knowledge (“the attack is at dawn”); in contrast, if the communication is not guaran-
teed, the generals cannot establish common knowledge because of asynchrony.

Note that what is important is not the fact that the link fails (i.e., the messager is
cought) but the possibility that it may fail. In fact, in our tale, it does not fail.

An important consequence is that even in a synchronous system, two neighbors
cannot achieve common knowledge if the link between them may go down and no
other link can be used to communicate between them. This means that

Theorem 7.7.2 If a single link can possibly fail, common knowledge cannot be
achieved if the network is not 2-edge-connected, even if it is fully synchronous.

In fact, if G is not 2-edge-connected, there is a bridge, that is, a link e whose
removal will disconnect the network. Envision the two subgraphs connected by e as
the two generalsA andB in the tale, and e as the unsafe path between the two hilltops
(see Figure 7.16). It follows by Theorem 7.7.1 that the entities in the two subgraphs
cannot achieve common knowledge.

IMPORTANT. Let us stress that what makes the achievement of common knowledge
(and, thus, the design of a fault-tolerant solution protocol) impossible is not the fact
that faults occur but rather the fact that it is possible that they occur.
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BA
e

FIGURE 7.16: If the network is not 2-edge-connected, a possibly faulty bridge e makes
common knowledge unattainable.

An immediate consequence of Theorem 7.7.2 is that if more than two links can
possibly fail, then the connectivity requirements of the network must be clearly higher:

Lemma 7.7.1 If any F ≥ 1 links can possibly fail, common knowledge cannot be
achieved if the network is not (F + 1)-edge-connected even if it is fully synchronous.

Note the similiarity between the statements of Lemmas 7.7.1 and 7.1.1. This sim-
iliarity is not accidental. In fact, when dealing with link failures,

if we cannot broadcast, we cannot achieve common knowledge!

Summarizing, the possibility that any F links fail makes it impossible to achieve
common knowledge (and, thus, to solve consensus or any problem that requires a
nontrivial agreement) in networks whose edge connectivity is less than F + 1.

7.7.2 Computing with Faulty Links

We have seen that if the number F of faulty links is equal to or greater than the
edge connectivity of the network, it is impossible to compute. By contrast, with fewer
faulty links, it is possible to achieve a reasonable level of fault tolerance.

Let us consider the case when the edge connectivity is k + 1 or higher; in this
case, it is indeed possible to achieve consensus and to perform most computations
when k links can fail, even if the failures are send/receive omissions and the system
is asynchronous. The reason why this is possible is that in any networkG, with fewer
than cedge(G) faulty links, it is always possible to broadcast. For example, protocol
Flood easily accomplishes this.

Indeed, protocol Flood allows to broadcast with send/receive omissions even if
the number of faulty links is greater than cedge(G), as long as the failures do not
disconnect the network. Furthermore, Flood is independent of F , unlike most fault-
tolerant protocols where, for example, the number of iterations depends on F .

Once we can broadcast in spite of link failures, we can compute simple functions
(e.g., AND, OR, Min, Max) and, thus, achieve consensus. If restriction Initial Distinct
Values (ID) holds, we can perform Election: Every (initiator) entity will broadcast its
value; the entity with the smallest value will become the leader. The overall cost will
obviously depend on the cost of the broadcast protocol used.

For example, broadcasting with protocol Flood, the number of messages will be
no more than that in a faulty-free execution: less than 2m(G). The time will be at most
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the diameter of the graph G′ obtained by removing the faulty links from G. Thus,
both time and number of messages are optimal.

In special graphs, it is clearly possible to achieve better bounds both for broad-
casting and for election. In this section, we will examine this issue for the class of
networks where the O(n m(G)) message cost would be the largest. In fact, we will
consider a complete network and examine how to design efficient protocols that can
withstand link failures even without any synchrony.

Broadcasting in a Complete Network with Faulty Links In complete
graphs, broadcasting in absence of failures is trivial: Sending the message to all
the entity’s neighbors is enough; the cost is a mere n− 1 messages.

Consider now broadcasting when out of then(n− 1)/2 links,F < n− 1 are faulty.
Their faulty behavior consists in occasionally losing messages sent over them (i.e.
send-receive omissions), and their location is obviously not known. The use of protocol
Flood would accomplish the task; the message cost is, however, rather high: (n− 1)2

messages.
Let us see how broadcasting can be more efficiently achieved if F < n− 1 is

known. Let x be the wanting to broadcast some information I . Consider the following
broadcast protocol:

Protocol TwoSteps:

1. x sends the message 〈Info, I 〉 to F + 1 neighbors;

2. an entity y receiving 〈Info, I 〉 from x, sends 〈Echo, I 〉 to all its neighbors.

Let us verify that the protocol correctly performs a broadcast if F 〈n− 1.
Consider an entity y �= x that did not receive the Info message because the link

(x, y) is faulty. Letp(x) ≤ k be the total number of faulty links incident onx (including
(x, y)). In the first step, at least n− 1− p(x) neighbors will receive the Info message;
all of these will send an Echo message to everybody else, including y. This means that
at least n− 1− p(x) Echo messages are sent to y; of those links at most F − p(x)
are faulty. But as n− 1 > F we have that n− 1− p(x) > F − p(x), that is, at least
one of those Echo messages will reach y (see Figure 7.17).

x

p(x)

y

FIGURE 7.17: Every entity y will receive the information broadcasted by x using protocol
TwoSteps.
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As for the cost of protocol TwoSteps, in the first step there are F + 1 messages; in
the second step, at most F + 1 entities will each send n− 2 messages for a total of
(F + 1)(n− 2) messages. Summarizing,

M[TwoSteps] = (F + 1)(n− 1). (7.21)

This means that for any F < n− 2, this protocol will transmit fewer messages
than Flood. The drawback is that the upperbound F on the number of faults must be
known.

Election in a Complete Network with Faulty Links Let us consider now the
task of electing a leader in presence of faulty links. Clearly we need to assume that
each entity has a unique identifier. Let us assume that all entities are initiators (if they
are not, the first received message will act as an initiation impulse).

That the election task can be always accomplished if F < n− 1 is shown by the
following simple strategy:

Strategy FT-BcastElect:

1. Each entity x broadcasts (using a F -tolerant protocol) its value id(x).

2. Once x has received the values of all other entities, x becomes leader if and
only if its value is the smallest.

The overall cost of this strategy depends on the broadcast protocol employed. If
protocol TwoSteps is used, the election will cost n(F + 1)(n− 1) messages (that
now must include the originator’s id).

Hacking In the case of fewer faults, F ≤ n−6
2 , we can actually design a more

efficient election protocol, that we will call simply FT-LinkElect. This protocol is
very similar to protocol FT-CompleteElect and, like it, it is based on the election
protocol CompleteElect for nonfaulty complete graphs.

The protocol proceeds as a sequence of n+2
2F + 1 electoral stages and uses a param-

eter r , which will be discussed later. Before the algorithm starts, stage(x)= 0. When
the algorithm starts, stage(x) is set to 1 and every entity is in the active state.

(Stage of) Protocol FT-LinkElect:

Each stage is logically composed of four steps. Let x be active in stage i.

First Step: Entity x starts the stage by choosing pF still unselected neighbors and
sending the message 〈Capture, i, id(x)〉 to all of them; if i = 1 (i.e., in the first
stage), then p = r , otherwise (i.e., in all other stages) p = r − 1.

Second Step: In the second step, the “Capture” messages sent by x will start
to arrive. Upon receiving 〈Capture, i, id(x)〉 from x, entity y, in stage(v)= j ,
compares (i, d(x)) with (j, id(y)):
• if i〈j or (i = j and id(x)〉id(y)), then y sends the message 〈 Reject, i, id(x)〉

to x;
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• otherwise; y changes its stage to i;

– if y it has no owner, it sets owner := x, sends the message 〈Accept〉 to x,
and becomes passive;

– if y has a owner w, then y sends the message 〈Warning, i, id(x)〉
to w.

Third Step: In the third step, the “Warning” messages (if any) originated by the
reception of the “Capture” messages from x will arrive, and replies will be
generated and possibly arrive. Notice that this step might not take place at
all, for example, if no “Warning” messages are sent or are sent on faulty
links.
Upon receiving the message 〈Warning, i, id(x)〉 fromy, entity w does as follows:

• if i〈stage(w) or (i = stage(w) and id(x) > id(w)), then w sends the mes-
sage (No, i, id(x)) to y; if y receives this message, it sends the message
〈Reject, i, id(x)〉 to x;

• otherwise, w sends the message 〈Yes, i, id(x)〉 to y and if it has no owner
at that time, it sets owner := w and becomes passive; if y receives this
〈Yes, i, id(x)〉 message from w, y sets owner := x and sends the message
〈Accept〉 to x.

Fourth Step: In the fourth step, the replies (either “Accept” or “Reject”) to the
“Capture” messages arrive to x.
Upon receiving the message 〈Reject, i, id(x)〉 from y, entity x does as
follows:

• if x has become passive (between the time it sends the first message
to y and the time it receives the message from y), then x discards the
message;

• if x is still active, x compares its own current stage(x) with i :

– if i = stage(x), then it sets owner := x and becomes passive;

– if i < stage(x), the message is out of date; then x discards it and sends the
message 〈Capture, stage(x), id(x)〉 to y.

Upon receiving the message 〈Accept, i, id(x)〉 from y, entity x does as
follows:

• if x has become passive (between the time it sends the first message
to y and the time it receives the message from y), then x discards the
message;

• if x is still active and, including this message, it has received (r − 1)F “Ac-
cept” messages from stage i, it does the following:

– if i = n+2
2F , then x becomes leader and starts protocol TwoSteps to broad-

cast termination of the election process;

– otherwise, it starts stage i + 1.

Protocol FT-LinkElect indeed correctly elects a leader (Exercises 7.10.36–7.10.38
and Problem 7.10.6).
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Let us examine the message costs of the protocol.
A 〈Capture, i, id(x)〉message sent from x to y will generate a response, “Accept”

or “Reject,” from y to x; it can also cause a “Warning” sent from y to w (in the case
where w is the owner of y) that, in turn, will cause a response, “Yes” or “No,” from
w to u.

In other words, the transmission of each “Capture” message will cause at most
three other message transmissions. In the first stage, each entity sends rF “Capture”
messages, so the total number of messages in this stage is at most 4nrF . In stage
i > 1, an active node sends (r − 1)F “Capture” messages for a total of at most 4nirF
messages, where ni is the number of entities starting stage i; it is not difficult to verify
that

ni ≤ n/(i − 1)(r − 1)F .

There are exactly t = (n+ 2)/2(r − 1)F stages. Then, the total number of messages
during stages 2, 3, ..., t is

∑

2≤i≤t
4rkn

(i−1)(r−1)F .

In the final stage, the leader sends F + 1 messages and each of the receivers
generates in turn n− 2 messages. So the total number of messages of this stage is
(F + 1)(n− 1).

So the total number of messages is

4nrF + ∑

2≤i≤t
4rFn

(i−1)(r−1)F + (F + 1)(n− 1) = O
(
nrF + nr

r−1 log
(

n
(r−1)F

) )
.

Let us now examine the time costs. We have seen that a Capture message generates
at most four messages. Hence, each of the (n+ 2)/(r − 1)F stages of the leader
election process takes at most four time units. We have to add two time units for the
last stage of the algorithm. Then, the time needed for the execution of the algorithm
is

Time = 4(n+2)
(r−1)F + 2 = O( n

(r−1)F

)
.

The parameter r yields a trade-off between time and messages: Increasing the
value of r would decrease the time while increasing the number of messages. The
best message complexity is achieved whenever r = O(1). For example, with r = 2
we have

M[FT− LinkElect] = O
(
nF + n log

( n
F

) )
(7.22)

T[FT− LinkElect] = O
( n
F

)
. (7.23)
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7.7.3 Concluding Remarks

We have seen that, although quite negative and restrictive, the result of Lemma 7.7.1
per se is not terribly discouraging: Even if several link may fail, it is possible to
achieve a reasonable level of fault tolerance by sufficiently increasing the connectivity
of the network. In other words, the price for having link fault tolerance are increased
hardware costs.

In the case of complete networks with links that can fail with send/receive omis-
sions, we have seen that it is always possible to elect a leader if F ≤ n− 2; the cost
is, however, quite high. We have also seen how to reduce the cost substantially if
F ≤ n−6

2 . An interesting open problem is whether it is possible to design an equally
efficient protocol tolerating the maximum amount of faults, that is, F ≤ n− 2; see
Problems 7.10.7 and 7.10.8.

Always in complete networks, it is actually possible to tolerate a much larger

number of faults, indeed up to n2−2n
2 send/receive omissions faulty links, provided

that no more than n
2 incident links are faulty at each entity; furthermore, consensus

under these conditions can be achieved quite efficiently (see Problem 7.10.10).
We have restricted our discussion to send/receive omissions; the situation clearly

changes and the results do not hold if a faulty link can also corrupt the transmitted
message.

7.7.4 Considerations on Localized Entity Failures

We have examined in details when and how, in synchronous system, we can cope
with the presence of faulty entities. The bounds that we have seen are tight: We have
designed protocols allowing consensus to be reached among the nonfaulty entities if
the number of faulty entities did not execeed the bound; the presence of one more
faulty entity would make the consensus task unreachable.

All our bounds have been established in terms of the number f of faulty entities
present in the system; obviously we do not know beforehand who these entities are.
It is only during the execution that their identity might become known.

We can consider this situation like that of an external observer that has available
f faulty stickers to pin, one per faulty entity. When can the external observer declare
an entity to be faulty and thus pin one of the stickers to it ? As long as the entity
behaves correctly (i.e., according to the protocol), it cannot be clearly declared faulty.
In contrast to this, as soon as it behaves incorrectly, it will be declared to be faulty by
the observer, and the number of available stickers decreases by one. Note that not all
f stickers will necessarily be assigned in every execution. For example, a Byzantine
entity can behave correctly and never be identified by the observer.

IMPORTANT. In the setting we have established our bounds, stickers are permanent:
once an entity is declared faulty, its sticker is never removed.

The consequence of this fact is that the results we have established apply only to
systems where the faults are localized and permanent, that is, they are restricted to a
fixed set of f entities.
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Further note that an occasional transient failure of an entity (e.g., losing a single
message just once) is treated by the external observer in the same way as a permanent
failure of an entity: In both cases, the observer will pin a permanent faulty sticker
to the entity. This leads to undesirable conclusions: In situations where every entity
will occasionally lose a message (a situation that clearly occurs in real systems), the
entire system will be declared unusable for any computation, even if the system is
synchronous.

7.8 UBIQUITOUS FAULTS

In the previous section we have examined in details when and how, in synchronous
system, we can cope with localized and permanent entity and link faults.

In general, the majority of failures have mostly a transient and ubiquitous nature;
that is, faults can occur anywhere in the system and, following a failure, normal
functioning can resume after a finite (although unpredictable) time. In particular,
failures will occur on any communication link; almost every entity will experience at
one time or another send or receive failure, and so forth.

In this section we will examine how we can deal with these communication failures,
also called dynamic faults or mobile faults. For the designer of a protocol, these types
of faults are much more difficult to handle than the ones that occur always in the same
places. In the latter case, once a fault is detected, we know that we cannot trust that
link; with mobile faults, detection will not help us with the future events.

It is, therefore, not surprising that the number of dynamic faults that can be tolerated
at each time unit is by far less than that of the localized and permanent faults we can
deal with. What is surprising is perhaps the fact that something can be done at all.

7.8.1 Communication Faults and Agreement

In a synchronous network, as we have already observed in Chapter 6, silences are
expressive: We can have communication between entities even if no message is sent.

Let us more formally define what we mean by communication in the context of
the agreement problem, and what is a faulty communication.

Given an entity x and a neighbor y inG, at each time unit t , a communication from
x to y is a pair 〈α, β〉 where α denotes what is sent by x to y at time t , and β denotes
what is received by y from x at time t + 1. We denote by α = ø the fact that at time
t , x did not send any message to y; by β = ø, we denote the fact that at time t + 1, y
did not receive any message from x.

A communication 〈α, β〉 from x to y at time t is faulty if α �= β, nonfaulty other-
wise. We will distinguish between three types of faulty communication 〈α, β〉:

1. (α �= ø = β) omission: the message sent by x to y at time t is not delivered to
y by time t + 1;

2. (α = ø �= β) addition: a message from x is delivered to y at time t + 1, but x
has sent no message to y at time t ;
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3. (ø �= α �= β �= ø) corruption: a message is sent by x to y at time t , but one
with different content is received by y at time t + 1.

While the nature of omissions and corruptions is quite obvious, that of additions
may appear strange and rather artificial at first. Instead, it describes a variety of
situations. The most obvious one is when sudden noise in the transmission channel
is mistaken for a message. However, the more important occurrence of additions in
sytems is rather subtle: When we say that the received message “was not transmitted,”
what we really mean is that it “was not transmitted by any authorized user.” Indeed,
additions can be seen as messages surreptitiously inserted in the system by some
outside, and possibly malicious, entity. Spam being sent from an unsuspecting site
clearly fits the description of an addition. Summarizing, additions do occur and can
be very dangerous.

These three types of faults are quite incomparable with each other in terms of
danger. The hierarchy of faults comes into place when two or all of these basic fault
types can occur in the system (see Figure 7.2). The presence of all three types of faults
creates what is called a Byzantine faulty behavior.

Notice that most localized and permanent failures can be easily modeled by com-
munication faults; for instance, omission of all messages sent by and to an entity
can be used to describe the crash failure of that entity. Analogously, with enough
dynamic communication faults of the appropriate type, it is easy to describe faults
such as send and receive failures, Byzantine link failures, and so forth. In fact, with
at most 2(n− 1) dynamic communication faults per time unit, we can simulate the
interaction of one faulty entity with its neighbors, regardless of its fault type (Exercise
7.10.39).

As in the previous section, we will concentrate on the Agreement Problem
Agree(p).

The goal will be to determine if and how a certain level of agreement (i.e., value
of p) can be reached in spite of a certain number F of dynamic faults of a given type
τ occurring at each time unit; note that, as the faults are mobile, the set of faulty
communications may change at each time unit.

Depending on the value of parameter p, we have different types of agreement
problems. Of particular interest are unanimity (i.e., p = n) and strong majority (i.e.,
k = �n2 	 + 1).

Note that any Boolean agreement requiring less than a strong majority (i.e., p ≤
�n/2	) can be trivially reached without any communication, for example, each entity
chooses its input value. We are interested only in nontrivial agreements (i.e., p >
�n/2	).

7.8.2 Limits to Number of Ubiquitous Faults for Majority

The fact that dynamic faults are not localized but ubiquitous makes the problem
of designing fault-tolerant software much more difficult. The difficulty is further
increased by the fact that dynamic faults may be transient and not permanent (hence
harder to detect).



UBIQUITOUS FAULTS 469

Let us examine how much more difficult it is to reach a nontrivial (i.e., p > �n2 	)
agreement in presence of dynamic communication faults.

Consider a complete network. From the results we have established in the case
of entity failures, we know that if only one entity crashes, the other n− 1 can agree
on the same value (Theorem 7.3.1). Observe that with 2(n− 1) omissions per clock
cycle, we can simulate the crash failure of a single entity: All messages sent to and
from that entity are omitted at each time unit. This means that if 2(n− 1) omissions
per clock cycle are localized to a single entity all the time, then agreement among
n− 1 entities is possible. What happens if those 2(n− 1) omissions per clock cycle
are mobile (i.e., not localized to the same entity all the time)?

Even in this case, at most a single entity will be isolated from the rest at any one
time; thus, one might still reasonably expect that an agreement among n− 1 entities
can be reached even if the faults are dynamic. Not only this expectation is false,
but actually it is impossible to reach even strong majority (i.e., an agreement among
�n/2	 + 1 entities).

This results in an instance of a more general result that we will be going to derive and
examine in this section. As a consequence, in a network G = (V,E) with maximum
node degree deg(G),

1. with deg(G) omissions per clock cycle, strong majority cannot be reached;

2. if the failures are any mixture of corruptions and additions, the same bound
deg(G) holds for the impossibility of strong majority;

3. In the case of arbitrary faults (omissions, additions, and corruptions: the Byzan-
tine case), strong majority cannot be reached if just �deg(G)/2	 transmissions
may be faulty.

Impossibility of Strong Majority The basic result yielding the desired impos-
sibility results for even strong majority is obtained using a “bivalency” technique
similar to the one emplyed to prove the Single-Fault Disaster. However, the environ-
ment here is drastically different from the one considered there. In particular, we are
now in a synchronous environment with all its consequences; in particular, delays are
unitary; therefore, we cannot employ (to achieve our impossibility result) arbitrarily
long delays. Furthermore, omissions are detectable! In other words, we cannot use
the same arguments, the resources at our disposal are more limited, and the task of
proving impossibility is more difficult.

With this in mind, let us refresh some of the terminology and definitions we need.
Let us start with the problem. Each entity x has an input register Ix , a write-

once output register Ox , and unlimited internal storage. Initially, the input register
of an entity is a value in {0, 1}, and all the output registers are set to the same value
b /∈ {0, 1}; once a value dx ∈ {0, 1} is written in Ox , the content of that register is
no longer modifiable. The goal is to have at least p > �n/2	 entities set, in finite
time, their output registers to the same value d ∈ {0, 1}, subject to the nontriviality
condition (i.e., if all input values are the same, then d must be that value).
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The values of the registers and of the global clock, together with the program
counters and the internal storage, comprise the internal state of an entity. The states
in which the output register has value v ∈ {0, 1} are distinguished as being v-decision-
states.

A configuration of the system consists of the internal state of all entities at a given
time. An initial configuration is one in which all entities are in an initial state at time
t = 0. A configuration C has decision value v if at least p entities are in a v-decision
state, v ∈ {0, 1}; note that asp > �n/2	, a configuration can have at most one decision
value.

At any time t , the system is in some configuration C, and every entity can send
a message to any of its neighbors. What these messages will contain depends on the
protocol and on C. We describe the messages by means of a message array �(C)
composed of n2 entries defined as follows: If xi and xj are neighbors, then the entry
�(C)[i, j ] contains the (possibly empty) message sent by xi to xj ; if xi and xj are
not neighbors, then we denote this fact by �(C)[i, j ] = ∗, where ∗ is a distinguished
symbol.

In the actual communication, some of these messages will not be delivered or their
content will be corrupted, or a message will arrive when none has been sent.

We will describe what happens by means of anothern× n array called transmission
matrix τ for �(C) and defined as follows: If xi and xj are neighbors, then the entry
τ [i, j ] of the matrix contains the communication pair (α, β), where α = �(C)[i, j ]
is what xi sent and β is what xj actually receives; if xi and xj are not neighbors, then
we denote this fact by τ [i, j ] = (∗, ∗). Where no ambiguity arises, we will omit the
indication C from �(C).

Clearly, because of the different number and types of faults and different ways in
which faults can occur, many transmission matrices are possible for the same �. We
will denote by T (�) the set of all possible transmission matrices τ for �.

Once the transmission specified by τ has occurred, the clock is incremented by
one unit to t + 1; depending on its internal state, on the current clock value, and
on the received messages; each entity xi prepares a new message for each neighbor
xj and enters a new internal state. The entire the system enters a new configuration
τ {C}. We will call τ an event and the passage from one configuration to the next a
step.

Let R1(C) = R(C) = {τ {C} : τ ∈ T (�(C))} be the set of all possible configura-
tions resulting from C in one step, sometimes called succeeding configurations of
C. Generalizing, let Rk(C) be the set of all possible configurations resulting from C

in k > 0 steps and R∗(C) = {C′ : ∃t > 0, C′ ∈ Rt (C)} be the set of configurations
reachable from C. A configuration that is reachable from some initial configuration
is said to be accessible.

Let v ∈ {0, 1}. A configuration C is v-valent if there exists a t ≥ 0 such that all
C′ ∈ Rt (C) have decision value v, that is, a v-valent configuration will always result
in at least K entities deciding on v. A configuration C is bivalent if there exist in
R∗(C) both a 0-valent and a 1-valent configuration.

If two configurationsC′ andC′′ differ only in the internal state of entity xj , we say
that they are j -adjacent, and we call them adjacent if they are j -adjacent for some j .
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We will be interested in sets of events (i.e., transmission matrices) that preserve
adjacency of configurations. We call a set S of events j -adjacency preserving if for
any two j -adjacent configurations C′ and C′′ there exist in S two events τ ′ and τ ′′ for
l(C′) and l(C′′), respectively such that τ ′(C′) and τ ′′(C′′) are j -adjacent. We call S
adjacency preserving if it is j -adjacency preserving for all j .

A set S of events is continuous if for any configuration C and for any τ ′, τ ′′ ∈ S
for �(C), there exists a finite sequence τ0, . . . , τm of events in S for l(C) such that
τ0 = τ ′, τm = τ ′′, and τi(C) and τi+1(C) are adjacent, 0 ≤ i < m.

We are interested in sets of events with at most F faults that contain an event for
all possible message matrices. A set S of events is F -admissible, 0 ≤ F ≤ 2|E| if
for each message matrix �, there is an event τ ∈ S for � that contains at most F
faulty transmissions; furthermore, there is an event in S that contains exactly F faulty
transmissions.

As we will see, any set of F -admissible events that is both continuous and
j -adjacency preserving for some j will make any strong majority protocol fail.

To prove our impossibility result, we are going to use two properties that follow
immediately from the definitions of state and of event.

First of all, if an entity is in the same state in two different configurationsA and B,
then it will send the same messages in both configurations. That is, let si(C) denote
the internal state of xi in C; then

Property 7.8.1 For two configurations A and B, let �(A) and �(B) be the corres-
ponding message matrices. If sj (A) = sj (B) for some entity xj , then 〈�(A)[j, 1], ...,
�(A)[j, n]〉 = 〈�(B)[j, 1], ...,�(B)[j, n]〉.

Next, if an entity is in the same state in two different configurations A and B, and
it receives the same messages in both configurations, then it will enter the same state
in both resulting configurations. That is,

Property 7.8.2 Let A and B be two configurations such that sj (A) = sj (B) for
some entity xj , and let τ ′ and τ ′′ be events for �(A) and �(B), respectively.
Let τ ′[i, j ] = (α′i,j , β

′
i,j ) and τ ′′[i, j ] = (α′′i,j , β

′′
i,j ). If β ′i,j = β ′′i,j for all i, then

sj (τ ′{A}) = sj (τ ′′{B}).
Given a set S of events and an agreement protocol P , let P(P, S) denote the set of

all initial configurations and those that can be generated in all executions of P when
the events are those in S.

Theorem 7.8.1 Let S be continuous, j-adjacency preserving and F-admissible,
F > 0. Let P be a (�(n− 1)/2� + 2)–agreement protocol. If P(P, S) contains two
accessible l-adjacent configurations, a 0-valent and a 1-valent one, then P is not
correct in spite of F communication faults in S.

Proof. Assume to the contrary that P is a (�(n− 1)/2� + 2)–agreement protocol that
is correct in spite of F > 0 communication faults when the only possible events are
those in S.
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Now let A and B be j -adjacent accessible configurations that are 0-valent and
1-valent, respectively.

As S is j -adjacency preserving, there exist in S two events, π1 for �(A) and ρ1
for �(B), such that the resulting configurations π1{A} and ρ1{B} are j -adjacent. For
the same reason, there exist in S two events, π2 and ρ2, such that the resulting config-
urations π2{π1{A}} and ρ2{ρ1{B}} are j -adjacent. Continuing to reason in this way,
we have that there are in S two events, πt and ρt , such that the resulting configura-
tionsπt (A) = πt {πt−1{. . . π2{π1{A}} . . .}} and ρt (A) = ρt {ρt−1{. . . ρ2{ρ1{A}} . . .}}
are j -adjacent.

As P is correct, there exists a t ≥ 1 such that πt (A) and ρt (B) have a decision
value. As A is 0-valent, at least �n2 	 + 1 entities have decision value 0 in πt (A);
similarly, as B is 1-valent, at least �n2 	 + 1 entities have decision value 1 in πt (B).
This means that there exists at least one entity xi , i �= j , that has decision value 0 in
πt (A) and 1 in ρt (B); hence, si(πt (A)) �= si(ρt (B)).

However, as πt (A) and ρt (B) are j -adjacent, they only differ in the state of one
entity, xj : a contradiction. As a consequence, P is not correct. �

We can now prove the main negative result.

Theorem 7.8.2 Impossibility of Strong Majority
Let S be adjacency-preserving, continuous and F-admissible. Then no k-agreement
protocol is correct in spite of F communication faults in S for K > �n/2	.

Proof. Assume P is a correct (�n/2	+1)-agreement protocol in spite of F communi-
cation faults when the message system returns only events in S. In a typical bivalency
approach, the proof involves two steps: First, it is argued that there is some initial
configuration in which the decision is not already predetermined; second, it is shown
that it is possible to forever postpone entering a configuration with a decision value.

Lemma 7.8.1 P(P, S) has an initial bivalent configuration.

Proof. By contradiction, let every initial configuration in P(P, S) be v-valent for
= v ∈ {0, 1} and let P be correct. As, by definition, there is at least a 0-valent initial
configuration A and a 1-valent initial configuration B; then there must be a 0-valent
initial configuration and a 1-valent initial configuration that are adjacent. In fact, let
A0 = A, and let Ah denote the configuration obtained by changing into 1 a single 0
input value of Ah−1, 1 ≤ h ≤ z(A), where z(A) is the number of 0s in A; similarly
define Bh, 0 ≤ h ≤ z(B) where z(B) is the number of 0s in B. By construction,
Az(A) = Bz(B). Consider the sequence

A = A0, A1, . . . , Az(A) = Bz(B), . . . B1, B0 = B.

In it, each configuration is adjacent to the following one; as it starts with a 0-valent
and ends with a 1-valent configuration, it contains a 0-valent configuration adjacent
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to a 1-valent one. By Theorem 7.8.1 it follows that P is not correct: a contradiction.
Hence, in P(P, S) there must be an initial bivalent configuration. �

Lemma 7.8.2 Every bivalent configuration in P(P, S) has a succeeding bivalent
configuration.

Proof. Let C be a bivalent configuration in P(P, S). If C has no succeeding bivalent
configuration, then C has at least one 0-valent and at least one 1-valent succeeding
configuration, say A and B. Let τ ′, τ ′′ ∈ S such that τ ′(C) = A and τ ′′(C) = B. As
S is continuous, there exists a sequence τ0, . . . , τm of events in S for l(C) such that
τ0 = τ ′, τm = τ ′′, and τi(C) and τi+1(C) are adjacent, 0 ≤ i < m. Consider now the
corresponding sequence of configurations:

A = τ ′(C) = τ0(C), τ1(C), τ2(C), . . . , τm(C) = τ ′′(C) = B.

As this sequence starts with a 0-valent and ends with a 1-valent configuration, it
contains a 0-valent configuration adjacent to a 1-valent one. By Theorem 7.8.1, P
is not correct: a contradiction. Hence, every bivalent configuration in P(P, S) has a
succeeding bivalent configuration. �

From Lemmas 7.8.1 and 7.8.2, it follows that there exists an infinite sequence of
accessible bivalent configurations, each derivable in one step from the preceding one.
This contradicts the assumption that for each initial configuration C there exists a
t ≥ 0 such that every C′ ∈ Rt (C) has a decision value; thus, P is not correct. This
concludes the proof of Theorem 7.8.2. �

Consequences The Impossibility of Strong Majority result provides a powerful
tool for proving impossibility results for nontrivial agreement: If it can be shown
that a set S of events is adjacency preserving, continuous, and F -admissible, then no
nontrivial agreement is possible for the types and numbers of faults implied by S.

Obviously, not every set S of events is adjacency preserving; unfortunately, all the
ones we are interested in are so. A summary is shown in Figure 7.18.

Omission Faults We can use the Impossibility of Strong Majority result to prove
that no strong majority protocol is correct in spite of deg(G) communication faults,
even when the faults are only omissions.

Let Omit be the set of all events containing at most deg(G) omission faults. Thus,
by definition, Omit is deg(G)-admissible.

To verify that Omit is continuous, consider a configuration C and any two events
τ ′, τ ′′ ∈ O for �(C). Let m′1,m

′
2, . . . , m

′
f ′ be the f ′ faulty communications in τ ′,

and let m′′1,m
′′
2, . . . , m

′′
f ′′ be the f ′′ faulty communications in τ ′′. As O is deg(G)–

admissible, f ′ ≤ deg(G) and f ′′ ≤ deg(G). Let τ ′0 = τ ′, and let τ ′h denote the event
obtained by replacing the faulty communication m′h in τ ′h−1 with a nonfaulty one
(with the same message sent in both), 1 ≤ h ≤ f ′; Similarly define τ ′′h , 0 ≤ h ≤ f ′′.
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A + C = Deg(G)

No Faults

O = Deg(G)

(Byzantine)

A + C + O =  Deg(G)/2

FIGURE 7.18: Impossibility. Minimum number of faults per clock cycle that may render
strong majority impossible.

By construction, τ ′
f ′ = τ ′′f ′′ . Consider the sequence

τ ′0, τ
′
1, . . . , τ

′
f ′ = τ ′′f ′′ , . . . , τ ′′1 , τ ′′0 .

In this sequence, each event is adjacent to the following one; furthermore, as by
construction each event contains at most deg(G) omissions, it is in Omit. Thus, Omit
is continuous.

We can now show that Omit is adjacency preserving. Given a message matrix
�; let ψ�,l denote the event for � where all and only the messages sent by xl are
lost. Then, for each � and l, ψ�,l ∈ Omit. Let configurationsA and B be l-adjacent.
Consider the events ψ�(A),l and ψ�(B),l for A and B, respectively, and the resulting
configurations A′ and B ′. By Properties 7.8.1 and 7.8.2, it follows that also A′ and
B ′ are l-adjacent. Hence Omit is adjacency preserving.

Summarizing,

Lemma 7.8.3 Omit is deg(G)-admissible, continuous, and adjacency preserving.

Then, by Theorem 7.8.1, it follows that

Theorem 7.8.3 No p-agreement protocol P is correct in spite of deg(G) omission
faults in Omit for p > �n/2	.

Addition and Corruption Faults Using a similar approach, we can show that when
the faults are additions and corruptions no strong majority protocol is correct in spite
of deg(G) communication faults.

Let AddCorr denote the set of all events containing at most deg(G) addition
and corruption faults. Thus, by definition, AddCorr is deg(G)-admissible. It is not
difficult to verify that AddCorr is continuous (Exercise 7.10.40).
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We can prove that AddCorr is adjacency preserving as follows. For any two h-
adjacent configurationsA and B, consider the events πh and ρh for �(A) = {αij } and
�(B) = {γij }, respectively where for all (xi, xj ) ∈ E,

πh[i, j ] =
{

(αij , γij ) if i = h and αij = �

(αij , αij ) otherwise

and

ρh[i, j ] =
{

(γij , αij ) if i = h and αij �= �

(γij , γij ) otherwise.

It is not difficult to verify that πh, ρh ∈ AddCorr and the configurations πh(C′)
and ρh(C′′) are h-adjacent. Hence AddCorr is adjacency preserving.

Summarizing,

Lemma 7.8.4 AddCorr is deg (G)-admissible, continuous, and adjacency preserv-
ing.

Then, by Theorem 7.8.1, it follows that

Theorem 7.8.4 No p-agreement protocol P is correct in spite of deg(G) communi-
cation faults in AddCorr for p > �n/2	.

Byzantine Faults We now show that no strong majority protocol is correct in spite
of �deg(G)/2	 arbitrary communication faults.

Let Byz be the set of all events containing at most �deg(G)/2	 communication
faults, where the faults may be omissions, corruptions, and additions. By definition,
Byz is �deg(G)/2	-admissible. Actually (see Exercises 7.10.41 and 7.10.42),

Lemma 7.8.5 Byz is �deg(G)/2	-admissible, continuous, and adjacency preserv-
ing.

Then, by Theorem 7.8.1, it follows that

Theorem 7.8.5 No p-agreement protocol P is correct in spite of �deg(G)/2	 com-
munication faults in Byz for p > �n/2	.

and dynamic result all if, at each

7.8.3 Unanimity in Spite of Ubiquitous Faults

In this section we examine the possibility of achieving unanimity among the entities,
agreement in spite of dynamic faults. We will examine the problem under the following
restrictions:
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Additional Assumptions (MA)

1. Connectivity, Bidirectional Links;

2. Synch;

3. all entities start simultaneously;

4. each entity has a map of the network.

Surprisingly, unanimity can be achieved in several cases; the exact conditions
depend not only on the type and number of faults but also on the edge connectivity
cedge(G) of G.

In all cases, we will reach unanimity, in spite of F communication faults per
clock cycle, by computing the OR of the input values and deciding on that value.
This is achieved by first constructing (if not already available) a mechanism for
correctly broadcasting the value of a bit within a fixed amount of time T in spite of
F communication faults per clock cycle. This reliable broadcast, once constructed,
is then used to correctly compute the logical OR of the input values: All entities
with input value 1 will reliably broadcast their value; if at least one of the input
values is 1 (thus, the result of OR is 1), then everybody will be communicated this
fact within time T ; on the contrary, if all input values are 0 (thus, the result of OR
is 0), there will be no broadcasts and everybody will be aware of this fact within
time T .

The variable T will be called timeout. The actual reliable broadcast mechanism
will differ depending on the nature of the faults.

Single Type Faults: Omissions Consider the case when the communication
errors are just omissions. That is, in addition to MA we have the restriction Omission
that the only faults are omissions.

First observe that, because of Lemma 7.1.1, broadcast is impossible if F ≥
cedge(G). This means that we might be able to tolerate at most cedge(G)− 1 omissions
for time unit.

Let F ≤ cedge(G)− 1. When broadcasting in this situation, it is rather easy to
circumvent the loss of messages. In fact, it suffices for all entities involved, start-
ing from the initiator of the broadcast, to send the same message to the same
neighbors for several consecutive time steps. More precisely, consider the following
algorithm:

Algorithm Bcast-Omit

1. To broadcast inG, node x sends its message at time 0 and continues transmitting
it to all its neighbors until time T (G)− 1 (the actual value of the timeout T (G)
will be determined later);

2. a node y receiving the message at time t < T (G) will transmit the message to
all its other neighbors until time T (G)− 1.
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Let us verify that if F < cedge(G), there are values of the timeout T (G) for which
the protocol performs the broadcast.

AsG has edge connectivity cedge(G), by Property 7.1.1, there are at least cedge(G)
edge-disjoint paths between x and y; furthermore, each of these paths has length at
most n− 1. According to the protocol, x sends a message along all these cedge(G)
paths. At any time instant, there are F < cedge(G) omissions; this means that at least
one of these paths is free of faults. That is, at any time unit, the message from x will
move one step further toward y along one of them. Since these paths have length at
most n− 1, after at most cedge(G) (n− 2)+ 1 = cedge(G) n− 2 cedge(G) + 1 time
units the message from x would reach y. This means that with

T (G) ≥ cedge(G) n− 2 cedge(G)+ 1,

it is possible to broadcast in spite of F < c omissions per time units. This value for
the timeout is rather high and depending on the graphG can be substantially reduced.

Let us denote by T ∗(G) the minimum timeout value ensuring algorithm Bcast-Omit
to correctly perform the broadcast in G.

Using algorithm Bcast-Omit to compute the OR we have the following:

Theorem 7.8.6 Unanimity can be reached in spite of F = cedge(G)− 1 faults per
clock cycle in time T ∗(G) |em transmitting at most 2 m(G) T ∗(G) bits.

What is the actual value of T ∗(G) for a given G? We have just seen that

T ∗(G) ≤ cedge(G) n− 2cedge(G)+ 1. (7.24)

A different available bound (Problem 7.10.1) is

T ∗(G) = O(diam(G)cedge(G)). (7.25)

They are both estimates on how much time it takes for the broadcast to complete.
Which estimate is better (i.e., smaller) depends on the graph G.

For example, in a hypercube H , cedge(H ) = diam(H ) = log n; hence, if we use
Equation 7.24 we have O(n log n) while with Equation 7.25 we would have a time
O(nloglog n).

Actually, in a hypercube, both estimates are far from accurate. It is easy to verify
(Exercise 7.10.43) that T ∗(H ) ≤ log2 n. It is not so simple (Exercise 7.10.44) to show
that the timeout is actually

T ∗(H ) ≤ log n+ 2. (7.26)

In other words, with only two time units more than that in the fault-free case,
broadcast can tolerate up to log n− 1 message losses per time unit.
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Let us now focus on the bit costs of the protocol Consensus-Omit obtained by
computing the OR of the input values by means of algorithm Bcast-Omit. We have
seen that

B(Bcast-Omit)≤ 2 m(G) T ∗(G).

With very little hacking, it is possible to remove the factor 2. In fact, if an entity x
receives 1 from a neighbor y to which it has sent 1 (for one or more time units), then
x knows that y has seen a 1; thus, x can stop sending messages to y. In this way, if
two neighbors send messages to each other at the same time, then no more messages
will be sent between them from now on. In other words, on a link at each time unit
there is only one message, except at most once when there are two. Summarizing,

B(Bcast− Omit) ≤ m(G) T ∗(G)+m(G). (7.27)

Single Type Faults: Additions Let us consider a system where the faults are
additions, that is, messages are received although none was transmitted by any au-
thorized user. To deal with additions in a fully synchronous system is possible but
expensive. Indeed, if each entity transmits to its neighbors at each clock cycle, it leaves
no room for additions. Thus, the entities can correctly compute the OR using a simple
diffusion mechanism in which each entity transmits for the first T (G)− 1 time units:
Initially, an entity sends its value; if at any time it is aware of the existence of a 1 in
the system, it will only send 1 from that moment onward. The corresponding protocol
is shown in Figure 7.19. The process clearly can terminate after T (G) = diam(G)
clock cycles. Hence,

Theorem 7.8.7 Let the system faults be additions. Unanimity can be reached re-
gardless of the number of faults in time T = diam(G) transmitting 2m(G) diam(G)
bits.

Observe that, although expensive, it is no more so that what we have been able to
achieve with just omissions.

Further observe that if a spanning tree S of G is available, it can be used for the
entire computation. In this case, the number of bits is 2(n− 1) diam(S) while time is
diam(S).

Single Type Faults: Corruptions Surprisingly, if the faults are just corruptions,
unanimity can be reached regardless of the number of faults.

To understand this result, first consider, that as the only faults are corruptions,
there are no omissions; thus, any message transmitted will arrive, although its con-
tent may be corrupted. Furthermore, there are no additions; thus, only the messages
that are transmitted by some entity will arrive. This means that if an entity starts a
broadcast protocol, every node will receive a message (although not necessarily the
correct one).
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PROTOCOL Consensus-Add

� States: S = {ASLEEP, ZERO, ONE, DONE};
SINIT = {ASLEEP};
STERM = {DONE}.
� Restrictions: Simultaneous Start ∪ Synch.

ASLEEP
Spontaneously
begin

setalarm c(x) = T (G);
if Ix = 1 then

become ONE;
else (i.e., Ix = 0)

become ZERO
endif
send Ix = 1 to N (x);

end
ZERO

Receiving(value)
begin

if value = 1 then become ONE;
send value to N (x);

end

When(c(x) = alarm)
begin

Dx = 0;
become DONE;

end
ONE

Receiving(value)
begin

send 1 to N (x);
end
When(c(x) = alarm)
begin

Dx = 1;
become DONE;

end

FIGURE 7.19: Protocol Consensus-Add.

We can use this fact in computing the OR. All entities with an input value 1 become
initiators of WFlood, in which all nodes participate. Regardless of its content, a mes-
sage will always and only communicate the existence of an initial value 1; an entity
receiving a message thus knows that the correct value is 1 regardless of the content of
the message. If there is an initial value 1, as there are no omissions, all entities will re-
ceive a message within time T (G) = diam(G). If all initial values are 0, no broadcast
is started and, as there are no additions, no messages are received; thus, all entities
will detect this situation because they will not receive any message by time T (G).

The resulting protocol, Consensus-Corrupt, shown in Figure 7.20, yields the
following:
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PROTOCOL Consensus-Corrupt

� States: S = {ASLEEP, ZERO, ONE, DONE};
SINIT = {ASLEEP};
STERM = {DONE}.
� Restrictions: Simultaneous Start ∪ Synch.

ASLEEP
Spontaneously
begin

setalarm c(x) = T (G);
if Ix = 1 then

send Message to N (x);
become ONE;

else (i.e., Ix = 0)
become ZERO

endif
end

ZERO
Receiving(Message)
begin

send Message to N (x)− {sender};
become ONE;

end

When(c(x) = alarm)
begin

Dx = 0;
become DONE;

end

ONE
When(c(x) = alarm)
begin

Dx = 1;
become DONE;

end

FIGURE 7.20: Protocol Consensus-Corrupt.

Theorem 7.8.8 Let the system faults be corruptions. Unanimity can be reached
regardless of the number of faults in time T = diam(G) transmitting at most 2m(G)
bits.

Composite Faults: Omissions and Corruptions If the system suffers from
omissions and corruptions, the situation is fortunately no worse than that of systems
with only omissions.

As there are no additions, no unintended message is generated. Indeed, in the
computation of the OR , the only intended messages are those originated by entities
with initial value 1 and only those messages (possibly corrupted) will be transmitted
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along the network. An entity receiving a message, thus, knows that the correct value is
1, regardless of the content of the message. If we use Bcast-Omit, we are guaranteed
that everybody will receive a message (regardless of its content) within T = T ∗(G)
clock cycles in spite of cedge(G)− 1 or fewer omissions, if and only if at least one is
originated (i.e., if there is at least an entity with initial value 1). Hence

Theorem 7.8.9 Unanimity can be reached in spite of F = cedge(G)− 1 faults per
clock cycle if the system faults are omissions and corruptions. The time to agreement
is T = T ∗(G) and the number of bits is at most 2 m(G)T ∗.

Observe that, although expensive, it is no more so that what we have been able to
achieve with just omissions.

As in the case of only omissions, the factor 2 can be removed by the bit costs
without any increase in time.

Composite Faults: Omissions and Additions Consider now the case of sys-
tems with omissions and additions.

To counter the negative effect of additions, each entity transmits to all their neigh-
bors in every clock cycle. Initially, an entity sends its value; if at any time it is aware
of the existence of a 1 in the system, it will only send 1 from that moment onward.
As there are no corruptions, the content of a message can be trusted.

Clearly, with such a strategy, no additions can ever take place. Thus, the only
negative effects are due to omissions; however, ifF ≤ cedge(G)− 1, omissions cannot
stop the nodes from receiving a 1 within T = T ∗(G) clock cycles if at least an entity
has such an initial value. Hence

Theorem 7.8.10 Unanimity can be reached in spite of F = cedge(G)− 1 faults per
clock cycle if the system faults are omissions and additions. The time to agreement is
T = T ∗(G) and the number of bits is at most 2 m(G) (T ∗(G)− 1).

Composite Faults: Additions and Corruptions Consider the environment
when faults can be both additions and corruptions. In this environment messages
are not lost but none can be trusted; in fact the content could be incorrect (i.e., a
corruption) or it could be a fake (i.e., an addition).

This makes the computation of OR quite difficult. If we only transmit when we
have 1 (as we did with only corruptions), how can we trust that a received message
was really transmitted and not caused by an addition? If we always transmit the OR
of what we have and receive (as we did with only additions), how can we trust that a
received 1 was not really a 0 transformed by a corruption?

For this environment, indeed we need a more complex mechanism employing
several techniques, as well as an additional restriction:

Additional restriction: The network G is known to the entities.
The first technique we use is that of time splicing:
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Technique Time Splice:

1. We distinguish between even and odd clock ticks; an even clock tick and its
successive odd click constitute a communication cycle.

2. To broadcast 0 (respective 1), x will send a message to all its neighbors only
on even (respective odd) clock ticks.

3. When receiving a message at an even (respective odd) clock tick, entity y will
forward it only on even (respective odd) clock ticks.

In this way, entities are going to propagate 1 only at odd ticks and 0 at even ticks.
This technique, however, does not solve the problem created by additions; in fact,

the arrival of a fake message created by an addition at an odd clock tick can generate
an unwanted propagation of 1 in the systems through the odd clock ticks.

To cope with the presence of additions, we use another technique based on the edge-
connectivity of the network. Consider an entity x and a neighbor y. Let SP(x, y) be
the set of the cedge(G) shortest disjoint paths from x to y, including the direct link
(x, y); see Figure 7.21. To communicate a message from x to y, we use a technique
in which the message is sent by x simultaneously on all the paths in SP(x, y). This
technique, called Reliable Neighbor Transmission, is as follows:

Technique Reliable Neighbor Transmission:

1. For each pair of neighboring entities x, y and paths SP(x, y), every entity
determines in which of these paths it resides.

2. To communicate a message M to neighbor y, y will send along each of the
cedge(G) paths in SP(x, y) a message, containingM and the information about

.

.

.

. . .

. . .

x

y

w

z

FIGURE 7.21: The cedge(G) edge-disjoint paths in SP(x, y).
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the path, for t consecutive communication cycles (the value of t will be dis-
cussed later).

3. An entity z on one of those paths, upon receiving in communication cycle k a
message for y with the correct path information, will forward it only along that
path for t − k communication cycles. A message with incorrect path informa-
tion will be discarded.

Note that incorrect path information (owing to corruptions and/or additions) in a
message for y received by z is detectable and so is incorrect timing as a result of the
following:

� Because of local orientation, z knows the neighbor w from which it receives the
message;
� z can determine if w is really its predecessor in the claimed path to y;
� z knows at what time such a message should arrive if really originated by x.

Let us now combine these two techniques together. To compute the OR, all entities
broadcast their input value using the Time Slice technique: The broadcast of 1s will
take place at odd clock ticks, that of 0s at even ones. However, every step of the
broadcast, in which every involved entity sends the bit to its neighbors, is done using
the Reliable Neighbor Transmission technique. This means that each step of the
broadcast now takes t communication cycles.

Let us call OR-AddCorrupt the resulting protocol.
As there are no omissions, any transmitted message is possibly corrupted, but, it

arrives; the clock cycle in which it arrives at y will indicate the correct value of the bit
(even cycles for 0, odd for 1). Therefore, if x transmits a bit, y will eventually receive
one and be able to decide the correct bit value. This is, however, not sufficient. We
need now to choose the appropriate value of t so that y will not mistakenly interpret
the arrival of bits due to additions and can decide if it was really originated by x.

The obvious property of Reliable Neighbor Transmission is that

Lemma 7.8.6 In t communication cycles, at most F t copies of incorrect messages
arrive at y.

The other property of Reliable Neighbor Transmission is less obvious. Observe
that when x sends 1 to neighbor y using Reliable Neighbor Transmission, y will
receive many copies of this “correct” (i.e., corrected using the properties of time
slicing) bit. Let l(x, y) be the maximum length of the paths in SP(x, y); and let
l = max{l(x, y) : (x, y) ∈ E} be the largest of such lengths over all pairs of neighbors.
Then (Exercise 7.10.50),

Lemma 7.8.7 y will receive at least (l − 1)+ cedge(G)(t − (l − 1)) copies (possibly
corrupted) of the bit from x within t > l communication cycles.
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Entity y can determine the original bit sent by x provided that the number (l − 1)+
c(G)(t − (l − 1)) of corrected copies received is greater than the number (c(G)− 1)t
of incorrect ones. To achieve this, it is sufficient to request t > (c(G)− 1)(l − 1).
Hence, by Lemmas 7.8.6 and 7.8.7 we have

Lemma 7.8.8 After t > (c(G)− 1)(l − 1) communication cycles, y can determine
bx,y .

Consider that broadcast requires diam(G) steps, each requiring t communication
cycles, each composed of two clock ticks. Hence

Lemma 7.8.9 Using algorithm OR-AddCorrupt, it is possible to compute the OR
of the input value in spite of cedge(G)− 1 additions and corruptions in time at most
in 2diam(G) (cedge(G)− 1)(l − 1).

Hence, unanimity can be guaranteed if at most cedge(G)− 1 additions and corrup-
tions occur in the system:

Theorem 7.8.11 Let the system faults be additions and corruptions. Unanim-
ity can be reached in spite of F = cedge(G)− 1 faults per clock cycle; the time
is T ≤ 2 diam(G) (cedge(G)− 1) (l − 1) and the number of bits is at most
4m(G)(cedge(G)− 1)(l − 1) bits.

Byzantine Faults: Additions, Omissions, and Corruptions In case of
Byzantine faults, anything can happen: omissions, additions, and corruptions. Not
surprisingly, the number of such faults that we are able to tolerate is quite small.

Still, using a simpler mechanism than that for additions and corruptions, we are
able to achieve consensus, albeit tolerating fewer faults.

Indeed, to broadcast, we use precisely the technique Reliable Neighbor Transmis-
sion described in the previous section; we do not, however, use time slicing: This
time, a communication cycle lasts only one clock cycle, that is, any received message
is forwarded along the path immediately.

The decision process (i.e., how y, out of the possibly conflicting received
messages, determines the correct content of the bit) is according to the simple rule:

Acceptance Rule

y selects as correct the bit value received most often during the t time units.

To see why the technique Reliable Neighbor Transmission with this Acceptance
Rule will work, let us first pretend that no faults occur. If this is the case, then in each
of the first (l − 1) clock cycles, a message from x will reach y through the direct link
between x and y. In each later clock cycle out of the t cycles, a message from x to y
will reach y on each of the at least cedge(G) paths. This amounts to a total of at least
(l − 1)+ cedge(G)(t − (l − 1)) messages arriving at y if no fault occurs.
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But, as we know, there can be up to t(�cedge(G)/2	 − 1) faults in these t cycles.
This leaves us with a number of correct messages, that is, at least the difference
between both quantities. If the number of correct messages is larger than the number
of faulty ones, the Acceptance Rule will decide correctly. Therefore, we need that

(l − 1)+ cedge(G)(t − (l − 1)) > 2t(�cedge(G)/2	 − 1).

This is satisfied for t > (cedge(G)− 1)(l − 1). We, therefore, get,

Lemma 7.8.10 Broadcasting using Reliable Neighbor Transmission tolerates
�cedge(G)/2	 − 1 Byzantine communication faults per clock cycle and uses
(cedge(G)− 1)(l − 1)+ 1 clock cycles.

Hence, reliable broadcast can occur in spite of �cedge/2	 − 1 Byzantine faults.
Consider that in this case, broadcast requires diam(G) clock ticks. Hence,

Theorem 7.8.12 Let the system faults be arbitrary. Unanimity can be reached in
spite of F = �cedge/2	 − 1 faults per clock cycle; the time is at most T ≤ diam(G)
(cedge − 1) (l − 1).

7.8.4 Tightness

For all systems, except those where faults are just corruptions or just additions (and in
which unanimity is possible regardless of faults), the bounds we have established are
similar except that the possibility ones are expressed in terms of the edge connectivity
cedge(G) of the graph, while the impossibility ones are in terms of the degree deg(G)
of the graph. A summary of the possibility results is shown in Figure 7.22.

This means that in the case of d-connected graphs, the impossibility bounds are
indeed tight:

1. With the number of faults (or more) specified by the impossibility bound, even
strong majority is impossible;

2. with one less fault than specified by the impossibility bound, even unanimity
can be reached, and

3. any agreement among less than a strong majority of the entities can be reached
without any communication.

This large class of networks includes hypercubes, toruses, rings, complete graphs,
and so forth. In these networks, the obtained results draw a precise “impossibility
map” for the agreement problem in presence of dynamic communication faults, thus,
clarifying the difference between the dynamic and the static cases.

For those graphs where cedge(G) < deg(G), there is a gap between possibility and
impossibility. Closing this gap is clearly a goal of future research.
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FIGURE 7.22: Maximum number of faults per clock cycle in spite of which unanimity is
possible.

7.9 BIBLIOGRAPHICAL NOTES

Most of the work on computing with failures has been performed assuming localized
entity faults, that is, in the entity failure model.

The Single-Fault Disaster theorem, suspected by many, was finally proved by
Michael Fisher, Nancy Lynch, and Michael Paterson [22].

The fact that in a complete network, f ≥ n
3 Byzantine entities render consensus

impossible was proved by Robert Pease, Marshall Shostak, and Leslie Lamport [38].
The simpler proof used in this book is by Michael Fisher, Nancy Lynch, and Michael
Merrit [21]. The first consensus protocol tolerating f < n

3 Byzantine entities was
designed by Robert Pease, Marshall Shostak, and Leslie Lamport [38]; it, however,
requires an exponential number of messages. The first polynomial solution is due to
Danny Dolev and Ray Strong [17]. Mechanism RegisteredMail has been designed
by T. Srikanth and Sam Toueg [48]; protocol TellZero-Byz is due to Danny Dolev,
Michael Fisher, Rob Fowler, Nancy Lynch, and Ray Strong [16]; protocol From-
Boolean that transform Boolean consensus protocols into ones where the values are
not restricted was designed by Russel Turpin and Brian Coan [49]. The first polyno-
mial protocol terminating in f + 1 rounds and tolerating f < n

3 Byzantine entities
(Exercise 7.10.16) is due to Juan Garay and Yoram Moses [25].

The lower bound f + 1 on time (Exercise 7.10.15) was established by Michael
Fisher and Nancy Lynch [20] for Byzantine faults; a simpler proof, using a bivalency



BIBLIOGRAPHICAL NOTES 487

argument, has been developed by Marco Aguilera and Sam Toueg [2]. The fact that
the same f + 1 lower bound holds even for crash failures was proven by Danny Dolev
and Ray Strong [17].

Consensus with Byzantine entities in particular classes of graphs was investigated
by Cinthia Dwork, David Peleg, Nick Pippenger, and Eli Upfal [18], and by Pitior
Berman and Juan Garay [4]. The problem in general graphs was studied by Danny
Dolev [15], who proved that for f ≥ cnode(G)

2 the problem is unsolvable (Exercise
7.10.17) and designed protocol ByzComm achieving consensus for smaller values
of f .

The first randomized consensus protocol for localized entity failures, Rand-Omit,
has been designed by Michael Ben-Or [3]. Protocol Committee that reduces the ex-
pected number of stages is due to Gabriel Bracha [5]. The fact that the existence of
a global source of random bits (unbiased and visible to all entities) yields a constant
expected time Byzantine Agreement (Exercise 7.10.24) is due to Michael Rabin [40],
who also showed how to implement such a source using digital signatures and a
trusted dealer (Problem 7.10.3); Problem 7.10.4 is due to Ran Canetti and Tal Ra-
bin [6], and the solution to Problem 7.10.5 is due to Pesech Feldman and Silvio
Micali [19].

The study of (unreliable) failure detectors for localized entity failures was initiated
by Tushar Chandra and Sam Toueg [8], to whom Exercise 7.10.25 is due; the proof
that � is the weakest failure detector is due to Tushar Chandra, Vassos Hadzilacos,
and Sam Toueg [7].

The positive effect of partial reliability on consensus in an asynchronous complete
network with crash failures was proven by Michael Fisher, Nancy Lynch, and Michael
Paterson [22]. Protocol FT-CompleteElect that efficiently elects a leader under the
same restriction was designed by Alon Itai, Shay Kutten, Yaron Wolfstahl, and Shmuel
Zaks [30]. An election protocol that, under the same conditions, tolerates also link
crashes has been designed by N. Nishikawa, T. Masuzawa, and N. Tokura [37].

There is clearly need to provide the entity failure model with a unique framework
for proving results both in the asynchronous and in the synchronous case. Steps in this
direction have been taken by Yoram Moses and Sergio Rajsbaum [36], by Maurice
Herlihy, Sergio Rajsbaum, and Mark Tuttle [29], and Eli Gafni [24].

In the study of localized link failures, the Two Generals problem has been intro-
duced by Jim Gray [26], who proved its impossibility; its reinterpretation in terms of
common knowledge is due to Joseph Halpern and Yoram Moses [28].

The election problem with send/receive-omissions faulty links has been studied for
complete networks by Hosame Abu-Amara [1], who developed protocol FT-LinkElect,
later improved by J. Lohre and Hasame Abu-Amara [33]; Exercise 7.10.10 is due to
G. Singh [47]. The case of ring networks was studied by Liuba Shrira and Oded
Goldreich [46].

Election protocols in presence of Byzantine links were developed for complete
networks by Hasan M. Sayeed, M. Abu-Amara, and Hasame Abu-Amara [44].

The presence of localized failures of both links and entities (the hybrid component
failure model) has been investigated by Kenneth Perry and Sam Toueg [39], Vassos
Hadzilacos [27], N. Nishikawa, T. Masuzawa, and N. Tokura [37], Flaviu Cristian,
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Houtan Aghili, Ray Strong, and Danny Dolev [10], and more recently by Ulrich
Schmid and Bettina Weiss [45].

The study of ubiquitous faults has been introduced by Nicola Santoro and
Peter Widmayer who proposed the communication failure model. They estab-
lished the impossibility results for strong majority and the possibility bounds for
unanimity in complete graphs [41]; they later extended these results to general
graphs [43].

Most of the research on ubiquitous faults has focused on reliable broadcast in
the case of omission failures. The problem has been investigated in complete graphs
by Nicola Santoro and Peter Widmayer [42], Zsuzsanna Liptak and Arfst Nickelsen
[32], and Stefan Dobrev [12]. The bound on the broadcast time in general graphs
(Problem 7.10.1) is due to Bogdan Chlebus, Krzysztof Diks, and Andrzej Pelc [9];
other results are due to Rastislav Kralovic, Richard Kralovic, Peter Ruzicka [31].
In hypercubes, the obvious log2 n upperbound to broadcast time has been decreased
by Pierre Fraigniaud and Claudine Peyrat [23], then by Gianluca De Marco and
Ugo Vaccaro [35], and finally (Exercise 7.10.44) to log n+ 2 by Stefan S. Dobrev
and Imrich Vrto, [13]. The case of tori (Exercise 7.10.47) has been investigated by
Gianluca De Marco and Adele Rescigno [34], and by Stefan Dobrev and Imrich
Vrto [14]. The more general problem of evaluating Boolean functions in presence of
ubiquitous faults has been studied by Nicola Santoro and Peter Widmayer [42] only for
complete networks; improved bounds for some functions have been obtained by Stefan
Dobrev [11].

7.10 EXERCISES, PROBLEMS, AND ANSWERS

7.10.1 Exercises

Exercise 7.10.1 Prove that for all connected networks G different from the complete
graph, the node connectivity is not larger than the edge connectivity

Exercise 7.10.2 Prove that, if k arbitrary nodes can crash, it is impossible to broad-
cast to the nonfaulty nodes unless the network is (k + 1)-node-connected.

Exercise 7.10.3 Prove that if we know how to broadcast in spite of k link faults,
then we know how to reach consensus in spite of those same faults.

Exercise 7.10.4 Let C be a nonfaulty bivalent configuration, let ε = (x,m) be a
noncrash event that is applicable to C; let A be the set of nonfaulty configurations
reachable from C without applying ε, and let B{ε(A) | A ∈ A}. Prove that if B does
not contain any bivalent configuration, then it contains both 0-valent and 1-valent
configurations.

Exercise 7.10.5 Let A be as in Lemma 7.2.4. Prove that there exist two x-adjacent
(for some entity x) neighbors A0, A1 ∈ A such that D0 = ε(A0) is 0-valent, and
D1 = ε(A1) is 1-valent.
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Exercise 7.10.6 Modify Protocol TellAll-Crash so as to work without assuming that
all entities start simultaneously. Determine its costs.

Exercise 7.10.7 Modify Protocol TellZero-Crash so to work without assuming that
all entities start simultaneously. Show that n(n− 1) additional bits are sufficient.
Analyze its time complexity.

Exercise 7.10.8 Modify Protocol TellAll-Crash so to work when the initial values
are from a totally ordered set V of at the least two elements, and the decision must
be on one of those values. Determine its costs.

Exercise 7.10.9 Modify Protocol TellAll-Crash so as to work when the initial values
are from a totally ordered set V of at the least two elements, and the decision must
be on one of the values initially held by an entity. Determine its costs.

Exercise 7.10.10 Modify Protocol TellZero-Crash so as to work when the initial
values are from a totally ordered set V of at the least two elements, and the decision
must be on one of those values. Determine its costs.

Exercise 7.10.11 Show that Protocol TellAll-Crash generates a consensus among
the nonfailed entities of a graph G, provided f < cnode(G). Determine its costs.

Exercise 7.10.12 Show that Protocol TellZero-Crash generates a consensus among
the nonfailed entities of a graph G, provided f < cnode(G). Determine its costs.

Exercise 7.10.13 Modify Protocol TellZero-Crash so that it generates a consensus
among the nonfailed entities of a graphG, whenever f < cnode(G), even if the entities
do not start simultaneously and both the initial and decision values are from a totally
ordered set V with more than two elements. Determine its costs.

Exercise 7.10.14 Prove that any consensus protocol tolerating f crash entity failures
requires at least f + 1 rounds.

Exercise 7.10.15 Prove that any consensus protocol tolerating f Byzantine entities
requires at least f + 1 rounds.

Exercise 7.10.16 Design a consensus protocol, tolerating f < n
3 Byzantine entities,

that exchanges a polynomial number of messages and terminates in f + 1 rounds.

Exercise 7.10.17 Prove that if there are f ≥ cnode(G)
2 Byzantine entities in G, then

consensus among the nonfaulty entities cannot be achieved even if G is fully syn-
chronous and restrictions GA hold.

Exercise 7.10.18 Modify protocol Rand-Omit so that each entity terminates its
execution at most one round after first setting its output value. Ensure that your
modification leaves unchanged all the properties of the protocol.
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Exercise 7.10.19 Prove that with protocol Rand-Omit, the probability that a success
occurs within the first k rounds is

Pr[success within k rounds ] ≥ 1− (1− 2−�n/2�+f+1)k.

Exercise 7.10.20 (??) Prove that with protocol Rand-Omit, when f = O(
√
n), the

expected number of rounds to achieve a success is only 0(1).

Exercise 7.10.21 Prove that if �n/2� + f + 1 correct entities start the same round
with the same preference, then all correct entities decide on that value within one
round. Determine the expected number of rounds to termination.

Exercise 7.10.22 Prove that, in protocol Committees, the number r of rounds it
takes a committees to simulate a single round of protocol Rand-Omit is dominated
by the cost of flipping a coin in each committee, which is dominated in turn by the
maximum number f of faulty entities within a nonfaulty committee.

Exercise 7.10.23 (?) Prove that, in protocol Committees, for any 1 > r > 0 and
c > 0, there exists an assignment of n entities to k = O(n2) committees such that for
all choices of f < n/(3+ c) faulty entities, at most O(r k) committees are faulty,
and each committee has size s = O(log n).

Exercise 7.10.24 Prove that if all entities had access to a global source of random
bits (unbiased and visible to all entities), then Byzantine Agreement can be achieved
in constant expected time.

Exercise 7.10.25 (??) Prove that any failure detector that satisfies only weak com-
pleteness and eventual weak accuracy is sufficient for reaching consensus if at most
f < n

2 entities can crash.

Exercise 7.10.26 Consider the reduction algorithm Reduce described in Section
7.5.2. Prove that Reduce satisfies the following property: Let y be any entity; if no
entity suspects y in Hv before time t , then no entity suspects y in outputr before
time t .

Exercise 7.10.27 Consider the reduction algorithm Reduce described in Section
7.5.2. Prove that Reduce satisfies the following property: Let y be any correct entity;
if there is a time after which no correct entity suspects y in Hv, then there is a time
after which no correct entity suspects y in outputr .

Exercise 7.10.28 Write the complete set of rules of protocol FT-CompleteElect.

Exercise 7.10.29 Prove that the closing of the ports in protocol FT-CompleteElect
will never create a deadlock.
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Exercise 7.10.30 Prove that in protocol FT-CompleteElect every entity eventually
reaches stage greater than n

2 or it ceases to be a candidate.

Exercise 7.10.31 Assume that, in protocol FT-CompleteElect, an entity x ceases to
be candidate as a result of a message originated by candidate y. Prove that, at any
time after the time this message is processed by x, either the stage of y is greater than
the stage of x or x and y are in the same stage but id(x) < id(y).

Exercise 7.10.32 Prove that in protocol FT-CompleteElect at least one entity always
remains a candidate.

Exercise 7.10.33 Prove that in protocol FT-CompleteElect, for every l ≥ 2, if there
are l − 1 candidates whose final size is not smaller than that of a candidate x, then
the stage of x is ar most ln.

Exercise 7.10.34 Let G be a complete networks where k < n− 1 links may occa-
sionally lose messages. Consider the following 2-steps process started by an entity x:
first x sends a messageM1 to all its neighbors; then each node receiving the message
from x will send a messageM2 to all its other neighbors. Prove that every entity will
receive either M1 or M2.

Exercise 7.10.35 Prove that Protocol 2-Steps works even if n
2 − 1 links are faulty

at every entity.

Exercise 7.10.36 Prove that in protocol FT-LinkElect all the nodes in Suppressor-
Link(x) are distinct.

Exercise 7.10.37 Consider protocol FT-LinkElect. Suppose that x precedes w in
Suppressor(v). Suppose that x eliminates y at time t1 ≤ t and that y receives the fatal
message (Capture,i,id(w)) from w at some time t2. Prove that then, t1 < t2.

Exercise 7.10.38 Consider protocol FT-LinkElect. Suppose that x sends K ≥ k
Capture messages in the execution. Prove that if no leader is elected, then x receives
at least K − k replies for these messages.

Exercise 7.10.39 Consider systems with dynamic communication faults. Show how
to simulate the behavior of a faulty entity regardless of its fault type, using at most
2(n− 1) dynamic communication faults per time unit.

Exercise 7.10.40 Let AddCorr denote the set of all events containing at most
deg(G) addition and corruption faults. Prove that AddCorr is continuous.

Exercise 7.10.41 Let Byz be the set of all events containing at most �deg(G)/2	
communication faults, where the faults may be omissions, corruptions, and additions.
Prove that Byz is continuous.



492 COMPUTING IN PRESENCE OF FAULTS

Exercise 7.10.42 Let Byz be the set of all events containing at most �deg(G)/2	
communication faults, where the faults may be omissions, corruptions, and additions.
Prove that Byz is adjacency preserving.

Exercise 7.10.43 Show that in a hypercube with n nodes with F ≤ log n omis-
sions per time step, algorithm Bcast-Omit can correctly terminate after log2 n time
units.

Exercise 7.10.44 (??) Prove that in a hypercube with n nodes with F ≤ log n
omissions per time step, algorithm Bcast-Omit can correctly terminate after log n+ 2
time units.

Exercise 7.10.45 Determine the value of T ∗(G) when G is a complete graph.

Exercise 7.10.46 Determine the value of T ∗(G) whenG is a complete graph and k
entities start the broadcast.

Exercise 7.10.47 (??) Determine the value of T ∗(G) when G is a torus.

Exercise 7.10.48 Write the code for the protocol Consensus-OmitCorrupt, in-
formally described in Section 7.8.3, that allows to achieve consensus in spite of
F < cedge(G) omissions and/or corruptions per time step. Implement and throughly
test the protocol. Analyze experimentally its costs for a variety of networks.

Exercise 7.10.49 Write the code for the protocol Consensus-OmitAdd, informally
described in Section 7.8.3 that allows to achieve consensus in spite of F < cedge(G)
omissions and/or additions per time step. Implement and throughly test the protocol.
Analyze experimentally its costs for a variety of networks.

Exercise 7.10.50 Prove that with mechanism Reliable Bit Transmission, in absence
of faults, pj will receive at least (l − 1)+ c(t − (l − 1)) copies of the message from
pi within t communication cycles.

7.10.2 Problems

Problem 7.10.1 Prove that in any connected graph G we have T ∗(G) =
O(diam(G)cedge(G)).

Problem 7.10.2 Complete the description of protocol Committee and prove its
correctness.

Problem 7.10.3 Consider a set of asynchronous entities connected in a complete
graph. Show how the existence of both digital signatures and a trusted dealer can be
used to implement a global source of random bits unbiased and visible to all entities.
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Problem 7.10.4 Consider a set of asynchronous entities connected in a complete
graph. Show how the existence of both private channels and a trusted dealer can
be used to implement a global source of random bits unbiased and visible to all
entities.

Problem 7.10.5 Consider a set of synchronous entities connected in a complete
graph. Show how the existence of both digital signatures and secrete sharing can
be used to implement a global source of random bits unbiased and visible to all
entities.

Problem 7.10.6 Prove that protocol FT-LinkElect correctly elects a leader provided
k ≤ n−6

2 . (Hint: Use the results of Exercises 7.10.36, 7.10.37, and 7.10.38).

Problem 7.10.7 (??) Consider a complete networks whereF < n− 1 links can fail
with send/receive omissions. Design an election protocol that uses o(n2F ) messages.

Problem 7.10.8 (???) Consider a complete networks where F < n− 1 links can
fail with send/receive omissions. Determine whether it is possible to elect a leader
using O(nF ) messages.

Problem 7.10.9 Consider a complete graph where f < n
2 entities might have

crashed but no more failures will occur. Consider the Election problem and assume
that all identities are known to all (nonfaulty) entities. Show how the election can be
performed using O(kf ) messages, where k is the number of initiators.

Problem 7.10.10 (??) Consider a complete graph where at each entity at most
f < n

2 incident links may crash. Design a protocol to achieve unanimity usingO(n2)
messages.

7.10.3 Answers to Exercises

Answer to Exercise 7.10.1
Let cedge(G) = k, and let e1, e2, . . . , ek be k edges whose collective removal
disconnects G. Let x1, x2, . . . , xk be k nodes of G such that ei is incident to xi . The
removal of x1, x2, . . . , xk will also remove e1, e2, . . . , ek disconnecting the network;
hence, cedge(G) ≤ k.

Answer to Exercise 7.10.2
If G is only k-node-connected, then there are k nodes x1, x2, . . . , xk whose removal
disconnectsG. Consider now a node x different from those nodes and make that node
the initiator of the broadcast. The failure of all the xi will disconnectGmaking some
nonfaulty nodes unreachable from x; thus, they will never receive the information.
By contrast, if G is (k + 1)-node-connected, then even after k nodes go down, by
Property 7.1.2, there still is a path from the initiator to all remaining nodes. Hence,
flooding will work correctly.
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Answer to Exercise 7.10.4
As C is bivalent, there exist a 0-valent configuration E0 and a 1-valent configuration
E1 reachable from C. Let i ∈ {0, 1}. First observe that if Ei ∈ A then ε(Ei) ∈ B;
thus, B contains a i-valent configuration. If instead Ei /∈ A, then the event ε was
used in reaching Ei ; by definition, the configuration Fi resulting from the use of ε is
in B and is, thus, univalent; as Ei can be reached from Fi , Fi must be i-valent; thus,
B contains a i-valent configuration. As the reasoning holds for both i = 0 and i = 1,
the claim is proved: B contains both 0-valent and 1-valent configurations.

Answer to Exercise 7.10.9
Hint: Use Min instead of AND in rep(x, t) and choose the default value appropriately.

Answer to Exercise 7.10.40
Consider a configuration C and any two events τ ′, τ ′′ ∈ AC for �(C). Let
m′1,m

′
2, . . . , m

′
f ′ be the f ′ faulty communications in τ ′, and letm′′1,m

′′
2, . . . , m

′′
f ′′ be

the f ′′ faulty communications in τ ′′. As AC is deg(G)-admissible, then f ′ ≤ deg(G)
and f ′′ ≤ deg(G). Let τ ′0 = τ ′, and let τ ′h denote the event obtained by replacing the
faulty communication m′h in τ ′h−1 with a nonfaulty one (with the same message sent
in both), 1 ≤ h ≤ f ′; similarly, define τ ′′h , 0 ≤ h ≤ f ′′. By construction, τ ′

f ′ = τ ′′f ′′ .
Consider the sequence τ ′0, τ

′
1, . . . , τ

′
f ′ = τ ′′f ′′ , . . . , τ ′′1 , τ ′′0 . In this sequence, each

event is adjacent to the following one; furthermore, as by construction each event con-
tains at most deg(G) additions and/or corruptions, it is in AC. Thus, AC is continuous.

Answer to Exercise 7.10.42
Given any two h-adjacent configurations A and B, consider the events πh and ρh for
�(A) = {αij } and �(B) = {γij }, respectively, where for all (xi, xj ) ∈ E

πh[i, j ] =
{

(αij , γij ) if i = h and j ∈ {j�d(h)/2	+1, . . . , jd(h)}
(αij , αij ) otherwise

and

ρh[i, j ] =
{

(γij , αij ) if i = h and j ∈ {j1, . . . , j�d(h)/2	},
(γij , γij ) otherwise

where d(h) denotes the degree of xh and {j1, j2, . . . , jd(h)} are the indices of the
neighbors of xh. Obviously the configurations πh(A) and ρh(B) are h-adjacent;
furthermore, as d(h) ≤ deg(G) and both πh and ρh contain at most �d(h)/2	 faults,
πh, ρh ∈ Byz. Hence Byz is adjacency preserving.

Answer to Exercise 7.10.43
In a hypercube H , between any two nodes x and y there are log n edge-disjoint
paths, each of length at most log n. According to the protocol, x sends a message
to all neighbors, thus, along all these log n paths. At any time instant, there are
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F < log n omissions; this means that at least one of these paths is free of faults.
That is, at any time unit, the message from x will move one step further toward
y along one of them. As these paths have length at most log n, after at most
log n(log n− 1)+ 1 = log2 n− log n+ 1 time units the message from x would
reach y. As x and y are arbitrary, the claim follows.

Answer to Exercise 7.10.50
Let bx,y = 1 (respective, bx,y = 0). For the first l − 1 odd (respective, even) clock
ticks y will receive the corrected copy of bx,y through link (x, y). During this time,
the corrected copy of bx,y will travel down each of the other c(G)− 1 disjoint
paths in SP(x, y), one link forward at each odd (respective, even) clock tick. As
the paths in SP(x, y) have length at most l, from the lth communication cycle
onward, y will receive the corrected copy of bx,y from all the c(G) disjoint paths
in SP(x, y) at each odd (respective even) clock tick. Thus, after t > l communi-
cation cycles, ywill receive at least l − 1+ c(G)(t − (l − 1)) corrected copies of bx,y .

Answer to Exercise 7.10.19
As the coins are flipped independently, the probability of a success is

2−(�n/2�+f+1).

That means that for any round r , the probability of an insuccess is

Pr[insuccess] ≤ 1− 2−(�n/2�+f+1).

As the coin flips are independent, the probability of having an insuccess for k con-
secutive rounds is then,

Pr[insuccess for first k rounds] ≤ (1− 2−(�n/2�+f+1))k.

from which we have

Pr[success within k rounds ] ≥ 1− (1− 2−�n/2�+f+1)k.

Answer to Exercise 7.10.26
Let y be any entity. Suppose that there is a time t before which no entity suspects y
in H . No entity x sends a message of the type 〈x, suspects(x)〉 with y ∈ suspects(x)
before time t . Thus, no entity x adds y to output(x) before time t .

Answer to Exercise 7.10.27
Let y be any correct entity. Suppose that there is a time t after which no correct
entity suspects y in H . Thus, all entities that suspect y after time t eventually crash.
Thus, there is a time t ′ after which no correct entity receives a message of the type
〈z, suspects(z)〉 with y ∈ suspects(z). Let x be any correct entity. We must show that
there is a time after which x does not suspect y in outputr . Consider the execution
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Reduce by entity y after time t ′. Entity y sends a messageM = 〈y, suspects(y)〉 to x.
When x receivesM , it removes y from output(x). As x does not receive any messages
of the type 〈z, suspects(z)〉 with y ∈ suspects(z) after time t ′, x does not add y to
output(x) after time t ′. Thus, there is a time after which x does not suspect y in outputr .

Answer to Exercise 7.10.30
Assume, to the contrary, that entity x remains a candidate and its stage is forever
smaller than or equal to n

2 . Consider the time x reaches its final stage s, by receiving
an “Accept” message. If one of the pending “Capture” messages of x now starts a
settlement, then this settlement will eventually end, and either A will cease to be a
candidate or its size will increase: a contradiction. Therefore, x is not involved in a
settlement and all the edges over which it has received answers lead to entities in
its domain. As x is always in its own domain, and its stage is s ≤ n

2 , it follows that
the number of these edges is at most n2 − 1. There are at most f < n

2 other edges
over which x has sent “Capture” messages without yet receiving a reply. Thus, the
total number of edges over which x has sent its “Capture” messages is less than
n− 1. Hence, it has at least one edge over which it has not yet sent a “Capture”
message; when the reply is received, a “Capture” message is sent over such an edge.
Within finite time, x must receive either a leader announcement message or a reply
to one of its f + 1 “Capture” messages. If x receives either a leader announcement
message or a “Reject” message that does not cause a settlement, then x ceases to be a
candidate, a contradiction. If an “Accept” message is received, then the stage of x is
incremented: a contradiction. If x receives a “Reject” message that generates a settle-
ment, then either x will cease to be a candidate or its size will increase: a contradiction.

Answer to Exercise 7.10.32
Assume, to the contrary, that all entities cease to be candidate and consider their
final stages. Let x be the entity in the largest stage (if more than one, let it be the one
among them with the smallest id). Let y be the entity that originated the message
that caused x to cease to be a candidate. By Lemma 7.6.2, after x receives that
message, either the stage of y will be greater than that of x or they are the same but
id(x) < id(y), contradicting the definition of x.

Answer to Exercise 7.10.33
If an entity y captured by z is subsequently captured by x, then z ceases to be a
candidate and from that time its stage is not greater than that of x (see Lemma 7.6.2).
Thus domains of equal sizes (even viewed at different times) are disjoint.
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June 2003.

[32] Z. Liptak and A. Nickelelsen. Broadcasting in complete networks with dynamic edge
faults. In 4th International Conference on Principles of Distributed Systems, pages
123–142, Paris, 2000.

[33] J. Lohre and H. Abu-Amara. Election in asynchronous complete networks with intermit-
tent failures. IEEE Transactions on Computers, 43:778–787, 1994.

[34] G. De Marco and A. Rescigno. Tighter bounds on broadcasting in torus networks in
presence of dynamic faults. Parallel Processing Letters, 10:39–49, 2000.

[35] G. De Marco and U. Vaccaro. Broadcasting in hypercubes and star graphs with dynamic
faults. Information Processing Letters, 66:309–318, 1998.

[36] Y. Moses and S. Rajsbaum. A layered analysis of consensus. SIAM Journal on Computing,
31(4):989–1021, 2002.

[37] N. Nishikawa, T. Masuzawa, and N. Tokura. Fault-tolerant distributed algorithm in com-
plete networks with link and processor failures. IEICE Transactions on Information and
Systems, J74D-I(1):12–22, Jan 1991.

[38] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults.
Journal of the ACM, 27:228–234, April 1980.

[39] K.J. Perry and S. Toueg. Distributed agreement in the presence of processor and com-
munication faults. IEEE Transactions on Software Engineering, SE-12:477–482, March
1986.

[40] M.O. Rabin. Randomized Byzantine generals. In 24th Annual IEEE Symp. on Foundations
of Computer Science, pages 403–409, 1983.

[41] N. Santoro and P. Widmayer. Time is not a healer. In 6th Annual Symposium on Theoretical
Aspects of Computer Science, pages 304–313, February 1989.

[42] N. Santoro and P. Widmayer. Distributed function evaluation in the presence of transmis-
sion faults. In International Symposium on Algorithms, pages 358–367, February 1990.



BIBLIOGRAPHY 499

[43] N. Santoro and P. Widmayer. Majority and unanimity in synchronous networks with ubiq-
uitous dynamic faults. In 12th Colloquium on Structural Information and Communication
Complexity, volume 3499 of LNCS, pages 262–276. Springer, 2005.

[44] H.Md. Sayeed, M. Abu-Amara, and H. Abu-Amara. Optimal asynchronous agreement and
leader election algorithm for complete networks with Byzantine faulty links. Distributed
Computing, 9:147–156, 1995.

[45] U. Schmid and B. Weiss. Formally verified Byzantine agreement in presence of link faults.
In 22nd International Conference on Distributed Computing Systems, pages 608–616,
2002.

[46] L. Shrira and O. Goldreich. Electing a leader in a ring with link failures. Acta Informatica,
24:79–91, 1987.

[47] G. Singh. Leader election in presence of link failures. IEEE Transactions on Parallel and
Distributed Systems, 7(3):231–236, 1996.

[48] T. K. Srikanth and Sam Toueg. Simulating authenticated broadcasts to derive simple
fault-tolerant algorithms. Distributed Computing, 2(2):80–94, 1987.

[49] R. Turpin and B.A. Coan. Extending binary Byzantine agreement to multivalued Byzan-
tine agreement. Information Processing Letters, 18(2):73–76, 1984.



CHAPTER 8

Detecting Stable Properties

8.1 INTRODUCTION

The types of problems we are going to discuss in this chapter arise in very different
contexts and situations, and sometimes they appear to have little (if any at all) in
common. These problems arise, for example, in the context of global termination:
detecting whether a computation (e.g., the execution of a protocol) has globally ter-
minated; garbage collection: deciding whether some distributed objects (e.g., data
items) are no longer needed within the system; deadlock: deciding whether a circular
wait has been created within the system preventing any further progress.

All these problems do, however, share a very important trait:

1. We need to decide whether a certain property holds (e.g., a data object is
garbage, an entity is deadlocked, all entities have terminated their execution).

2. The property is stable: If no external event occurs in the system, the property
will continue to hold.

In the following we will examine two of these problems in detail, designing efficient
solutions for them. We will then attack the task of designing a generic solution to the
problem of detecting whether a stable property holds, regardless of the specific nature
of the property.

8.2 DEADLOCK DETECTION

8.2.1 Deadlock

A deadlock, also known as circular wait or deadly embrace, describes a situation
where a set of entities, unable to generate anything while waiting, is blocked forever,
each waiting for some events that only other entities of the set can generate.

Deadlock is a dreaded occurrence in computer systems, leading to paralysis of all
the entity involved, degraded performance, and possibly collapse of the entire system’s
activities. It is a dangerous subtle system failure occurring without any component
suffering any fault. The most common places where deadlock may occur are within
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entities in an operating system and within transactions in a distributed database.
Indeed, whenever some entities must suspend their activities until some event occurs,
there is potential for deadlock, unless avoidance mechanisms are in place.

The fact that during a computation some entities are blocked waiting for some
event to occur is dangerous but does not necessarily lead to deadlock. For example, in
the generic election protocol MegaMerger, any entity sending an Outside? message
to another city with lower level number was blocked, waiting for the level of that
city to increase. Our protocol was designed (using distinctness of the edge costs) in
such a way that, as we proved, no deadlock would occur. In other words, our protocol
was designed with built-in deadlock avoidance. Unfortunately, in many applications,
deadlock avoidance mechanisms are not feasible because of the costs associated
with them: increased overhead, slowdown of the system, decreased performance, and
so forth. In fact, in most situations, there is no built-in mechanism to ensure that
entities do not become deadlocked; thus, deadlocks may and do occur. It is, therefore,
necessary to have mechanisms to detect if a deadlock has been formed, and if so, to
resolve somehow the impasse. While the resolution phase will clearly depend on the
particular application and situation, the detection task is the same and we will focus
on how to efficiently perform it.

The deadlock detection problem is the one of determining if there is a deadlock in
the system. The solution protocol is started by any entity suspecting that it might be
involved in a deadlock; it must terminate within finite time. There are actually three
versions of this problem:

� personal detection: Within finite time, each initiator must determine whether or
not it is involved in a deadlock.
� component detection: Within finite time, each initiator must determine whether

or not it is involved in a deadlock. If a deadlock is found, then all entities involved
must know.
� system detection: If a deadlock occurs in the system, then within finite time at

least one entity finds it.

Our focus in this chapter will be on the first two types; the third will be discussed
in the context of continuous computations. We will consider the problem under the
standard assumptions: Connectivity, Bidirectional Links, Complete Reliability, as
well as Unique Identifiers. We will also assume Message Ordering, that is, the links
are first in first out (FIFO).

8.2.2 Detecting Deadlock: Wait-For Graph

Let us first of all describe the deadlock condition problem more precisely.
A set S = {s1, ..., sk} ⊆ E of k > 1 entities is deadlocked when the following two

conditions simultaneously hold:

1. Each entity si ∈ S is waiting for an event (called permission) that must be
generated from another entity in the set;

2. no entity si ∈ S can generate a permission while it is waiting.
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If these two conditions hold, the entities in the set will be waiting forever, regardless
of the nature of the permission and of why they are waiting for the “permission”; for
example, it could be because si needs a resource held by sj in order to complete its
computation.

A useful way to understand the situations in which deadlock may occur is to
describe the status of the entities during a computation, with respect to their waiting
for some events, by means of a directed graph �W , called wait-for graph.

Each node in the wait-for graph represents an entity; if entity x is blocked waiting for
events that can only be generated by entities y1, y2, ..., yk , there will be directed edges
(x, y1), (x, y2), ..., (x, yk) in �W . In other words, the out-neighbors in �W of an entity
x are all the entities whose permission x is waiting for, and the in-neighbors of x are
those entities waiting for permission from x. In the following, we assume that �W ⊆ �G.

IMPORTANT. In some systems, an entity x might be waiting for permission from
an entity y that is not a neighbor in the network. This means that there might be edges
(x,y) in �W that are not in �G. In this case, we assume that there is an underlining
routing mechanism ensuring communication between any two entities; the costs of
the protocols will have to be revised to take this into account.

By definition, we have the following simple properties:

Property 8.2.1 All entities in a strongly connected component of �W are deadlocked.

Corollary 8.2.1 If there is a directed cycle in �W , every entity in that cycle is dead-
locked.

Property 8.2.2 Let �C be a strongly connected component of �W . If there is a directed
path in �W from x to �C, then x is deadlocked.

In other words, not only the entities in a strongly connected component (e.g., a
cycle) but also those that can reach such a component are deadlocked.

By contrast, in absence of deadlock, �W (t) is composed solely of directed acyclic
graphs:

Property 8.2.3 If each connected component of �W is a directed acyclic graph, then
there is no deadlock.

In other words, in absence of deadlock, �W (t) contains no cycles. This means that
to determine if there is deadlock in the system is equivalent to determine if there is a
cycle in the wait-for graph. For this reason, deadlock detection is sometimes referred
to as the cycle detection problem.

However, this is not enough for personal and component detection. In this case,
in fact we need to determine if an initiator is involved in a deadlock; this means
(by Properties 8.2.1, 8.2.2, and 8.2.3) that we must determine whether or not that
entity is part of or can reach a strongly connected component of the wait-for graph.
Summarizing,
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FIGURE 8.1: A single-component wait-for graph.

Theorem 8.2.1 An entity x is deadlocked if and only if there is a directed path from
x to a strongly connected component of �W .

Consider for example the wait-for graph �W shown in Figure 8.1 consisting of a sin-
gle connected component. In �W there is a strongly connected component, {f, g, h, i},
and only d can reach it. By Theorem 8.2.1, entities d, f, g, h, and i are deadlocked,
while a, b, c, and e are not.

Notice that an entity can be involved in several deadlock cycles at once and can
be linked to more than one strongly connected component.

8.2.3 Single-Request Systems

Let us consider the situation when each blocked entity waits for only one event to
occur. That is, in �W , each entity has at most one out-neighbor. This situation occurs
for example in systems where an entity is allowed to make only one request at a time
and cannot proceed until the current request is granted; this situation is commonly
called the single-request model.

First of all observe that, as each entity has at most one out-going link then the
wait-for graph �W has a very simple and interesting structure:

Property 8.2.4 In the single-request model, each connected component of �W is
either a rooted tree or a crown.

A crown is a directed graph formed by a single directed cycle where each entity
in the cycle is the root of a (possibly empty) rooted tree; the cycle is called the core
of the crown. In the wait-for graph shown in Figure 8.2, there are three components,
two of which are rooted trees, and one is a crown.

Next observe that

Property 8.2.5 In the single-request model,

(a) all entities of a crown are deadlocked;

(b) if there is no deadlock, then �W contains no crowns.
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FIGURE 8.2: A wait-for graph composed of a crown and two rooted trees.

In other words, in absence of deadlock, �W is a forest of rooted trees. This means
that by Properties 8.2.4 and 8.2.5,

Theorem 8.2.2 In the single-request model, an entity x is deadlocked if and only if
it is part of a crown in �W .

Thus, to determine if it is involved in a deadlock, an initiator x0 must just determine
whether it is in a crown or in a tree.

Let us see how this can be accomplished. A simple trivial solution is to collect
all the information about the wait-for graph (i.e., which entities an entity is waiting
for) at a single location (e.g., the initiator x0) and check if there is a cycle or not.
Although simple, this solution is clearly inefficient. Let us consider the following
alternate strategy, where DFlood is flooding in directed graphs:

SimpleCheck

1. Let x0 broadcast, using DFlood, in �W a message “Are we in a deadlock ?”

2. If x0 is not involved in a deadlock, the connected component of �W to which
it belongs is a rooted tree; thus, x0’s message will travel until it reaches the
root, say r; at this point r can send a message “No deadlock in this component”
back to x0 (traversing those links in the opposite direction (recall, the links are
bidirectional)).

3. Suppose now that x0 is deadlocked. This means that the connected component
of �W to which it belongs is a crown. As a consequence, the message originated
from x0 will first of all reach the core and it will then travel along the cycle; this
means that within finite time an entity r in the cycle will receive this message
again. It will then discover that indeed the entire component is deadlocked. Note
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that the entity r making this discovery is x0 itself if x0 is part of the core, or else
it is the first node in the core closest to x0 in �W . At this point, depending on the
type of termination condition, r will either notify x0 (“personal detection”) or
broadcast using Flood in �W (“collective detection”).

Let us examine the cost of this strategy. If the connected component �W (x0) of
the wait-for graph to which x0 belongs is a tree, then the total number of messages
for x0 to know that it is not currently deadlocked is 2 d(x0, r), where r is the root.
If �W (x0) is a crown, then d(x0, r)+ c(x0) messages are needed to detect that there
is a deadlock, where r is the entity in the core closest to x0 and c(x0) is the size of
the core (i.e., the length of the cycle); note that at this point only r knows that the
deadlock exists. Depending on the termination condition, it can then start a broadcast
(if a notification is needed) or a deadlock resolution protocol. Thus, in the first case
an additional O(|N (x0)|) messages will be sent in the worst case, where N (x0) is the
set of entities in �W (x0). We will call SimpleCheck the protocol implementing this
strategy (Problem 8.6.1).

In the case of multiple initiators, as, we are assuming that the entities have unique
identities, we can use the ids to distinguish among the messages sent by different initia-
tors; thus, we can concurrently and independently have each of them run SimpleCheck.
However, we can reduce the total number of messages. We can, for example, let only
the initiator with the smallest id proceed in each component (unless a deadlock is al-
ready detected). The resulting protocol SimpleCheck+ is shown in Figures 8.3 and 8.4,
where in N(x) and out N(x) denote the in- and out-neighbors of x in �W , respectively.

The total cost can still be high. Let k denote the number of initiators in the same
component. In the worst case, each of the k initial messages will travel to the core and
go around the ring (although only one will be able to complete the tour of the core)
costing possibly O(n) transmissions, for a total of O(kn) messages.

A better strategy would be to integrate into the protocol a leader-election process
in each component among the initiators in that component (Problem 8.6.2).

8.2.4 Multiple-Requests Systems

In the previous section we considered the case when each entity waits for (at most)
one permission at a time. What happens if we remove this restriction? In general, an
entity can wait for permission from several other entities and cannot proceed until all
of them have been granted; this situation is sometimes called the AND-request model.
The situation in the AND-request model is much more complex than the one of the
single-request model because an entity can be involved in several deadlock cycles at
once and can be linked to more than one strongly connected component.

The problem is the one of determining if an initiator entity x0 is involved in one
or more deadlocks, and, if so (in the case of component detection), of notifying all
other entities involved in the same deadlocks.

Simple Solution: GeneralSimpleCheck A simple but inefficient solution is
a generalization of SimpleCheck; it consists of the initiator x0 flooding the system
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PROTOCOL SimpleCheck.

� States: S = {INITIATOR, IDLE, ACTIVE, DEAD};
SINIT = {INITIATOR, IDLE};
STERM = {IDLE,DEAD}.
� Restrictions: RI, Message Ordering.

IDLE
Spontaneously
begin

if outN (x) 	= ∅ then /* I am waiting */
send("Check", id) to outN (x);

checker-links:= ∅;
checker-id:= id;

become ACTIVE;
end

Receiving("Check", value)
begin

if outN (x) = ∅ then /* I am a root */
send("NoDeadlock", value) to sender;

else
checker-links:={sender};
checker-id:= value;
send("Check", value) to outN (x);
become ACTIVE;

endif
end

Receiving("Deadlock", value)
begin

send("Deadlock", value) to inN (x);
become DEAD;

end

FIGURE 8.3: Protocol SimpleCheck+(I).

(by broadcasting its “Check” message using D-Flood in �W ) and of the entities letting
redundant messages circulate through the system: If there is no deadlock, the messages
will reach the sinks and will backtrack reaching the initiator; If there is a deadlock,
at least an entity will detect that it is in a cycle. Let us describe this approach in some
details.

In absence of deadlock: Consider first the case when the initiator x0 is not involved
in a deadlock; by Property 8.2.3, this means that the component of �W in which
x0 resides is a DAG, say D. Recall that in a DAG there are three types of nodes:
source (only out-neighbors), sink (only in-neighbors), and internal (both in- and out-
neighbors). Clearly, sinks are unblocked.

Every internal node y receiving this message records the sender and the information
in the message, adds to the message information its id, forwards it to all its out-
neighbors, and waits for a reply from all of them. This message will eventually reach
every sink of D; when a sink receives such a message, because it is unblocked, it will
reply “No deadlock I can see.”

If all received replies are “No deadlock I can see,” the internal node y will send
such a reply to the sender of the “Check” message originated by x0. Thus, within
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ACTIVE
Receiving("Check", value)
begin

if value = checker-id then
/* I have already received this message */
send("Deadlock", value) to outN (x) ∪ inN (x);
become DEAD;

else
checker-links:= checker-links ∪{sender};
if value < checker-id then

checker-id:= value;
send("Check", value) to outN (x);

endif
end

Receiving("Deadlock", value)
begin

send("Deadlock", value) to outN (x) ∪ inN (x)− {sender};
become DEAD;

end

Receiving("NoDeadlock", value)
begin

send("NoDeadlock", value) to checker-links;
become IDLE;

end

FIGURE 8.4: Protocol SimpleCheck+(II).

finite time x0 will receive such replies from all its out-neighbors and will correctly
know that it is not involved in a deadlock.

In presence of deadlock: Let us now consider the case when the initiator x0 is
involved in a deadlock. This means (Theorem 8.2.1) that x0 is either in a strongly
connected component of �W or linked to (at least one) such a component.

In this case, the “Check” message broadcasted by x0 in �W will reach all the strongly
connected components to which x0 is linked and will flood all of them.

Any time an internal node (i.e. a node that has both in- and out-neighbors) y
receives the “Check” message, it first checks if it is included in the list of already
visited nodes by this message; should this be the case, the existence of a deadlock
involving the initiator x0 as well as y is detected. Otherwise, y records the sender, adds
to the message information its id, forwards it to all its out-neighbors, and waits for a
reply from all of them. As before, if all received replies are “No deadlock I can see,”
y will send such a reply to all the senders of the“Check” message originated by x0.

This means that, within finite time, in each one of them at least one entity will
receive the message containing its own id in the list of already visited.

It is not difficult to prove that this approach, and the resulting protocol Gener-
alSimpleCheck, will solve the personal and component deadlock detection problem
(Exercise 8.6.1). The cost is, however, prohibitive: The number of exchange messages
could be exponential (Exercise 8.6.2).

Efficient Solution: LockGrant Let us examine how to use some of the same
ideas but with a different approach to determine efficiently if the initiator x0 is dead-
locked.



508 DETECTING STABLE PROPERTIES

Consider the component of x0. In this component, any entity that is not waiting
is obviously not deadlocked. By definition, these entities are sinks (i.e., do not have
any out-neighbors); each of these entities actually knows that it is not deadlocked.
Consider now an entity that is waiting, but the permissions it needs must all be
granted by sinks: This entity is not deadlocked either. In fact, any entity waiting only
for permissions from nondeadlocked entities is itself not deadlocked.

This observation gives us a strategy to determine all those entities that are not
deadlocked:

Strategy Grant:

1. the initiator wakes up all the entities in the component;

2. starting from the sinks, an entity that knows it is not deadlocked will notify all
the entities waiting for a permission from it (i.e., its in-neighbors);

3. if an entity is notified that all the entities from which it is waiting for a permission
(i.e., its out-neighbors) are not deadlocked, it knows that it is not deadlocked.

It is not difficult to see that if there are no deadlocks in the component all entities
will find out within finite time. The problem is whether there are cycles. In fact, in
this case, an entity that is deadlocked will not receive a notification from all its out-
neighbors. Owing to the fact that communication delays are unpredictable, an entity
waiting for a notification does not know whether the notification is encountering a
delay or no notification has been sent at all. What we need is a mechanism to ensure
that the initiator x0 detects termination and whether or not it is in a deadlock.

We will first of all construct a spanning tree, rooted in x0, of the connected com-
ponent of x0 in the wait-for graph; we will do this while performing the wake-up and
we will use the tree to allow x0 to determine when the computation is over. These
tasks are easily accomplished by using Shout on the wait-for graph. (Recall that the
links are really bidirectional: The orientation is only logical.) However, a node will
wait to send its reply to its parent until it has received a reply from all its other (in-
and out-) neighbors.

The Grant strategy is embedded in the delayed Shout. When a sink y receives
a “Shout” message for the first time, in addition to forwarding the “Shout,” y will
announce the fact that it is not deadlocked by sending a “Grant” message to all its
in-neighbors. To deal efficiently with termination, the sink y will send a reply to its
parent only after it has received not only a reply from all its other neighbors but also an
acknowledgment for all its own “Grant” messages (note that it will always happen).

To know that it is deadlock free, a nonsink entity z must receive a “Grant” message
from all its out-neighbors; until that happens (note that it might never happen), z will
send an acknowledgment to any received “Grant” message. If it happens, that is, z
receives “Grant" messages from all its out-neighbors, z realizes it is not deadlocked;
thus, it will send a “Grant” message to all its in-neighbors. To deal efficiently with
termination, z will acknowledge the last “Grant” message it received not immediately
but only after it receives an acknowledgment for all its own “Grant” messages (note
that it will always happen).
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In this way, the global termination of Shout will occur only after all the transmis-
sions of “Grants” and “Grant-Acks” have taken place. Furthermore, the global termi-
nation of all activities coincides with the local termination of Shout at the initiator.

Summarizing, upon local termination of Shout, the initiator x0 knows its status:
It is not deadlocked if and only if it has received a “Grant” message from all its
out-neighbors.

However, the other entities do not even know when their own local termination
has occurred. For example, consider a nonsink entity that receives the first “Shout,”
forwards it to all its other neighbors, receives from each of them a reply, and then
sends its own reply to its parent; in other words, all the Shout activities for x are
terminated. Yet, it is still possible for x to receive a “Grant” message (it might come
from its own parent: Exercise 8.6.3). Thus, it is necessary for the initiator to perform
a “resolution” mechanism (e.g., it notifies all other entities of termination) even if the
problem to be solved is only personal detection.

In the case of personal detection, the corresponding set of rules, called protocol
LockGrant, is shown in Figures 8.5 and 8.6. In the protocol, the resolution mechanism
is denoted by procedure RESOLVE (which is left unspecified); note that if the initiator
is a sink, it will not even start the Shout because it already knows that it is not
deadlocked.

Let us now prove the correctness of the protocol; first of all, let us focus on
termination.

To terminate, the initiator must terminate its execution of Shout, that is, it must
receive a “Reply” from all its neighbors. As described, if an entity sends “Grant” mes-
sages, it delays sending its “Reply” to its parent until it has received a “Grant-Ack”
from all its in-neighbors. The following properties ensure that all these acknowledg-
ments will arrive, the delayed Reply will be sent, and thus the initiator will terminate
within finite time (Exercises 8.6.4 and 8.6.5).

Property 8.2.6 If an entity sends a “Grant” message to a neighbor, it will receive
an “Ack” from that neighbor within finite time.

Property 8.2.7 Every entity y 	= x0 will send a “Reply” to its parent within finite
time.

Property 8.2.8 If an entity sends a “Shout” message to a neighbor, it will receive
a “Reply” message from that neighbor within finite time.

From these properties, it follows:

Lemma 8.2.1 The initiator x0 will execute RESOLVE within finite time.

Let us now examine the correctness of the protocol. We must show that when the
initiator locally terminates the Shout, it knows whether or not it is deadlocked.

The following two properties indicate that when the initiator terminates, all other
activities have terminated as well and that indeed the Grant mechanism embedded in
the Shout works correctly (Exercises 8.6.6–8.6.8):
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PROTOCOL LockGrant

� States: S = {INITIATOR, IDLE, ACTIVE};
SINIT = {INITIATOR, IDLE};
� Restrictions: RI, Single Initiator, Message Ordering.

INITIATOR
Spontaneously
begin

if |outN (x)| > 0 then
initiator:=true; INITIALIZE;
send("Shout") to outN (x) ∪ inN (x);
become ACTIVE;

else
alive:=true;
RESOLVE;

endif
end

IDLE
Receiving("Shout")
begin

INITIALIZE
parent:= sender;
send("Shout") to outN (x) ∪ inN (x)− {sender};
if |outN (x)| = 0 then /* I am a sink */

alive:= sink:= true;
send("Grant") to inN (x);
waiting-for-ack:= true;

else
if all = 0 then /* I am a leaf */

send("Reply") to sender
sent-last-reply:= true;

endif
endif
become ACTIVE;

end

Procedure INITIALIZE
begin

granted:= count-reply := count-ack := 0;
alive:= waiting-for-ack := sent-last-reply:= false;
all:= |inN (x) ∪ ourN (x)| − 1;
if initiator then all:= all +1 endif

end

FIGURE 8.5: Protocol LockGrant (I).

Property 8.2.9 If a “Grant” message has not been acknowledged at time t, the
initiator x0 has not yet received a “Reply” from all its neighbors at that time.

Property 8.2.10 An entity receives a “Grant” message from all its out-neighbors
if and only if it is not deadlocked.

Thus

Lemma 8.2.2 The initiator x0 is not deadlocked if and only if, when it executes
RESOLVE, alive(x0) = true.
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ACTIVE
Receiving("Shout")
begin

send("Reply") to sender;
end

Receiving("Grant")
begin

granted:= granted+1;
if granted < requests then

send("Grant-Ack") to sender;
else /* I am not deadlocked */

alive:=true;
grant-link:= sender;
if inN (x) 	= ∅ then /* somebody is blocked on me */

send("Grant") to inN (x);
waiting-for-ack:= true;

else
send("Grant-Ack") to grant-link;

endif
endif

end

Receiving("Grant-Ack")
begin

count-ack := count-ack+1;
if count-ack = |inN (x)| then /* received all acknowledgments */

if not(sink) then
send("Grant-Ack") to grant-link;

endif
if (count-reply=all and not(sent-last-reply)) then

send("Reply") to parent;
endif

endif
end

Receiving("Reply")
begin

count-reply:= count-reply+1;
if (count-reply=all and not(waiting-for-ack)) then

if (initiator) then
RESOLVE

else
send("Reply") to parent;
sent-last-reply:= true;

endif
endif

end

FIGURE 8.6: Protocol LockGrant (II).

From Lemmas 8.2.1 and 8.2.2 it follows:

Theorem 8.2.3 Protocol LockGrant correctly solves the personal deadlock detection
problem.

To deal with the case of collective detection, it is sufficient to specify procedure
RESOLVE accordingly.

The cost of protocol LockGrant is not difficult to analyze. There are two basic
activities: the shouting and the granting. The shouting uses one “Shout” message on
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each link of the constructed tree and two shouts on all other links, and it uses a “Reply”
per each “Shout”; so the total is at most 4|E(x0)| − 2|N (x0)| + 2 messages, where
E(x0) andN (x0) denote the number of bidirectional links and of entities, respectively,
in the connected component �W (x0) of which x0 is a part in �W . As for the granting
process, there will be at most one “Grant” on each in-edge, each generating an “Ack,”
for a total is at most 2|E(x0)| messages. Hence, the total, before final notification, is
at most

6|E(x0)| − 2|N (x0)| + 2.

In the case of personal detection, the initiator has only to notify all other entities of
termination; this can be done by broadcasting on the spanning tree constructed with
shout, costing additional |N (x0)| − 1 messages. Thus,

M[LockGrant] ≤ 6|E(x0)| − |N (x0)| + 1. (8.1)

NOTE. The multiplicative constant 6 in the cost of protocol LockGrant can be
reduced to 4 if Shout+ is used instead of Shout (Problem 8.6.4).

In the case of multiple initiators, the strategy AllGrant of letting every initiator run
its independent execution of LockGrant will indeed work. The bookkeeping at each
entity becomes more involved but is still manageable. A better strategy would be to
integrate into the protocol a leader-election process in each component among the
initiators in that component (Problem 8.6.5).

8.2.5 Dynamic Wait-For Graphs

We have been examining the deadlock detection problem in the static case, that is,
assuming that no other edges are added to the wait-for graph while the detection
protocol is running.

In most systems applications, the wait-for graph is a dynamic graph: Each entity
that is not waiting for permissions may at any time grant permissions to those entities
(if any) waiting for it, or it might ask for permissions from one or more entities. In
other words, the wait-for graph �W (t) describes only the situation at time t; indeed
�W (t) might be different from �W (t + 1). We do know, however, the following:

Property 8.2.11 If an entity x is deadlocked in �W (t), it will continue to be deadlocked
also in �W (t + 1).

It is for this reason that “being deadlocked” is a stable property.
In this dynamic situation, a deadlock can be formed during (or after) the execution

of a detection algorithm. So there can be no guarantee that if an entity is not deadlocked
at the time of detection, it will remain so; indeed, “not being deadlocked” is not a
stable property. This implies that when a detection protocol correctly reports that
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there was no deadlock, it does not mean that there is no deadlock. For these reasons,
even the definition of the (personal and collective) deadlock detection problem must
be refined.

We will say that a protocol P is a solution to the personal detection problem if it
has the following properties: Let entity x start protocol P at time t. Then,

1. the execution of P terminates at x within finite time, say at time t ′ ≥ t ;

2. if x was deadlocked in �W (t), then at time t ′ it determines so;

3. if x determines at time t ′ that it is not deadlocked, then x was not deadlocked
in �W (t).

Similarly, the definition for a solution to the collective deadlock determination
problem must be modified (Exercise 8.6.9). Interestingly, the definition for system
detection needs no changes.

Let us now consider solving the detection problem in this general case. We will
first start with the single-request model and then consider the more general multiple-
requests model.

Dynamic Single-Request Systems Let us examine what events can take place
in single-request systems. As an entity waiting for a permission is blocked, the only
entities that can act are those that are not waiting: the roots of the rooted trees. What
a root can possibly do is to grant a permission to one of its children (if any) or to
request a permission from some other entity. Let us consider these two cases in some
details.

If r grants a permission to a child x then, at the time t ′ > t when x is notified,
x is no longer waiting and becomes a root, and the edge (x, r) disappears from
�W (t ′).

If r asks an entity y for permission then, at the time t ′ > t when y is notified, the
edge (r, y) is added to �W (t ′). This addition might have great consequences as it might
create a deadlock. This can happen in two main cases:

� If y is in a crown, the entire tree rooted in r at time t is now part of a crown (see
Figure 8.7(a)).
� If y is a descendent of r (i.e., node in the rooted tree of r), then that tree becomes

a crown (see Figure 8.7(b)).

In addition to these two main cases, the request from r might cause a deadlock
when happening concurrently with other requests from other roots creating an overall
directed cycle (Figure 8.8). In discussing it, we can always think of this situation as
happening not simultaneously but sequentially; for example, having the request from
r to y occurring after the other requests have been issued.

Summarizing, rooted trees can change in size, new crowns can be created, and
existing crowns can become larger in size. Therefore, the deadlock detection protocol
in the dynamic case must be able to deal with the fact that while the detection messages
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FIGURE 8.7: The request from r to y will transform the tree rooted in r into (part of) a crown.

are traveling along the links of the wait-for graph, new links are being added and some
are possibly removed.

Fortunately, with simple modifications, strategy SimpleCheck will still be able to
operate correctly in these more complex situations.
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FIGURE 8.8: The concurrent requests of the roots will form a crown.
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Let us consider first the case of a single initiator. In this case, protocol SimpleCheck
works without any modifications. Let us examine the three possible scenarios:

1. We know that a deadlock will persist in time; thus, if an entity is involved
in a deadlock at time t, it will continue to be so involved. In other words, if
an entity x0 starting protocol SimpleCheck is at that time in a crown, it will
continue to be in a crown during all the executions of the protocol. During this
time, the crown can grow; however, a crown grows only by making the fringes
larger or by adding new fringes. In other words, its core will remain unchanged
(Exercise 8.6.10). This means that when x0 sends the “Check” message at time
t, the path from x0 to the closest entity y in the core at that time will not change;
hence its message will reach y, travel along the core, and return to y, which will
detect the existence of deadlock and notify x0. In other words, the protocol will
correctly report that there is a deadlock.

2. If x0 is in a rooted tree that is not going to become (part of) a crown, then its
message is eventually going to reach the root of the tree (Exercise 8.6.11); in
other words, the protocol will correctly report to x that it is not involved in a
deadlock at that time.

3. If x0 is in a rooted tree that is going to become (part of) a crown at time t ′′ > t ,
there is a race condition. Until time t ′, x0 is a part of a tree; if the message
from x0 is fast, it will reach the root at a time t ′ < t ′′ before a deadlock is being
formed; in this case, the protocol will correctly report that at time t ′ x was not
involved in a deadlock. By contrast, if the “Check” message from x0 is slow,
a crown will be formed while this message is traveling. Interestingly, if x0 is
not a part of the core of the new crown, then the message will reach the core of
the new crown and travel along it, and the entity in the core closest to x0 will
receive this message again, detecting a deadlock. If x0 instead is now part of
the core, its “Check” message will eventually come back to it and x0 will then
detect that a deadlock exists. Therefore, in both cases, x0 will detect that it is
involved in a deadlock (Exercise 8.6.13).

With multiple initiators, protocol SimpleCheck+might have some problems owing
to the fact that only the request with the smallest id is forwarded.

Example Consider the following situation: A request is originated by x at time t
while the component is a tree; the request reaches the root r at time t1 > t ; r sends a “No
deadlock” message back to x, and then requests some other entity for a permission,
creating a deadlock, say at time t2 > t1.

While this is happening, a child of x with larger id, say y, starts the deadlock detection
protocol and sends a message to x at time t3 > t2. As id(x) < id(y), x will add y to its
checker list but will not forward the message.

When the “No deadlock” message arrives at time t4 > t3 at x, it will forward it to
y because it is in its checker list. Thus y will be incorrectly notified that it was not
involved in a deadlock when it started the detection process.



516 DETECTING STABLE PROPERTIES

Observe that, in the case of multiple initiators, the strategy AllCheck of letting every
initiator run its independent execution of SimpleCheck will indeed work. Although
using many messages, the overall cost would not be more thanO(n) messages per ini-
tiator. The bookkeeping at each entity becomes more involved but is still manageable.

A more refined approach is provided by the strategy DelayAllCheck in which an
initiator always forwards messages from other initiators with smaller ids, but it delays
the decision on whether to forward a “Check” message with higher id until an answer
to the previous one has arrived. Indeed, if a “Deadlock” message arrives, then there
is no longer any need to forward that delayed “Check” message. By contrast, if a “No
Deadlock” notification arrives, as the above example shows, it might not apply to the
held “Check” message; in this case, it will then be forwarded. In order of magnitude,
the worst-case cost is the same as the previous solution of always forwarding the
“Check” messages: O(n) messages per initiator.

Dynamic Multiple-Requests Systems In the case of a single initiator, it is
possible to modify protocol LockGrant, with subtle but simple changes, so that it
works with the same cost also in the dynamic setting (Problem 8.6.6); we shall call
the resulting protocol DynamicLockGrant.

In the case of multiple initiators, the strategy of letting every initiator run its
independent execution of DynamicLockGrant will indeed work.

8.2.6 Other Request Systems

The multiple-requests system, of which the single request is a special case, is the most
common request model in distributed applications, but not the only one, nor the more
general one. In this section we will briefly describe the other systems and discuss
deadlock detections in those systems.

OR-Request Systems A request model very different from the ones we have
considered so far is the one offered by the so-called OR-request systems. In these
systems, an entity that is not currently waiting for any permissions (i.e., a sink) can
issue several requests and it is blocked (unable to grant permissions or to issue other
requests) until one of them is granted. In these systems, an entity is deadlocked if and
only if it cannot reach any sink in �W .

This means that loops in the wait-for graph are not meaningful with respect to
deadlock. For example, in the wait-for graph shown in Figure 8.9, entities b, c, and d

are in a directed cycle but are not deadlocked because they can all reach a, which is
a sink. What is meaningful is another type of structure.

Property 8.2.12 In the OR-request model,

(a) all entities of a knot are deadlocked;

(b) if there is no deadlock, then �W contains no knots.

A knot �K is a strongly connected subgraph of �W where every node in �K can only
reach in �W nodes of �K; informally, “once inside a knot, you cannot get out.” For
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FIGURE 8.9: In the OR-request model, entities a, b, c, and d are not deadlocked, while
e, f, g, and h are.

example, the wait-for graph shown in Figure 8.9 contains a knot {e, f, g}; the wait-
for graph of Figure 8.1 has no knots and, thus, no entity there is deadlocked in the
OR model.

In other words, in absence of deadlock, �W (t) contains no knots. This means that
to determine if there is deadlock in the system is equivalent to determine if there is
a knot in the wait-for graph. For this reason, deadlock detection in the OR model is
connected to the knot detection problem.

However, this is not enough for personal and component detection. In fact, being
in a knot is a sufficient but not necessary condition to be deadlocked; for example,
in Figure 8.9, h, which is deadlocked, is not a part of a knot. By contrast, reaching a
knot is a necessary but not sufficient condition for being deadlocked; for example, in
Figure 8.9, d can reach a knot but it is not deadlocked.

The personal and collective detection problems are somehow simpler in this model
than in the AND-request model examined previously. Interestingly, protocol Lock-
Grant, with very few modifications, solves the detection problems also in these sys-
tems (Exercise 8.6.14). Similarly, protocol DynamicLockGrant solves them in the
case of a dynamic wait-for graph.

Generalized Request Systems The AND- and the OR-request model are quite
different from each other, but they are both special cases of a more general model
called p-OF-q model. In p-OF-q systems,p ≤ q, an entity that is not currently waiting
for any permissions (i.e., a sink) can issue up to q requests and it is blocked (unable to
grant permissions or to issue other requests) until p of them are granted. Notice that
when p = q (i.e., the entity must receive all permissions to become unblocked), we
have the AND model, and when p = 1 (i.e., one permission is sufficient to unblock
a waiting entity), we have the OR model.

An even more general request model, called Generalized Requests, is one where the
condition allowing a waiting entity to become unblocked is expressed by a predicate
(using “and,” “or,” and “p-of-q” connectors) on its outgoing links; examples of such
predicates are as follows: “(two of l1, l2, l3) or ( l1 and l4)” and “( l1 and l2) or ( l3
and l4),” where li refers to out-neighbors in the wait-for graph. Notice that different
entities may be waiting on different predicates.

At a first glance, the solution to the detection problem would appear more difficult
in these systems; this is, however, not the case. Indeed protocols LockGrant and
DynamicLockGrant, with very few modifications, provide efficient solutions to the
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detection problem in the static and dynamic cases, respectively. See Exercises 8.6.16–
8.6.19 and Problems 8.6.8 and 8.6.9.

8.3 GLOBAL TERMINATION DETECTION

Among the unique aspects of distributed computations is the difficulty of determining
their termination. As we have seen throughout the book, we have to distinguish
between local termination (i.e., termination of the execution of the protocol by a
specified entity) and global termination (i.e., when the execution has ended in the
entire system).

The importance of determining termination (local or global) derives from the fact
that in real systems, entities execute not just a single protocol but several, and in
some cases, there are precedence dependencies among them (i.e., the start of one
cannot take place before the end of another). This occurs for example in pipelined
(or multi-stages) computations: There is a sequence C1, C2, . . . , Ck of computations
that must be performed by the system in order. To achieve this task, usually only
local termination is really necessary: As soon as an entity determines the end of
its participation in computation Ci , it can start Ci+1. There are, however, situations
where global termination of Ci must be detected, at least by one entity, before the
next computation may start. This for example happens when designers of multistages
protocols do not want to deal with possible problems due to concurrency (e.g., because
in this way the correctness is easier to prove).

Usually it is simple to design protocols so that each entity can determine when
its participation in the computation is over. Indeed, almost all the protocols we have
designed so far have a built-in local termination detection (e.g., the entity enters a
terminal state). Global termination, on the contrary, is in general much more difficult
to detect, even if there is in place a local termination detection; requiring global termi-
nation detection to be part of the protocol obviously increases the overall complexity
of the design.

An approach has thus been to detach the task of global termination detection from
the rest of the protocol and to handle it concurrently but separately. Indeed the problem
itself can be viewed independently of the rest of the computation. This can be done
as follows.

First of all, we need not know anything at all about the specifics of the target
computation C (the computation whose termination we want to detect); indeed C
might not even provide for local termination detection. We just need to be capable to
know whether an entity is active (i.e., executing) or passive (i.e., not executing) and
when a message is sent or received; all initiators will be initially considered active.

With this high-level view, the computation C will have the following simple
properties:

� An active entity may become passive at any time.
� Only active entities may send messages.
� A passive entity can become active only if it receives a message.
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The computation C is globally terminated if and only if all entities are passive and
there are no messages in transit. The problem is to design a protocol that determines
whether the computation C is globally terminated. We will distinguish two versions
of this problem:

1. personal detection: An initiator must know, within finite time from the global
termination of C, that this has occurred.

2. collective detection: All entities must know, within finite time from the global
termination of C, that this has occurred.

First of all observe that once personal detection has been solved, collective detec-
tion is trivially achieved with an additional notification process; thus, we will focus
on personal detection.

We will consider the problem under the standard assumptions: connectivity, Bidi-
rectional Links, complete reliability, and unique identifiers. We will also assume
Message Ordering, that is, the links are FIFO.

The messages sent by the detection protocol are clearly distinguishable from those
of the computation C, and they are dealt with by each entity in a separate but over-
lapping way, that is, each entity will be handling simultaneously both the events for
C and those for the termination detection; in the following, we will call C-messages
the messages sent by the computation C. We will also assume that there is already
available a subnetwork, specifically a spanning tree T, which will be used by the
protocol.

8.3.1 A Simple Solution: Repeated Termination Queries

Termination Query To develop our solution to the global termination detection
problem, we will first consider a related simpler task, Termination Query, in which
an initiator must know within finite time whether or not C is globally terminated
at a given time. As we are not making any assumptions about time, let us be more
specific.

A termination query protocol Q is an algorithm that has the following three prop-
erties:

1. The protocol terminates within finite time, and its result at the initiator is a
Boolean value, answer.

2. If C was terminated when the protocol started, then answer=TRUE.

3. If answer=FALSE then C was not terminated when the protocol started.

Answering a personal query is not difficult and can be achieved in many ways.
Here is a simple way. Let us consider when there is a single initiator. The solu-
tion requires a control mechanism CountAck, which is run simultaneously with C
during all the executions; in this mechanism, the reception of every C-message is
acknowledged:
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Control Mechanism CountAck:
� Every time an entity receives a C-message, it sends an acknowledgment.
� Each entity x keeps a counter count(x) of the number of C-messages it sent for

which it has not yet received an acknowledgment.
� Each entity x keeps a Boolean variable status(x) that is set to 1 if and only if x

is active in the computation C and/or count(x) > 0.

On the basis of the existence of this control mechanism, the solution protocol
TerminationQuery, which can be started at any time, is as follows:

Protocol TerminationQuery:

1. The initiator x0 broadcasts a “Color” message (on the spanning tree).

2. Every entity, upon receiving this message, will become white if status(x) = 0,
black otherwise.

3. If a white entity receives a C-message, it becomes black.

4. Starting from the leaves, the AND of the colors (white = 0, black = 1) of all
the entities is computed using a convergecast.

Note that status, count, white, and black are not defined in C but only in Termina-
tionQuery. It is easy to verify (Exercise 8.6.20) that algorithm TerminationQuery is
a correct personal query protocol, that is, regardless of time delays, an execution of
TerminationQuery has the following property:

Property 8.3.1 Let x0 start TerminationQuery at time t and terminate it at time
t ′ > t , and let a(x) be the result of the AND at x0 at time t ′. Then,

1. if a(x0) = 0, then C is globally terminated at time t ′;
2. if a(x0) = 1, then C is not globally terminated at time t.

The cost of TerminationQuery is also easy to determine: As it is just a broadcast
followed by a convergecast on a tree, the total cost is simply 2(n− 1) messages.

To these costs we must, however, add the cost of the control mechanism, which
uses one message (an acknowledgment) for each C-message. Hence, the total cost
with multiple initiators is

M(C)+ 2(n− 1),

where M(C) is the number of messages sent during the execution of C being
monitored.

The case of multiple initiators can be dealt with in two different ways: They can
be treated independently, or they can be treated collectively. In the former case, using
the fact that entities have unique ids, each initiator will start its own independent
execution of the protocol, for a total of 2k(n− 1) messages, where k is the number
of initiators.
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If we treat the initiators collectively, then it is sufficient to use full saturation.
Specifically, the Color messages are sent in the wake-up phase, and the AND is com-
puted in the saturation phase; the notification phase will tell everybody the outcome.
In this case, the saturated nodes become first aware of the result. In other words,
Property 8.3.1 becomes

Property 8.3.2 Let the wake-up phase start at time t and the saturation phase ter-
minate at time t′ > t, and let a(x) be the result of the AND at the saturated nodes.
Then,

1. if a(x0) = 0, then C is globally terminated at time t ′;
2. if a(x0) = 1, then C is not globally terminated at time t.

The total cost will be at most 4(n− 1) messages, regardless of the number k of
initiators. Also to this cost we must add the cost of the control mechanism, which
uses one message (an acknowledgment) for each C-message. Hence, the total cost,
with multiple initiators is

M(C)+ 4(n− 1),

where M(C) is the number of messages sent during the execution of C being
monitored.

Repeated Queries We have discussed, solved, and analyzed the simpler task
of computing a personal query. The interest in this simpler problem is due to the
fact that a solution to personal detection can be made by repeatedly executing a
personal query protocol Q until global termination is detected. Consider first of all
the following strategy:

Strategy RepeatQuery: answer:=false; while not(answer) do Q.

The use of strategy RepeatQuery when Q is protocol TerminationQuery would
lead to a global termination detection protocol whose total cost will be

M(C)+ 4(n− 1) T ,

where T is the number of times TerminationQuery is invoked before termination of
C. As communication delays are unpredictable, T is unbounded. This means that the
number of messages sent using this solution is unbounded.

Notice that for any solution protocol Q, its cost in terms of messages will always
be of the form A+ B, where A is the cost incurred to maintain the information needed
by Q (e.g., the control mechanism used by TerminationQuery) and B is the cost of the
actual execution of Q. This means that the cost of strategy RepeatQuery using Q is

A+ B T,

which again is unbounded, regardless of A and B.
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This means that regardless of how efficient is the employed solution Q to the per-
sonal query problem, the strategy RepeatQuery is a cost-wise unacceptable solution
to the personal detection problem.

To make it bounded we need to exercise some additional control, restarting the
query only if some necessary condition holds; namely, we will restart only if all
entities have become or remained passive since last iteration. Notice that this condition
alone is not sufficient as there might have been some messages in transit whose
arrival has in the meanwhile transformed into active again some of these passive
entities.

Let us consider again the single-initiator case and consider the first execution of
Q; if successful, we are done. If unsuccessful, x0 will wait for the next execution until
it is first notified that all entities have become or remained passive since last query.
In general, if an iteration is unsuccessful, the initiator will wait until it is first notified
that all entities have become passive since that iteration and will only then start a new
one. This is easily accomplished by the following strategy:

Strategy RepeatQuery+:

1. termination:= false;

2. repeat until termination:

(a) x0 waits until it becomes passive (if it is not already so) and then broadcasts
a “Reset” message;

(b) the broadcast is then followed by a delayed convergecast:

• a leaf waits until it becomes passive and then sends a “Restart” message
to its parent;

• an internal node waits until it has received a “Restart” from all its children
and it is itself passive; it then sends a “Restart” message to its parent;

(c) when x0 has received a “Restart” from all its neighbors, it waits until it is
passive and then starts the execution of Q.

The advantage of this modified strategy is that the number of times the protocol
Q is executed is at most T ≤ M(C); indeed it is possible that T = M(C) (Exercise
8.6.21). This means that the total cost for solving the personal detection problem will
be at most

A+ B M(C),

which is bounded. In the particular case when Q =TerminationQuery, we will have
a total cost

M[RepeatQuery+] = 4nM(C), (8.2)

which is bounded. The same approach with the same cost works also in the case of
multiple initiators (see Exercise 8.6.22 and Problem 8.6.10).
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8.3.2 Improved Protocols: Shrink

Let us now see how we can substantially reduce the cost of detecting global termina-
tion. As usual we will consider first the case of a computation when there is a single
initiator.

We will dynamically construct and maintain a tree rooted in the initiator; the tree
will grow and shrink during the computation until only the initiator is left: When this
happens and the initiator is passive, termination of C has occurred. Let us describe the
solution protocol in more details. The initiator x0 will start the termination detection
mechanism as soon as C starts. As before, we will have an acknowledgment for every
C-message sent, and we will say that an entity is white if it is passive and has received
an acknowledgment for all the C-messages it sent; otherwise, we will say that it is
black. The strategy is simple:

Strategy Shrink:

� Whenever a white entity y 	= x0 receives a C-message, it will become a child
of the sender of the message; when y becomes white again, it will send an
acknowledgment to its parent and have no longer any parent.
� Whenever a black entity receives a C-message, it will immediately send an

acknowledgment to the sender.
� Whenever x0 becomes white, global termination is detected.

To see why the corresponding protocol Shrink indeed works, first of all observe
that the black nodes always form a tree rooted in the initiator, as indicated by the
following properties (Exercise 8.6.23):

Property 8.3.3 At any time t, if an entity is black, so is x0.

Property 8.3.4 At any time t, the black nodes form a tree rooted in x0 and the white
nodes are singletons.

Observe now that if x0 becomes white, C has terminated, as indicated by the
following properties (Exercise 8.6.24):

Property 8.3.5 If all nodes are white at time t, C is globally terminated at that time.

Finally, observe that if C terminates, x will indeed detect it within finite time
(Exercise 8.6.25):

Property 8.3.6 If C is globally terminated at time t, then there is a t ′ ≥ t such that
all nodes are white at time t ′.

Summarizing, by Properties 8.3.3–8.3.6, protocol Shrink correctly solves the
global termination detection problem when there is a single initiator.
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What is the cost of protocol Shrink ? Each C-message generates the transmission of
an acknowledgment; no other messages are transmitted during the execution. Hence,

M[Shrink] = M(C). (8.3)

In other words, Shrink is not only simpler but also much more efficient than all
solutions we have discussed so far for detecting global termination of single-initiator
computations.

What happens if C has multiple initiators? With multiple initiators, protocol Shrink
will create not one dynamic tree but rather a forest of dynamic trees, each one of them
rooted in one of the initiators. Indeed Properties 8.3.5 and 8.3.6 still hold (Exercises
8.6.27 and 8.6.28), while Properies 8.3.3 and 8.3.4 become (Exercise 8.6.26) the
following:

Property 8.3.7 At any time t, if an entity is black, so is at least one of the initiators.

Property 8.3.8 At any time t, the black nodes form a forest of trees, each rooted in
one of the initiators, and the white nodes are singletons.

As a consequence,

Property 8.3.9 At any time t, if all initiators are white, so is every entity.

The problem is to detect when all initiators have become white; by Property 8.3.8,
when this happens, all trees have shrunk and all initiators are singletons. Each initiator
knows when its own tree has totally shrunk; so the problem is to determine when this
has occurred at all initiators. The solution to this problem is simple; it is enough to
perform a delayed full saturation on a predefined spanning tree of the network: A
leaf waits until it becomes white and then starts the saturation (sending a message
“Done”); an internal node waits until it is white and it has received “Done” from all
neighbors but one and then sends “Done” to that neighbor. When a saturated node is
white, it knows that indeed all initiators are white (Exercise 8.6.29):

Property 8.3.10 If a saturated node is white at time t, then all nodes are white at
that time.

When this happens, by Properties 8.3.9 and 8.3.5, the computation C is globally
terminated.

NOTE. In the delayed execution of the saturation technique, it is possible that only
one entity becomes saturated (Exercise 8.6.30).

Let us call MultiShrink the corresponding protocol (see Problem 8.6.12), and let
us analyze its costs. Again, each C-message will generate an acknowledgement, for
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a total of M(C) message. In addition, MultiShrink uses a full saturation generating at
most 4(n− 1) messages. In other words,

M[MultiShrink] = M(C)+ 4(n− 1), (8.4)

a significant improvement over the cost of protocol RepeatSimpleQuery.

8.3.3 Concluding Remarks

Lower Bounds In the previous sections we have seen several protocols for global
termination detection. For all of them, the number of messages was a function not
only of the number n of entities in the network but also of the number M(C) of
messages of the computation C whose termination we want to detect. While n is a
system parameter, M(C) is not, and it could be arbitrarily large. Thus, it is important
to know whether this factor is at all necessary or it is possible to substantially reduce
it. In other words, it is important to establish a lower bound on the number of mes-
sages that any solution protocol must transmit to detect the global termination of a
computation C.

In this regard, we have only a partial result; in fact we know only that there are
computations such that to detect their global termination, any protocol needs to send
at least as many messages as the computations (Problem 8.6.13):

Theorem 8.3.1 For any k ≥ 0, there is a computation C′ such that

1. M(C′) ≥ k;

2. to detect global termination of C′, every protocol must send at least M(C′)
messages.

As a consequence, protocol Shrink is worst-case optimal even constant-wise. In
the case of multiple initiators, according to Theorem 8.3.1, protocol MultiShrink is
optimal in the order of magnitude as long as n = O(M(C)) or smaller.

In reality, protocol MultiShrink is always optimal in the order of magnitude. This is
because of the fact that having multiple initiators imposes a cost on solution protocols,
as expressed by the following different lower bounds (Exercise 8.6.31):

Theorem 8.3.2 With multiple initiators, for every computation C, every protocol
must send at least 2n− 1 messages in the worst case to detect the global termination
of C.

Garbage Collection There is an interesting correlation between the problem of
global termination detection and the one arising in the context of garbage collection.
Indeed, any garbage collection algorithm can be transformed into a global termination
detection protocol (Problem 8.6.14). The resulting protocols are, however, not very
efficient.
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8.4 GLOBAL STABLE PROPERTY DETECTION

In the previous sections, we have examined the problems of detecting two important
properties of a computation C: deadlock and global termination. Both properties have
in common the fact that they are stable: Once they hold, they will continue to hold
(unless some other computation is started). The solutions we have developed were
quite specific to the particular nature of those two properties.

What we will discuss in this section is how to detect any stable property P ,
regardless of its specific properties.

8.4.1 General Strategy

The goal is to develop a protocol that, for any stable property P and for any compu-
tation C, detects when P(C) holds.

Let us be more precise in terms of the requirements of the protocol, first of all
the initiators: In termination detection they coincide with the initiators of C, while in
deadlock detection it could be any entity. In this section, we will impose no restrictions:
Any number of entities can independently initiate and they might not coincide with
the initiators of C.

As before, we will distinguish between personal and collective detection:

1. personal detection: If P(C) holds, within finite time each initiator must know
that this is the case.

2. collective detection: If P(C) holds, within finite time all entities must know
that this is the case.

Observe that once personal detection has been solved, collective detection is triv-
ially achieved with an additional notification process; thus, of the two, we will focus
on personal detection. Further observe that for the personal (and thus collective) de-
tection problem to be solvable, property P must eventually hold in C, otherwise no
detection protocol will ever terminate.

We will consider the problem under the standard assumptions: connectivity, Bidi-
rectional Links, complete reliability, and unique identifiers. We will also assume
Message Ordering, that is, the links are FIFO.

As we did in the case of termination detection, our general solution strategy is
based on the solution to a simpler problem:

personal query: An initiator must know within finite time whether or not P(C)
holds.

More precisely, any solution Q to the personal query problem must have the fol-
lowing properties. Let x start Q at time t and terminate at time t ′ > t , and let q be the
result of the query; then

1. if P(C) holds at time t; then q = TRUE;

2. if q = FALSE; then P(C) does not hold at time t .
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Clearly a solution to personal and collective detection can be made by repeatedly
executing a solution Q to the personal query problem.

Strategy RepeatQuery: repeat Q until P(C)

NOTE. The cost of this strategy will be the cost of Q times the number of times Q
is invoked; as we already observed in the case of termination detection, without any
control, this cost is unbounded.

Let us not worry for the moment about the number of invocations, and let us focus
instead on the design of a solution protocol Q to the personal query problem. What
we need to do is to develop such a solution independently of the nature of property
P (other than that it is stable).

Let us denote the status of the computation C at time t by C[t], that is, C[t] denotes
the status of every entity as well as the status of every link at time t with respect to C.
We will call C[t] a perfect snapshot of C at time t.

Consider for the moment a single initiator (the following arguments actually hold,
in the case of multiple initiators, for each of them). Let the initiator start at time
t0. If we could take a perfect snapshot C[t ′] of C at any time t ′ ≥ t0 and collect
this information at some entity (e.g., the initiator), then we could compute there if
P(C) was holding at time t ′ and answer the personal query. Clearly, C[t ′] is just the
collection of the internal states C(x)[t ′] of each entity x; so to collect C[t ′] (which is
unknown), we just need each entity x to send C(x)[t ′] to the same place.

NOTE. To be able to do that, each entity must keep track of and remember all its
internal states with respect to the computation C. Assume that this is the case (an
expensive assumption storage-wise).

It would then appear that to solve the personal query problem, it is sufficient that
the initiator x0 at time t0 broadcasts “Send me your internal state at time t0”; every
entity will then send its information to x0 that will use it to reconstruct C[t0] and
answer the query. Unfortunately, this approach not only is expensive but also does
not work.

The problem is that even if an entity x knows its state at any time and remembers
them all, it does not know what t0 is. Recall, there are no global clocks, local clocks
may sign different times and have different rates, and communication delays are
unpredictable. As a consequence, it is impossible to construct a perfect snapshot.

Fortunately, we do not really need to take a perfect snapshot; an imperfect one will
do, as long as it is “sharp” enough to provide consistent information.

8.4.2 Time Cuts and Consistent Snapshots

When we say that C[t] denotes the status of C at “time” t, we are referring to “time”
as seen by an observer external to the system, sometimes called “real time.” Within
the system, the actual value t of “real time” is not known: Each entity x has only
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access to its own local clock cx , so the value cx(t) of x’s clock at real time t might
be different from that of other entities at the same time, and all of them different
from t. Furthermore, unless the additional restrictions of full synchronicity hold, the
local clocks might have different speeds, the distance between consecutive ticks of
the same clock might change over time, there are no time bounds on communication
delays, and so forth. In other words, within the system, there is no common notion of
time. Fortunately, practically in all cases, although useful, a common notion of time
is not needed.

To understand what is sufficient for our purposes, observe that “real time” gives
a total order to all the events and the actions that occur in the system: We can say
whether two events occur at the same time, whether an action is performed before an
event takes place, and so forth. In other words, given any two actions or events that
occurred in the system, we (external observers) can say (using real time) whether one
occurred before, at the same time as, or after the other.

The entities in the system, with just access to their local clocks, have much less
knowledge about the temporal relationships of actions and events; however, they do
have some. In particular,

� each entity has a complete temporal knowledge of the events and actions occur-
ring locally;
� when a message arrives, it also knows that the action of transmitting this message

happened before its reception.

It turns out that this knowledge is indeed sufficient for obtaining a consistent
snapshot. To see how, let us first of all generalize the notion of snapshot and introduce
that of a cut.

Let t1, t2, . . . , tn be instants of real time, not necessarily distinct, and let
x0, x2, . . . , xn be the entities; then C(xi)[ti] denotes the state of entity xi in com-
putation C at time ti . The set

T = {t1, t2, . . . , tn}

is called a time cut, and the set

C[T ] = {C(x1)[t1], C(x2)[t2], . . . , C(xn)[tn]}

of the associated entities’ states is called the snapshot of C at time cut T. Notice that
if all ti are the same, the corresponding snapshot is perfect.

A cut partitions a computation into three temporal sides: before the cut, at the
cut, and after the cut. This is very clear if one looks at the Time×Event Diagram
(TED) (introduced in Chapter 1) of the computation C. For example, Figure 8.10
shows the TED of a simple computation C and three cuts (in bold) T1, T2, and T3 for
C. Anything before the cut is called past, the cut is called present, and anything after
the cut is called future.
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FIGURE 8.10: Cut T1 generates a perfect snapshot; T2 gives a consistent snapshot; T3 gener-
ates an inconsistent snapshot.
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Consider an event e occurring in C; this event was either generated by some action
(i.e., sending a message or setting the alarm clock) or happened spontaneously (i.e.,
an impulse). Clearly, the real time of the generating action is before the real time
of the generated event. Informally, the snapshot generated by a cut is consistent if it
preserves this temporal relationship. Let us express this concept more precisely. Let
xi and xj denote the entity where the action and the event occurred, respectively (in
the case of a spontaneous event, xi = xj ); and let t− and t+ denote the time when
the action and the event occurred, respectively (in the case of a spontaneous event,
t− = t+). Consider now a snapshot C[T ] corresponding to a cut T = {t1, t2, . . . , tn};
the snapshot C[T ] is consistent if for every event e occurring in C the following
condition holds

if t− ≥ ti then t+ > tj . (8.5)

In other words, the snapshot generated by a cut is consistent if, in the cut, a message
is not received before sending that message. For example, of the snapshots generated
by the three cuts shown in Figure 8.10, the ones generated by T1 and T2 are consistent;
indeed, the former is a perfect snapshot. On the contrary, the snapshot generated by
cut T3 is not consistent: The message by x to w is sent in the future of T3, but it is
received in the past.

Summarizing, our strategy to resolve the personal query problem is to collect at
the initiator x a consistent snapshot C[T ] by having each entity xj send its internal
state C(xj )[tj ] to x.

We must now show that consistent snapshots are sufficient for answering a personal
query. This is indeed the case (Exercise ??):

Property 8.4.1 Let C(T ) be a consistent snapshot. If P(C) holds for the cut T, it
holds for every T ′ ≥ T .

As a consequence,

Property 8.4.2 Let x = xi start the collection of the snapshot C[T ] at time t and
terminate at time t ′, t ≤ ti ≤ t ′; then

1. if P(C) holds at time t, then P(C) holds for the cut T;

2. if P(C) does not hold for the cut T, then P(C) does not hold at time t.

Thus, our problem is now how to compute a consistent snapshot, which we will
examine next.

8.4.3 Computing a Consistent Snapshot

Our task is to design a protocol to compute a consistent snapshot. To achieve this
task, each entity xi must select a time ti , and these local choices must be such that
the snapshot generated by the resulting cut is consistent. Specifically, each ti must be
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such that if xi sent a C-message to a neighbor xj at or after ti , this message must arrive
at xj after time tj . The difficulty is that as communication delays are unpredictable,
xi does not know when its message arrives. Fortunately, there is a very simple way
to achieve our goal.

Notice that as we have assumed FIFO links, when an entity y receives a message
from a neighbor x, y knows that all messages sent by x to y before transmitting this
one have already arrived. We can use this fact as follows.

Consider the following generalization of WFlood from Chapter 2:

Protocol WFlood+:

1. an initiator sends a wake-up to all neighbors;

2. a noninitiator, upon receiving a wake-up message for the first time, sends a
wake-up to all its neighbors.

Notice that the only difference between WFlood+ and WFlood is that now a
noninitiator sends a wake-up message also to the entity that woke it up.

Let t i be the time when xi becomes “awake” (i.e., it initiates WFlood+ or receives
the first “wake-up” message). An interesting and important property is the following:

Property 8.4.3 If xi sends a C-message to xj at time t > ti , then this message will
arrive at xj at a time t ′ > tj .

Proof. Consider a “wake-up” message sent by an entity xi to a neighbor xj at time
t > ti ; this message will arrive at xj at some time t ′. Recall that xi at time t i sent a
“wake-up” message to all its neighbors, including xj ; as links are FIFO, this “wake-
up” message arrived to xj at some time t ′′ before the C-message, that is, t ′ > t ′′.

When xj receives the “wake-up” message from xi , either it is already awake or it
is woken up by it. In either case, t ′′ ≥ tj ; as t ′ > t ′′, it follows that t ′ > tj . �

This means that in the time cut T = {t1, t2, . . . , tn} defined by these time values,
no C-message is sent at T and every C-message sent after T also arrives after T . In
other words,

Property 8.4.4 The snapshot C[T ] is consistent.

Thus the problem of constructing a consistent snapshot is solved by simply exe-
cuting a wake-up using WFlood+. The cost is easy to determine: In the execution of
WFlood+ regardless of the number of initiators, exactly two messages are sent on
each link, one in each direction. Thus, a total of 2m messages are sent.

8.4.4 Summary: Putting All Together

We have just seen how to determine a consistent snapshot C[T ] (Protocol WFlood+)
with multiple initiators. Once this is done, the entities still have to determine whether
or not property P holds for C[T ].
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This can be accomplished by having each xi send its local state C(xi)[t i] to some
predefined entity (e.g., the initiator in case of a single-initiator, or the saturated nodes
over an existing spanning tree, or a previously elected leader); this entity will col-
lect these fragments of the snapshot, construct from them snapshot C[T ], determine
locally whether or not property P holds for C[T ], and (if required) notify all other
entities of the result of the local query.

Depending on the size of the local fragments of the snapshot, the amount of infor-
mation transmitted can be prohibitive. An alternative to this centralized solution is to
computeP(C) at T distributively. This, however, requires knowledge of the nature of
property P , something that we neither have nor want to require; recall: Our original
goal is to design a protocol to detect a stable property P regardless of its nature.

At this point, we have a (centralized or decentralized) protocol Q for solving the
personal query problem. We can then follow strategy RepeatQuery and repeatedly
execute Q until the stable property P(C) is detected to hold.

As already mentioned, the overall cost is the cost of Q times the number of times
Q is invoked; as we already observed in the case of termination detection, without
any control, this cost is unbounded.

Summarizing, we have seen how to solve the global detection problem for stable
properties by repeatedly taking consistent snapshots of the system; such a snapshot
is sometimes called a global state of the system. This solution is independent of the
stable property and thus can be applied to any. We have also seen that the cost of the
solution we have designed can be prohibitive and, without some other control, it is
possibly unbounded.

Clearly, for specific properties we can use knowledge of the property to reduce the
costs (e.g., the number of times Q is executed, as we did in the case of termination) or
to develop different ad hoc solutions (as we did in the case of deadlock); for example,
see Problem 8.6.16.

8.5 BIBLIOGRAPHICAL NOTES

The problem of distributed deadlock detection has been extensively studied and a very
large number of solutions have been designed, proposed, and analyzed. However, not
all these attempts have been successful, some failing to work correctly, either de-
tecting false deadlocks or failing to detect existing deadlocks, others exhibiting very
poor performance. As deadlock can occur in almost any application area, solutions
have been developed from researchers in all these areas (from distributed databases
to systems of finite state machines, from distributed operating systems to distributed
transactions to distributed simulation), many times unaware of (and sometimes repro-
ducing) each other’s efforts and results. Also, deadlocks in different types of request
systems (single request, AND, OR, etc.) have oftentimes been studied in isolation as
different problems, overlooking the similarities and the commonalities and sometimes
proposing the same techniques. In addition, because of its link with cycle detection
and with knot detection, some aspects of deadlock detection have also been studied
by investigators in distributed graph algorithms.
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Interestingly, one of the earliest algorithms, LockGrant, is not only the most
efficient (in the order of magnitude) protocol for personal detection with a single
initiator in a static graph but also the most general as it can be used (efficiently)
in all types of request systems. It has been designed by Gabriel Bracha and Sam
Toueg [2], and their static protocol can be modified to work efficiently also on
dynamic graphs in all request systems (Problem 8.6.9). The number of messages
has been subsequently reduced from 4m to 2m by Ajay Kshemkalyani and Mukesh
Singhal [11].

In the presence of multiple initiators, the idea of integrating a leader-election
process into the detection protocol (Problem 8.6.2) was first proposed by Israel
Cidon [6].

The simpler problem of personal knot detection was first solved by Mani Chandy
and Jayadev Misra [4] for a single initiator with 4m messages and later with 2m
messages by Azzedine Boukerche and Carl Tropper [1]. A protocol for multiple
initiators that uses only 3m+O(n log n) messages has been designed by Israel
Cidon [6].

The problem of detecting global termination of a computation was first posed by
Nissim Francez [9] and Edsger Dijkstra and Carel Scholten [8].

Protocol TerminationQuery for the personal termination query problem was de-
signed by Rodney Topor [21] and used in strategy RepeatQuery for the personal
termination detection problem.

The more efficient protocol Shrink for single initiator is due to Edsger Dijkstra
and Carel Scholten [8]; its extension to multiple initiators, protocol MultiShrink, has
been designed by Nir Shavit and Nissim Francez [18].

The idea of message counting was first employed by Mani Chandy and Jayadev
Misra [5] and refined by Friedmann Mattern [13]. Other mechanisms and ideas em-
ployed to detect termination include the following: “markers,” proposed by Jayadev
Misra [16]; “credits,” suggested by Friedmann Mattern [14]; and “timestamps,” pro-
posed by S. Rana [17].

The relationship between the problems of garbage collection and that of global
termination detection was first observed by Carel Scholten [unpublished], made
explicit (in one direction) by Gerard Tel, Richard Tan, and Jan van Leeuwen [20],
and analyzed (in the other direction: Problem 8.6.14) by Gerard Tel and Friedmann
Mattern [19].

The fact that Protocol WFlood+ constructs a consistent snapshot was first ob-
served by Mani Chandy and Leslie Lamport [3]. Protocols to construct a consistent
snapshot when the links are not FIFO were designed by Ten Lai and Tao Yang [12]
and Friedmann Mattern [15]; they, however, require C-messages to contain control
information.

The strategy of constructing and checking a consistent snapshot has been used
by Gabriel Bracha and Sam Toueg for deadlock detection in dynamic graphs
[2], and by Shing-Tsaan Huang [10] and Friedmann Mattern [13] for termination
detection.
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8.6 EXERCISES, PROBLEMS, AND ANSWERS

8.6.1 Exercises

Exercise 8.6.1 Prove that protocol GeneralSimpleCheck would solve the personal
and component deadlock detection problem.

Exercise 8.6.2 Show the existence of wait-for graphs of n nodes in which protocol
GeneralSimpleCheck would require a number of messages exponential in n.

Exercise 8.6.3 Show a situation where, when executing protocol LockGrant, an
entity receives a “Grant” message after it has terminated its execution of Shout.

Exercise 8.6.4 Prove that in protocol LockGrant, if an entity sends a “Grant” mes-
sage to a neighbor, it will receive a “Grant-Ack” from that neighbor within finite
time.

Exercise 8.6.5 Prove that in protocol LockGrant, if an entity sends a “Shout”
message to a neighbor, it will receive a “Reply” from that neighbor within finite
time.

Exercise 8.6.6 Prove that in protocol LockGrant, if a “Grant” message has not been
acknowledged at time t, the initiator x0 has not yet received a “Reply” from all its
neighbors at that time.

Exercise 8.6.7 Prove that in protocol LockGrant, if an entity receives a “Grant”
message from all its out-neighbors then it is not deadlocked.

Exercise 8.6.8 Prove that in protocol LockGrant, if an entity is not deadlocked, it
will receive a “Grant” message from all its out-neighbors within finite time.

Exercise 8.6.9 Modify the definition of a solution protocol for the collective dead-
lock detection problem in the dynamic case.

Exercise 8.6.10 Prove that in the dynamic single-request model, once formed the
core of a crown will remain unchanged.

Exercise 8.6.11 Prove that in the dynamic single-request model, if the initiator x0
is in a rooted tree that is not going to become (part of) a crown, then its message is
eventually going to reach the root of the tree.

Exercise 8.6.12 Prove that in the dynamic single-request model, if a new crown is
formed while the “Check” message started by x0 is still traveling, the protocol will
correctly notify x0 that it is involved in a deadlock.
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Exercise 8.6.13 Prove that in the dynamic single-request model, if a new crown is
formed while the “Check” message started by x0 is still traveling, the protocol will
correctly notify x0 that it is involved in a deadlock.

Exercise 8.6.14 Modify protocol LockGrant so that it solves the personal and the
collective deadlock detection problem in the OR-Request model. Assume a single
initiator. Prove the correctness and analyze the cost of the resulting protocol. Imple-
ment and throughly test your protocol. Compare the experimental results with the
theoretical bounds.

Exercise 8.6.15 Implement and throughly test the protocol designed in Exercise
8.6.14. Compare the experimental results with the theoretical bounds.

Exercise 8.6.16 Modify protocol LockGrant so that it solves the personal and the
collective deadlock detection problem in the p-OF-q Request model. Assume a single
initiator. Prove the correctness and analyze the cost of the resulting protocol. Imple-
ment and throughly test your protocol. Compare the experimental results with the
theoretical bounds.

Exercise 8.6.17 Implement and throughly test the protocol designed in Exercise
8.6.16. Compare the experimental results with the theoretical bounds.

Exercise 8.6.18 Modify protocol LockGrant so that it solves the personal and the
collective deadlock detection problem in the Generalized Request model. Assume a
single initiator. Prove the correctness and analyze the cost of the resulting protocol.
Implement and throughly test your protocol. Compare the experimental results with
the theoretical bounds.

Exercise 8.6.19 Implement and throughly test the protocol designed in Exercise
8.6.18. Compare the experimental results with the theoretical bounds.

Exercise 8.6.20 Prove that protocol TerminationQuery is a correct personal query
protocol, that is, show that Property 8.3.1 holds.

Exercise 8.6.21 Prove that using strategy RepeatQuery+, protocol Q is executed at
most T ≤ M(C) times. Show an example in which T = M(C).

Exercise 8.6.22 Let Q be a multiple-initiators personal query protocol. Modify
strategy RepeatQuery+ to work with multiple initiators.

Exercise 8.6.23 Consider strategy Shrink for personal termination detection with
a single initiator. Show that at any time, all black nodes form a tree rooted in the
initiator and all white nodes are singletons.
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Exercise 8.6.24 Consider strategy Shrink for personal termination detection with a
single initiator. Prove that if all nodes are white at time t, then C is terminated at that
time.

Exercise 8.6.25 Consider strategy Shrink for personal termination detection with a
single initiator. Prove that if C is terminated at time t, then there is a t ′ ≥ t such that
all nodes are white at time t ′.

Exercise 8.6.26 Consider strategy Shrink for personal termination detection with
multiple initiators. Show that at any time, the black nodes form a forest of trees, each
rooted in one of the initiators, and the white nodes are singletons.

Exercise 8.6.27 Consider strategy Shrink for personal termination detection with
multiple initiators. Prove that, if all nodes are white at time t, then C is terminated at
that time.

Exercise 8.6.28 Consider strategy Shrink for personal termination detection with
multiple initiators. Prove that if C is terminated at time t, then there is a t ′ ≥ t such
that all nodes are white at time t ′.

Exercise 8.6.29 Consider protocol MultiShrink for personal termination detection
with multiple initiators. Prove that when a saturated node becomes white all other
nodes are also white.

Exercise 8.6.30 Consider protocol MultiShrink for personal termination detection
with multiple initiators. Explain why it is possible that only one entity becomes
saturated. Show an example.

Exercise 8.6.31 (+) Prove that for every computation C, every protocol must send
at least 2n− 1 messages in the worst case to detect the global termination of C.

8.6.2 Problems

Problem 8.6.1 Write the set of rules of protocol Dead Check implementing the
simple check strategy for personal and for collective deadlock detection in the single
resource model. Implement and throughly test your protocol. Compare the experi-
mental results with the theoretical bounds.

Problem 8.6.2 (+) For the problem of personal deadlock detection with multiple
initiators consider the strategy to integrate into the solution an election process among
the initiators. Design a protocol for the single-request model to implement efficiently
this strategy; its total cost should be o(kn) messages in the worst case, where k is the
number of initiators and n is the number of entities. Prove the correctness and analyze
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the cost of your design. Implement and throughly test your protocol. Compare the
experimental results with the theoretical bounds.

Problem 8.6.3 Implement protocol LockGrant, both for personal and for collective
deadlock detections. Throughly test your protocol. Compare the experimental results
with the theoretical bounds.

Problem 8.6.4 (+) In protocol LockGrant employ Shout+ instead of Shout, so as to
use at most 4|E(x0)|messages in the worst case. Write the corresponding set of rules.
Implement and throughly test your protocol. Compare the experimental results with
the theoretical bounds.

Problem 8.6.5 (++) For the problem of personal deadlock detection with multiple
initiators consider the strategy to integrate into the solution an election process among
the initiators. Design a protocol for the AND-request model to implement efficiently
this strategy; its total cost should be o(km) messages in the worst case, where k is
the number of initiators and m is the number of links in the wait-for graph. Prove the
correctness and analyze the cost of your design. Implement and throughly test your
protocol. Compare the experimental results with the theoretical bounds.

Problem 8.6.6 (++) Modify protocol LockGrant so that, with a single initiator, it
works correctly also in a dynamic wait-for graph. Prove the correctness and analyze
the cost of the modified protocol.

Problem 8.6.7 (++) For the problem of personal deadlock detection with multiple
initiators consider the strategy to integrate into the solution an election process among
the initiators. Design a protocol for the OR-request model to implement efficiently
this strategy; its total cost should be o(km) messages in the worst case, where k is
the number of initiators and m is the number of links in the wait-for graph. Prove the
correctness and analyze the cost of your design. Implement and throughly test your
protocol. Compare the experimental results with the theoretical bounds.

Problem 8.6.8 (++) For the problem of personal deadlock detection with multiple
initiators consider the strategy to integrate into the solution an election process among
the initiators. Design a protocol for the p-OF-q request model to implement efficiently
this strategy; its total cost should be o(km) messages in the worst case, where k is
the number of initiators and m is the number of links in the wait-for graph. Prove the
correctness and analyze the cost of your design. Implement and throughly test your
protocol. Compare the experimental results with the theoretical bounds.

Problem 8.6.9 (++) For the problem of personal deadlock detection with multiple
initiators consider the strategy to integrate into the solution an election process among
the initiators. Design a protocol for the Generalized request model to implement
efficiently this strategy; its total cost should be o(km) messages in the worst case,
where k is the number of initiators and m is the number of links in the wait-for graph.
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Prove the correctness and analyze the cost of your design. Implement and throughly
test your protocol. Compare the experimental results with the theoretical bounds.

Problem 8.6.10 (+) Write the set of rules corresponding to strategy RepeatQuery+
when Q is TerminationQuery and there are multiple initiators. Implement and
throughly test your protocol. Compare the experimental results with the theoretical
bounds.

Problem 8.6.11 (+) Write the set of rules of protocol Shrink for global termination
detection with a single initiator. Implement and throughly test your protocol. Compare
the experimental results with the theoretical bounds.

Problem 8.6.12 (+) Write the set of rules of protocol MultiShrink for global termi-
nation detection with multiple initiators. Implement and throughly test your protocol.
Compare the experimental results with the theoretical bounds.

Problem 8.6.13 (+) Construct a computation Ck , k ≥ 0 such that M(Ck) ≥ k and
to detect global termination of C′, every protocol must send at least M(C′) messages.

Problem 8.6.14 (++) Show how to transform automatically a garbage collection
algorithm GC into a termination detection protocol TD. Analyze the cost of TD.

Problem 8.6.15 Using the transformation of Problem 8.6.14, determine the cost of
TD when GC is the References Count algorithm.

Problem 8.6.16 Consider a computation C that circulates k tokens among the
entities in a system where tokens (but not messages) can be lost while in transit. The
problem we need to solve is the detection of whether one or more tokens are lost.
Adapt the general protocol we designed for detecting stable properties (i.e., strategy
RepeatQuery using WFlood+ for personal query resolution) to solve this problem.
Use the specific nature of C to reduce the space and bit costs of each iteration, as well
as the overall number of messages.

8.6.3 Answers to Exercises

Answer to Exercise 8.6.3
Consider the simple wait-for graph shown in Figure 8.11. When a receives the “Shout"
message from the initiator x0, it will forward it to b and, as it is a sink, it will also
send a “Grant” message to both x0 and b. Assume that the “Grant” message from a
to b is very slow. In the meanwhile, b receives the “Shout” from a and forwards it to
c and d, which will send a “Reply” to b; upon receiving these replies, b will send its
“Reply” to its parent a, effectively terminating its execution of Shout. The “Grant”
message from a will then arrive after all this has occurred.
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ba c

d

x0

FIGURE 8.11: Entity b might locally terminate Shout before receiving “Grant” from a.

Answer to Exercise 8.6.5
Hint: First prove that in protocol LockGrant, within finite time, every entity but the
initiator will send a “Reply” to its parent in the tree constructed by the Shout.

BIBLIOGRAPHY

[1] A. Boukerche and C. Tropper. A distributed graph algorithm for the detection of local
cycles and knots. IEEE Transactions on Parallel and Distributed Systems, 9(8):748–757,
August 1998.

[2] G. Bracha and S. Toueg. Distributed deadlock detection. Distributed Computing, 2:
127–138, 1987.

[3] K. M. Chandy and L. Lamport. Distributed snapshots: Determining global states of dis-
tributed systems. ACM Transactions on Computer Systems, 3(1):63–75, February 1985.

[4] K. M. Chandy and J. Misra. A distributed graph algorithm: knot detection. ACM Trans-
actions on Programming Languages and Systems, 4:144–156, 1982.

[5] K. M. Chandy and J. Misra. A paradigm for detecting quiescent properties in distributed
computations. In K.R. Apt (Ed.), Logic and models of concurrent systems, 1985.

[6] I. Cidon. An efficient distributed knot-detection algorithm. IEEE Transactions on Software
Engineering, 15(5):644–649, May 1989.

[7] E. W. Dijkstra. Selected writings on computing: A personal perspective. Springer, 1982.

[8] E. W. Dijkstra and C.S. Scholten. Termination detection for diffusing computations.
Information Processing Letters, 11(1):1–4, August 1980.

[9] N. Francez. Distributed termination. ACM Transactions on Programming Languages and
Systems, 2(1):42–55, 1980.

[10] S. T. Huang. Termination detection by using distributed snapshots. Information Processing
Letters, 32(3):113–120, 1989.

[11] A. Kshemkalyani and M. Singhal. Efficient detection and resolution of generalized dead-
locks. IEEE Transactions on Software Engineering, 20(1):43–54, 1994.

[12] T. H. Lai and T. H. Yang. On distributed snapshots. Information Processing Letters,
25(5):153–158, 1987.

[13] F. Mattern. Algorithms for distributed termination detection. Distributed Computing,
2:161–175, 1987.

[14] F. Mattern. Global quiescence detection based on credit distribution and recovery. Infor-
mation Processing Letters, 30(4):195–200, 1989.

[15] F. Mattern. Efficient algorithms for distributed snapshots and global virtual time approx-
imation. Journal of Parallel and Distributed Computing, 18(4):423–434, August 1993.



540 DETECTING STABLE PROPERTIES

[16] J. Misra. Detecting termination of distributed computations using markers. In 2nd Sym-
posium on Principles of Distributed Computing, pages 290–294, Montreal, 1983.

[17] S. P. Rana. A distributed solution of the distributed termination problem. Information
Processing Letters, 17:43–46, 1983.

[18] N. Shavit and N. Francez. A new approach to detection of locally indicative stability. In
13th International Colloquium on Automata, Languages and Programming, volume 226
of Lecture Notes in Computer Science, pages 344–358. Springer, 1986.

[19] G. Tel and F. Mattern. The derivation of distributed termination detection algorithms from
garbage collection schemes. ACM Transactions on Programming Languages and Systems,
15(1):1–35, January 1993.

[20] G. Tel, R. B. Tan, and J. van Leeuwen. The derivation of graph marking algorithms
from distributed termination detection protocols. Science Of Computer Programming,
10(2):107–137, April 1988.

[21] R. W. Topor. Termination detection for distributed computation. Information Processing
Letters, 18(1):33–36, 1984.



CHAPTER 9

Continuous Computations

9.1 INTRODUCTION

When we have been discussing computations in distributed environments, we have al-
ways considered computations that once started (by some impulse), terminate within
finite time. The termination conditions can be explicit in the protocol (e.g., the en-
tities enter terminal states) or implicit (and hence a termination detection protocol
must be run concurrently). The key point is that, implicit or explicit, the termination
occurs.

There are, however, computations that never terminate. These are, for example,
computations needed for the control and maintenance of the environment, and they are
“on” as long as the system is “on”: The protocols composing a distributed operating
system, the transaction management protocols in a distributed transaction system, the
network service protocols in a data communication network, the object management
functions in a distributed object system, and so forth.

Because of this nature, these computations are called continuous computations.
We have already seen one such computation in Chapter 4, when dealing with

the problem of maintaining routing tables; those protocols would never really
terminate as long as there are changes in the network topology or in the traffic
conditions.

Another example of continuous computation is the heartbeat protocol that provides
a step-synchronization for the entities in the system: Each entity endlessly sends a
“heartbeat” message to all its neighbors, waiting to receive one from all of them before
its next transmission. Heartbeat protocols form the backbone of the management
of most distributed systems and networks. It is, for example, used in most failure
detection mechanisms: An entity decides that a failure has occurred if the wait for a
heartbeat from a neighbor exceeds a timeout value.

In this chapter we will examine some basic problems whose solution requires
continuous computations: maintaining logical clocks, controlling access to a shared
resource or service, maintaining a distributed queue, and detecting and resolving
deadlocks.
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Some continuous problems are just the (endless) repetition of a terminating prob-
lem (plus adjustments); others could be solved in that way, but they also have unique
nonterminating solutions; others yet do not have any terminating counterpart. In this
chapter we will examine continuous problems of all these types.

Before we proceed, let us ask a simple but provocative question:
What is the cost of a continuous computation?
As the computation never ends, the answer is obviously “infinite.” While true,

it is not meaningful because then all continuous computations have the same cost.
What this answer really points out is that we should not (because we cannot) measure
the total cost of the entire execution of a continuous computation. Which measure
is most appropriate depends on the nature of the problem. Consider the heartbeat
protocol, whose total cost is infinite; The meaningful cost measure in this case is
the total number of messages it uses per single beat: 2 m. In the case of the routing
table maintenance protocols, a meaningful measure is the total number of messages
exchanged in the system per change in the topology.

Summarizing, we will measure a continuous computation in terms of either its cost
per basic operation it implements or its cost per basic event triggering its action.

9.2 KEEPING VIRTUAL TIME

9.2.1 Virtual Time and Causal Order

In a distributed computing environment, without additional restrictions, there is def-
initely no common notion of real (i.e., physical) time among the entities. Each entity
has a local clock; however, each is independent of the others. In general this fact does
not restrict our ability to solve problems or perform tasks; indeed, all the protocols
we have designed, with the exception of those for fully synchronous systems, do not
require any common notion of real time among the entities.

Still, there are cases when such a notion would be helpful. Consider, for example,
the situation when we need to undo some operation a (e.g., the transmission of a
message) that has been erroneously performed. In this case, we need to undo also
everything (e.g., transmission of other messages) that was caused by a. In this context,
it is necessary to determine whether a certain event or action b (e.g., the transmission
of some other message by some other entity) was caused (directly or indirectly) by
that original action a. If we find out that a happened after b, that is t(a) > t(b), we
can exclude that b was caused by a, and we need not undo it. So, although it would
not completely solve the problem, having access to real time would be useful.

As we know, entities do not have access to real time t . They can, however, create,
using local clocks and counters, a common notion of time T among them, that would
allow them to approximate real time or at least exploit some useful properties of real
time.

When we talk about a common notion of time we mean a function T that assigns a
value (not necessarily unique) from a partially ordered set to each event in the system;
we will denote by < the partial order. To be meaningful, this function must satisfy
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two basic properties:

� Local Events Ordering: Let a and b two events occuring both at x, with t(a) <
t(b). Then T (a) < T (b).
� Send/Receive Ordering: Let a be the event at x whose reaction is the transmis-

sion of a message to neighbor y, and let b be the arrival at y of that message.
Then T (a) < T (b).

Any function T satisfying these two properties will be called virtual time.
The other desirable property is the one allowing us to simulate real time in the

undo problem: If a “happened after” b in virtual time (i.e., T (a) > T (b)), then a
did not cause b (directly or indirectly). Let us be more precise. We say that event a
causally preceeds, or simply causes event b, and denote this fact by a→ b, if one of
the following conditions holds:

1. both a and b occur at the same entity and t(a) < t(b);

2. a is the event at x whose reaction is the transmission of a message to neighbor
y, and b is the arrival at y of that message;

3. there exists a sequence e1, e2, . . . , ek of events such that e1 = a, ek = b, and
ei → ei+1.

We will say that two events a and b are causally related if a→ b or b→ a. Some-
times events are not causally related at all: We will say that a and b are independent
if both a �→ b and b �→ a.

We can now formally define the property we are looking for:

� Causal Order: For any two events a and b, if a→ b then T (a) < T (b).

Interestingly, the simultaneous presence of properties Local Events and
Send/Receive ordering are enough to guarantee Causal Order (Exercise 9.6.1):

Property 9.2.1 Let T be virtual time. Then T satisfies Causal Order.

The problem is how can the entities create a virtual time T . This should be done if
possible without generating additional messages. To achieve this goal, each entity x
must create and maintain a virtual clock Tx that assigns an integer value to each event
occurring locally; these virtual clocks define an overall time function T: For an event
a occurring at x, T (a) = Tx(a); hence, the clocks must be designed and maintained
in such a way that the function T is indeed virtual time. Our goal is to design an
algorithm that specifies how to create such virtual clocks and maintain them. Clearly,
mantaining virtual time is a continuous computation.

As virtual clocks are mechanisms we design and construct, one might ask whether
it is possible to design them so that, in addition to Causal Order, they satisfy some
other desirable property. Consider again the case of the undo operation; Causal Order
allows only to say that if T (a) > T (b), then a �→ b, while what we really need to
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know is whether a→ b. So, for example, it would be very useful if the virtual clocks
satisfy the much stronger property

� Complete Causal Order: a→ b if and only if T (a) < T (b).

If we could construct virtual clocks that satisfy the Complete Causal Order prop-
erty, then to identify what to undo would be easy: To completely undo a we must
undo every b with T (b) > T (a).

Notice that real time is not complete with respect to causal order; in fact, t(a) < t(b)
does not imply at all that a caused b! In other words, Complete Causal Order is not
provided by real clocks. This suggests that creating virtual clocks with this property
is not a trivial task.

Also notice that each local clock cx , by definition, satisfies the Complete Causal
Order property for the locally occurring events. This means that as long as an entity
does not interact with other entities, its local clock generates a completely consistent
virtual time. The problems clearly arise when entities interact with each another.

In the following we will design an algorithm to construct and maintain virtual
clocks; we will also develop a system of virtual clocks that satisfy Complete Causal
Order. In both cases, we will assume the standard restrictions IR: Connectivity, Com-
plete Reliability, and Bidirectional Links, as well as Unique Identifiers. We will also
assume Message Ordering (i.e., FIFO links).

9.2.2 Causal Order: Counter Clocks

As locally generated events and actions are already naturally ordered by the local
clocks, to construct and maintain virtual clocks (i.e., clocks that satisfy Causal
Order), we have to worry mostly about the interaction between different entities.
Fortunately, entities interact directly only through messages; clearly, the operation a
of transmitting a message generates the event b of receiving that message, that is,
a→ b. Hence, we must somehow handle the arrival of a message not like any other
event or local action but as a special one: It is the moment when the local times of
the two entities, the sender and the receiver, come into contact; we must ensure that
this causal order is preserved by the clocks we are designing. A simple algorithm for
clock construction and maintenance is the following.

Algorithm CounterClock:

1. We equip each entity x with a local integer counter Cx of the local events and
actions, that is, Cx is initially set to 0 and it is increased by 1 every time x
reacts to an event other than arrival of a message; the increment occurs at the
beginning of the action.

2. Let us consider now the interaction between entities. Whenever an entity x
sends a message to a neighbor y, it encloses in the message the current value of
its local counter. Whenever an entity y receives a message with a counter value
count , it increases its local counter to Cy := 1+max{Cy, count}
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FIGURE 9.1: Virtual time generated by CounterClocks.

Consider, for example, the TED diagram shown in Figure 9.1; the message sent by
z to y contains the counter value Cz = 5; just before receiving this message Cx = 3;
when reacting to the message arrival, x sets Cx = 1+max{5, 3} = 6.

This system of local counters defines a global measure of timeC; for any event a at
x, C(a) is just Cx(a). Notice that each local counter is totally consistent with its local
clock: For any two local events a and b, Cx(a) < Cx(b) if and only if cx(a) < cx(b);
as local clocks satisfy the causal order property for local events, these counters satisfy
local events ordering. By construction, if a is the transmission of a message and b is its
reception, then C(a) = Cx(a) < Cx(b) = C(b), that is, send/receive ordering holds.

In other words, algorithm CounterClock constructs and maintains virtual clocks:

Theorem 9.2.1 Let C be the global time defined by the local counters of algorithm
CounterClock. For any two actions and/or events a and b, if a→ b thenC(a) < C(b).

This algorithm achieves its goal without any additional communication. It does,
however, require an additional field (the value of the local counter) in each message;
the bookkeeping is minimal: limited to storing the counter and increasing its value at
each event.

Notice that although the time function C created by algorithm CounterClock satis-
fies the causal order property like real time t , it may differ greatly from real time. For
example (Exercises 9.6.2 and 9.6.3), it is possible that t(a) > t(b), whileC(a) < C(b).
It is also possible that two independent events, occurring at diffe rent entities at dif-
ferent times, have the same virtual time.

9.2.3 Complete Causal Order: Vector Clocks

With the virtual clocks generated by algorithm CounterClock, we are guaranteed
that property Causal Order holds, that is, if a→ b, then C(a) < C(b). However, the
converse is not true. In fact, it is possible that C(a) < C(b), but a �→ b. This means
that if C(a) < C(b), it is impossible for us to decide whether or not a causes b. By
contrast, as we mentioned earlier, it is precisely this type of knowledge that is the
most helpful, for example, in the undo operation case.
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It is natural to ask whether we can design virtual clocks that satisfy the much more
powerful Complete Causal Order property. Let us point out again that real time clocks
do not satisfy this property. Surprisingly, it is possible to achieve this property using
solely local counters; however, we need many of them together; let us see how.

For simplicity, let us assume that we have established a total order among the
entities, for example, by ranking them according to their ids (see Problem 2.9.4);
thus, we will denote the entities as x1, x2, ..., xn, where the index of an entity denotes
its position in the total order.

Algorithm VectorClock:

1. We equip each entity xi with a local integer counter Ci of the local events,
that is, Ci is initially set to 0 and it is increased by 1 every time xi reacts to
an event; the increment occurs at the beginning of the action. We equip each
entity xi also with a n-dimensional vector Vi of values, one for each entity in
the network. The value Vi[i] is always the value of the local counter Ci ; the
value of Vi[j ], i �= j , is initially 0 and can change only when a message arrives
at xi , according to the rule 2(b) described next.

2. Let us consider now the interaction between entities.

(a) Whenever an entity xi sends a message to a neighbor xj , it encloses in the
message the vector of values Vi .

(b) Whenever an entity xj processes the arrival of a message with a vector
vect of values, it updates its local vector Vj as follows: for all i �= j , it sets
Vj [i] := max{vect[i], Vj [i]}.

As an example, in the TED diagram shown in Figure 9.2, when x1 receives the
message from x2, its vector is [2 0 0], while the message contains vector [1 2 0]; when
reacting to the message, x1 will first increase its local counter transforming its vector
into [3 0 0] and then process the message transforming its vector into [3 2 0].

Consider an event a at xi . We define Vi(a) as follows: If a is the reception of a
message, then Vi(a) is the value of the vector Vi after its updating when processing

x3

x2

x1

[4 2 5]

[1 2 5][1 2 4]

[3 2 0]

[1 2 0]

[2 0 0]

[0 1 0]

[1 0 0]

[0 1 3][0 1 2][0 0 1]

FIGURE 9.2: Virtual time generated by VectorClocks.
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the message. For all other events (impulses and alarm clock ringing), Vi(a) is just the
value of vector Vi when event a is processed (recall that the local counter is increased
as the first operation of the processing).

This system of local vectors defines a global time function V : For any event a at
xi , V (a) is just Vi(a). Notice that the values assigned to events by the time function
V are vectors.

Let us now define the partial order we will use on vectors: Given any two
n-dimensional vectors A and B, we say that A ≤ B if A[i] ≤ B[i] for all indices
i; we say that A < B if and only if A ≤ B and A[i] < B[i] for at least an index i.
So, for example, [1 2 0] < [3 2 0].

Notice that from the definition, it follows that some values are not comparable; for
example, [1 3 0] �≤ [3 2 0] and [3 2 0] �≤ [1 3 0].

It is not difficult to see that the global time V with the partial order so defined is a
virtual time, that is, it satisfies the Causal Order property. In fact, by construction,

Property 9.2.2 For any two events a and b at xi , Vi(a) < Vi(b) if and only if
t(a) < t(b).

This means that V satisfies local events ordering. Next observe that these local
vectors satisfy also send/receive ordering (Exercise 9.6.4):

Property 9.2.3 Let a be an event in whose reaction a message is transmitted by
xi , and let b be the reception of that message by xj . Then V (a) = Vi(a) < Vj (b) =
V (b).

Therefore, these local vectors are indeed virtual clocks:

Lemma 9.2.1 For any two events a and b, if a→ b, then V (a) < V (b).

Interestingly, as already mentioned, the converse is also true (Exercise 9.6.5):

Lemma 9.2.2 For any two events a and b, if V (a) < V (b), then a→ b.

That is, by Lemmas 9.2.1 and 9.2.2, the local vectors satisfy the Complete Causal
Order property:

Theorem 9.2.2 Let V be the global time defined by the local counters of al-
gorithm VectorClock. For any two events a and b, V(a) < V(b) if and only if
a→ b.

Vector clocks have many other interesting properties also. For example, consider
the vector clock when an entity xi reacts to an event a; the value of each component
of the vector clock Vi(a) can give precise information about how many preceeding
events are causally related to a. In fact,
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Property 9.2.4 Let a be an event occurring at xi .

1. Vi(a)[j ] is the number of events e occurred at xj such that e→ a.

2. The total number of events e where e→ a is precisely
∑n
j=1 Vi(a)[j ]− 1.

It is also possible for an entity xi to tell whether two received messages M ′ and
M ′′ are causally related or independent;

Property 9.2.5 Let vect′ and vect′′ be the vectors included in messagesM ′ andM ′′,
respectively, received by xi . If vect′〈vect′′ or vect′〉vect′′, then the events that caused
the transmission of those messages are causally related, else they are independent.

This property is useful, for example, when we do want to discard obsolete mes-
sages: If two messages are independent, both should probably be kept; by contrast, if
they are causally related, only the most recent (i.e., with the greater vector) needs to
be kept.

Let us now consider the cost of algorithm VectorClock. This algorithm requires
that an n-dimensional vector of counters is included in each message. By contrast,
it ensures a much stronger property that not even real clocks can offer. Indeed,
the dimension n is necessary to ensure Complete Causal Order using timestamps
(Problem 9.6.1).

A way to decrease the amount of additional information transmitted with each
message is to include in each message not the entire vector but only the entries that
have changed since last message to the same neighbor.

For large systems with frequent communication, this approach can significantly re-
duce the total amount of transmitted data with respect to always sending the vector. The
drawback is the increased storage and bookkeeping: Each entity xi must remember, for
each neighbor xj and for each entry k in the vector, the last value of Vi[k] that xi sent
to xj . Another drawback is that Property 9.2.5 would no longer hold (Exercise 9.6.8).

9.2.4 Concluding Remarks

Hacking In presenting algorithm VectorClocks we have assumed that there is an
a priori total ordering of the entities, and that each entity knows both its rank in the
ordering and the total number n of entities. This can be clearly obtained, for example,
by performing a ranking protocol on the entities’ ids. The cost for this operation is
expensive, O(n2) messages in the worst case, even if there is already a leader and a
spanning tree. However, this cost would be incurred only once, before the creation of
the clocks takes place.

Interestingly, with simple modifications to algorithm VectorClocks, it is possible
to achieve the goal (i.e., to construct a virtual clock satisfying the Complete Causal
Order property) without any a priori knowledge and yet without incurring in any
initial cost; even more interesting is the fact that, in some cases, maintaining the
clocks requires much less information inside the messages.
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We shall call this algorithm PseudoVectorClocks and leave its specification and
analysis as an exercise (Problem 9.6.2 and Exercise 9.6.9).

Bounding the Clocks The major problem with both CounterClocks and with
VectorClocks is that the values of the counters are monotonically increasing: They
keep on growing. This means that these values and, hence, the bit complexity of the
messages are unbounded.

This problem is quite serious especially with VectorClocks. A possible solution is
to occasionally reset the vectors; the difficulty with this approach is clearly caused
by messages in transit: The resetting of the virtual clocks will destroy any existing
causal order between the arrival of these messages and the events that caused their
transmission.

Any strategy to avoid this unfortunate consequence (Problem 9.6.3) is bound to
be both expensive and intrusive.

9.3 DISTRIBUTED MUTUAL EXCLUSION

9.3.1 The Problem

In a distributed computing environment, there are many cases and situations in which
it is necessary to give a single entity (or a single group of entities) exclusive control.

This occurs, for example, whenever computations require the presence of a central
controller (e.g., because the coordination itself is more efficiently performed this
way). During the lifetime of the system, this requirement will occur recurrently;
hence, the problem is a continuous one. The typical solution used in these situations
is to perform an election so as to select the coordinator every time one is needed. We
have discussed and examined how to perform this task in details in Chapter 3. There
are some drawbacks with the approach of repeatedly choosing a leader. The first and
foremost is that it is usually unfair: Recall that there is no restriction on which entity
will become leader; thus, it is possible that some entities will never assume such a role,
while others (e.g., the ones with small ids) will always be chosen. This means that
the workload is not really balanced within the system; this can also create additional
bottlenecks. A secondary (but important) disadvantage of repeatedly electing a leader
is its cost: Even if just performed on a (a priori constructed) spanning tree, at least
�(n) messages will be required each time.

Another situation when exclusive control is necessary is when accessing a critical
resource of a system. This is, for example, the case when only a single resource of
some type (e.g., a printer, a bus) exists in the system and that resource cannot be used
concurrently. In this case, any entity requiring the use of that resource must ensure
that when it does so, it is the only one doing so. What is important is not the nature
of the resource but the fact that it must be held in mutual exclusion: only one at the
time. This means that when more than one entity may want to access the critical
resource, only one should be allowed. Any mechanism must also clearly ensure that
any request is eventually granted, that is, no entity will wait forever. The approach of
using election, to select the entity to which access is granted, is unfortunately not a
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wise one. This is not (only) because of the cost but because of its unfairness: It does
not guarantee that every entity wanting to access a resource will be allowed to do so
(i.e., will become leader) within finite time.

This gives rise to a very interesting continuous problem, that of distributed mutual
exclusion. We will describe it more precisely using the metaphor of critical operations
in a continuous computation C. In this metaphor,

1. every entity is involved in a continuous computation C,

2. some operations that entities can perform in C are designed as critical,

3. an entity may need to perform a critical operation at any time, any number of
times,

4. an entity required to perform a critical operation cannot continue C until that
operation has been performed,

where an operation may be an action or even an entire subprotocol. A distributed
mutual exclusion mechanism is any protocol that ensures the following two properties:

� Mutual exclusion: If an entity is performing a critical operation, no other entity
is doing so.
� Fairness: If an entity wants to perform a critical operation, it will do so within

finite time.

In the rest of this section we will see how to design efficient protocols with those
properties. In the process, we will see that there is an interesting connection between
the problem of distributed mutual exclusion and that of managing a distributed queue
(another continuous computation). In particular, we will see how any protocol for fair
management of a distributed queue can be used to solve the problem of distributed
mutual exclusion. Throughout, we will assume restrictions IR.

9.3.2 A Simple and Efficient Solution

The problem of distributed mutual exclusion has a very simple and efficient centralized
solution:

Protocol Central:

Initially, an entity is elected as leader; this entity will then coordinate the granting of
permissions as follows:

1. each entity wanting to perform a critical operation sends a request to the leader;
once granted permission, the entity performs its critical operation, and when
finished, it informs the leader;

2. the leader grants permissions to one requesting entity at a time, ensuring that
both mutual exclusion and fairness are satisfied.

The last point is achieved, for example, by having the leader keep the pending
requests in a first in first out (FIFO) ordered list.
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This very simple centralized protocol is not only correct but also quite efficient.
In fact, for each critical operation, there is a request from the entity to the leader, a
permission (eventually) from the leader to that entity, and the notification of termina-
tion from the entity back to the leader. Thus, there will be 3d(x, r) messages for each
operation x wants to perform, where r is the leader; so, the operating cost of Central
will be no more than

3 diam(G)

messages per critical operation. This means that in a complete graph the cost will be
only three messages per critical operation.

The drawbacks of this solution are those of all centralized solutions: The woarkload
is not balanced; the leader might have to keep a large amount of information; the leader
is a fault-tolerance bottleneck. As we are assuming total reliability, we will not worry
for the moment about the issue of fault tolerance. The other two issues, however, are
motivational enough to look for decentralized solutions.

9.3.3 Traversing the Network

To construct an efficient decentralized mutual-exclusion protocol, let us first reex-
press the mechanism of the centralized protocol as follows: In the system there is a
single “permission” token, initially held by the leader, and an entity can perform a
critical operation only if in possession of such a token. It is this fact that ensures the
mutual exclusion property within protocol Central. The fairness property is instead
guaranteed in protocol Central because (1) the decision to which entity should the
token be given is made by the leader, to whom the token is returned once a critical
operation has been performed, and (2) the leader uses a fair decision mechanism (e.g.,
a FIFO list).

We can still enforce mutual exclusion using the idea of a permission token, and
at the same time achieve fairness without having a leader, in a purely decentralized
way. For example, we can have the token circulate among all the entities:

Protocol EndlessTraversal:

� A single token continuously performs a traversal of the network.
� When an entity x receives the token, if it needs to perform a critical operation,

it will do so and upon completion, it will continue the circulation of the token;
otherwise, it will circulate it immediately.
� If an entity needs to perform a critical operation, it will wait until it receives the

token.

We have discussed at length how to efficiently perform a single traversal of a
network (Section 2.3). Recall that a complete traversal can be done using a spanning
tree of the network, at a cost of 2(n− 1) messages per traversal. If the network is
Hamiltonian, that is, it has a spanning cycle, we can use that cycle to perform the
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traversal transmitting only nmessages for a complete traversal. Indeed this is used in
many practical systems.

What is the cost per critical operation of operating such a protocol? To answer
this question, consider a period of time when all entities are continuously asking for
the token; in this case, almost after each move, the token will be allowing an entity
to perform a critical operation. This means that in such a situation of heavy load, the
cost of EndlessTraversal is just O(1) messages per critical operation. If the requests
are few and infrequent, that is, with light load, the amount of messages per request
is unpredictable as it depends on the time between successive requests and the speed
of the token. From a practical point of view, this means that the management of a
seldomly used resource may result in overcharging the network with messages.

Consider now a period of time where the entities have no need to perform any
critical operations; during all this time, the token will continue to traverse the net-
work, looking for entities needing it, and finding none. As this situation of no load
can continue for an unpredictable amount of time, it follows that, in protocol End-
lessTraversal, the number of messages per critical operation, is unbounded!

Let us see how this unpleasant situation can be improved. Let us consider the virtual
ring R associated to the depth-first traversal of the network; in case the network is
Hamiltonian, we will use the Hamiltonian cycle as the ring.

In a traversal, the token moves along R in one direction, call it “right.” If a token
reaches an entity that does not need to perform a critical operation (or just finished
executing one), to cut down the number of message transmissions, instead of auto-
matically forwarding the token along the ring, the entity will do so only if there are
indeed requests for the token, that is, if there are entities wanting to perform a critical
operation.

The problem is how to make the entity holding the token know if there are entities
wanting it. This problem is fortunately easy to solve: An entity needing to perform a
critical operation and not in possession of the token will issue a request for the token;
the request travels along the ring in the opposite direction of the token, until it reaches
the entity holding the token or an entity that has also issued a request for the token.
There are many details that must be taken into account to transform this informal
description into a protocol. Let us be more precise.

In our description, each link will have a color, and colors change depending on the
type of message according to the following two rules:

� Links are either white or black; initially, all links are white.
� Whenever a request is sent on a link , that link becomes black; whenever the

token is sent on a link, that link becomes white.

The resulting mechanism is then specified as follows:

Mechanism OnDemandTraversal:

1. When an entity needs to perform a critical operation and does not have the
token, if its left link is white, it sends a request there and waits for the token.
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2. When an entity receives a request (from the right link), if its left link is white,
it forwards the request and waits for the token.

3. When an entity has received or receives the token, it will execute the following
two steps:

(a) if it needs to perform a critical operation, it performs it;

(b) if its right link is black, it sends the token to the right.

In this way, instead of a blind endless traversal, we can have one that is fueled by
requests for the token.

It is not difficult to verify that the corresponding protocol OnDemandTraversal is
indeed correct, ensuring both mutual exclusion and fairness (Exercise 9.6.11). Unlike
EndlessTraversal, the cost of protocol OnDemandTraversal is never unbounded. In
fact, if there are no requests in the system, the token will not circulate. In other words,
each traversal of the token satisfies at least a request, and possibly more. This means
that in the worst case, a traversal satisfies exactly one request; in other words, the
number of token movements per request is at most n̄− 1, where n̄ is the number
of nodes on R. In addition to the token, the protocol also uses request messages.
A request message, moving in the opposite direction of the token, moves along the
ring until it finds the token or another entity waiting for the token. (NOTE: the token
and a request never cross on a link (see Exercise 9.6.12).) This means that a request
will cause at most n− 1 transmissions. Therefore, the total number of messages per
critical operation in protocol OnDemandTraversal in the worst case is

2(n̄− 1) ≤ 4(n− 2).

Notice that although bounded, this is always worse than the cost obtained by
Central. In particular, in a complete graph the worst case cost of OnDemandTraversal
will be 2(n− 1), while in Central, as we have seen, three messages suffice.

The worst case does not tell us the whole story. In fact, the actual cost will depend
on the frequency and the spread of the requests. In particular, like protocol End-
lessTraversal, the more frequent the requests and the larger their spread, the more
protocol will OnDemandTraversal have a performance approaching O(1) messages
per critical operation. This will be so, regardless of the diameter of the topology, even
in networks where protocol Central under the same conditions could require O(n)
messages per request.

We have seen how to have the token move only if there are requests. The movements
of the token, fueled by requests, were according to a perennial traversal of R, a cycle
containing all the entities. If the network is Hamiltonian, we clearly choose R to
be the Hamiltonian cycle; else we would like to construct the shortest such cycle.
We do know that for any network we can always construct a spanning cycle R with
2(n− 1) nodes: The one obtained by a depth-first traversal of a spanning tree of the
network.
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9.3.4 Managing a Distributed Queue

In the previous section, we have seen mutual-exclusion solutions based on traversal of
a ring. Notice that if starting from the token we move to the right (i.e., in the direction
of movement of the token) along the ring, the order in which we encounter the entities
needing the token is a total order; let us denote byQ[t] = 〈x1, x2, . . . , xk〉 the ordered
sequence of those entities at time t .

We can think of the sequence Q[t] as a single-ordered queue. Indeed, if no other
entities request the token, those in the queue will receive the token precisely according
to their order in the queue, and once an entity receives the token, it is removed from
the queue. Any new request for the token, say from y at time t ′ > t , will have cause
y to be inserted in the queue; its position in the the queue depends on its position in
the ring R: If, among all the entities in the queue at time t ′, xi (respective, xi+1) is the
closest to y on its left (respective right) in R, then y will be entered between xi and
xi+1, that is,Q[t ′] = 〈x1, x2, . . . , xi, y, xi+1, . . . , xk〉. In other words, the execution
of protocol OnDemandTraversal can be viewed as the management of a distributed
ordered queue.

This point of view opens an interesting and surprising connection between the
problem of distributed mutual exclusion and that of fair management of a distributed
queue:

Any fair distributed queue-management technique solves distributed mutual
exclusion.

The mutual-exclusion protocol is obtained from the queue-management protocol sim-
ply as follows (see Figure 9.3):

� every entity requesting the token is inserted in the queue;
� whenever an entity ends its critical operation and releases the token, an entity is

removed from the queue and assigned the token.

Note that the queue does not need to be totally ordered; it is enough that every
element in the queue is removed (i.e., receives the token) within finite time. Our goal is
to use this approach to design a more efficient distributed mutual-exclusion protocol.

TOKENQUEUE

FIGURE 9.3: Mutual exclusion via queue management.
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To this end we will examine a different fair management technique of a distributed
ordered queue. This technique, called Arrow, maintains a first-in-first-out queue, that
is, if the queue is 〈x1, x2, . . . , xk〉, and y makes a request for the token, the queue will
become 〈x1, x2, . . . , xk, y〉, regardless of the location of y in the network. It uses a
spanning tree of the network; it also requires the existence and availability of a correct
routing mechanism (possibly, using only edges of the tree).

The strategy of Arrow is based on two ideas:

(i) the entity holding the token knows the identity of the first entity in the queue,
and every entity in the queue knows the identity of the next one in the queue;

(ii) each link is logically directed toward the last entity in the queue.

The first idea allows an entity, once it has finished executing its critical operation, to
know to which other entity it should send the token. The second idea, of making the
tree rooted in the last entity in the queue, makes reaching the end of the queue very
easy: Just follow the “arrow” (i.e., the direction of the links).

These two ideas can be implemented with a simple mechanism to handle requests
and token transfers. Let us see how.

Assume that the needed structure is already in place, that is, (i) and (ii) hold. This
means that every entity x knows which of its neighbors, last(x), is in the direction
of the last entity in the queue; furthermore, if x is in the queue or holds the token, it
knows the identity of the entity next(x) next in the queue (if any).

Let us consider first how to handle the token transfers. When the entity x currently
holding the token terminates its critical operation, as it knows the identity of the first
entity x1 in the queue, it can send the token to it using the routing protocol; as we
are assuming that the routing protocol is correct, this message will be delivered to x1
within finite time. Notice that when x1 receives the token, it is no longer in the queue,
and it already knows the identity of the entity x2 that should receive the token when
it has finished. In other words, the handling of the token is done independently of the
handling of the requests and is implemented using a correct routing protocol; thus, as
long as every entity in the queue knows the identity of the next, token transfers pose
no problems.

Consider now how to handle the requests. Let us consider an entity y, not in the
queue, that now wants to access the queue (i.e., needs the token). Two things have to
be accomplished to insert y in the queue: The last entity xk in the queue must know
the identity of y, and the tree must become rooted in y. It is easy for y to notify xk: As
the tree is rooted in xk , y needs to just send a request message toward the root (i.e.,
to last(x)). To transform the tree into one rooted in y is also easy. As we have already
seen many times before (e.g., in protocol MegaMerger), we need to “flip” the logical
direction of the links on the path from y to xk; thus, it is sufficient that each node
receiving the request from y to xk flips the direction of the link on which the message
arrives. Summarizing, y sends a message requesting to enter the queue to the root of
the tree (the last entity in the queue); this message will cause all the links from x to
the root to flip their direction, transforming y in to the new root (the last entity in the



556 CONTINUOUS COMPUTATIONS

queue). Notice that when the request message from y reaches the old root, that entity
will know that y is now after it in the queue.

Summarizing, if the needed structure and information is in place, a single request
for the token can be easily and simply handled, correctly maintaining and updating
the structure and information.

If there are several concurrent requests for the token, the handling of one could
interfere with the handling of another, for example, when trying to root the tree in the
“last” entity in the queue: Indeed, which of them is going to be the last? Fortunately,
concurrency is not a problem: The set of rules to handle a single request will correctly
work for any number of them!

Let us first of all write down more precisely the set of rules:

Protocol Arrow:

• Initially, no entity is in the queue, next(x) = x for every x, an entity r is
holding the token, and the tree is rooted in r (i.e., all last(·) point toward r with
last(r) = r).
• Handling requests

– When entity x needs the token, it sends a “Request(x)” message containing
its id to last(x) and sets last(x) := x.

– When an entity y with last(y) = w receives a “Request(x)” from z,

1. it sets last(y) := z (i.e., it flips the logical direction of the link (y, z));

2. if w �= y (i.e., y is not waiting in the queue), then y forwards “Request(x)”
to w,. otherwise,
(a) y sets next(y) := x (i.e., x is next after y in the queue);
(b) if y holds the token and it is not in a critical operation, it executes

Token Transfer (described below).

• Handling the token: An entity x holding the token, upon termination of a
critical operation or, after termination, when prompted by the arrival of a
request, executes the following:

Token Transfer

If next(x) �= x (i.e., the queue is not empty), using the routing protocol, x sends
“Token(id)” to next(x), where id is the identity of next(x), and sets next(x) := x.

If two or more “Request” messages are issued concurrently, only one will reach
the current root: The others will be diverted to one of the entities issuing one of the
messages.

Example Consider the situation shown in Figure 9.4. The token is at node d that is
executing a critical operation, no entities are in the queue, and the tree is rooted in d.
A request for the token is made by b and concurrently by c; both b and c set last to
themselves and send their request following the direction of the arrow. The request
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FIGURE 9.4: Two concurrent requests in protocol Arrow.

message from b arrives at f before that of c; f forwards the request to e (following
the arrow) and flips the direction of the link to b setting last(f ) = b. When f receives
the request from c, it will forward it to b (following the arrow) and flip the direction
of the link to c setting last(f ) = c. In other words, the request from b is forwarded
to d , while that from c is forwarded to b. As a result, at the end, next(d) = b and
next(b) = c, that is, b is ahead of c in the queue. Had the message from c arrived at
f before that of b, the outcome would have been reversed. Notice that at the end the
tree is rooted in c.

The correctness of the protocol is neither obvious nor immediate. Let us see why
it works. Observe that if there is a request in transit on a link, then the link is not
directed toward any of the two entities connected by it. More precisely, let us denote
by transit(u, v)[t] the set of messages in transit from u to neighbor v at time t ; then,

Property 9.3.1 If “Request” ∈ transit(u, v)[t], then last(u)[t] �= v and
last(v)[t] �= u.
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Proof. Initially the property trivially holds because there are no requests in transit.
By contradiction, consider the first time t ′ this property does not hold. There are two
cases, and we will consider them separately.
Case 1: “Request” ∈ transit(u, v)[t ′] but last(u)[t ′] = v. The fact that last(u)[t ′] = v
implies that a “Request” has been sent by v to u at some time t < t ′, but this in turn
implies that at that time last(v)[t] must have been u (otherwise v would not have sent
it to u). Summarizing, there is a time t < t ′ when “Request”∈ transit(v, u)[t] and
last(u) = v, contradicting the fact that t ′ is the first time the property does not hold.
Case 2: “Request”∈ transit(u, v)[t ′], but last(v)[t ′] = u. The fact that last(v)[t ′] = u
implies that a “Request” has been sent by u to v at some time at time t < t ′; but this in
turn implies that at that time, last(u)[t] must have been v (otherwise uwould not have
sent it to v). Summarizing, there is a time t < t ′ when “Request”∈ transit(u, v)[t]
and last(u)[t] = v, contradicting the fact that t ′ is the first time the property does not
hold. �

Consider now the orientation of the tree links at time t ignoring those that are not
oriented; let us callL[t] the resulting directed graph. For example, in the setting shown
in Figure 9.4 (ii), L is a single component composed of edges (a, e), (f, e), (e, d);
in the setting shown in Figure 9.4 (iii), L is composed of two components: One is
formed by edges (a, e) and (e, d), while the other is the single edge (f, b). In all cases,
there are no directed cycles (Exercise 9.6.13):

Property 9.3.2 L[t] is acyclic.

Another important property is the following (Exercise 9.6.14). Let us call terminal
any node u where last(u) = u; then,

Property 9.3.3 In L[t], from any nonterminal node there is a directed path to
exactly one terminal entity.

We will call such a path terminal. We are now ready to prove the main correctness
property. Let us call an entity waiter at time t if it has requested a token and it has
not yet received it at time t ; then, using Properties 9.3.1, 9.3.2, and 9.3.3, we have
(Exercise 9.6.15),

Theorem 9.3.1 InL[t] any terminal path leads to either the entity holding the token
or a waiter.

We need to show that, within finite time, every message will stop traveling. Call
target(v)[t] the terminal node at the end of the terminal path of v at time t ; if a
“Request” is traveling from u to v at time t , then the target of the message is target
(v)[t]. Then (Exercise 9.6.16),

Theorem 9.3.2 Every request will be delivered to its target.
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Let us now examine the cost of achieving distributed mutual exclusion using pro-
tocol Arrow. The request from xi must reach xi−1 and eventually the token will be
transferred from xi−1 to xi ; if the routing protocol uses the spanning tree, then the
cost will be exactly 2 dT (xi−1, xi). This cost clearly depends on T and on the location
of these entities on T ; in the worst case, the cost per critical operation is

2 diam(T ),

which is achievable. This means that the number of messages in the worst case is
always better that that of protocol OnDemandTraversal.

In situations of high load (i.e., frequent requests from many entities), the improve-
ment (if any at all) strongly depends on the structure of the spanning tree (see Exercise
9.6.17).

9.3.5 Decentralized Permissions

In the centralized solution, every entity needing to perform a critical operation would
ask for permission to do so; as there was one entity capable of granting such a per-
mission, the request would be sent just there.

We can still use the same idea, of asking for permission and waiting to obtain it,
in a decentralized way: If an entity x needs to perform a critical operation, it asks all
the other entities for their permission and it will perform the critical operation when it
receives permission from all entities. An entity y, upon receiving such a request, will
grant its permission if not performing a critical operation or waiting itself to receive
permission.

In other words, if no other entity is currently performing a critical operation or
waiting itself to receive permission, x will be allowed to perform its critical operation.

What happens, however, if some entity y is performing a critical operation or
waiting for permissions? We must specify some rules that ensure that even in this
case x will indeed receive permission from all entities within finite time.

This is done by first of all imposing a total order on the requests so that, given any
two different requests r1 and r2, either r1 > r2 or r1 < r2. Assuming this is done, the
general rulers are as follows:

Strategy AskAll:

� When an entity x needs to perform a critical operation, it sends a request r(x) to
all other entities asking for their permission; it will perform the critical operation
when it receives permission from all entities.
� When an entity y receives a request r(x) for permission,

– if y is not executing a critical operation nor it is waiting for permission, it
grants its permission to r(x);

– if y is executing its critical operation, it inserts r(x) into a local FIFO queue
Q(y);

– if y is waiting for permissions, it grants its permission to r(x) immediately
if r(x) < r(y) ; otherwise (i.e., r(x) > r(y)) it inserts r(x) into a local FIFO
queueQ(y).



560 CONTINUOUS COMPUTATIONS

� When an entity z finishes performing its critical operation, it removes fromQ(z)
one request at the time and grants to it its permission.

The broadcasting of a request by x to all entities is easily and efficiently done by
flooding on the spanning tree. The collection of the permissions can be performed
as a delayed convergecast toward x on the tree: Think of the tree as rooted in x;
starting from the leaves, a node transmits its permission to its “parents” only after it
receives the permission from all its “children” and itself has granted the permission.
This means that this strategy would cost 2(n− 1) messages per critical operation.

Unfortunately, this simple strategy does not always work. In fact, its correctness
relies on the total order imposed on the requests, but not every total order will do. To
understand what can go wrong, consider first the following example.

Example Consider the following total order. When x issues a request, the value
associated to its request is the ordered couple r(x) = (id(x), tx) composed of the id
of x and of the value tx of the local clock when the request is made. These couples are
clearly totally ordered as the ids are unique. Unfortunately, in this total order, all the
requests by x come before those of y if id(x) < id(y); this means that it is possible for
x, by continuously issuing requests, to forever prevent y from performing a critical
operation, violating the fairness condition!

In the example we just examined, the problem was due to the nature of the specific
total order. There might be problems also with other total orders.

Example Suppose that y sends its request and that no entity is performing a critical
operation or is requesting a permission; thus, every entity receiving the request r(y)
will grant its permission. After it has granted permission to r(y), entity x now needs to
perform a critical operation; x then broadcasts its request r(x). Assume r(x) < r(y).
It is indeed possible that r(x) arrives at y before y has received all the permission
for its request; in this case, as r(x) < r(y), y will grant its permission to r(x). As
a consequence, within finite time both y and x will perform a critical operation,
violating the mutual exclusion condition!

These two examples show that the total order imposed on the requests cannot be
arbitrary; rather, it must satisfy some temporal constraints. Indeed, the property we
need is the following:

� Temporal Constraint: If a request r(x) is generated after x has granted its per-
mission to a request r(y) generated by y, then r(x) > r(y).

In fact

Theorem 9.3.3 Under Temporal Constraint,

1. at any time, at most one entity is executing a critical operation, and

2. every request receives permissions from all entities within finite time.



DISTRIBUTED MUTUAL EXCLUSION 561

Let us prove mutual exclusion. By contradiction, let two entities x and y perform a
critical operation at the same time; this means that each must have granted permission
to the request of the other. Without loss of generality, let r(x) < r(y). Under this
condition, the only reason why x would grant its permission to r(y) is that r(y)
arrives before x issued r(x) (otherwise, as r(x) < r(y), x would not have granted the
permission). In this case, however, according to the Temporal Constraint, r(x) > r(y):
a contradiction.

To prove fairness, we need to show that each convergecast is eventually completed;
this is left as an exercise (Exercise 9.6.18).

Let us see now how to ensure Temporal Constraint. Observe that this property
can be easily achieved using the virtual clocks discussed in Section 9.2.2. What an
entity x needs to do is to advance the value of its virtual clock whenever it wants to
issue a request and use that value as r(x). The properties of virtual clocks ensure that
Temporal Constraint holds (Exercise 9.6.19).

We will call AskAllClocks the resulting protocol employing logical clocks in its
rules (Exercise 9.6.20).

9.3.6 Mutual Exclusion in Complete Graphs: Quorum

In the case of a complete network, the approaches that we have described so far become
rather straightforward. New ones can actually be devised that would be not efficient in
other networks. In the following we will consider how to render the permission-based
approach of AskAll more efficient in the case of a complete network.

In protocol AskAllClocks, each request must be granted a permission from every
entity. A way to reduce the amount of messages is to reduce the number of permissions
needed before an entity can perform its critical operation. Clearly, we would need to
change the permission-granting mechanism to ensure that two or more entities are
not allowed to perform a critical operation concurrently.

To achieve this goal, let us examine protocol AskAllClocks. In this protocol, if an
entity neither has issued a request nor is performing a critical region, it will “accept”
(i.e., grant its permission to) all incoming requests, that is, it treats requests in a
nonexclusive way. If the entity has made its own request, until it is granted permission
from all entities, it will accept all incoming requests with smaller value, that is, it treats
requests with smaller value in a nonexclusive way.

What we can do is to render the permission granting mechanism exclusive: If an
entity grants permission to a request, it will not accept any other request until the first
one has been resolved (i.e. the requesting entity has performed its critical operation).

Note that with such a rule, if an entity receives just �n/2� + 1 permissions for its
own request, it knows that no other request will be able to have so many permissions,
and it can, therefore, perform its critical operation. All of this with half of the per-
missions. At a first glance it appears that with this approach we can ensure mutual
exclusion with fewer permissions. There are, however, several problems.

First of all observe that the main goal of reducing the number of messages is not
achieved: A request is still sent to all entities that, if there are no other requests, will
all send their permissions, for a total of 2(n− 1) messages per request. To resolve
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this problem, we will have each entity ask for permissions not from all other entities
but rather from a specific subset. In this way, the number of messages for a request
by x will be twice the size of the subset associated to x. So what we would like to do
is to select these sets as small as possible. However, we still must ensure that mutual
exclusion is preserved; to do so, it is necessary that, for any two entities x and y, their
subsets have at least an entity z in common; in this way, if z grants permission to x,
it will not do so to y concurrently.

Specifically, let S(x) denote the subset associated to x; then for all x and y,

1. S(x) ∩ S(y) �= ∅
2. not S(x) ⊂ S(y).

The collection of such sets is called a coterie, and the set S(x) is called the quorum
of x.

Summarizing, each entity wanting to perform a critical operation will now send
its request only to the members of its quorum and will start the operation only once it
receives permission from all of them. Notice that when the quorum of each entity is
composed of all other entities, that is, S(x) = E \ {x} for all x, we are exactly in the
same situation we started with, in which every entity must request all other entities
for permission.

The second problem is major and persists regardless of the size of the quorums:
If there are concurrent requests, it is possible that none of them receives permissions
from every member of its quorum; for example, consider three entities x, y, and z all
asking for permission concurrently; the quorums of any two of them have at least an
entity in common: Let u ∈ S(x) ∩ S(y), v ∈ S(y) ∩ S(z), w ∈ S(x) ∩ S(z), with u, v,
and w distinct nodes. Let u receive first the request of x, v that of y, and w that of z;
then u will grant its permission to x and put on hold the request for y, v will grant its
permission to y and put on hold the request for z, and w will grant its permission to z
and put on hold the request for x. Hence, none of x, y, and zwill receive a permission
from all its quorum, so none will ever be allowed to perform a critical operation;
furthermore, all the incoming requests from other entities will also be put on hold. In
other words, the system will be deadlocked.

To remedy this, we will make permissions “contestable” and “revocable”, that is,
an entity that has granted its permission, it might under some conditions to revoke
its permission and grant it to some other request. Let us describe the entire new
process.

Consider an entity z that is not executing a critical operation and that has not given
permission to any request (still pending); if it receives a request r(x), then it grants its
permission to x (by sending a grant message). If x receives permissions from every
entity in its quorum, it will start its critical operation; upon termination, it will notify
its quorum that the request is no longer pending (by sending a completed message).

Consider the case when z has granted permission to a request r(y) (still pending),
and it receives a request r(x). If r(x) > r(y), then z will locally enqueue the request
and notify x (by sending a on hold message).
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If instead r(x) < r(y), then zmust decide whether or not to revoke the permission
given to y and to transfer it to x. It does so by sending a probe message to y and
waiting for an answer; during this time, z will not send any other probe to y. If the
reply is that it is all right to revoke the permission (i.e., it receives a revoke message
from y), then z will grant its permission to x.

Let us see under what conditions y will tell z that it is all right to revoke the granted
permission. The general rule will be that if an entity receives an on hold answer to
its request, then it must reply with revoke to any probe message it receives, that is,
if its request is put on hold, an entity will give up on all permissions that are being
contested. Therefore, when the probe from z arrives at y, if y has already received a
on hold message, it will send a revoke message to z; otherwise, y waits to see what the
replies to its request will be: Should one of them be on hold, y will send revoke to z.
By contrast, if none of the replies to its request has been on hold, then y has received
permission from everybody in its quorum; hence y will start its critical operation;
upon termination, it will notify all its quorum (including z), that the request is no
longer pending (by sending a completed message).

Summarizing, if r(x) < r(y), then z will receive as a reply to its probe to y either
a revoke or a completed message. In either case, z will then grant its permission
to x.

Notice the similarity between the probe and that used in the election protocol
Complete for complete graphs. The entire set of rules of the corresponding protocol
AskQuorum must take into account several important details (e.g., how to enqueue
and dequeue requests); proving its correctness in nontrivial but not overly difficult;
see Exercises 9.6.21 and 9.6.22.

The cost of the protocol is not difficult to determine: Each request message can
cause a probe message, replied by a revoke message that will cause a grant and
(eventually) the corresponding release. Alternatively, each request can cause just an
on hold reply followed eventually by a grant and eventually by the corresponding
release. As the request of an entity x is sent to its quorum S(x), the total number of
messages per request by x is at most 5|S(x)|. That means that, in the worst case, the
number of messages per critical operation is

5 maxx{|S(x)|}.

If we want just to minimize this quantity, we can choose the coterie where each
quorum is composed of a single entity, the same for all quorums, that is,S(x) = S(y) =
r for all x, y. Notice that in this case, we have exactly the centralized approach to
distributed mutual exclusion: r is the central controller ensuring both fairness and
mutual exclusion; the cost will be just five messages per critical operation, which is
actually worse than that of protocol Central when used in a complete graph.

The drawback with this choice of coterie is the same as with any centralized
solution. In particular, the load is unbalanced: r receives and must handle almost all
the traffic in the system. Indeed, a desirable requirement for a coterie is that it is
balanced. To formalize this concept, let the load of x in a coterie C be the number
load(x) of quorums in which x appears. Let loadmax and loadmin denote the maximum
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x1 x2 x3 x4
x5 x6 x7 x8
x9 x10 x11 x12
x13 x14 x15 x16

FIGURE 9.5: Constructing coterie Square.

and minimum among the loads of the entities, respectively. We say that a coterie is
α-unbalanced, 1 ≤ α ≤ n, if

loadmax
max{1,loadmin} ≤ α.

Clearly, the smaller the α, the more balanced the collective load. In particular,
when α = 1, the load is perfectly balanced. By contrast, the centralized coterie,
{{r}, {r} . . . , {r}}, is the most unbalanced with α = n.

To minimize both quantities, maxx{|S(x)|} and α, we should choose the coterie so
that each quorum has (approximately) the same size and each entity is (approximately)
in the same number of quorums.

A simple method to achieve this goal is the following. Assume for simplicity that
n = p2. Arrange all entities in ap × pmatrix; then the quorum S(x) of x is composed
of the entities in the row and in the column containing x.

In this coterie, each quorum contains exactly 2(p − 1) = 2(
√
n− 1) entities;

as every entity is in exactly 2(p − 1) = 2(
√
n− 1) quorums, α = 1. For example,

using the matrix shown in Figure 9.5 where n = 16, entity x7 will have quorum
{x3, x5, x6, x8, x11, x15}, and it will be in the quorum of precisely those entities.

If n is not a perfect square, we can use a �√n� × �√n� array where some entities
are necessarily repeated. The corresponding coterie, called Square, will yield a worst-
case cost of

10(�√n� − 1)

messages per critical operation; its α is not far from 1 (Exercise 9.6.23).
Notice that coterie Square is not optimal among the balanced ones (Exercise

9.6.24). Further notice that to be usable, the coterie must be constructed before the
mutual-exclusion protocol takes place.

9.3.7 Concluding Remarks

Performance We have employed different strategies to construct efficient proto-
cols for distributed mutual exclusion and analyzed their cost in terms of number of
messages per critical operation. We have seen how this cost sometimes depends on
the load of the system, that is, how frequent and widespread the requests are (see
Figure 9.6). In all these protocols the messages have normal size (i.e., contain only a
constant number of data items); clearly and trivially, if the system allows very long
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protocol messages per remarks disadvantages
critical operation

Central 3d(T ) unbalanced
Endless ∞ light/no load unbounded cost

Traversal O(1) heavy load
OnDemand 4(n− 2) light load
Traversal O(1) heavy load

Arrow 2d(T ) requires routing
AskAllClocks 2(n− 1) requires

logical clocks

FIGURE 9.6: Protocols for distributed mutual exclusion.

messages (e.g., containing the list of all pending requests), the number of messages
decreases. In those cases, to compare protocols , the bit complexity should be used
instead.

The number of messages (or of bits) per critical operation is not the only factor to
be taken into account. In particular, in addition to the amount of work (i.e., message
transmissions), we are interested in how this work is distributed among the entities,
on whether or not it is balanced. All decentralized protocols are better in this respects
than protocol Central; they all, however, have drawbacks either in terms of poorer
performance or because requiring additional tools and mechanisms.

Fault Tolerance The issue of fault tolerance is relevant not only for centralized
solutions but also for decentralized ones as well. None of the protocols we have
considered considers the possibility of faults, and indeed these protocols would not
work correctly, should a failure occur.

The task of designing fault-tolerant protocols (e.g., of making the proposed ones
fault tolerant) can be achieved, as we know, by adding capabilities to the system
(e.g., synchrony, fault detection). The goal is in particular to ensure that the protocol
satisfies the following consequence of the fairness requirement, which is explicit in
the classical (i.e., nondistributed) mutual-exclusion problem:

Any entity not performing a critical operation must not prevent an entity wanting to
perform a critical operation from doing so.

This means that if an entity fails when not performing a critical operation, this failure
should not prevent other entities from performing their critical operations.

To achieve this goal we assume reliable fault detection and that if/when faults
occur, there will be enough time for both detection and restorative action. For some
protocols, the transformation into a fault-tolerant one is not difficult. Consider for
example protocol Central and consider crash failures of entities. Should any entity
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other than the leader fail, or recover after a failure, then no action is necessary and no
messages need to be transmitted. If the leader fails, on the other hand, a new leader
must be elected and all entities must resubmit their requests to the new leader before
normal functioning can resume. For other protocols, however, the requirement of
being able to tolerate crash failures requires major modifications.

9.4 DEADLOCK: SYSTEM DETECTION AND RESOLUTION

9.4.1 System Detection and Resolution

We have examined the problem distributed deadlock detection in some detail in
Section 8.2. There, we considered two terminating versions, the personal detection
and the collective detection problems, both with static and with dynamic requests.

In real systems, however, the requests are only dynamic and the main problem, is
a continuous one: Requests are continuously and unpredictably generated, possibly
creating deadlocks, and every deadlock in the system must be resolved within finite
time from its occurrence.

Resolving a deadlock means that some requests must be aborted so that the resulting
wait-for graph is free of deadlock. Clearly, to be resolved, a deadlock must first be
detected. The mechanism, specifying how to detect the occurrence of deadlock and
how to decide which requests to abort, forms the core to the solution of this continuous
problem that we will call system detection and resolution. Clearly, in this mechanism,
we can employ the protocols for personal or collective detection we designed and
discussed in Section 8.2.

To solve this problem, we will use the general strategy of repeatedly having one
or more entities start a personal detection protocol; to work correctly, this strategy
must ensure that if a deadlock occurs, at least one entity involved in it will sooner
or later start a personal detection. Regardless of the type of requests are allowed in
the system (e.g., single request, multiple requests, OR requests, etc.) we will use the
same rule to decide by whom and when a personal detection should be started:

� Whenever an entity waits for a permission longer than a predefined timeout
value, the entity will initiate the detection process.

Thus, any entity requesting a permission, after waiting “too long,” will start a
personal detection. Once a deadlock has been detected, in the strategy the resolution
mechanism takes place, ensuring that only the necessary requests are aborted and that
the deadlock is indeed resolved.

IMPORTANT. In this strategy, when using personal detection, we do not actually
need the initiator to be notified of the result. In fact, if it is detected that there is no
deadlock, then there is nothing to be resolved; hence, the entity making the discovery
need not notify the initiator and the detection process can terminate. Similarly, if there
is a deadlock, the entity making the discovery can start the resolution mechanism
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immediately, with no need to notify the initiator that a deadlock exists. Hence, in our
strategy we will use this scaled down version of the personal detection protocols.

Notice that there might be several deadlocks in the system at the same time, some
being formed while the computation is taking place, and that several entities can inde-
pendently detect the presence of the same deadlock. Hence, efficiency is of paramount
importance. Analogously to the other continuous computations, we will measure the
cost of a solution as the total number of messages transmitted per request.

We will consider the problem under the standard assumptions: connectivity, Bidi-
rectional Links, complete reliability, and unique identifiers. We will also assume
message ordering, that is, the links are FIFO.

9.4.2 Detection and Resolution in Single-Request Systems

Let us consider the problem in systems where a nonwaiting entity can ask for only
one permission at a time. In this case, we know that there is a deadlock in the system
if and only if there is a cycle in the wait-for graph.

We can use protocol SimpleCheck for detection without the final notification to
the initiator: The message will travel until it reaches the root of the component (if
there is no deadlock in the component) or the closest entity in the crown (if there is
deadlock in the component). In the first case, the root will just discard the message.
In the second case, that entity in the crown will detect the existence of the deadlock
when it receives the message for the second time; the resolution mechanism must be
started now.

Notice that, to resolve a deadlock in the single-request model, it is necessary and
also sufficient to abort a single request in the core (i.e., remove one edge from the
cycle). This means that we must first of all know which edges in the wait-for graph
form the cycle.

Further notice that, as mentioned earlier, it is possible that several entities in the
same component start detection independently. In this case, the same deadlock (as-
suming one exists) will be detected by several entities. As we need to remove only
one link, to decide which one, we will run an election among the entities of the core
that have detected the deadlock: The leader will then abort its own request, destroying
the cycle and resolving the deadlock. Observe that, once this is done, the component
becomes a tree rooted in the leader.

To design protocol SingleDetectResolve implementing this strategy (Problem
9.6.4), several minor issues must be solved. For example, to run the ring-election
protocol on the core, the entities initiating that protocol must know which of its possi-
bly many links are those in the cycle (Exercise 9.6.25). Also, once the election process
is started, any subsequent detection message should be stopped from circulating in
the ring.

What is the cost of this protocol SingleDetectResolve? We will separate the costs
of the detection from those of the resolution; this is because in our strategy, the
detection cost is incurred for each request, while the resolution is performed only
once a deadlock is detected.
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The cost for detection are just those of protocol SimpleCheck minus the notification.
In absence of deadlock, the message travels to the root and dies there, using at most
n̄− 1 transmissions, where n̄ is the number of entities in the component of the initiator.
In presence of deadlock, the message will travel also along the core; still, the entire
process will cause a total of at most n̄ transmissions. Hence, the detection component
of SingleDetectResolve uses at most n̄ messages per request.

Let us now consider the resolution process of protocol SingleDetectResolve. Once
a deadlock is detected, the detecting agent will start an election protocol along the ring;
using an efficient ring-election protocol, for example, Stages, the cost per deadlock
is at most 2n̄ log n̄ messages.

9.4.3 Detection and Resolution in Multiple-Requests Systems

In systems where a nonwaiting entity can ask for many permission at a time (i.e.,
AND, OR, p-OF-q, generalized systems), the solution strategy will be the same as
for single-request systems:

Strategy DetectResolve:

1. Any entity after waiting too long for permission(s) starts a personal detection
protocol for dynamic wait-for graphs.

2. Whenever an entity detects the existence of a deadlock, it becomes a candidate
and starts an election process to elect a leader among the candidates in its
component; during this process, further detection messages in the component
are discarded.

3. Once elected, the leader chooses which link(s) must be removed (i.e., which
request(s) must be aborted) and ensures that this is done.

The cost of this strategy clearly depends on the types of requests allowed in the
system and on the protocols used for personal detection and for election. In the case
of AND requests, for example, if we use protocol DynamicDeadGrant for personal
detection and protocol MegaMerger for election in the component, the cost will be at
most

6m̄− n̄+ 1

messages per request, and at most

2m̄+ 5n̄ log n̄

messages per deadlock.
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9.5 BIBLIOGRAPHICAL NOTES

The notions of virtual clocks and causal order were first explicitly stated and ana-
lyzed by Leslie Lamport to whom Algorithm CounterClocks is due. The idea of vector
time, on which protocol VectorClocks is based, has been independently discovered
by several people in distributed database management: by Douglas Parker, Gerald
Popek, Gerard Rudisin, Allen Stoughton, Bruce Walker, Evelyn Walton, Johanna
Chow, David Edwards, Stephen Kiser, and Charles Kline [24]; Gene Wuu and Arthur
Bernstein [36]; and Robert Strom and Shaula Yemini [33]. The concept of vector
time as an extension of virtual time was independently introduced by Colin Fidge
[8] and by Friedemann Mattern [19]; they examined its properties and designed pro-
tocol VectorClocks. The mathematical structure of vector time has been extensively
investigated by Reinhard Schwarz and Friedemann Mattern [29], and by Friedemann
Mattern [20].

Protocol VectorClocks+ (Exercise 9.6.6) is due to Mukesh Singhal and Ajay
Kshemkalyani [31], while Exercise 9.6.8 is due to Sigurd Melda, Sriram Sankar, and
James Vera [21]. Protocol PseudoVectorClocks (Problem 9.6.2) has been designed by
Mark Wineberg [unpublished]. The fact that n-dimensional timestamps are needed
to ensure Complete Causal Order has been proven by Bernadette Charron-Bost [5].

In the context of distributed mutual exclusion, circular token-based control (i.e.,
protocol EndlessTraversal) is the most commonly used mechanism in practical sys-
tems, ranging from token rings to bus networks and to hub polling systems; it is indeed
at the basis of several IEEE standards. Although its cost is theoretically unbounded, an
extensive amount of literature exists on the performance of the resulting system. The
bounded-cost protocol OnDemandTraversal and other variants were designed and
analyzed by Esteban Feuerstein, Stefano Leonardi, Alberto Marchetti-Spaccamela,
and Nicola Santoro [7].

Most of the research work on distributed mutual exclusion has focused on com-
plete graphs. In this context, the idea of using logical clocks to impose a total order
satisfying the temporal condition was proposed by Leslie Lamport [16]; the improve-
ment at the base of protocol AskAllClock was designed by Glenn Ricart and Ashok
Agrawala [27]; a way of bounding the values of the timestamps was proposed by Ikiro
Suzuki and Tadao Kasami [34]; further improvements in the constant were obtained
by O.S.F. Carvalho and Gerard Roucairol [4].

The idea of using just a majority of (instead of all) the permissions had been intro-
duced much earlier by Bob Thomas [35] together with the idea of using timestamps
to tag requests. The notion of majority was extended by Dave Gifford, who proposed
weighted voting [10]. The notions of coterie and of quorum set were first introduced
by Daniel Barbara and Hector Garcia-Molina [2, 9]. Coterie Square is due to Mamoru
Maekawa [18], whose protocol, however, suffered from deadlock (in the same way
protocol AskAll does), as pointed out by Beverly Sanders [28]. Other quorum-based
protocols have been developed by Divyakant Agrawal and Amr El Abbadi [1], Mukesh
Singal [30], Toshihide Ibaraki and Tiko Kameda [13], and Mitchell Nielsen, Masaaki
Mizuno, and Michele Raynal [23], among others. Always for complete graphs, the



570 CONTINUOUS COMPUTATIONS

mutual exclusion of Mohamed Naimi, Michel Trehel, and Andre Arnold [22] is based
on path reversal.

The basic structure of protocol Arrow was designed by Kerry Raymond [26]; some
ideas of the protocol were also informally described by Jan van de Snepscheut [32].
The design has been further refined by Michael Demmer and Maurice Herlihy [6]
who designed the version presented here and proved its correctness; a variant has been
designed by David Peleg and Eilon Reshef [25]. An in-depth analysis of its complexity
and performance has been carried out by Christian Lavault [17] and, more recently,
by Fabian Kuhn and Roger Wattenhofer [15]. Another protocol for general graph is
due to Jean-Michel Helary, Noel Plouzeau, and Michel Raynal [11].

We have reviewed the literature on deadlock detection in Chapter 8. The more gen-
eral continuing problem of system detection and resolution is the one really occurring
in systems. The solution strategy considered in this chapter has been extensively in-
vestigated and experimentally analyzed under all types of systems, for example by
Natalija Krivokapic, Alfons Kemper, and Ehud Gudes [14]. The issue of how long
an entity should wait before using timeout has been studied by Micha Hofri [12] and
extensively discussed by Philip A. Bernstein and Eric Newcomer [3].

9.6 EXERCISES, PROBLEMS, AND ANSWERS

9.6.1 Exercises

Exercise 9.6.1 Let T be a virtual time, that is, it satisfies both local events ordering
and send/receive ordering. Prove that for any two events a and b, if a→ b then
T (a) < T (b). (Hint: by induction on the length of any sequence of events.)

Exercise 9.6.2 Let C be the virtual time constructed by algorithm CounterClocks.
For each of the following situations, provide a small example showing its occurrence:

1. t(a) > t(b) but C(a) < C(b)

2. t(a) = t(b) while C(a) < C(b)

3. t(a) < t(b) but C(a) = C(b)

4. t(a) < t(b) while C(a) > C(b)

Exercise 9.6.3 Let C be the virtual time constructed by algorithm CounterClocks.
For each of the following situations, provide a small example showing its occurrence:

1. t(a) > t(b) > t(c) but C(a) = C(b) > C(c)

2. t(a) = t(b) = t(c) while C(a) < C(c) < C(b)

3. t(a) < t(b) < t(c) but C(a) > C(b) > C(c)

Exercise 9.6.4 Let V be the global time constructed by algorithm VectorClocks.
Prove that V satisfies send/receive ordering.
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Exercise 9.6.5 Let V be the global time constructed by algorithm VectorClocks.
Prove that for any two events a and b, if V (a) < V (b) then a→ b.

Exercise 9.6.6 Modify algorithm VectorClocks so as to include in each message not
the entire vector but only the entries that have changed as last message to the same
neighbor. Prove the correctness of the resulting protocol VectorClocks+.

Exercise 9.6.7 Implement and throughly test protocol VectorClocks+ of ques-
tion 9.6.6. Compare experimentally the amount of information transmitted by
VectorClocks+ with that of VectorClocks.

Exercise 9.6.8 Consider protocol VectorClocks+ of Exercise 9.6.6. Prove that
Property 9.2.5 no longer holds.

Exercise 9.6.9 (,) Implement and throughly test protocol PseudoVectorClocks of
Problem 9.6.2. Compare experimentally the amount of information transmitted by
PseudoVectorClocks with that of VectorClocks.

Exercise 9.6.10 Consider a complete network. Modify protocol Central so that
with three messages per critical operation, the leader needs only to keep one item of
information, instead of the entire set of pending requests. Prove correctness of the
resulting protocol.

Exercise 9.6.11 Prove that protocol OnDemandTraversal is correct, ensuring both
mutual exclusion and fairness.

Exercise 9.6.12 Prove that in protocol OnDemandTraversal, a request message and
the token cannot cross each other on a link.

Exercise 9.6.13 Prove that at any time t during the execution of protocol Arrow,
L[t] is acyclic.

Exercise 9.6.14 Prove that at any time t during the execution of protocol Arrow,
from any nonterminal node there is a directed path to exactly one terminal entity.

Exercise 9.6.15 An entity is said to be a waiter at time t if it has requested a token
and it has not yet received it at time t . Prove that at any time t during the execution of
protocol Arrow, in L[t] any terminal path leads either to the entity holding the token
or to a waiter.

Exercise 9.6.16 Prove that during the execution of protocol Arrow, every request
will be delivered to its target within finite time.

Exercise 9.6.17 Compare experimentally the performance of protocols Arrow and
OnDemandTraversal under different load conditions. Investigate the impact of the
structure of the spanning tree on their performace.
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Exercise 9.6.18 Prove that under Temporal Constraint, in protocol AskAll every
request receives permissions from all entities within finite time.

Exercise 9.6.19 Show how to use using virtual clocks to ensure that property Tem-
poral Constraint holds.

Exercise 9.6.20 (,) Write the set of rules corresponding to Strategy AskAll using
logical clocks to impose total order among requests. Implement and throughly test
the corresponding protocol AskAllClocks. Compare the experimental results with the
theoretical bounds.

Exercise 9.6.21 (,) Write the set of rules of protocol AskQuorum and prove its
correctness.

Exercise 9.6.22 (,) Implement and throughly test protocol AskQuorum of Exercise
9.6.21. Compare the experimental results with the theoretical bounds.

Exercise 9.6.23 Calculate the coefficient α for the coterie Square when n is not a
perfect square.

Exercise 9.6.24 (,) Let n = p2. Construct a coterie with α = 1 where each quorum
has size precisely p.

Exercise 9.6.25 Devise a method so that the entities in the core can execute the
ring-election protocol without sending any message to noncore entities.

9.6.2 Problems

Problem 9.6.1 (,,) Prove that any timestamp-based virtual clock that satisfies
property Complete Causal Order must use vectors of size at least n.

Problem 9.6.2 (,) Modify algorithm VectorClocks, so as to construct and maintain
virtual clocks satisfying the Complete Causal Order property without any a priori
knowledge, without incurring in any initial cost, without any additional messages,
and with no more information in each message that that required by VectorClocks.

Problem 9.6.3 (,,) Design an algorithm to occasionally reduce the values of the
vector clocks. Your protocol should not destroy any causal relationship between the
events occurring after the reduction. Prove its correctness and analyze its performance.

Problem 9.6.4 (,) Write the rules of protocol SingleDetectResolve for deadlock
detection and resolution in single-request systems. Implement it and throughly test
it. Compare its experimental performance with the theoretical bounds.
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9.6.3 Answers to Exercises

Answer to Exercise 9.6.13
As the undelying graph is a tree, it is sufficient to show that it is impossible that both
last(u)[t] = v and last(v)[t] = u. By contradiction, consider the first time t ′ when
last(u) is set to v while last(v)[t ′] = u. This can occur only if a “Request” message
is sent at that time from u to v and last(u) was at that time equal to v, but by Property
9.3.1 this is impossible.

Answer to Exercise 9.6.15
At a given time t , any node x partitions the nodes into two sets: the set A(x)[t] of
those whose terminal paths include x and the setB(x)[t] of those whose terminal path
does not include x. Call target(v)[t] the terminal node at the end of the terminal path
of v at time t ; then observe that for every y ∈ A(x)[t], target(x) = target(y). Con-
sider the state of the system before flipping last(x) to y at time t ′. By Property 9.3.2,
x ∈ B(y)[t ′]. After the flipping, for every w ∈ B(y)[t],target(w)[t] = target(w)[t’], so
target(w)[t ′] remains the holder of the token or a waiter. For every z ∈ A(x)[t ′], includ-
ing x, target(z)[t] = target(y)[t] = target(y)[t ′], so target(z)[t] remains the holder of
the token or a waiter.
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