

Lecture: Error Detection and correction

Contact: seifallah.nasri@univ-annaba.org

TX

Rx 0101101

Dealing with Errors

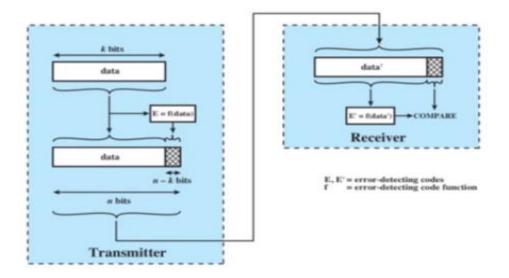
- Transmission impairments can lead to bit errors
- Error types at receiver:
 - One or more bit errors in payload (damaged frame)
 - One or more bit errors in header/trailer (damaged frame)
 - Frame not received (lost frame)
 - Frame received out-of-order
- Error detection
 - Attach extra information to data (in header or trailer) to allow receiver to check if received data is correct (Error Detection)
 - Include sequence numbers in header to identify if frames received in correct order (ARQ)
- Error correction
 - Attach extra information or transform data to allow receiver to check and correct bit errors (Forward Error Correction)
 - Receiver asks transmitter to re-transmit lost/damaged frame (ARQ)

Error Detection Example: Odd-Parity Check

- Odd-parity check: append parity bit to block of data;
 resulting set of bits has odd number of ones
- Receiver detects an error if receiver bits has unexpected number of ones (transmitter and receiver both know parity scheme being used)
- Assume character S is to be sent using odd-parity check. What is transmitted? What happens if the last bit is corrupted? What about the last two bits? What is the overhead?

Example of Digital Data: Text

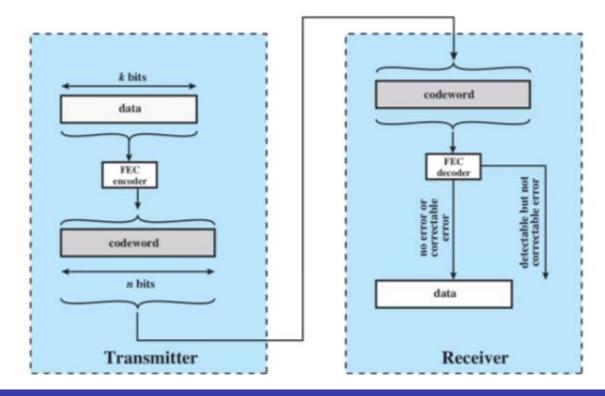
	First 3 bits							
	000	001	010	011	100	101	110	111
0000	NUL	DLE	SP	0	@	Р		р
0001	SOH	DC1	!	1	Α	Q	a	q
0010	STX	DC2	"	2	В	R	b	r
0011	ETX	DC3	#	3	С	S	С	S
0100	EOT	DC4	\$	4	D	Т	d	t
0101	ENQ	NAK	%	5	Е	U	е	u
0110	ACK	SYN	&	6	F	V	f	V
ई 0111	BEL	ETB	,	7	G	W	g	w
1000 tst 4	BS	CAN	(8	Н	Х	h	Х
1001 تے	HT	EM)	9	1	Υ	i	у
1010	LF	SUB	*	:	J	Z	j	z
1011	VT	ESC	+	;	K	[k	{
1100	FF	FS	,	<	L	١	- 1	
1101	CR	GS	-	=	М]	m	}
1110	SO	RS		>	N	٨	n	~
1111	SI	US	/	?	0	_	0	DEL


S=1010011, odd party party Tx: 11010011 Errors Assume Result 11010011 40 gith 11010010 01010011 10011011 / failed

Efficiency =
$$\frac{7}{8}$$
 = 87.5%
Payload = K eg. 7
Transmit = n eg. 8
Efficiency = $\frac{1}{1}$

Larger code -> lower efficiency Larger code -> better error detection

Error Detection Concept


- Transmitter adds extra information to transmitted data,
 i.e. an error-detecting code
- Receiver recalculates the error-detecting code from received data; compares to received error-detecting code
- If the same, good. If not, then error (in data or code).
 Still a chance that an error is not detected

- Detection capability depend on algorithm & code length
- Cyclic Redundancy Check (CRC) very common

Forward Error Correction

- Sender sends a codeword (instead of data); codeword chosen such that if error detected, receiver can correct the error without retransmission
- Depending on encoding scheme and pattern of errors, receiver may: detect and correct errors; detect, but not correct errors; not detect errors

Example: FEC with Hamming Distance

Hamming Distance

- Number of bits of two n-bit sequences that differ
- $v_1 = 011011, v_2 = 110001: d(v_1, v_2) = 3$

Example FEC Encoder

▶ 2-bits of data mapped to 5-bit codeword (k = 2, n = 5)

Data	Codeword
00	00000
01	00111
10	11001
11	11110

If received codeword invalid, assume valid codeword that is unique minimum Hamming distance from received codeword was transmitted

$$V_1 = 011011$$
 $V_2 = 110001$

$$d(v_1, \Psi_2) = 3$$

Data	Codeword
00	00000
01	00111
10	11001
11	11110

Efficiency =
$$\frac{2}{5}$$
 = 40%

Errois	Rx codeword DOIII no erro	Rxdalo 01 V
3 rd	00011 detect	ed 01 V
11110 1100 00111 12,41	2] cannot 2] correct	od
3 rd ,4 th 0000	2 2	/(

Thank you for your attention