

UNIVERSITE BADJI MOKHTAR ANNABA FACULTE DE TECHNOLOGIE **DEPARTEMENT D'ELECTRONIQUE MASTER 1 : AUTOMATIQUE ET INFORMATIQUE INDUSTRIELLE**

MATIERE : Systèmes Embarqués et Systèmes Temps Réels TP N°1 : Prise en main de MIKROC PRO et de la carte EasyMx PRO v7 STM32 ARM

Objectifs : les objectifs principaux de ce TP sont :

La découverte de la carte EasyMx PRO v7 STM32 ARM et configuration des différents microswitches et jumpers pour chaque module ou port utilisé. Test de quelques exemples fournis avec la carte

- Commande des Leds
- Bouton poussoirs
- Lecture d'une valeur analogique
- Commande de l'afficheur TFT et l'écran Tactile

Description de la carte EasyMx PRO v7 pour STM32 ARM

EasyMx PRO v7 pour STM32 ARM[®] est une carte de développement pour les périphériques STM32 ARM[®] Cortex [™] -M3 et Cortex [™] -M4, M7, M0. Il contient de nombreux modules intégrés nécessaires au développement de périphériques, notamment multimédia, Ethernet, USB, CAN et autres. Le programmateur et le débogueur mikroProg [™] intégrés prennent en charge plus de 180 microcontrôleurs ARM[®].

Spécification de la carte

Applications	Développer et tester des microprogrammes, créer des prototypes, apprendre la programmation intégrée
Résolution	320x240px
Contrôleur graphique	Intégré à l'intérieur du MCU
Écran tactile	Résistif
Architecture	ARM (32 bits)
Modules embarqués	Prises pour capteurs de température LM35 et DS1820, manette de jeu, potentiomètres ADC
La programmation	MikroProg embarqué pour STM32
Espace de rangement	Série FLASH, Série EEPROM (1024 octets), emplacement pour carte microSD
Son et audio	Buzzer piézo-électrique, codec audio MPEG VS1053, connecteurs audio
Tension d'entrée	5V (via USB) ou 9-32V AC, 7-23V DC (via adaptateur)

La carte est fournie avec le MC STM32F107VC d'une architecture ARM CORTEX M3

Elle comporte 5 ports GPIO PORTA....PORTE et plusieurs modules, la figure ci-dessous montre les différents bloques de ce MC

Fig1. Schéma bloc du MC STM32F107VC

Programmation :

mikroProg [™] avec débogueur

mikroProg [™] est un programmeur rapide USB 2.0 avec un débogueur matériel basé sur le débogueur ST-LINK v2. Il prend en charge plus de 180 microcontrôleurs STM32 ARM® Cortex [™] -M3 et Cortex [™] -M4 de STMicroelectronics®. Des performances exceptionnelles et une utilisation facile font partie de ses principales fonctionnalités.

Il comporte un débogueur matériel qui vous permet d'exécuter votre programme sur le microcontrôleur hôte et d'afficher les valeurs des variables, les registres de fonctions spéciales (SFR), la mémoire vive, les mémoires CODE et EEPROM ainsi que l'exécution du code sur le matériel. Outil puissant avec un ensemble de commandes pratiques vous permettra de localiser rapidement les bogues. Le débogueur mikroProg [™] est l'un des outils de débogage les plus rapides et les plus fiables pour ARM® Cortex [™] -M3 et M4 sur le marché.

mikroProg [™] Suite pour ARM®

Fig2. Fenêtre de mikroProg

Le programmeur mikroProg [™] pour STM32 nécessite un logiciel de programmation spécial appelé mikroProg Suite [™] pour ARM®. Ce logiciel est utilisé pour la programmation de toutes les familles de microcontrôleurs Cortex-M3 [™] et Cortex-M4 [™] de STM32 ARM®. Software possède une interface intuitive et la technologie de programmation SingleClick [™].

ALIMENTATION

L'alimentation du MC utilise une tension de 3.3 v utilisant le circuit MC33269DT3.3.

Trois possibilités pour assurer l'alimentation :

- Connecteur USB.
- Connecteur adaptateur CN20.
- Une borne à vis à deux entrées.

Fig3. Schéma de l'alimentation

Fig4. Carte avec le MC STM32F107VC

Figure 5-1: mikroProg[®] block schematics

Fig5. Schéma de câblage de MikroProg

Figure 6-3: Schematic of the single I/O group connected to microcontroller PORTA/H

Le micro-switch SW10 permet de relier les résistances de rappelles au 0v ,3.3 v ou haute impédance pour chaque port.

MIKRO C PRO

mikroC PRO for ARM est un compilateur ANSI C complet, destiné aux circuits ARM Cortex-M0, Cortex-M3 et Cortex-M4. Il possède un IDE intuitif, un compilateur puissant avec des optimisations SSA évoluées, de nombreuses bibliothèques de matériel et de logiciel, et des outils supplémentaires pour le développement de code. Le compilateur est fourni avec un fichier d'aide complet et de nombreux exemples prêts à l'emploi.

Le logiciel de compilateur MIKROE-1962 inclut la carte d'activation de la licence avec activation du produit et clés d'enregistrement.

Prise en charge du débogage du matériel

De nombreux outils intégrés et supplémentaires pris en charge :

- Logiciel supplémentaire entièrement pris en charge .
- Fichier d'aide complet.
- Environnement de développement intégré (IDE) évolué.

CREATION D'UN NOUVEAU PROJET

Ut	ilisatio	on du i	ne	eni	u	
C	mikroC PRO fo	r ARM v.5.1.0 -	NOT	REGIS	TERED	
Eile	<u>E</u> dit <u>V</u> iew	<u>P</u> roject <u>B</u> ui	ld I	<u>R</u> un	Tools He	lp
	New	•	B	New	v Project	Shift+Ctrl+N
2	<u>O</u> pen	Ctrl+O		Add	l New File	Ctrl+N
	<u>R</u> ecent Files	•	-		New	Project
Θ	Save	Ctrl+S				-
c *	Sauce Ar	CI514 - A I+ - C		C	Cone	Project

Configuration du processeur et la fréquence de fonctionnement.

teps:	Project Setting	Project Settings:			
1. Project settings 2. Add files	Project Name:	TP1			
. Libraries	Project folder:	C:\Users\Public\Documents\Mikroelektronika\mikro	Browse		
	Device name:	STM32F107VC V			
	Device clock:	72.000000 MHz			
	Open Edit Project	t window to set Configuration bits			
	Enter project nam	ne, project folder, select device name and enter a device clock (for	example: 80.00		
	Enter project nam Checking 'Open Ei This enables you '	ne, project folder, select device name and enter a device clock (for dit Project' option will open 'Edit Project' window after closing this w to easily setup your device and project.	example: 80.00 vizard.		

Next pour n'ajouter aucun fichier au projet, puis ne cocher aucune bibliothèque à ajouter.

eps:	Select initial state for library manager	
Project settings Add files Libraries	Include Libraries Include All (Default) Include None (Advanced)	
	Selection all librarise is recommanded for herioners	

Finish le projet TP1 est créé et un fichier TP1.C vide

 Image: Second second

Taper le code suivant et sauvegarder TP1.c

```
GPI0_Digital_Output(&GPI0A_BASE, _GPI0_PINMASK_ALL);
GPI0_Digital_Output(&GPI0B_BASE, _GPI0_PINMASK_ALL);
GPI0A_ODR = 0;
GPI0B_ODR = 0XF0;
while(1) {
GPI0A_ODR = GPI0A_ODR+1;
GPI0B_ODR = ~GPI0B_ODR;
Delay_ms(1000);
}
```

- Avec EDIT > EDIT PROJECT > sélectionner avec load schem le fichier TM32F107VC_PLL_25_to_72MHz.cfgsc
- Vérifier que les LEDS reliées aux ports A et B sont 'ON' SW15
- Compiler pour corriger les erreurs
- Programmer le MC
- 1. Quelle est la fréquence de clignotement des leds PAO, PA3 et PBO et PB2
- 2. Modifier le programme pour avoir une fréquence de 1Hz sur la led PA3
- 3. Test de quelques projets démos:

(Attention !! il faut suivre les instruction de configuration des différents micro-switches pour chaque exemple).

- Commande des Leds
- Boutons poussoirs
- Lecture d'une valeur Analogique
- Commande de l'afficheur TFT et l'écran Tactile.