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Preface

This textbook is intended primarily for the undergradu-
ate course in mechanics for students majoring in physics, physical sci-
ence, or engineering science. It is assumed that the reader has taken gen-
eral physics and has a mathematical background which includes some
familiarity with matrix algebra and a working knowledge of differential
and integral calculus. In addition, it is recommended that an introductory
course in ordinary differential equations or a course in advanced
mathematics including differential equations be taken prior to or concur-
rently with this course in mechanics.

This third edition is basically the same in outline as the previous two
editions. Some new material has been added and there is more extensive
use of matrix notation. At the request of several users of the previous edi-
tion, the chapter on special relativity has been deleted. The present trend
is to teach relativity as a separate course.

The first chapter (formerly the first two) presents a brief preparation
in vector algebra and vector differentiation. Newton’s laws of motion are
introduced in Chapter 2, which also includes the rectilinear motion of a
single particle.

The general motion of a particle in space is studied in Chapter 3, fol-
lowed by the study of noninertial reference systems in Chapter 4.

The motion of a system of many particles is treated in Chapter 6,
which also includes such subjects as collisions and rocket motion. The mo-
tion of rigid bodies is presented in the next two chapters. Some theorems
on static equilibrium of rigid bodies are briefly mentioned in Chapter 7. It
is assumed that the student has already had experience in solving prob-
lems in statics. Elasticity and hydrodynamics are not included because,



in the opinion of the author, these subjects are best postponed until the
senior or graduate years.

Lagrangian mechanics is introduced in Chapter 9. Chapter 9 also in-
cludes a brief discussion of Hamilton’s equations. The method of La-
grange is employed in the study of oscillating systems in the final chap-
ter.

Drill exercises and problems are given at the end of each chapter.
Some problems are important theorems for the student to prove, perhaps
with a hint from the instructor. The author feels that students should
participate in the development of the subject, rather than merely substi-
tute numbers into equations already developed in the text. Answers to
selected odd-numbered problems are given at the end of the text.

There is a collection of useful mathematical formulas in the appen-
dixes. Also included is a brief outline of matrix algebra.

The author wishes to express his thanks to all who have offered con-
structive criticism of the previous edition and to the editorial staff for ex-
pert assistance in the preparation of this edition.

Grant R. Fowles
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1. Fundamental
Concepts.
Vectors

In any scientific theory, and in mechanics in particular, it
is necessary to begin with certain primitive concepts. It is also necessary to
make a certain number of reasonable assumptions. Two of the most basic
concepts are space and time. In our initial study of the science of motion,
mechanics, we shall assume that the physical space of ordinary experience is
adequately described by the three-dimensional mathematical space of Euclid-
ean geometry. And with regard to the concept of time, we shall assume that
an ordered sequence of events can be measured on a uniform absolute time
scale. We shall further assume that space and time are distinct and inde-
pendent entities. Later, when we study the theory of relativity, we shall
reexamine the concepts of space and time and we shall find that they are not
absolute and independent. However, this is a matter to which we shall
return after we study the classical foundations of mechanics.

In order to define the position of a body in space, it is necessary to have
a reference system. In mechanics we use a coordinate system. The basic
type of coordinate system for our purpose is the Cartesian or rectangular
coordinate system, a set of three mutually perpendicular straight lines or
axes. The position of a point in such a coordinate system is specified by
three numbers or coordinates, z, y, and z. The coordinates of a moving point
change with time; that is, they are functions of the quantity ¢ as measured
on our time scale.

A very useful concept in mechanics is the particle or mass point, an
entity that has mass! but does not have spatial extension. Strictly speaking

1 The concept of mass will be discussed in Chapter 2.
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the particle is an idealization that does not exist—even an electron has a
finite size—but the idea is useful as an approximation of a small body, or
rather, one whose size is relatively unimportant in a particular discussion.
The earth, for example, might be treated as a particle in celestial mechanics.

1.1. Physical Quantities and Units

The observational data of physics are expressed in terms of certain
fundamental entities called physical quantities—for example, length, time,
force, and so forth. A physical quantity is something that can be measured
quantitatively in relation to some chosen unit. When we say that the length
of a certain object is, say 7 in., we mean that the quantitative measure 7 is
the relation (ratio) of the length of that object to the length of the unit (1 in.).
It has been found that it is possible to define all of the unit physical quantities
of mechanics in terms of just three basic ones, namely length, mass, and time.

The Unit of Length

The standard unit of length is the meter. Tha meter was formerly the
distance between two scratches on a platinum bar kept at the International
Bureau of Metric Standards, Sevres, France. The meter is now defined as
the distance occupied by exactly 1,650,763.73 wavelengths of light of the
orange spectrum line of the isotope krypton 86.

The Unitl of Mass

The standard unit of length is the meter. The meter was formerly the
platinum iridium also kept at the International Bureau.

The Unat of Time

The basic unit for measurement of time, the second, was formerly defined
in terms of the earth’s rotation. But, like the meter, the second is now
defined in terms of a specific atomic standard. The second is, by definition,
the amount of time required for exactly 9,192,631,770 oscillations of a par-
ticular atomic transition of the cesium isotope of mass number 133.

The above system of units is called the mks system.? The modern

1 In this system there is a fourth unit, the coulomb, which is used to define electrical
units.
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atomic standards of length and time in this system are not only more precise
than the former standards, but they are also universally reproducible and
indestructible. Unfortunately, it is not at present technically feasible to
employ an atomic standard of mass.

Actually, there is nothing particularly sacred about the physical quantities
length, mass, and time as a basic set to define units. Other sets of physical
quantities may be used. The so-called gravitational systems use length,
force, and time.

In addition to the mks system, there are other systems in common use,
namely, the cgs, or centimeter-gram-second, system, and the fps, or foot-
pound-second, system. These latter two systems may be regarded as second-
ary to the mks system because their units are specifically defined fractions of
the mks units:

lem = 102 m
lg=10"3kg
1ft = 0.3048 m
11b = 0.4536 kg

1.2. Scalar and Vector Quantities

A physical quantity that is completely specified by a single magnitude
is called a scalar. Familiar examples of scalars are density, volume, and
temperature. Mathematically, scalars are treated as ordinary real numbers.
They obey all the regular rules of algebraic addition, subtraction, multiplica-
tion, division, and so on.

There are certain physical quantities that possess a directional charae-
teristic, such as a displacement from one point in space to another. Such
quantities require a direction and a magnitude for their complete specification.
These quantities are called vectors if they combine with each other according
to the parallelogram rule of addition as discussed in Section 1.7.> Besides
displacement in space, other familiar examples of vectors are velocity, ac-
celeration, and force. The vector concept and the development of a whole
mathematics of vector quantities have proved indispensible to the develop-
ment of the science of mechanics. The remainder of this chapter will be
largely devoted to a study of the mathematics of vectors.

3 An example of a directed quantity that does not obey the rule for addition is a finite
rotation of an object about a given axis. The reader can readily verify that two successive
rotations about different axes do not produce the same effect as a single rotation determined
by the parallelogram rule. For the present we shall not be concerned with such non vector
directed quantities, however.
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1.3. Notation

Vector quantities are denoted in print by boldface type, for example,
A, whereas ordinary italic type represents scalar quantities. In written

work it is customary to use a distinguishing mark, such as an arrow, A, to
designate a vector.

A given vector A is specified by stating its magnitude and its direction
relative to some chosen reference system. A vector is represented diagram-
matically by a directed line segment, as shown in Figure 1.1. A vector can

f

X

FIGURE 1.1 Components of a vector in Cartesian coordinates.

also be specified by listing its components or projections along the coordinate
axes. The component symbol (4,,4,,4,] will be used as an alternate designa-
tion of a vector. The equation

A= [A :rA-mAz]

means that the vector A is expressed on the right in terms of its components
in a particular coordinate system. (It will be assumed that a Cartesian co-
ordinate system is meant, unless stated otherwise.) For example, if the
vector A represents a displacement from a point P,(x),y1,21) to the point
Po(x2,y2,22), then A, = 20 — 11, A, = y2 — 41, A, = 2o — z;.  If A represents
a force, then A, is the x component of the force, and so on. Clearly, the numer-
ical values of the scalar components of a given vector depend on the choice of
the coordinate axes.

If a particular discussion is limited to vectors in a plane, only two com-
ponents are necessary. On the other hand, one can define a mathematical
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space of any number of dimensions. Thus the symbol [A1,42,43, . . .,A.]
denotes an n-dimensional vector. In this abstract sense a vector is an ordered
set of numbers.

1.4. Formal Definitions and Rules

We begin the study of vector algebra with some formal statements
concerning vectors.

1. Equality of Vectors
The equation
A=B
or
(A.,A,A.] = [B:,B,,B.]
is equivalent to the three equations
A.=B. A,=B, A.=B,

That is, two vectors are equal if, and only if, their respective components
are equal.

2. Vector Addition
The addition of two vectors is defined by the equation
A + B = [AzyAwAz] + [BZmeBz] = [Az + BzyAy + BwAz + Bz]

The sum of two vectors is a vector whose components are sums of the com-
ponents of the given vectors.

3. Multiplication by a Scalar
If ¢ is a scalar and A a vector,
cA = ¢[4.;,4,,A,} = [cA.cA,cA.] = Ac

The product cA is a vector whose components are ¢ times those of A.

4. Vector Subtraction

Subtraction is defined as follows:
A-B=A+(-1)B=[4, - B,,A, — B,,A. — B,
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5. The Null Vector

The vector O = [0,0,0] is called the null vector. The direction of the
null vector is undefined. From (4) it follows that A — A = O. Since
there can be no confusion when the null vector is denoted by a ‘“zero,” we
shall hereafter use the notation: O = 0.

6. The Commutative Law of Addition
This law holds for vectors; that is,
A+B=B+A
since A: + B. = B, + A., and similarly for the ¥ and z components.

7. The Associative Law

The associative law is also true, because

A+ B+C) =[4. + (B + Co),4, + (B, + C)), 4. + (B: + CJ)]
((4: + B.) + C.,(4, + B,) + Cyy(A: + B)) + C]
=(A+B)+C

8. The Distributive Law

Under multiplication by a scalar the distributive law is valid, because,

from (2) and (3),
¢(A+ B) =c[A. + B;,A, + B,,A. + B.]
[e(Az + B.),c(A, + B,),c(A. + B,)]
[cA; + ¢B.,cA, + cB,,cA, 4+ cB,]
=cA+cB

Thus vectors obey the rules of ordinary algebra as far as the above operations
are concerned.

1.5. Magnitude of a Vector

The magnitude of a vector A, denoted by |A| or by A, is defined as the
square root of the sum of the squares of the components, namely,
A=Al = (42 + 4,7 + A2pn (1.1)

where the positive root is understood. Geometrically, the magnitude of a
vector is its length, that is, the length of the diagonal of the rectangular
parallelepiped whose sides are 4., 4,, and 4,.
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1.6. Unit Coordinate Vectors

A unit vector is a vector whose magnitude is unity. Unit vectors are
often designated by the symbol e from the German word einheit. The three
unit vectors

€ = [17070] € = [071:0] e, = [070;1] (12)

are called unit coordinate vectors or basis vectors. In terms of basis vectors,
any vector can be expressed as a vector sum of components as follows:

A = [4;4,4.] = [4:,0,0] + [0,4,,0] + [0,0,4.]
4.[1,0,0] + 4,[0,1,0] + A.[0,0,1]
= e A, + e,4, + e A, (1.3)

A widely used notation for Cartesian unit vectors are the letters i, j, and
k, namely

I

i=e; j=e, k =e,

We shall usually employ this notation hereafter.

The directions of the unit coordinate vectors are defined by the coordinate
axes (Figure 1.2). They form a right-handed or a left-handed triad, depend-
ing on which type of coordinate system is used. It is customary to use
right-handed coordinate systems. The system shown in Figure 1.2 is right-
handed.

z

X

FIGURE 1.2 The unit coordinate vectors ijk.
1.7. Geometric Meaning of Vector Operations

If we consider a vector to be represented by a directed line segment, it is
easily verified that the definitions stated above have the following simple
interpretations:
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1. Equality of Vectors

If two vectors are equal then the vectors are parallel and have the same
length, but they do not necessarily have the same position. Equal vectors
are shown in Figure 1.3, where only two components are drawn for clarity.

y

>
1
w

A/

FIGURE 1.3 Illustrating equal vectors.

Notice that the vectors form opposite sides of a parallelogram. (Equal
vectors are not necessarily equivalent in all respects. Thus two vectorially
equal forces acting at different points on an object may produce different
mechanical effects.)

2. Vector Addition

The vector sum of two vectors is equal to the third side of a triangle,
two sides of which are the given vectors. The vector sum is illustrated in
Figure 1.4. The sum is also given by the parallelogram rule, as shown in
the figure. [The vector sum is defined, however, according to definition
1.4(2) even if the vectors do not have a common point.]

C=A+B=B+A

FIGURE 1.4 Addition of two vectors.
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3. Multiplication of a Vector by a Scalar

The vector cA is parallel to A and is ¢ times the length of A. When
¢ = —1, the vector — A is one whose direction is the reverse of that of A, as
shown in Figure 1.5.

FIGURE 1.5 The negative of a vector.

1.8. The Scalar Product

Given two vectors A and B, the scalar product or “dot” product, A:B,
is the scalar defined by the equation

A-B=AB,+ AB, + A.B, (14)
It follows from the above definition that
A-B =B:A (1.5)
since 4,B, = B.A., and so on. It also follows that
A-B+C)=A-B+A-C (1.6)

because if we apply the definition [(1.4)] in detail
A-B+C) =4.B,+C,)+A,B,+C,)+ A.(B.+C,)
= Asz + AyBy + Asz + Azcz + AyCy + Azcz
=A:-B+ A-C
From analytical geometry we recall the formula for the cosine of the
angle between two line segments

Asz + AyBy + Asz
(AZ T A7+ ADPBE T B + BaP

Using Equations (1.1) and (1.4), the above formula may be written

A-B
A

cos § =

cos f =

or
A‘B = ABcos# (1.7)
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The above equation may be regarded as an alternate definition of the dot
product. Geometrically, A+B is equal to the length of the projection of A
on B, times the length of B.

If the dot product A-B is equal to zero, then A is perpendicular to B,
provided neither A nor B is null.

The square of the magnitude of a vector A is given by the dot product of
A with itself,

A = A2 = A-A

From the definitions of the unit coordinate vectors i, j, and Kk, it is clear
that the following relations hold:
i'i = j-j = k-k = 1
irj=i1k=jk=0 (1.8)

1.9. Some Examples of the Scalar Product

1. Component of a Vector. Work

As an example of the dot product, suppose that an object under the
action of a constant force!* undergoes a linear displacement As, as shown in
Figure 1.6. By definition, the work AW done by the force is given by the

product of the component of the force F in the direction of As, multiplied
by the magnitude As of the displacement, that is,

AW = (F cos ) As

where 6 is the angle between F and As. But the expression on the right is
just the dot product of F and As, that is,

AW = F-As

4+ The concept of force will be discussed later in Chapter 3.
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As

FIGURE 1.6 A force undergoing a displacement.

2. Law of Cosines
Given the triangle whose sides are A, B, and C, as shown in Figure 1.7.
Then C = A 4+ B. Take the dot product of C with itself

C-C = (A + B)-(A + B)
- A-A+2A-B + B-B

The second step follows from the application of the rules in Equations (1.5) and
(1.6). Replace A+B by AB cos 6 to obtain
Ct = A+ 2AB cos ¢ + B?

which is the familiar law of cosines. This is just one example of the use of
vector algebra to prove theorems in geometry.

A

FIGURE 1.7 The law of cosines.

1.10. The Vector Product

Given two vectors A and B, the vector product or ‘“‘cross product,”
A X B, is defined as the vector whose components are given by the equation

A x B = [AIIBI - AZBWAIBZ - Asz;Asz - Asz] (1.9)
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The geometric interpretation of the cross product is given in Section 1.12.
It can be shown that the following rules hold for cross multiplication.

AXB=-BXA (1.10)
AXB+C)=AXB+AXC (1.11)
n(A X B) = (nrA) X B =A X (nB) (1.12)

The proofs of these follow directly from the definition and are left as an
exercise.

According to the algebraic definitions of the unit coordinate vectors,
Equation (1.2), it readily follows that the following relations for the cross
product are true:

iXi=jXj=kXk=0
iIXk=i=-kXij
iXj=k=—-jXi
kXi=j=-iXk

(1.13)

For example,
iXj=0-00-01-0]=100,1] =k

The remaining equations are easily proved in a similar manner.

1.11. Geometric Interpretation of the Cross Product

The cross produet expressed in ijk form is
AXB=iA,B.— A.B,) + j(A,B. — A.B,) + k(A4.B, — A,B,)

Each term in parentheses is equal to a determinant

A4, | AA, 4.4,
AXB = | | | k|
and finally
ijk
AXB=|4,4,4. (1.14)
B.B,B.

which is readily verified by expansion. The determinant form is a convenient
aid for remembering the definition of the cross product. From the properties
of determinants, it can be seen at once that if A is parallel to B, that is, if
A = cB, then the two lower rows of the determinant are proportional and
so the determinant is nuil. Thus the cross product of two parallel vectors is
null.

Let us calculate the magnitude of the cross product. We have

A X B> = (4,B, — A,B,)? + (A.B. — A.B,)* + (A.B, — A,B.)
With a little patience this can be reduced to



1.11 Geometric Interpretation of the Cross Product 13

[AX B2 = (4.2 + A2 + AY)(B2 + B2 + B.Y) — (A.B. + A,B, + A.B.)?

or, from the definition of the dot product, the above equation may be written
in the form

A X B2 = A?B? — (A-B)?

Taking the square root of both sides of the above equation and using Equation
(1.7), we can express the magnitude of the cross product as

A X B| = AB(1 — cos? )2 = ABsin 6 (1.15)

where ¢ is the angle between A and B.
To interpret the cross product geometrically, we observe that the vector
C = A X B is perpendicular to both A and to B, because

A-C = A,C. + 4,0, + A.C.
= AJ(A,B. — A.B,) + A,(A.B, — A.B.,) + A.(A.B, — A,B.)
=0

Similarly, B-C = 0. Thus the vector C is perpendicular to the plane con-
taining the vectors A and B.

The sense of the vector C = A X B is determined from the requirement
that the three vectors A, B, and C form a right-handed triad, as shown in
Figure 1.8. (This is consistent with the previously established result that in

~—»v A

FIGURE 1.8 The vector or cross product.
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the right-handed triad ijk we have 1 X j = k.) Therefore, from Equation
(1.15) we see that we can write

A X B = (ABsin 9)n (1.16)

where n is a unit vector normal to the plane of the two vectors A and B.
The sense of n is given by the righi-hand rule, that is, the direction of ad-
vancement of a right-handed screw rotated from the positive direction of A
to that of B through the smallest angle between them, as illustrated in Figure
1.8. Equation (1.16) may be regarded as an alternate definition of the cross
product.

EXAMPLES

1. Given the two vectors A =2i+j—k, B=1i—j+ 2k, find A-B
and A X B.

AB=2)1)+ M-+ (-D2)=2—-1—-2= -1

i § k
AXB=(2 1 —1|=i@-D+j(-1 -4 +k(—-2—1)
1 -1 2

=i—5j— 3k

2. Find the angle between A and B. We have, from the definition of
the dot product,

08 § = AB_ —1
Cos ¢ = B = [22 + 12 + (_1)2]1/2[12 + (_1)2 + 22]1/2
-1 1
T8 T 6

Hence
6 = cos™! (—3) = 99.6°

1.12. An Example of the Cross Product. Moment of a Force

A particularly useful application of the cross product is the representation
of moments. Let a force F act at a point P(z,y,2), as shown in Figure 1.9,

and let the vector OP be designated by r, that is,

0_1"=t=iz+jy+kz

The moment N, or the torque, about a given point O is defined as the cross
product
N=rXF (1.17)
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Thus the moment of a force about a point is a vector quantity having a
magnitude and a direction. If a single force is applied at a point P on a body
that is free to turn about a fixed point O as a pivot, then the body tends to
rotate. The axis of this rotation is perpendicular to the force F, and it is
also perpendicuiar to the line OP. Hence the direction of the torque N is
along the axis of rotation.

N=rXF

A

Axis

FIGURE 1.9 The moment of a force.

The magnitude of the torque is given by
N|=|rX F| =rFsing (1.18)

in which 6 is the angle between r and F. Thus |N| can be regarded as the
product of the magnitude of the force and the quantity r sin 6 which is just
the perpendicular distance from the line of action of the force to the point O.

When several forces are applied to a single body at different points, the
moments add vectorially. This follows from the distributive law of vector
multiplication, Equation (1.11). The condition for rotational equilibrium
is that the vector sum of all the moments is zero:

Z(r,-xF.-)=ZN.-=0

A more complete discussion of this will be given later in Chapter 7.
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1.13. Representation of a Given Vector as the Product
of a Scalar and a Single Unit Vector

Consider the equation
A =i4;+ jA, + kA,

Multiply and divide on the right by the magnitude of A
_ LA LA A,

NowA,/A = cosea, A,/A = cos B,and A,/A = cos v are the direction cosines
of the vector A, and «, 8, and v are the direction angles. Thus we can write

A=A(icosa + jcosB + kcosy) = Alecos a,cos 3,c0s 7]
or
A= An (1.19)

where n is a unit vector whose components are cos a, cos 8, and cosy. Con-
sider any other vector B. Clearly, the projection of B on A is just
‘A

Bcos o = BT = B-n (1.20)

where 6 is the angle between A and B.

EXAMPLE

Find a unit vector normal to the plane containing the two vectors
A=2i+j—kand B=i—j+ 2k. From Example 1, p. 14, we have
AXB=i—-5j— 3k. Hence

Lo AXB _ i-55 -3k
STAXB| T [IFE 5+ 3
i 5j 3k

TV3H Vs Ve

1.14. Triple Products

The expression

A-(BXC)

is called the triple scalar product of A, B, and C. It is a scalar since it is the
dot product of two vectors. Referring to the determinant expression for the
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cross product, Equation (1.14), we see that the triple scalar product may be
written

A,A,A,
B.B,B.
C.C,C.

From the well-known property of determinants that the exchange of the
terms of two rows or of two columns changes the sign but does not change
the absolute value of the determinant, we can easily derive the following
useful equation:

A-BXC) = (1.21)

A-BXC) = (AXB)C (1.22)

Thus the dot and the eross may be interchanged in the triple scalar product.
The expression

AX (BXC)

is called the triple vector product. It is left for the student to prove that the
following equation holds for the triple vector product:

AXBXC) = (A-C)B - (A-B)C (1.23)

1.15. Change of Coordinate System. The Transformation Matrix

Consider the vector A expressed relative to the triad ijk
A=i4A,+jA, + kA4,

Relative to a new triad i’j’k’ having a different orientation from that of ijk,
the same vector A is expressed as

A=V4,+§4, + KA,

Now the dot product A-i’ is just A,,, that is, the projection of A on the unit
vector i’. Thus we may write

Ay = A1 = (-1)4, + (-iN4, + (k-i')A,
Ay = Af = (1-j)4. + (G-iH4, + k-j)A. (1.24)
Ay = AK = (i-k)4, + (-k)4, + (k-K)A,

The scalar products (i-i’), (i+j’), and so on, are called the coefficients of trans-
formation. They are equal to the direction cosines of the axes of the primed
coordinate system relative to the unprimed system. The unprimed com-
ponents are similarly expressed as

A, = Ai = (DA + (DA, + K DA,
Ay = Aj = WDAw + (DA, + &AL (1.25)
A, = Ak = (" K)A4, + (KA, + & -k)A,

Il
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All of the coefficients of transformation in Equation (1.25) also appear in
Equation (1.24), because i-i’ = i’-1, etc., but those in the rows (equations)
of Equation (1.25) appear in the columns of terms in Equation (1.24), and
conversely. The transformation rules expressed in these two sets of equations
are a general property of vectors. As a matter of fact, they constitute an
alternative way of defining vectors.

The equations of transformation are conveniently expressed in matrix
notation. Thus Equation (1.24) is written

Ay i ji ki [A4.
Ay =1i§ §-§ kj 1|4, (1.26)
Ay ik jk kKk||A4,

The 3 by 3 matrix in the above equation is called the transformation matriz.
One advantage of the matrix notation is that successive transformations are
readily handled by means of matrix multiplication.

The reader will observe that the application of a given transformation
matrix to some vector A is also formally equivalent to rotating that vector
within the unprimed (fixed) coordinate system, the components of the rotated
vector being given by Equation (1.26). Thus finite rotations can be repre-
sented by matrices. (Note that the sense of rotation of the vector in this
context is opposite that of the rotation of the coordinate system in the previ-
ous context.)

EXAMPLES

1. Express the vector A = 3i + 2j + k in terms of the triad i’j’k’ where
the z'y’ axes are rotated 45° around the z axis, the z and the 2’ axes coinciding,
as shown in Figure 1.10. Referring to the figure, we have for the coefficients
of transformation,

i-i’ = 1/4/2 joi' = 1/4/2 k-i' =0

isjf = ~1/4/2 i'i’ = 1/v2 k-jy =0
i-k! =0 k=0 k-k/ =1
These give
3 2 5 -3 2 -1
A =-——-+—-= —— A;= —_—= M e ey~ A.;'= 1
d Vi v YT wmtwvETwe

,\/5

® See, for example, L. P. Smith, Mathematical Methods for Scientists and Engineers,
Prentice-Hall, Englewood Cliffs, N.J., 1953.
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so that, in the primed system, the vector A is given by
5 1

A= —ir _ —— 3 ’
V2l Rl Tk

45°

45°

o
FIGURE 1.10 The primed axes O'z’y’z’ are rotated by 45° around the z axis.
2. Find the transformation matrix for a rotation of the primed coordinate

system through an angle ¢ about the 2z axis. (The previous example is a
special case of this.) We have

i-i" =j3J =cos¢
‘i = —i-j =sin¢
k-k=1

Il

and all other dot products are zero. Hence the transformation matrix is

cos¢ sing 0O
—sing cos¢ O
0 0 1

It is clear from the above example that the transformation matrix for a
rotation about a different coordinate axis, say the y axis through an angle 6,
will be given by the matrix

cos® 0 —sind
0 1 0
sing O cos 0
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Consequently the matrix for the combination of two rotations, the first being
about the z axis (angle ¢) and the second being about the new y’ axis (angle 6)
is given by the matrix product

cosf 0 —siné cos¢ sing O cosfcos¢ cosfsing — siné
0 1 0 —sing cos¢ O|=| —sing cos ¢ 0
sing O cos 8 0 0 1 sinfcos¢ sinésing cos @

Now matrix multiplication is, in general, noncommutative. Hence we
might expect that if the order of the rotations were reversed, and therefore
the order of the matrix multiplication on the left, the final result would be
different. This turns out to be the case, which the reader can verify. This
is in keeping with a remark made earlier, namely that finite rotations do not
obey the law of vector addition and hence are not vectors even though a
single rotation has a direction (the axis) and a magnitude (the angle of rota-
tion). However, we shall show later that infinitesimal rotations do obey the
law of veetor addition, and can be represented by vectors.

1.16. Derivative of a Vector

Consider a vector A, the components of which are functions of a single
variable . The vector may represent position, velocity, and so on. The
parameter u is usually the time ¢, but it can be any quantity which determines
the components of A:

A(w) = id.(u) + jA,(w) + kA.(w)

The derivative of A with respect to u is defined, quite analogously to the
ordinary derivative of a scalar function, by the limit

dA _ . AA AA, | (AA, _A_A_,)
EE—AB-%E‘AB—%OAu*-JAu_FkAu

where AA, = A.(u + Au) — A.(u), and so on. Hence

dA . dA, | . dA, . dA.
=i T du +kdu

Tu Ju (1.27)

The derivative of a vector, therefore, is a vector whose components are
ordinary derivatives.
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It follows from the above equation that the derivative of the sum of two
vectors is equal to the sum of the derivatives, namely,

d dA | dB
@(A—FB): “‘1‘@

- (1.28)
Rules for differentiating vector products will be treated later in Section 1.22.

1.17. Position Vector of a Particle

In a given reference system the position of a particle can be specified by
a single vector, namely, the displacement of the particle relative to the origin
of the coordinate system. This vector is called the position vector of the
particle. Inrectangular coordinates, Figure 1.11, the position vector is simply

r=ir+jy+ ke

The components of the position vector of a moving particle are functions of
the time, namely,

z=zxz() y=yl©) z=20

kz

FIGURE 1.11 The position vector.

1.18. The Velocity Vector

In Equation (1.27) we gave the formal definition of the derivative of any
vector with respect to some parameter. In particular, if the vector is the
position vector r of a moving particle and the parameter is the time ¢, the
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derivative of r with respect to ¢ is called the velocity, which we shall denote
by v. Hence

v-S -tk (1.29)
where the dots indicate differentiation with respect to . (This convention is
standard and will be used throughout the book.) Let us examine the geo-
metric significance of the veloeity vector. Suppose a particle is at a certain
position at time {. At a time At later, the particle will have moved from the
position r(t) to the position r(t + At). The vector displacement during the
time interval At is

Ar = r(t 4+ At) — r(t)

so the quotient Ar/At is a vector which is parallel to the displacement. As we
consider smaller and smaller time intervals, the quotient Ar/At approaches
a limit dr/dt which we call the velocity. The vector dr/dt expresses both the
direction of motion and the rate. This is shown graphically in Figure
1.12. In

FIGURE 1.12 Displacement vector of a moving particle.

the time interval At the particle moves along the path from P to P’. As At
approaches zero, the point P’ approaches P, and the direction of the vector
Ar/At approaches the direction of the tangent to the path at P. The velocity
vector, therefore, is always tangent to the path of motion.

The magnitude of the velocity is called the speed. In rectangular com-
ponents the speed is just

b= Iv| = (4% + g2 + &) (1.30)

If we denote the scalar distance along the path by s, then we can alternately
express the speed as
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o= B i 88 L (A7 4 (Ay) 4 (M)

dt at—0 Al At—0 At

which reduces to the expression on the right of Equation (1.30).

1.19. Acceleration Vector

The time derivative of the velocity is called the acceleration. Denoting
the acceleration by a, we have

dv  dr
P A e 1.31
=@ T ae (1-31)
In rectangular components
a = i + jj + k3 (1.32)

Thus acceleration is a vector quantity whose components, in rectangular
coordinates, are the second derivatives of the positional coordinates of a
moving particle. The resolution of a into tangential and normal components
will be discussed in Section 1.23.

EXAMPLES
1. Let us examine the motion represented by the equation

. . gt?
r(f) = ibt + j ct—7 + kO
This represents motion in the zy plane, since the z component is constant
and equal to zero. The velocity v is obtained by differentiating with respect
to £, namely,

7) S
v== = ib 4 j{c — gt)

The acceleration, likewise, is given by
a— av .
B

Thus a is in the negative y direction and has the constant magnitude g. The
path of motion is a parabola, as shown in Figure 1.13.  (This equation actually
represents the motion of a projectile.) The speed v varies with ¢ according

to the equation
v = [+ (e — gty

2. Suppose the position vector of a particle is given by
r = ib sin wt + jb cos wt + ke
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o x

FIGURE 1.13 Position, velocity and acceleration vectors for a particle
moving in a parabolic path.

Let us analyze the motion. The distance from the origin remains constant
It] = r = (b sin? wt + b cos? wt + ¢V = (b2 + )2

Differentiating r, we find

'J:: = ibw cos wt — jbw sin wt + kO

Since the z component of v is zero, the velocity vector is parallel to the zy
plane. The particle traverses its path with constant speed

v = lvl = (b2w2 cos? wit + b%w? sin? wt)l/Z = bw
The acceleration

a= %—:’ = —ibw? sin wl — jbw? cos wt

which is perpendicular to the velocity, since the dot product of v and a
vanishes, thus

vea = (bw cos wt)(—bw? sin wt) + (—bw sin wt)(—bw? cos wt) = 0

Further, the acceleration is perpendicular to the z axis, as shown in the
figure, because a-k = 0. The actual path is a circle of radius b, the plane of
the circle being in the plane z = ¢. The motion is illustrated in Figure 1.14.
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X

FIGURE 1.14. Position, velocity and acceleration vectors of a particle
moving in a circle.

1.20. Vector Integration

Suppose that the time derivative of a vector r is given in rectangular
coordinates where each component is known as a function of time, namely,
T~ i) + A0 + KO

It is possible to integrate with respect to ¢ to obtain
r=i[fi) de+ i [0) de + K [Fo0) at (1.33)

This is, of course, just the inverse of the process of finding the velocity vector
when the position vector is given as a function of time. The same applies
to the case in which the acceleration is given as a function of time and an
integration yields the velocity.

EXAMPLE

The velocity vector of a moving particle is given by
v = i4 + jBt + kCt™?

in which A, B, and C are constants. Find r. By integrating, we get
2
r=i/Adt+j/Btdt+k/Ct-ldt= iAt+jB%+kClnt+ro

The vector 1, is the constant of integration.
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1.21. Relative Velocity

Consider two particles whose position vectors are r; and r;, respectively,
as shown in Figure 1.15. The displacement of the second particle with respect
to the first is the difference r, — r; which we shall call r;;.  The velocity of the

"2

v
1
N v
r
1 Ty
vy \ /]

(a) {b)

FIGURE 1.15 Relative position vector (a) and relative velocity vector
(b) of two particles.
second particle relative to the first is therefore

dr dir, — r
V12=d—_;2=(2—dl‘l—)=vz—vl

which we shall call the relative velocity. By transposing v;, we have
V2 = Vi + Vi

for the actual velocity of particle 2 in terms of the velocity of particle 1 and
the relative velocity of the two particles.

It should be noted that the magnitude of the relative velocity of two
particles is not the same as the time rate of change of the distance between
them. This latter quantity is

i1—'1' —d—]r — Iy
dt[w!_dt 2 1

which is different, in general, from |vy,|.

EXAMPLES

1. A particle moves along the z axis with speed v, so its position vector
is given by 1, = i(a + vf) where a is a constant. A second particle moves
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along the y axis with the same speed, so its position is r; = j(b 4+ »t). Thus
the relative velocity of the second particle with respeet to the first is vy =
Ve — vy = jv — iv = v(j — i). The relative speed is then v = V2. What
is the value of d|rp|/dt?

2. A wheel of radius b rolls along the ground with a forward speed v.
Find the velocity of any point P on the rim relative to the ground. First,
consider the expression

fop = ibcos § — jbsin
where
8= wt

This represents clockwise circular motion about the origin, the center of the
wheel, in this case. The time derivative then gives the velocity of P relative
to the center of the wheel as

Vet = —ibwsin § — jbw cos 8

But the angular velocity w = vy/b, and since the velocity of the center of the
wheel relative to the ground is ivy, then the true velocity of P relative to the
ground is

v = ivy — ibw sin § — jbw cos 6
ivg(1 — sin 8) — ju, cos @

A diagram showing the velocity vectors for various values of # is shown in
Figure 1.16.

Vo

rel

FIGURE 1.16 Velocity vectors for various points on a rolling wheel.
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1.22. Derivatives of Products of Vectors

It is often necessary to deal with derivatives of the products nA, A+B,
and A X B where the scalar n and the vectors A and B are functions of a
single parameter u, as in Section 1.16. From the general definition of the
derivative, we have

d(nA) im nu + Au)A(u + Au) — n(u)A(u)
=

Au—0 Au
d(A-B) - lim A(u 4+ Au)-B(u + Au) — A(u)-Bu)
du Bu—0 Au
dAXB) _ o Al sw) X B(u + Auw) — A(u) X B(w)
du Au—0 Au

By adding and subtracting expressions like n(u 4+ Au)A(u) in the numerators,
we obtain the following rules:

doA) _dn, A ,
= duA + " T (1.34)
dAB) _dA o, dB
du  du B+A du (1.35)
dAXB) _ dA aB -

Notice that it is necessary to preserve the order of the terms in the deriva-
tive of the cross product. The steps are left as an exercise for the student.

1.23. Tangential and Normal Components of Acceleration

In Section 1.13, it was shown that any vector can be expressed as the
product of its magnitude and a unit vector giving its direction. Accordingly,
the velocity vector of a moving particle can be written as the product of the
particle’s speed v and a unit vector = that gives the direction of the particle’s
motion. Thus

V= (1.37)

The vector = is called the unit tangent vector. As the particle moves the speed
v may change and the direction of £ may change. Let us use the rule for
differentiation of the product of a scalar and a vector to obtain the accelera-
tion. The result is

v _ d() de

a=-—=———=in+vdt (1.38)

The unit vector =, being of constant magnitude, has a derivative de/dt that
must necessarily express the change in the direction of = with respect to time.
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This is illustrated in Figure 1.17(a). The particle is initially at some point P
on its path of motion. In a time interval Af the particle moves to another
point P’ a certain distance As along the path. Let us denote the unit tangent
vectors at P and P’ by = and «/, respectively, as shown. The directions of

these two unit vectors differ by a certain angle Ay as shown in Figure 1.17(b).

(a) (b}

FIGURE 1.17 Unit tangent and unit normal vectors.

It is apparent that for small values of Ay, the difference Ax approaches Ay
in magnitude. Also, the direction of Az becomes perpendicular to the direc-
tion of = in the limit as Ay and As approach zero. It follows that the deriva-
tive d¢/dy is of magnitude unity and is perpendicular to . We shall therefore
call it the unit normal vector and denote it by n:
de

Next, in order to find the time derivative dx/dt, we use the chain rule as

follows

in which
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is the radius of curvature of the path of the moving particle at the point P.
The above value for d=/dt is now inserted into Equation (1.38) to yield the

final result
2

a=sf-n (1.40)

Thus the acceleration of a moving particle has a component of magnitude
a =v=3_§
in the direction of motion. This is the tangential acceleration. The other

component of magnitude
2

p

An =

is the normal component. This component is always directed toward the
center of curvature on the concave side of the path of motion. Hence the
normal component is also called the centripetal acceleration.

From the above considerations we see that the time derivative of the
speed is only the tangential component of the acceleration. The magnitude
of the total acceleration is given by

4\ 1/2
la| = i"—vl _ (v + 9;) (141)
P

For example, if a particle moves on a circle with constant speed v, the
acceleration vector is of magnitude ?/R, where K is the radius of the circle.
The acceleration vector always points to the center of the circle in this case.
However, if the speed is not constant but increases at a certain rate #, then
the acceleration has a forward component of this amount and is slanted away
from the center of the circle towards the forward direction as illustrated in
Iigure 1.18. If the particle is slowing down, then the acceleration vector is
slanted in the opposite direction.

(a) (b}

FIGURE 1.18 Acceleration vectors for a particle moving in a circular path.
(a) Constant speed; (b) increasing speed.
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1.24. Velocity and Acceleration in Plane Polar Coordinates

It is often convenient to employ polar coordinates r, 8 to express the
position of a particle moving in a plane. Vectorially, the position of the
particle can be written as the product of the radial distance r by a unit radial
vector e,:

r =re, (1.42)

As the particle moves, both » and e, vary, thus they are both functions
of the time. Hence, if we differentiate with respect to ¢, we have

dr e, 4 de,
T e 4y
di "

v = (1.43)

In order to calculate the derivative de,/dt, let us consider the veetor diagram
shown in Figure 1.19. A study of the figure shows that when the direetion

y

A €g

Y

FIGURE 1.19 Unit vectors for plane polar coordinates.

of r changes by an amount A8, the corresponding change Ae, of the unit radial
vector is as follows: The magnitude |Ae,| is approximately equal to A8, and
the direction of Ae, is very nearly perpendicular to e,. Let us introduce
another unit vector ey whose direction is perpendicular to e,. Then we have

Ae,. >~ e Af
If we divide by At and take the limit, we get

e _ ¥ (1.44)
. dt '

for the time derivative of the unit radial vector. In a precisely similar way, we
can argue that the change in the unit vector ey is given by the approximation

Aey ~ —e,Af
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Here the minus sign is inserted to indicate that the direction of the change
Ae, is opposite to the direction of e, as ean be seen from the figure. Con-
sequently, the time derivative is given by

des @

-—_— = —e,
dt dt
By using Equation (1.44) for the derivative of the unit radial vector, we

can finally write the equation for the velocity as

v = je, + rfe; (1.46)
Thus 7 is the magnitude of the radial component of the velocity vector, and
6 is the magnitude of the transverse component.
In order to find the acceleration vector, we take the derivative of the
velocity with respect to time. This gives

- de, ) . )
a=d—v=re,+7‘* ha + (79 + rf)es + 76
dt dt

(1.45)

des
dt

The values of de,/dt and des/di arc given by Equations (1.44) and (1.45)
and yield the following equation for the acceleration vector in plane polar
coordinates:

a=(r— ri®)e, + (rf + 2if)es (1.47)
Thus the magnitude of the radial component of the acceleration vector is
a, =1 — 76 (1.48)

and that of the transverse component is

a = rd + 270 = 1d (r26) (1.49)
rdt

The above results show, for instance, that if & particle moves on a circle
of constant radius b, so that 7 = 0, then the radial component of the accelera-
tion is of magnitude b# and is directed inward toward the center of the
circular path. The magnitude of the transverse component in this case is
bd. On the other hand, if the particle moves along a fixed radial line, that is,
if @ is constant, then the radial component is just # and the transverse com-
ponent is zero. If r and 6 both vary, then the general expression (1.47) gives
the acceleration.

EXAMPLE

A particle moves on a spiral path such that the position in polar co-
ordinates is given by

r = b2 0=ct
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where b and ¢ are constants. Find the velocity and acceleration as functions
of . From Equation (1.46), we find

d d
= e,— (bt oy
v=-¢e dt( ) + es(bi?) pr (ct)
= (2bt)e, + (bct?)es
Similarly, from Equation (1.47), we have

a = e,(2b — bi2c?) + €0 + 2(2bi)c]
b(2 — ) e, + 4bctey
It is interesting to note that the radial component of the acceleration be-

comes negative for large {, in this example, although the radius is always
increasing monotonically with time.

1.25. Velocity and Acceleration in Cylindrical
and Spherical Coordinates

Cylindrical Coordinates

In the case of three-dimensional motion, the position of a particle can be
described in cylindrical coordinates R, ¢, 2. The position vector is then

written as r = Ren + ze, (1.50)

where ez is a unit radial vector in the zy plane and e, is the unit vector in
the z direction. A third unit vector e, is needed so that the three vectors
eze, e, constitute a right-handed triad as illustrated in Figure 1.20. We
note that k = e..

The velocity and acceleration vectors are found by differentiating, as
before. This will again involve derivatives of the unit vectors. An argu-
ment similar to that used for the plane case shows that deg/df = e, ¢ and
de,/dt = —egp. The unit vector e, does not change in direction, so its time
derivative is zero.

In view of these facts, the velocity and acceleration vectors are easily
seen to be given by the following equations:

v = Rei + Rye, + ‘e, (1.51)

a = (R — R¢Yer + (2R¢ + Ro)e, + ze, (1.52)

These give the values of v and a in terms of their components in the rotated
triad ere,e..

An alternative way of obtaining the derivatives of the unit vectors is

to differentiate the following equations which are the relationships between
the fixed unit triad ijk and the rotated triad:
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FIGURE 1.20 Unit vectors for cylindrical coordinates.

€r =

€y

e, =

The steps are left as an exercise.

icosg + jsine
—ising 4+ jcose
k

rotation matrix as given in Example 2, Section 1.15.

Spherical Coordinates

VECTORS

(1.53)

The result can also be found by use of the

When spherical coordinates r, 8, ¢ are employed to describe the position
of a particle, the position vector is written as the product of the radial distance

r and the unit radial vector e,, as with plane polar coordinates.

The direction of e, is now specified by the two angles ¢ and 6.

r =re,

two more unit vectors e, and e as shown in Figure 1.21.

Thus

We introduce
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€y

€

FIGURE 1.21 Unit vectors for spherical coordinates.

The velocity is

—r——'e +rde,
a e dt

V= (1.54)
Our next problem is how to express the derivative de,/df in terms of the unit
vectors in the rotated triad.

Referring to the figure, we see that the following relationships hold be-
tween the two triads

e, = isinfcos ¢ + jsinfsin ¢ + Kcos b
€ = icosfcose + jeosfsing — ksiné (1.55)
e, = —ising + jcosg

It

Il

which express the unit vectors of the rotated triad in terms of the fixed triad
ijk. We note the similarity between this transformation and that of the
second part of Example 2 in Section 1.15. The two are, in fact, identical if
the correct identification of rotations is made. Let us differentiate the first
equation with respect to time. The result is.
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de., . p .
E"=l(00080008¢—¢81n081n¢)

+ j(6 cos 0 sin ¢ + ¢ sin 8 cos ¢) — ké sin §

Next, by using the expressions for e, and e; in Equation (1.55), we find that
the above equation reduces to

de, .
d—et = ¢e,sin § + fep (1.56)

The other two derivatives are found by a similar procedure. The results are

de .

== —de, + o€, cos b (1.57)
dt

de

d—t“’ = —¢i,sin 8 — ¢egcos § (1.58)

The steps arc left as an exercise. Returning now to the problem of finding
v, we insert the expression for de,/dt given by Equation (1.56) into Equation
(1.54). The final result is

vV =es + e, ¢sinfd + el (1.59)

giving the velocity vector in terms of its components in the rotated triad.
To find the acceleration, we differentiate the above expression with
respect to time. This gives

d(re sin 6)
dt

) | g den

a =
dt dt

3

de, . . de
=eif+i—+e, +r¢smo—dt—“’+eo

dt

Upon using the previous formulas for the derivatives of the unit vectors, it
is readily found that the above expression for the acceleration reduces to

a= (¥ — rg?sin?@ — ré%e, + (rf + 270 — re?sin 6 cos ) ey
+ (r$ sin 6 + 27¢ sin 6 + 2ré¢ cos G)e, (1.60)

giving the acceleration vector in terms of its components in the triad e,ese,.

1.26. Angvlar Velocity

Let a particle, whose position vector is initially r, undergo a displace-
ment produced by a rotation through an angle 6¢ about an axis whose direction
is defined by a unit vector e, Figure 1.22. Thus the particle will move along
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an arc of a circle of radius r sin ¢ in which @ is the angle between r and e. The
magnitude of the particle’s displacement is thus |8r] = rsin 6 8¢, and the
direction of the displacement is perpendicular to both r and e. Thus we
can express the displacement vectorially as a cross product, namely

or =dpeXr
Accordingly, the velocity of the particle is given by
7= lims—l—. =de Xr (1.61)
5100 00
We now introduce the vector o defined as the product
w = ¢e
called the angular velocity. The velocity of the particle is thus expressed as
f=wXr (1.62)

We now proceed to show that angular velocities obey the rule of vector
addition. Consider the displacement caused by an infinitesimal rotation ¢,
about an axis e; followed by a second such rotation é¢, about a different axis
€. The first rotation changes the position vector r to a new position vector
r 4 6¢1 €1 X r;. Hence the net displacement due to the two rotations is

ory = 01 e X+ ddse; X (r+ odre; Xr1)

FIGURE 1.22 Displacement produced by rotation. The radius of the circular
path is 7 sin 6.
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If the angular rotations are both small enough so that we can neglect the
product ¢, 6¢», then we find upon expansion that

or = (0pr e + oz e) X T

If the order of rotations is reversed, we indeed find the same result, that is
8rp = O6ry.  In other words, the two infinitesimal rotations are commutative.
Finally, let us divide by 8¢ and take the limit, as in Equation (1.61) above.
We can then write

i'=((-)1+(-)2)x1'

for the velocity of the particle where o1 = é1€; and w; = ¢2€;. Thus the
motion of the particle can be considered to be described by a single angular
velocity

© = a + o

given by the regular rule of vector addition.

DRILL EXERCISES

1.1 Given the two vectors A =i+ jand B = j — k. Find
(a) A+ Band |A + B|
(b) A — Band |A — B|
(¢) A-B
(d) AX Band|A X B|
(e) (A + 2B)-(2A — B)
(f) (A+B)X (A-B)

12 GivenA=i+j+k B=1i+4+2jC=2j— k. Find
(a) A+B~-C
(b) A-(B+ C) and (A + B)-C
() A-(BX C)and (A X B)-C
(d) AX(BXC)and (A X B) X C

1.3 Find the angle between the vectors A=i+ j+ k and B =
i+ j. (Note: These vectors define a body diagonal and a face diagonal
of a cube.)

1.4 Given the time-varying vectors A = i coswt + jsinwf and B =
ti + 2j + £k. Find
(2) dA/dt and |dA/dt|
(b) d*B/dt? and |d*B/d|
(c) d(A-B)/dt and d(A X B)/dt
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PROBLEMS

1.5 For what values of ¢ are the two vectors A = i 4+ j + kg and
B = ig — 2j 4+ 2Kkgq perpendicular to each other?

1.6 Prove the vector identity A X (B X C) = (A-C)B — (A-B)C.

1.7 Two vectors A and B represent concurrent sides of a parallelogram.
Prove that the area of the parallelogram is |A X B.

1.8 Prove the trigonometric law of sines using vector methods.

1.9 Three vectors A, B, and C represent concurrent sides of a parallele-
piped. Show that the volume of the parallelepiped is |[A- (B X C)/|.

‘'1.10 Express the vector i 4+ j in terms of the triad i’j’k’ where the
z'z’ axes are rotated about the y axis (which coincides with the 3’ axis) through
an angle of 60°.

1.11 Show that the magnitude of a vector is unchanged by a rotation.
Use the matrix

cosf sinf O
— sinf cosf O
0 0 1

for a rotation about the z axis through an angle 6.

1.12 Find the transformation matrix for a rotation about the z axis
through an angle 6 followed by a rotation about the y’ axis through an angle ¢.

1.13 The two sets of vectors a, b, ¢, and a’, b’,"c’ are said to be reciprocal
ifa-a’ = b:-b’ = ¢-¢’ = 1 and all other mixed dot products like a-b’ = 0.
Show that ¢’ = (a X b)/Q, 2’ = (b X ¢)/Q, b’ = (c X a)/Q where =
a-(b X ¢).

1.14 Find a set of vectors that are reciproecal to the set i, j, and
i+j+k

1.15 A particle moves in an elliptical path given by the equation

r = ib cos wt + j2b sin wi

Find the speed as a function of t.

1.16 In the above problem, find the angle between the velocity vector
and the acceleration vector at time ¢ = #/4w.

1.17 The position of a particle is given in plane polar. coordinates by
r = be*, § = cf. Show that the angle between the velocity vector and the
acceleration vector remains constant as the particle spirals outward.

1.18 A particle moves on a circle of constant radius b. If the speed of
the particle varies with the time ¢ according to the equation

v = At?

for what value, or values, of ¢ does the acceleration vector make an angle of
45° with the velocity vector?
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1.19 A particle moves on a helical path such that its position, in cylin-
drieal eoordinates, is given by

R=0b ¢ = wl z=ct?

Find the speed and the magnitude of the acceleration as functions of ¢.
1.20 Show that the magnitude of tangential component of the accelera-
tion is given by the expression

a-v

“ T

and that of the normal component is
an, = (a2 —_— ar2)1/2

1.21 Use the above result to find the tangential and normal components
of the acceleration as functions of time in Problem 1.19.

1.22 Prove that v-a = »#, and hence that for a moving particle v and
a are perpendicular to each other if the speed » is constant. [Hint: Differen-
tiate both sides of the equation v-v = v? with respect to {. Remember that
v is not the same as |a|.]

1.23 Prove that

d .
E[r-(v X a)] = r-(v X a)
1.24 Prove that [v X a| = v3/p, where p is the radius of curvature of

the path of a moving particle.
1.25 By using the fact that the unit tangent vector = can be expressed as*

a
1
<l

find an expression for the unit normal vector n in terms a, a, v, v, and ¥.
1.26 A wheel of radius b is placed in a gimbal mount and is made to
rotate as follows: The wheel spins with constant angular speed «; about its
own axis which, in turn rotates with constant angular speed w, about a vertical
axis in such a way that the axis of the wheel stays in a horizontal plane and
the center of the wheel is motionless. Use spherical coordinates to find the
acceleration of any point on the rim of the wheel. In particular, find the
acceleration of the highest point on the wheel. [Hint: Use the fact that
spherical coordinates can be chosen such that r = b, § = wif, and ¢ = wsl.]



2. Newtonian Mechanics.
Rectilinear Motion
of a Particle

As stated in the introduction, dynamics is that branch of
mechanics which deals with the physical laws governing the actual motion
of material bodies. One of the fundamental tasks of dynamics is to predict,
out of all possible ways a material system can move, which particular motion
will occur in any given situation. Our study of dynamics at this point will
be based on the laws of motion as they were first formulated by Newton. In
a later chapter we shall study alternative ways of expressing the laws of motion
in the more advanced equations of Lagrange and Hamilton. These are not
different theories, however, for they can be derived from Newton’s laws.

2.1. Newton’s Laws of Motion

The reader is undoubtedly already familiar with Newton’s laws of motion.
They are as follows:

I. Every body continues in its state of rest or of uniform motion in a
straight line, unless it is compelled by a force to change that state.

I1. Change of motion is proportional to the applied force and takes place
in the direction of the force.

ITII. To every action there is always an equal and opposite reaction, or,
the mutual actions of two bodies are always equal and oppositely directed.

Let us now examine these laws in some detail.
41
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2.2. Newton’s First Law. Inertial Reference Systems

The first law describes a common property shared by all matter, namely
inertia. The law states that a moving body travels in a straight line with
constant speed unless some influence called force prevents the body from
doing so. Whether or not a body moves in a straight line with constant
speed depends not only upon external influences (forces) but also upon the
particular reference system that is used to describe the motion. The first
law actually amounts to a definition of a particular kind of reference system
called a Newtonian or inertial reference system. Such a system is one in
which Newton’s first law holds. Rotating or accelerating systems are not
inertial.  These will be studied in Chapter 4.

The question naturally arises as to how it is possible to determine whether
or not a given coordinate system constitutes an inertial system. The answer
is not simple. 1In order to eliminate all forces on a body it would be necessary
to isolate the body completely. This is impossible, of course, since there are
always at least some gravitational forces acting unless the body was removed
to an infinite distance from all other matter.

For many practical purposes not requiring high precision, a coordinate
system fixed to the earth is approximately inertial. Thus, for example, a
billiard ball seems to move in a straight line with constant speed as long as
it does not collide with other balls or hit the cushion. If the motion of a
billiard ball were measured with very high precision, however, it would be
discovered that the path is slightly curved. This is due to the fact that the
earth is rotating and so a coordinate system fixed to the earth is not actually
an inertial system. A better system would be one using the center of the
earth, the center of the sun, and a distant star as reference points. But even
this system would not be strictly inertial because of the earth’s orbital motion
around the sun. The next best approximation would be to take the center of
the sun and two distant stars as reference points, for example. It is generally
agreed that the ultimate inertial system, in the sense of Newtonian mechanies,
would be one based on the average background of all the matter in the
universe.

2.3. Mass and Force. Newton’s Second and Third Laws

We are all familiar with the fact that a big stone is not only hard to lift,
but that such an object is more difficult to set in motion (or to stop) than,
say, a small piece of wood. We say that the stone has more inertia than the
wood. The quantitative measure of inertia is called mass. Suppose we have
two bodies A and B. How do we determine the measure of inertia of one
relative to the other? There are many experiments that can be devised to

answer this question. If the two bodies can be made to interact directly with
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one another, say by a spring connecting them, then it is found, by careful ex-
periments, that the accelerations of the two bodies are always opposite in
direction and have a constant ratio. (It is assumed that the accelerations are
given in an inertial reference system and that only the mutual influence of the
two bodies A and B is under consideration.) We can express this very
important and fundamental fact by the equation

dVA dVB

G T @ Hea (2.1)

The constant ug4 is, in fact, the measure of relative inertia of B with respect
to A. From Equation (2.1) it follows that ups = 1/pap. Thus we might
express uga as a ratio

Mmp

MBA = m—A
and use some standard body as a unit of inertia. Now the ratio mg/my4
ought to be independent of the choice of the unit. This will be the case if,
for any third body C,

MBC _
;A_c = HKBA
This is indeed found to be true. We call the quantity m the mass.
Strictly speaking, m should be called the ineriial mass, for its definition
is based on the properties of inertia. In actual practice mass ratios are
usually determined by weighing. The weight or gravitational force is pro-
portional to what may be called the gravitational mass of a body. All experi-
ence thus far, however, indicates that inertial mass and gravitational mass are
strictly proportional to one another. Hence for our purpose we need not
distinguish between the two kinds of mass.
The fundamental fact expressed by Equation (2.1) can now be written
in the form
dVA dVB

My—— = —m

dat i 22)

The product of mass and acceleration in the above equation is the “change
of motion” of Newton’s second law and, according to that law, is proportional
to the force. In other words, we can write the second law as

av

where F is the force and k is a constant of proportionality. It is customary
to take £ = 1 and write!

1 In the mks system the unit of force, defined by Equation (2.4), is called the newton.
Thus a force of 1 newton imparts acceleration of 1 m per sec? to an object of 1 kg mass.
The cgs unit of force (1 g X 1 cm per sec?) is called the dyne. In engineering, a common
unit of force is the pound force which imports an acceleration of 1 ft per sec? to an objeet of
1 slug mass. (1 slug = 32 pounds mass.)
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av

F=m— 2.4
m (2.4)
The above equation is equivalent to
d(mv)
= 2.5
F dt @:5)

if the mass is constant. According to the theory of relativity, the mass of a
moving body is not constant but is a function of the speed of the body, so
that Equations (2.4) and (2.5) are not strictly equivalent. However, for
speeds that are small compared to the speed of light, 3 X 10® m/sec, the change
of mass is negligible.

According to Equation (2.4) we can now interpret the fundamental fact
expressed by Equation (2.2) as a statement that two dircetly interacting
bodies exert equal and opposite forces on one another:

Fi= —F»s

This is embodied in the statement of the third law. The forces are called
action and reaction.

There are situations in which the third law fails. If the two bodies are
separated by a large distance and interact with one another through a force
field which propagates with a finite velocity, such as the interaction between
moving electric charges, then the forees of action and reaction are not always
equal and opposite.?

One great advantage of the force concept is that it enables us to restrict
our attention to a single body. The physical significance of the idea of
force is that, in a given situation, there can usually be found some relatively
simple function of the coordinates, called the force function, which when set
equal to the product of mass and acceleration correctly describes the motion

of a body. This is the essence of Newtonian mechanics.

2,4. Linear Momentum

The product of mass and velocity is called linear momentum and is denoted
by the symbol p. Thus

p =mv (2.6)

The mathematical statement of Newton’s second law, Equation (2.5), may
then be written as

2 However, it is possible in such cases to regard the force field as a third “body’’ with
its own action and reaction. The third law thus need not be discarded. See Section 6.1
and reference cited therein.
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dp
F = A 2.7)
In words, force is equal to the time rate of change of linear momentum.
The third law, the law of action and reaction, ean be expressed con-
veniently in terms of linear momentum. Thus for two mutually interacting
bodies A and B, we have

dps _ _ dps
dt dt
or
d —
7P+ +Ps) =0
Accordingly

Pa + pr = constant

Thus the third law implies that the total linear momentum of two interacting
bodies always remains constant.

The constancy of the combined linear momentum of two mutually inter-
acting bodies is a special case of a more general rule that we shall discuss in
detail later, namely that the total linear momentum of any isolated system
remains constant in time. This fundamental statement is known as the law of
conservation of linear momentum and is one of the most basic rules of physics.
It is assumed to be valid even in those cases in which Newtonian mechanics
fails to hold.

2.5. Motion of a Particle

The fundamental equation of motion of a particle is given by the ana-
lytical statement of Newton’s second law, Equation (2.4). When a particle
is under the influence of more than one force, it may be regarded as an experi-
mental fact that these forces add vectorially, namely,

F=2F;=mW=ma (2.8)

If the acceleration of a particle is known, then the equation of motion
[Equation (2.8)] gives the force that acts on the particle. The usual problems
of particle dynamics, however, are those in which the forces are certain known
functions of the coordinates including the time, and the task is to find the
position of the particle as a funetion of time. This involves the solution of a
set of differential equations. In some problems it turns-out to be impossible
to obtain solutions of the differential equations of motion in terms of known
analytic functions, in which case one must use some method of approximation.
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In many practical applications, such as ballistics, satellite motion, and so on,
the differential equations are so complicated that it is necessary to resort to
numerical integration, often done on high-speed electronic computers, to
predict the motion.

2.6. Rectilinear Motion. Uniform Acceleration

When a moving particle remains on a single straight line, the motion is
said to be rectilinear. In this case, without loss of generality we ean choose
the = axis as the line of motion. The general equation of motion is then
written

F(x,2,8) = mi

Let us consider some special cases in which the equation can be integrated by
elementary methods.

The simplest situation is that in which the force is constant. In this
case we have constant acceleration

— = -- = constant = a

and the solution is readily obtained by direct integration with respect to time:
v=at+ v (2.9)
x = a2 + vt + 2 (2.10)

where v, is the initial velocity and v is the initial position. By eliminating
the time t between Equations (2.9) and (2.10), we obtain

2a(x — o) = v? — vt (2.11)

The student will recall the above familiar equations of uniformly ac-
celerated motion. There are & number of fundamental applications. For
example, in the case of a body falling freely near the surface of the earth,
neglecting air resistance, the acceleration is very nearly constant. We denote
the acceleration of a freely falling body by ¢. (By measurement, g = 9.8 m
per sec? = 32 ft per sec’..) The downward force of gravity (the weight) is,
accordingly, equal tomg. The gravitational force is always present, regardless
of the motion of the body and is independent of any other forces that may be
acting.?  We shall henceforth call it mg.

3 Effects of the earth’s rotation will be studied in Chapter 4.
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EXAMPLE

Consider a particle that is sliding down a smooth plane inclined at an
angle 6 to the horizontal, as shown in Figure 2.1(a). We choose the positive
direction of the z axis to be down the plane, as indicated. The component of

umg cos 0

mg sin 8

(a) (b}

FIGURE 2.1 A particle sliding down an inclined plane. (a) Smooth plane; (b)
rough plane.

the gravitational force in the z direction is equal to mg sin 8. This is a con-
stant, hence the motion is given by Equations (2.9), (2.10), and (2.11) where

F .
a—%—gsmf)

Suppose that, instead of being smooth, the plane is rough; that is, it
exerts a frictional force f on the particle. Then the net force in the x direction,
as shown in Figure 2.1(b), is equal to mg sin 8 — f. Now for sliding contact
it is found that the magnitude of the frictional force is proportional to the
magnitude of the normal force N, that is,

f=uN

where the constant of proportionality u is known as the coeffictent of sliding
friction. In the example under discussion the normal force N, as shown in
the figure, is equal to myg cos 6, hence

f = umgcos 6
Consequently, the net force in the x direction is equal to
mg sin § — pmg cos 6
Again the force is constant, and Equations (2.9), (2.10), and (2.11) apply,

where

a =— = g(sin § — pcos 8)

i
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The speed of the particle will increase if the expression in parentheses is
positive, that is, if § > tan™ p. The angle tan™! g, usually denoted by e, is
called the angle of friction. If 6 = ¢ then a = 0, and the particle slides
down the plane with constant speed. If 6 < ¢ a is negative, and so the
particle will eventually come to rest. It should be noted that for motion up
the plane the direction of the frictional force is reversed; that is, it is in
the positive z direction. The acceleration (actually deceleration) is then
a = ¢g(sin ¢ + p cos 6).

2.7. The Concepts of Kinetic and Potential Energy

It is generally true that the force that a particle experiences depends
on the particle’s position with respect to other bodies. This is the case, for
example, with electrostatic and gravitational forces. It also applies to forces
of elastic tension or compression. If the force is independent of velocity or
time, then the differential equation for rectilinear motion is simply

F(z) = mi

It is usually possible to solve this type of differential equation by one of
several methods. One useful and significant method of solution is to write
the acceleration in the following way:

_db_deds _ o

T dt dtdr dz
so the differential equation of motion may be written

2
F@) =mo % = 2400 _ 4T 2.12)

The quantity T = ims? is called the kinetic energy of the particle. We can
now express Equation (2.12) in integral form

[F(z) dz = [ dT = %mi® + constant
Now the integral [F(x) dx is the work done on the particle by the impressed
force F(z). Let us define a function ¥V (z) such that

- ‘%’ - F(z) (2.13)

The function V(x) is called the potential energy; it is defined only to within
an additive (arbitrary) constant. In terms of V(z), the work integral is

/F(x) dr = — / gdx = —V(x) 4+ constant
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Consequently we may write
T+ V =3im?+ V(z) = constant = E (2.14)

We call E the total energy. In words: For one-dimensional motion, if the
impressed force is a function of position only, then the sum of the kinetic and
potential energies remains constant throughout the motion. The force in
this case is said to be conservative.t Nonconservative forces, that is, those for
which no potential function exists, are usually of a dissipational nature, such

as friction.
The motion of the particle can be obtained by solving the energy equation

[Equation (2.14)] for v
dz '2 2.15
v“—d—t——:lz —[E—P(x)] ( )

which can be written in integral form

NEIE - V@)

thus giving ¢ as a function of z.
In view of Equation (3.21) we see that the expression for speed is real
only for those values of  such that V(z) is less than or equal to the total

Vix)

FIGURE 2.2 Graph of a potential enetgy function V(z) showing allowed region
of motion and the turning points for a given value of the total energy E.

1 A more complete discussion of conservative forces will be found in the next chapter.
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energy E. Physically, this means that the particle is confined to the region,
or regions, for which the condition V(x) < F is satisfied. Furthermore, the

speed goes to zero when V(z) = E.  This means that the particle must come
to rest and reverse its motion at those points for which the equality holds.
These points are called the turning points of the motion. The above facts
are illustrated in Figure 2.2.

EXAMPLE

The motion of a freely falling body discussed above under the case of a
constant force is a special case of conservative motion. If we choose the z
direction to be positive upward, then the gravitational force is equal to —mg,
and the potential energy function is therefore given by V = mgx + C. Here

(' is an arbitrary constant whose value depends merely on the choice of the
reference level for V. For C = 0, the total energy is just

E = imi? 4+ mgzx
Suppose, for example, that a body is projected upward with initial speed vy,
Choosing £ = 0 as the initial point of projection, we have

E = imog? = Imi? + mgx
The turning point is the maximum height attained by the body. It can be
found by setting £ = 0. Thus
FMug’ = MYTrmgz
or

h = Tmaz = 5=

The motion, as expressed by integrating the energy equation is given by

[)z (v — 2¢x)M2dx =1
1:7_0 B é(%’ = 2g2)'2 = ¢

The student should verify that this reduces to the same relation between x
and ¢ as that given by Equation (2.10) when a is set equal to —g.

2.8. The Force as a Function of Time. The Concept of Impulse

If the force acting on a particle is known explicitly as a function of time,
then the equation of motion is

dv
Fit) = m—
&) =m 2
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This can be integrated directly to give the linear momentum (and hence
velocity) as a function of the time

JF@®) dt = mo(t) + C (2.17)

in which C is a constant of integration. The integral [ F(t) dt is called the
impulse.® It is equal to the momentum imparted to the particle by the
force F(1).

The position of the particle as a function of time can be found by a
second integration as follows

x = /v(t) dt = /U’%l)dz'] dt (2.18)

It should be noted that only in the case of the force being given as a function
of ¢, is the solution of the equation of motion expressible as a simple double
integral. In all other cases, the various methods of solving second order
differential equations must be used to find the position z as a function of ¢.

EXAMPLE

A block is initially at rest on a smooth horizontal surface. Attimet = 0
a constantly increasing horizontal force is applied: F = c¢t. Find the
velocity and the displacement as functions of time.

We have, for the differential equation of motion,

t—md—v
@=mg
Then
¢ )
v=l/ctdt=—6t—
m Jo 2m
and
_ [t gt
T= Joam™ = 6m

where the initial position of the block is at the origin (x = 0).

2.9. Velocity-Dependent Force

It often happens that the force acting on a particle is a function of the
particle’s velocity. This is true, for example, in the case of viscous resistance
exerted on a body moving through a fluid. In the case of fluid resistance, it

% The use of the impulse concept will be taken up later in Chapter 6.
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is found that, for low velocities, the resistance is approximately proportional
to the velocity, whereas, for higher velocities, the resistance is more nearly
proportional to the square of ». If there are no other forces acting, the dif-
ferential equation of motion can be expressed as

dv
F@) = m—
w)y=m ot

A single integration yields ¢ as a function of »

m dv .
t= m = t(v) (2.19)

We can omit the constant of integration, since its value depends only on the
choice of the time origin. Assuming that we can solve the above equation
for », namely,

v = v(t)
then a second integration gives the position z as a function of ¢

z = [e@)dt = z() (2.20)

EXAMPLE

Suppose a block is projected with initial velocity v on a smooth horizontal
plane, but that there is air resistance proportional to »; that is, F(») = —cv,
where ¢ is a constant of proportionality. (The z axis is along the direction
of motion.) The differential equation of motion is

dv
—Cc = m—

dt
which gives, upon integrating,

t=[ _mdy _ ——Tﬁln(z)
v cv c Yo

We can easily solve for v as a function of ¢ by multiplying by —¢/m and taking
the exponent of both sides. The result is

v = pectim

Thus the velocity decreases exponentially with time. A second integration

gives
¢
= / voe—ctI™ (it
0

% (1 — getim)
c

8
|

1]
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We see, from the above equation, that the block never goes beyond the
limiting distance mwo/c.

2.10. Vertical Motion in a Resisting Medium.
Terminal Velocity

An object falling vertically through the air or through any fluid is subject
to viscous resistance. If the resistance is proportional to the first power of
v (the linear case), we can express this force as —cv regardless of the sign of »,
because the resistance is always opposite to the direction of motion. The
constant of proportionality ¢ depends on the size and shape of the object and
the viscosity of the fluid. Let us take the x axis to be positive upward. The

differential equation of motion is then
—mg—cw=m dv
g T

If g is a constant, then we have a velocity-dependent force, and we can

write
‘= mdv_/" m dv
T J F@)  Ju —mg— e

m, mg—+ cv

¢ mg+ cw

I

We can readily solve for v
b= -0y (1"59 + vo) getim (2.21)

The exponential term drops to a negligible value after a sufficient time
(t>>m/c), and the velocity approaches the limiting value —mg/c. The
limiting velocity of a falling body is called the ferminal velocity; it is that
velocity at which the force of resistance is just equal and opposite to the
weight of the body so that the total force is zero. The magnitude of the
terminal velocity is called the terminal speed. The terminal speed of a falling
raindrop, for instance, is roughly 10 to 20 ft per sec, depending on the size.

Equation (3.33) expresses v as a function of ¢, so a second integration will
give z as a function of ¢:

t 2
z — 79 = ﬁ Wt = — "L+ (% + ﬂc”—") (1= e=im)  (2.22)

Let us designate the terminal speed mg/c by v., and let us write r (which
we may call the characteristic time) for m/c. Equation (2.21) may then be
written in the more significant form

v= —v,+ (v + vo)e " (2.23)
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Thus, an object dropped from rest (v, = 0) will reach a speed of 1 — e~ times
the terminal speed in a time 7, (1 — e 2v; in a time 27, and so on. After
an interval of 107 the speed is practically equal to the terminal value, namely
0.99995 v..

If the viscous resistance is proportional to v* (the quadratic case), the
differential equation of motion is, remembering that we are taking the positive
direction upward,
—mg £ ct* = m dv

dt
The minus sign for the resistance term refers to upward motion (v positive),
and the plus sign refers to downward motion (v negative). The double sign
is necessary for any resistive force that involves an even power of v. As in
the previous case, the differential equation of motion can be integrated to
give ¢ as a function of v:

_ [ mdy Y si
t = / pp—— = —r7 tan % + & (rising)
_ [ ma _ _ S :
t = / g % o r tanh ” + & (falling)
where _
\/g = 1 (the characleristic time)
and

A }% = y, (the terminal speed)

Solving for v, fo — ¢

(rising) (2.24)

v = v, tan

’

v = —v, tanh (falling) (2.25)

If the body is released from rest at time ¢ = 0, then &’ = 0. We have then,
from the definition of the hyperbolic tangent,

! el/' —_ e—llf
v = —v;tanh; = - m

Again we see that the terminal speed is practically attained after the lapse
of a few characteristic times, for example, for { = 57, the speed is 0.99991 v,.
Graphs of speed versus time of fall for the linear and quadratic laws of resist-
ance are shown in Figure 2.3. It is interesting to note that, in both the
linear and the quadratic cases, the characteristic time r is equal to v./g. For
instance, if the terminal speed of a parachute is 4 ft per sec, the characteristic
time is 4 ft per sec/32 ft per sec? = } sec.

Equations (2.24) and (2.25) can be integrated to give explicit expressions
for z as a function of ¢.
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/ Terminal speed

Linear resistance

Quadratic resistance

i ) 1 1 |
0 T 27 3r r

FIGURE 2.3 Graphs of speed versus time of fall for a body subject to linear
and quadratic air resistance.

2.11. Variation of Gravity with Height

In the previous section we considered g to be constant. Actually, the
gravitational attraction of the earth on a body above the surface falls off as
the inverse square of the distance (Newton’s law of gravity).® Thus the
gravitational force on a body of mass m is

GMm
1”2
where @ is the gravitational constant, M the mass of the earth, and r the
distance from the center of the earth to the body. . It can be seen by inspec-
tion that this type of force is given by an inverse-first-power potential energy
function

F= —

M
V) = —
where F = — 0V /ér.
If we neglect air resistance, the differential equation for vertical motion is
mr = — ngm (2.26)

Writing » = 7dr/dr, we can integrate with respect to r to get
1 GMm

~mi? —
2

=F (2.27)
T

¢ We shall study Newton’s law of gravity in more detail in Chapter 5.
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in which E is the constant of integration. This is in fact just the energy equa-
tion: the swq of the kinetic energy and the potential energy remains constant
throughout the motion of a falling body.

Let us apply the energy equation to the case of a projectile shot upward
from the surface of the earth with initial speed . The constant E is then
given by the initial condition

1 GMm

5m_voz _ =K (2.28)

Te
where r, is the radius of the earth. The speed at any height z is then found
by combining Equations (2.27) and (2.28). The result is

1 1
02 = v + 2GM( - ——) (2.29)
re+2x T,
where r = r. + 2. Now the acceleration of gravity at the carth’s surface is,
from Equation (2.26), oM
0=
The formula for the speed can then be written as
-1
2 = oF — 2z (1 + ;) (2.30)

The above equation reduces to the familiar formula for a uniform gravitational
field = v — 297

if x is very small compared to r. so that the term x/r. can be neglected in
comparison with unity.

The turning point of the motion of the projectile, that is, the maximum
height attained is found by setting ¥ = 0 and solving for z. The result is

ve? vo? -
= h = — - 31
Tmaz h 29 1 297'.) (2 3 )
Again we get the usual formula R
h=2
2g

if the second term can be ignored.

Finally, let us apply the exact formula (2.31) to find the value of v, that
gives an infinite value of h. This is called the escape speed, and it is clearly
found by setting the quantity in parentheses equal to zero. The result is

e = 2 e 1z
This gives v (2r.)
v, >~ 7 mi/sec ~ 11 km/sec
for the numerical value of the escape speed from the surface of the earth.

In the earth’s atmosphere, the average speed” of air molecules (O, and

N:) is about 0.5 km per see, which is considerably less than the escape speed,

" According to kinetic theory, the average speed of a gas molecule is equal to (3T /m)**
where k = Boltzmann’s constant = 1.38 X 1071 erg per degree, T is the absolute tempera~
ture, and m is the mass of the molecule,
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so the earth retains its atmosphere. The moon, on the other hand, has no
atmosphere, because the escape speed at the moon’s surface, owing to the
moon’s small mass, is considerably smaller than that at the earth’s surface;
any oxygen or nitrogen would eventually disappear. The earth’s atmosphere,
however, contains no significant amount of hydrogen, even though hydrogen
is the most abundant element in the universe as a whole. A hydrogen
atmosphere would have escaped from the earth long ago, because the molecu-
lar speed of hydrogen is large enough (owing to the small mass of the hydrogen
molecule) so that a significant number of hydrogen molecules would have
speeds exceeding the escape speed at any instant.

2.12. Llinear Restoring Force. Harmonic Motion

One of the most important cases of rectilinear motion, from a practical
as well as from a theoretical standpoint, is that produced by a linear restoring
force. This is a force whose magnitude is proportional to the displacement
of a particle from some equilibrium position and whose direction is always
opposite to that of the displacement. Such a force is exerted by an elastic
cord or by a spring obeying Hooke’s law

= —k(X —a) = —kx (2.32)

where X is the total length, and a is the unstretched (zero load) length of the
spring. The variable z = X — a is the displacement of the spring from its
equilibrium length. The proportionality constant k is called the stiffness.
Let a particle of mass m be attached to the spring, as shown in Figure 2.4(a);
the force acting on the particle is that given by Equation (2.32). Let the

7. /7.

Equilibrium
o position
x | Eaiibrm o
7 pos
7 a x X
‘ m
—L m

(a) (b)

FIGURE 2.4 Illustrating the linear harmonic oscillator by means of a block of
mass m and a spring. (a) Horizontal motion; (b) vertical motion.
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same soring be held vertically, supporting the same particle, as shown in
Figure 2.4(b). The total force now acting on the particle is

= —k(X — a) + mg (2.33)

where the positive direction is downward. Now, in the latter case, let us
measure z relative to the new equilibrium position; that is, let £ = X —
a — mg/k. This gives again F = —kz, and so the differential equation of
motion in either case is

mi + kz = 0 (2.34)

The above differential equation of motion is met in a wide variety of physical
problems. In the particular example that we are using here, the constants
m and k refer to the mass of a body and to the stiffness of a spring, respectively,
and the displacement z is a distance. The same equation is encountered, as
we shall see later, in the case of a pendulum, where the displacement is an
angle, and where the constants involve the acceleration of gravity and the
length of the pendulum. Again, in certain types of electrical circuits, this
equation is found to apply, where the constants represent the circuit parame-
ters, and the auantity z represents electric current or voltage.

Equation (2.34) can be solved in a number of ways. It is one example of
an important class of differential equations known as linear differential equa-
tions with constant coefficients.® Many, if not most, of the differential equations
of physics are second-order linear differential equations. To solve Equation
(2.34) we shall employ the trial method in which the function Ae?! is the trial
solution where ¢ is a constant to be determined. If r = Ae? is, in fact, a
solution, then for all values of ¢{ we must have

2
m ‘%2 (Aest) + k(Aew) =0

which reduces, upon canceling the common factors, to the equation’®

mgt + k =0

N
q = 1 "”ﬁ— 1w

8 The general nth-order equation of this type is

drz d*z dx
C'Et:-'- o e +C:ﬁ+cla + ¢o = b(t)

that is

The equation is called homogeneous if b = 0.
9 This equation is called the auziliary equation.
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where ¢ = V' —1, and wy = Vk/m. Now, for linear differential equations,
solutions are a,ddmve. (That is, if fi and f, are solutions. then the sum
Ji + f2 is also a solution.) The general solution of Equation (2.34) is then

T = Ageit - A_giat (2.35)
Since e® = cos u + 1 sin u, alternate forms of the solution are
Z = asin wpt + b cos wet (2.36)
or
z = A cos (wt + 6) T2.37)

The constants of integration in the above solutions are determined from the
initial conditions. That all three expressions are solutions of Equation (2.34)
may be verified by direct substitution. The motion is a sinusoidal oscillation
of the displacement x. For this reason Equation (2.34) is often referred to as
the differential equation of the harmonic oscillator or the linear oscillator.
The coefficient wy is called the angular frequency. The maximum value
of z is called the amplitude of the oscillation; it is the constant 4 in Equation
(2.37), or (a® 4+ b*)'2 in Equation (2.36). The period Ty of the oscillation
is the time required for one complete cycle, as shown in Figure 2.5; that is,

FaNaY
vy,

FIGURE 2.5 Graph of displacement versus time for the harmonic oscillator.

X

the period is the time for which the product wt increases by just 2, thus

2 m
To= = 27r\/}: (2.38)

The linear frequency of oscillation f, is defined as the number of cycles in unit
time, therefore

W = 27l’f0

and
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1 1 Jjk

fo = _T‘_) P g E (2.39)

1t is common usage to employ the word “frequency” for either the angular or
the linear frequency; which one is meant is usually clear from context.

EXAMPLE

A light spring is found to stretch an amount b when it supports a block
of mass m. If the block is pulled downward a distance [ from its equilibrium
position and released at time ¢t = 0, find the resulting motion as a function
of t. First, to find the spring stiffness, we note that in the static equilibrium
condition

F=—kb= -mg
so that

_m
k_b

Hence the angular frequency of oscillation is

k
e BN

In order to find the constants for the equation of motion

z = A cos (wo + )
we have
x =1 and £=0
at time ¢ = 0. But
£ = —Auwpsin (wet + 8p)
Thus

80
is the required expression.

2.13. Energy Considerations in Harmonic Motion

Consider a particle moving under a linear restoring force F = kz. Let
us calculate the work W done by an external force F, in moving the particle
from the equilibrium position (z = 0) to some position z. We have F, =
—F = kz, and so
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W=/Fadx=/l(kx)dx=l—cx?
A 3

The work W is stored in the spring as potential energy

Viz)=W =I§x2

61

(2.40)

Thus F = —dV/dx = —kz as required by the definition of V, Equation
(2.13). The total energy E is then given by the sum of the kinetic and

potential energies as

E = imi? + Yka?

We can now solve for the velocity as a function of displacement

2E  k _\"
- (-
m m

This can be integrated to give ¢ as a function of z as follows:

dz m  fx
L= / V@E/m) — (i/m)zt ‘g“‘” (Z) +C

in which

(2.41)

FIGURE 2.6 Graph of the potential energy function of the harmonic oscillator.
The turning points defining the amplitude are shown for two values of the total
energy.
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and C is a constant of integration. Upon solving the integrated equation
for = as a function of ¢, we find the very same relationship as that found in
the previous section, except that we now obtain an explicit value for the
amplitude A. We could also have found the amplitude directly from the
energy equation (2.41) by noting that z must lie between V 2E/k and
—WV2E/k in order for z to be real. This is illustrated in Figure 2.6 which
shows the potential energy function and the turning points of the motion for
different values of the total energy E.

From the energy equation we see that the maximum value of &, which
we shall call v,,4:, occurs when z = 0, and so we have

B = Imupe? — 3kA?
\/gn A= wd

2.14. Damped Harmonic Motion

or

vmaz

The above analysis of the harmonic oscillator is somewhat idealized in
that we have failed to take into account frictional forces. They are always
present in a mechanical system to some extent. Analogously, there is always
a certain amount of resistance in an electrical circuit. Let us consider, for
example, the motion of an object that is supported by a spring of stiffness k.
We shall assume that there is a viscous retarding force varying linearly with
the speed (as in Section 2.8), that is, such as is produced by air resistance.
The forces are indicated in Figure 2.7.

V7. I/ 1111444774774

Equitibrium
position

X gy

FIGURE 2.7 The damped harmonic oscillator.
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If z is the displacement from the equilibrium position, then the restoring
force exerted by the spring is —kx, and the retarding force is —c& where ¢
is a constant of proportionality. The differential equation of motion F = mi
is therefore —kx — ci = mi or, by rearranging terms,

mi + ci + kx = 0 (2.42)

Again, as before, we shall use as a trial solution the exponential function
Aest. This is a solution if

mad;? (Aet) + c;,i—t (Aevt)y + k(Ae) = 0

for all . This will be the case if ¢ satifies the auxiliary equation
mg¢+cg+k=20

The roots are given by the well-known quadratic formula

—c¢ =+ (¢t — 4mk)1/?
q= ( om ) (2.43)

There are three physically distinet cases:

I. ¢ > 4mk overdamping
I1I. ¢ = 4mk critical damping
IHI. ¢ < 4mk underdamping

1. For the first case, let us call —y; and —v2 the two real values of ¢
given by Equation (2.43). The general solution may then be written

r = Ale_"” + Aze_”t (244)

We see that the motion is nonoscillatory, the displacement z decaying to zero
in an exponential manner as time goes on, as shown in Figure 2.8.

/ Overdamped

Critically
damped

o t

FIGURE 2.8 Graphs of displacement versus time for the overdamped and the
critically damped cases of the harmonic oscillator.
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II. In the case of critical damping the two roots are equal, so Equation
(2.44) does not represent a general solution since there is really only "one
function e~ and only one constant A; + A,, wherc v = ¢/2m. To find the
general solution in this case we can go back to the original differential equa-
tion of motion (2.42). For equal roots this equation can be factored as

()
dai ) \ae V)T

We now make the substitution v = vz -+ dz/dt which then gives

oo
a)v s

This is easily integrated to give u = Aie~*". Hence, from the definition of
u, yx + dz/dt = Aye=7* which can also be written

d d .
Ay = ("ym + (f) e = o, (we™)

A second integration with respect to ¢ then gives Ay = xe?® — A,, or finally
x = e (A + Ap) (2.45)

This also represents a nonoscillatory motion, the displacement z decaying to
zero asymptotically with time, Figure 2.8. Critical damping produces an
optimum return to the equilibrium position for applications such as galva-
nometer suspensions and so on.

III. If the resistance constant ¢ is small enough so that ¢z < 4mk, we
have the third case: underdamping. In this case ¢ is complex. The two
roots of the auxiliary equation are conjugate complex numbers, and the
motion is given by the general solution

T = A+e(—'y+iw1)t + A_ety—iwnt (2,46)
where v = ¢/2m, and
k 2 -
o= A= s = Vel — 7 (2.47)
x = e "(a sin wit + b cos wit) (2.48)

wherea = 4(4; — A_)and b = A, + A_. We can also write the solution as
x = Ae cos (wi + ) (2.49)

where A = (a* 4 b?)'2 and 6, = —tan™ (b/a).

The real form of the solution shows that the motion is oscillatory, and
that the amplitude Ae~7¢ decays exponentially with time. Further, we note
that the angular frequency of oscillation w, is less than that of the undamped
oscillator wo. The frequency w is called the natural frequency.
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In the case of weak damping, that is if ¥ is very small compared to «wy,
we have the approximate relation

72

w1 ™ wy — 2—'0)0 (250)
which is obtained by expanding the right side of Equation (2.47) by the
binomial theorem and retaining only the first two terms.

A plot of the motion is shown in Figure 2.9. From Equation (2.49) it
follows that the two curves z = Ae~ 7t and £ = .— Ae™* form an envelope of
the curve of motion, since the cosine factor takes values between +1 and —1,
including +1 and —1, at which points the curve of motion touches the
envelope. The points of contact are thus separated by a time interval of
one-half period, or 7/w;, but these points are not quite the maxima and minima,
of the displacement x. It is left to the student to find the values of ¢ at
which the displacement does assume its extreme values.

FIGURE 2.9 Graph of displacement versus time for the underdamped har-
monic oscillator.

Energy Considerations

The total energy of the damped harmonic oscillator is, at any instant,
equal to the sum of the kinetic energy 3mi? and the potential energy 3kz?:

E = lma? + $ka?
We found this to be constant for the undamped oscillator. Let us differentiate

the above equation with respect to ¢ to find the time rate of change of E.
We have

‘% = mii + kiz = (m& + kz)s
But, from the differential equation of motion, Equation (2.42),
mi + kxr = —ci
Consequently,
L = —ci? (2.51)

dt
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This is always negative and represents the rate at which the energy is being
dissipated into heat by friction.

EXAMPLES

1. A particle of mass m is attached to a spring of stiffness k. The

damping is such that v = wo/4. Find the natural frequency. From Equa-
tion (2.47), we find

N \/E_\/E\/E
! T8 T V16T Vm\16
2. In the above problem, find the ratio of the amplitudes of two successive
oscillations. This ratio, from the previous theory, is given by

Ae 1

= e—'YTl
A
where
roo1_ 2
. 1 w
Hence, in our problem . -
2r 16 2x [16
Tl = — —_— —_
wo V15 4y N15
or
r |16
7T1 = é TB = 1.56

Hence the ratio of two successive swings is 715 = (.21.
2.15. Forced Harmonic Motion. Resonance

In this section we shall study the motion of a damped harmonic oscillator
that is driven by an external harmonic force, that is, a force that varies sinusoi-
dally with time. Suppose this applied force F..; has an angular frequency o
and a certain amplitude F,, so that we could write

F. = Focos (wt + 6)
We shall find it convenient, however, to use the exponential form

Fox = FDei(w’+a)
rather than the trigonometric, although either can be used.® The total force,
then, will be the sum of three forces: the elastic restoring force —kz, the
viscous damping force —eci, and the external force F... The differential
equation of motion is therefore

—kx — ¢t 4 Foy = mi
or

mi + ¢k + kx = F.y = Fpeitot+® (2.52)
10 The exponential form is equivalent to writing Fex = Focos (wt + 6) + 2Fs X

sin (ot + 68). The resulting differential equation is satisfied if the real and the imaginary
parts on both sides of the equation are equal.
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The solution of the above linear differential equation is given by the sum of
two parts, the first being the solution of the homogeneous equation mi +
¢t + kx = 0, which we have already solved in the previous section; the
second being any particular solution. As we have seen, the solution of the
homogeneous equation represents an oscillation which eventually decays to
zero—it is called the transient term. We are interested in a solution that
depends on the nature of the applied force. Since this force is constant in
amplitude and varies sinusoidally with time, we can reasonably expect to
find a solution for which the displacement z also has a sinusoidal time de-
pendence. Therefore, for the steady-state condition, we shall try a solution
of the form
T = Agitwt+o")

If this “guess’ is correct, we must have

m (Eil;_? [Aei(wt+0/)] +c (% [Ae(iwt+0’)] + kAeiwttt) = P oilwt+s)

hold for all values of t. This reduces, upon performing the indicated opera-
tions and canceling the common factors, to

—mu?d + iwcAd + kA = Fe’®¢ = Fylcos (§ — ') + 7 sin (8 — ')}
Equating the real and the imaginary parts, we have
Ak — mo?) = Focos ¢ (2.53)
cwdA = Fysin ¢ (2.54)
where the phase difference or phase angle § — ¢’ is denoted by ¢. Upon

dividing the second equation by the first and using the identity sin ¢/cos ¢ =
tan ¢, we obtain o
tan ¢ = T — mat (2.55)
By squaring both sides of Equations (2.53) and (2.54) and adding and employ-
ing the identity sin® ¢ + cos? ¢ = 1, we find

Ak — mw?)? 4+ Al = F¢?

Solving for A, the amplitude of the steady-state oscillation, yields

Fy .
A= 2.56
vV (k — mw?)? + ct? ( )

In terms of the abbreviations wy = \/k/m and v = ¢/2m, we can write

_ 2w -
tan ¢ = P (2.57)

and
A Fo/m (2.58)

= \/(wo2 _ w2)2 + 4y20?
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The above equation relating the amplitude A to the impressed driving fre-
quency  is of fundamental importance. A graph, Figure 2.10, shows that A
assumes & maximum value at a certain frequency w,, called the resonant
frequency.

1A|

M ¢ =18mw,
2) ¢ =1/16 mw,

1 i 1 1 1

w, 2w, w

FIGURE 2.10 Graphs of amplitude versus driving frequency.

To find the resonant frequency, we calculate d4 /dw from Equation (2.58)
and set the result equal to zero. Upon solving the resulting equation for w,
we find that the resonant frequency is given by

w = w = (w? — 2912 (2.59)

In the case of vﬁgk damping, that is, when the damping constant ¢ is very
small, ¢ < 2 Vv mk, or, equivalently, if v < w,, then we see that the resonant
frequency o, is very nearly equal to the frequency of the freely running
oscillator with no damping wy. If we expand the right side of Equation (2.59)
by the binomial theorem and retain only the first two terms, we get
,YZ

o am— T (2.60)
Equations (2.59) and (2.60) should be compared to Equations (2.47) and
(2.50), which give the frequency of oscillation w; of the freely running oscillator
with damping. Let e denote the quantity 4%/ws. Then we may write

w1 wy — € (2.61)

for the approximate value of the natural frequency, and
Wy ™ wy — € (2.62)

for the approximate value of the resonant frequency
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The steady-state amplitude at the resonant frequency, which we shall
call A ..z, is obtained from Equations (2.58) and (2.59). The result is

F o/ m _ F 0
2’7\/0-‘02—‘? cVod — vt
In the case of weak damping, we can neglect v* and write

F, ﬂ
2ymwy  Cwo

Amaz =

Ama:

Thus the amplitude of the induced oscillation at the resonant condition
becomes very large if the damping constant ¢ is very small, and conversely.
In mechanical systems it may, or may not, be desirable to have large resonant
amplitudes. In the case of electric motors, for example, rubber or spring
mounts are used to minimize the transmission of vibration. The stiffness of
these mounts is chosen so as to ensure that the resulting resonant frequency
is far from the running frequency of the motor.

The sharpness of the resonance peak is frequently of mterest Let us
consider the case of weak damping ¥ < wo. Then in the expression for
steady-state amplitude, Equation (2.58), we can make the following
substitutions:

@ — @ = (wo + w)(wo — w)
~ 2wp{wy — w)
YW = Ywo

These, together with the expressmn for A,m, allow us to wnte the amplitude
equation in the form

Amas’Y
A= — 2.63
V(e — @) + 7 (2.68)

The above equation shows that when |wy — w| = 7, or equivalently, if

w=w £ v
then
A? = %Amazz

This means that v is a measure of the width of the resonance curve. Thus
27 is the frequency difference between the points for which the energy is down
by a factor of § from the energy at resonance, because the energy is proportional
to A%, This is illustrated in Figure 2.10.

Another way of designating the sharpness of the resonance peak is in
terms of a parameter @ called the quality factor of a resonant system. It is
defined as

= 9 .64
Q=5 (2.64)

or, for weak damping
Q~2 ' (2.65)
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Thus the width Aw at the half-energy points is approximately

Aw = 2y ~ g
or, since w = 2nf,
Aw Af 1
— = 2.66
Wo fo Q ( )

giving the fractional width of the resonance peak.

Electrically driven quartz crystal oscillators are used to control the fre-
quency of radio broadcasting stations. The @ of the quartz crystals in such
applications is of the order of 104 Such high values of @ ensures that the
frequency of oscillation remains accurately at the resonance frequency.

The phase difference ¢ between the applied driving force and the response
is given by Equation (2.57). This equation is plotted in Figure 2.11 showing

(1) ¢ =18 mw,

w2 {2) ¢ =1/16 mew,

1 I 1 1

|
w, 2w, w

FIGURE 2.11 Graphs of phase angle versus driving frequency.

¢ as a function of w. We see that the phase difference is small for small w,
s0 the response is in phase with the driving force. At the resonance frequency,
¢ has increased tor/2 and thus the response is 90° out of phase with the driving
force at resonance. Finally, for very large values of w, the value of ¢ ap-
proaches 7, hence the motion of the system is just 180° out of phase with the
driving force.

Electrical-Mechanical Analogs

When an electric current flows in a circuit comprised of inductive,
capacitative, and resistive elements, there is a precise analogy with a moving
mechanical system of masses and springs with frictional forces of the type
studied previously. Thus if a current ¢ = dg/dt (¢ being the charge) flows
through an inductance L, the potential difference across the inductance is Lg
and the stored energy is $1.¢2.. Hence inductance and charge are analogous
with mass and displacement, respectively, and potential difference is analo-
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gous with force. Similarly, if a capacitance C carries a charge g, the potential
difference is C~1¢ and the stored energy is 2C~'¢2. Consequently we see that
the reciprocal of (' is analogous with the stiffness constant of a spring. Ti-
nally, for an electric current ¢ flowing through a resistance R, the potential
difference is R = ¢R, and the rate of energy dissipation is 2R = @R in
analogy with the quantity ci® for a mechanical system, Equation (2.51).
Table 2.1 summarizes the situation.

TABLE 2.1
Mechanical Electrical

z  Displacement q Charge

£ Velocity g =1 Current

m Mass L Inductance

k  Stiffness c Reciproceal of capacitance

¢ Damping resistance R Resistance

F Force 14 Potential difference
EXAMPLES

1. Determine the resonance frequency and the quality factor for the
damped oscillator of Example 1, p. 66. We have

02 — 272)”2

w':((ioz_zw )/
i

for the resonance frequency in angular measure. The quality factor is given
by

@r _ wo(%)w _ \/i _

= 5y = S(an/d) 2 g= 1.87

2. If the applied frequency is wo/2 for the above oscillator, find the phase
angle ¢. From Equation (2.57), we have

_ 2(wo/H)(w0/2) _ %

Hence
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2.16. Motion Under a Nonsinusoidal
Periodic Driving Force

In order to determine the motion of a harmonic oscillator subject to a
periodic, but nonsinusoidal, driving force, it is necessary to employ a more
involved method than that of the previous section. In this more general
case it is convenient to use the principle of superposition. This principle
states that if the applied force F(?) that acts on a harmonie oscillator can be
expanded into a sum

F@©) = ) Fat)

such that the differential equations
mi, + ¢, + kx, = F,(t)
are individually satisfied by the functions
Zn = Za(l)
then the differential equation

mé + ci + kx = F(f) = z Fa()

is satisfied by the function
T = Ex,.(t)

That the above theorem is valid follows immediately from the linearity of the
differential equation of motion.

In particular, when the driving force F(t) is periodic of angular frequency
w, it can be resolved into a Fourier series.”  According to the theory of Fourier
series, we can express F(t) as a sum of sine and cosine terms, or alternatively,
it can be written as a sum of complex exponentials, namely,

) = EF,,eiw (n=0,£1, £2, .. )

The coeflicients are given by
— w —inwt
F, = o /F (t)e dt

The limits of integration are t = —x/w to t = +x/w.

As in the previous section, the actual motion is given by the sum of two
parts, namely, a transient term, which we shall neglect, and a steady-state
solution

z(t) = Ao + Ase™ 4 Aget + - . . (2.67)

1 See any standard textbook on Fourier methods.
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The first term A, is a constant whose value depends on the form of F(t).
For a symmetrical driving force it has the value zero. The second term
gives the response of the driven oscillator at the fundamental frequency w.
The third term is the response at the second harmonic 2w of the applied force,
and so on.

We can use the theory of the previous section to find the amplitudes A4,
in terms of the coefficients F,. Thus, from Equation (2.58) we have

F./m
L \/(w02 — nzwz)z + 472n2w2

From the above analysis, we see that the final steady-state motion is periodic
and that the particular harmonic nw that is nearest to the resonant frequency
wr has the greatest amplitude. In particular, if the damping constant v is
very small and if the resonant frequency happens to coincide with one of the
harmonics of the driving force so that, for some value of n, we have

A (2.68)

Wy = NW

then the amplitude A, at this harmonic will be greatly dominant. Conse-
quently the resulting motion of the oscillator may be very nearly sinusoidal
even if a nonsinusoidal driving force is applied.

" DRILL EXERCISES

2.1 A particle of mass m is initially at rest. A constant force Fy is
suddenly applied at time ¢ = 0. After a time {, the force suddenly doubles
to the value 2F, and remains constant thereafter. Find the speed of the
particle and the total displacement at time 24,

2.2 Find the velocity » and the position z as functions of ¢ for a particle
of mass m which starts from rest at time ¢ = 0 and subject to the following
forces:

(a) F = F,
(b)) F = Fy+ bt
(¢) F = Fycos wt
(d) F = ki

2.3 Find the velocity » as a function of the displacement z for a par-
ticle of mass m which starts from rest at z = 0 and subject to the following
forces:

(a) F = Fo + kx
(b) F = Foe**
(¢) F=Fo+ v

2.4 The force acting on a particle varies with the distance x according

to the power law

F(x) = —kar
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(a) Find the potential energy function.
(b) If v = vo at time ¢ = 0 and x = 0, find » as a function of z.
(¢) Determine the turning points of the motion.

PROBLEMS

2.5 A particle of mass m is initially at rest. A constant force F, acts
on the particle for a time #. The force then increases linearly with time
such that after an additional interval ¢, the force is equal to 2F,. Show that
the total distance the particle goes in the total time 2¢ is (13/6)Fls2/m.

2.6 A block is projected up an inclined plane with initial speed v,. If
the inclination of the plane is 6, and the coefficient of sliding friction between
the plane and the block is g, find the total time required for the block to
return to the point of projection. For what value of u will the block just
come to rest as it returns to the initial point?

2.7 A block slides on a horizontal surface which has been lubricated
with heavy oil such that the block suffers a viscous resistance that varies
with speed v according to the equation

F@) = -

If the initial speed is v, at time ¢ = 0, find v and the displacement z as func-
tions of the time ¢. Also find v as a function of z. In particular, show that
for n = %, the block will not travel further than 2mue®/2/3c.

2.8 A particle of mass m is released from rest a distance b from a fixed
origin of force that attracts the particle according to the inverse square law

F(z) = —kx?
Show that the time required for the particle to reach the origin is

mb*\?
" <'§l?)

2.9 Find the relationship between the distance of fall and the speed
for a falling body released from rest and subject to air resistance that is
proportional to (a) the velocity and (b) the square of the velocity.

2.10 A projectile is fired vertically upward with initial speed v,. As-
suming that the air resistance is proportional to the square of the speed, show
that the speed that the projectile has when it hits the ground on its return is

Vol
(1)02 _+_ vt2)1I2
in which 12
. my
v¢ = terminal speed = (_g)
¢
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2.11 The velocity of a particle of mass m varies with the displacement x
according to the equation
b

P =

Find the force acting on the particle as a function of «.

2.12 Given that the force acting on a particle is the product of a function
of the distance and a function of the velocity: F(z,v) = f(x)g(»). Show that
the differential equation of motion can be solved by integration. If the force
is a product of a function of distance and a function of time, can the equation
of motion be solved by simple integration? Can it be solved if the force is a
produect of a function of time and a function of velocity?

2.13 The force acting on a particle of mass m is given by

F = kvx

in which k is a constant. The particle passes through the origin with speed
v at time ¢t = 0. Find z as a function of .

2.14 A particle executing simple harmonic motion of amplitude A passes
through the equilibrium position with speed v. What is the period of
oscillation?

2.15 Two particles of mass m; and ms, respectively, undergo simple
harmonic motion of amplitude 4, and A,. If the total energy of particle 1
is twice that of particle 2, what is the ratio of their periods: 7'y/T5?

2.16 A particle undergoing simple harmonic motion has a speed v
when the displacement is 21 and a speed v: when the displacement is ..
Find the period and the amplitude of the motion in terms of the quantities
given.

2.17 Two springs having stiffness k; and k., respectively, are used in a
vertical position to support a single object of mass m. Show that the angular
frequency of oscillation is [(k: + k2)/m]'? if the springs are tied in parallel,
and {kiks/ (k1 + koym]"? if the springs are tied in series.

2.18 A spring of stiffness k supports a box of mass M in which is placed
a block of mass m. If the system is pulled downward a distance d from the
equilibrium position and then released, find the force of reaction between the
block and the bottom of the box as a function of time. For what value of d
will the block just begin to leave the bottom of the box at the top of the vertical
oscillations? Neglect any air resistance.

2.19 Show that the ratio of two successive maxima in the displacement
of a damped harmonic oscillator is constant. [Note: The maxima do not
occur at the points of contact of the displacement curve with the curve Ae—74.)

2.20 Given that the amplitude of a damped harmonic oscillator drops
to 1/e of its initial value after n complete cycles. Show that the ratio of
period of oscillation to the period of the same oscillator with no damping is

given by 12
—71=(1+ 1) ~1 4 !

To 47n? 8min?
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2.21 The terminal speed of a freely falling ball is »,. When the ball is
supported by a light elastic spring the spring stretches by an amount x,.
Show that the natural frequency of oscillation of the system is given by

o =L 2L
Zo 4012
in which a linear law of air resistance is assumed.

2.22 Show that the energy of the above system drops to 1/e¢ of its
initial value in a time »,/g.

2.23 Show that the driving frequency w, for which the amplitude of a
driven harmonic oscillator is one-half the amplitude at the resonant frequency,
is approximately wo &= v V/3.

2.24 Find the driving frequency for which the speed of the forced har-
monic oscillator is greatest. [Hint: Maximize the quantity vme = «A (0).]

2.25 Show that the quality factor Q of a driven harmonic oscillator is
equal to the factor by which the response at zero driving frequency must be
multiplied to give the response at the resonance frequency.

2.26  Solve the differential equation of motion of the harmonic oscillator
subject to a damped harmonic driving force of the form

Fery = Foem 2t cos (wf)

2.27 Show that the Fourier series for a periodic “square wave’’ is

J@) = ;[sin (wf) + % sin (3wt) + %sin (5wt) + - - ]

where

fit) = +1 for O0<ow <7 2r <ow < 3r, andsoon
f) = —1 for T <ol <27 31 < wt<4m, andsoon

2.28 Use the above result to find the steady-state motion of a damped
harmonic oscillator that is driven by a periodic square-wave force of amplitude
Fq. In particular, find the relative amplitudes of the first three terms A4, As,
and As of the response function z(f) in the case that the third harmonie, 3w,
of the driving frequency coincides with the resonance.frequency of the oscil-
lator. Let the quality factor Q@ = 100.



3. General Motion of a
Particle in Three
Dimensions

We turn our attention now to the general case of motion
of a particle in space.

3.1. Linear Momentum

We have already seen that the vectorial form of the equation of motion
of a particle is

_adp
F =

or, equivalently
d
F == (mv) (3.1

This is essentially an abbreviation for three component equations in which
the force components may involve the coordinates, their time derivatives,
and the time. Unfortunately, no general method exists for finding analytical
solutions in all possible cases. However, there are many physically impor-
tant special types of force functions for which the differential equations of
motion can be attacked by relatively simple methods. Some of these will
be studied in the sections to follow.

In those cases where F is known as an explicit function of time, the
momentum p can be found by finding the impulse, that is, by integrating
with respect to time, as in the one-dimensional case, namely

77
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JF@) dt = pt) = mv(?) (3.2)
Similarly, a second integration will yield the position
fv(®) dt = r() (38.3)

Although the above method is perfectly valid, it is not a typical situa-
tion in particle dynamics that the force is known in advance as a function
of time. Of course, in the special case of zero force, the momentum and
velocity are constant and the preceding equations hold. We shall have
occasion to discuss the concept of constant momentum under zero force in
a more general form later when we take up the study of systems of particles
in Chapter 6.

3.2. Angular Momentum

Consider the general equation of motion of a particle F = dp/di. Let
us multiply both sides by the operator r X to obtain

ap
F = =
rX rxdt

The left-hand side of the above equation is, by definition, the moment of the
force about the origin of the coordinate system. The right-hand side turns
out to be the time derivative of the quantity r X p. To prove this state-
ment we differentiate

d—(rx ) =vX +r><@
dt p)= P dt
ButvX p=vXmv=mvXv=0 Thus, we can write

d
rXF=(—Z—t(rXp) (3.4)

The quantity r X p is called the angular momentum of the particle about
the origin. Our result, stated in words, is that the time rate of change of the
angular momentum of a particle is equal to the moment of force acting on the
particle.

The important concept of angular momentum will be found to be par-
ticularly useful in the study of planetary-type motion which we shall take
up in Chapter 5, and in the study of systems of particles and rigid bodies,
Chapters 6-9.
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3.3. The Work Principle

In the general equation of motion let us take the dot product of both sides
with the velocity v
_d _ d(mv)
Feov = Y= v
Now from the rule for differentiation of a dot product, we have d(v-v)/dt =
2v-dv/dt. Hence, if we assume that the mass m is constant, we see that the
above equation is equivalent to

F.v—i(l . —ﬂ
B AVERAAS BulrT (3.5)

in which we have introduced the kinetic energy T' = 3mw2. Further, since
vdt = dr, we can integrate to obtain

[F-dr = [dT (3.6)

Now the left-hand side of the above equation is a line integral. It represents
the work done on the particle by the force F as the particle moves along the
path of motion. The right-hand side is just the net change in the particle’s
kinetic energy. Hence the equation merely states that the work done on the
particle 1s equal to the increment in the kinetic energy.

3.4. Conservative Forces and Force Fields

Generally, the value of a line integral, the work in this case, depends on
the path of integration, see Figure 3.1 In other words, the work done usually
depends on the particular route the particle takes in going from one point to

8

dr

A
FIGURE 3.1 The work done by a force F is the line integral [F - dr.
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another. This means that if we were given the problem of calculating the
value of the work integral we would normally need to know the path of motion
of the particle beforehand. However, the usual kinds of problems that are
of interest in particle dynamics are those in which the path of motion is not
known in advance, rather, the path is one of the things to be calculated. It
would appear then that the work principle expressed by Equation (3.6)
might not prove very useful for our purposes. However, it turns out that
the work principle is indeed very useful in the study of the motion of a particle
under the action of a particular kind of force known as conservative force.
Fortunately, many of the physically important forces are of this type.

When the force F is a function of the positional coordinates only, it is
said to define a static force field. Among the possible kinds of fields, there
is an important class for which the work integral [F.dr is independent of the
path of integration. Such force fields are conservative. Mathematically, a
conservative field is one in which the expression F«dr is an exact differential.
When a particle moves in a conservative field, the work integral and hence
the kinetic energy increment can be known in advance. This knowledge can
be of use in predicting the motion of the particle.

3.5. The Potential Energy Function
In Three-Dimensional Motion

If a particle moves under the action of a conservative force F, the state-
ment that the work increment F-dr is an exact differential means that it
must be expressible as the differential of a scalar function of the position r,
namely

F-dr = — dV(r) 3.7

This is analogous to the one-dimensional case where F dx = — dV, Section

2.7. The function V is the potential energy. The work principle, Equation
(3.6), then is simply expressed as dT = - dV, or

aT+V)=0 (3.8)

This implies that the quantity 7 4+ V remains constant as the particle
moves. We call it the total energy ¥, and write

m2 + V() = E (3.9)

In the case of a nonconservative force the work increment is not an
exact differential and therefore cannot be equated to a quantity — dV. A
common example of a nonconservative force is friction. When nonconserva-
tive forces are present we can express the total force as a sum F + F’ where
F is conservative and F’ is nonconservative. The work principle is then
given by dT = F-dr + F'-dr = — dV + F’-dr or
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d(T + V) =F.dr

We see that the quantity T + V is not constant, but increases or decreases
as the particle moves depending on the sign of F’-dr. In the case of dissi-
pative forces the direction of F’ is opposite to that of dr, hence F’-dr is
negative and the total energy T + V diminishes as the particle moves.

3.6. Gradient and the Del Operator in Mechanics

If rectangular coordinates are employed, the statement

Fedr = — dV
is expressed as
v av 1%
F,de + F,dy + F.dz = ———dx———dy—a—dz
z
This clearly implies that
1% v 14
Fo= —— Fy,=—— F, = .
ox v dy az (3.10)

Stated in words, if the force field is conservative, then the components of the
force are given by the negative partial derivatives of a potential energy
function.
We can now express F vectorially as
1% 1% 1%

F=—i——j— —k— .
lax jay dz (3.11)

This equation can be written in a convenient abbreviated form
F=-vV (3.12)

Here we have introduced the vector differentiation operator
V—1—+Jay+k~— (3.13)

It is called the del operator. The expression VV is also called the “gradient
of V" and is sometimes written grad V. Mathematically, the gradient of a
function is a vector that represents the spatial derivative of the function in
direction and magnitude. Physically, the negative gradient of the potential
energy function gives the direction and magnitude of the force that acts on a
particle located in a field created by other particles. The meaning of the
negative sign is that the particle is urged to move in the direction of decreasing
potential energy rather than in the opposite direction. An illustration of the
gradient is shown in Figure 3.2. Here the potential function is plotted out
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V = constant

FIGURE 3.2 A force field represented by contour lines of potential energy.

in the form of contour lines representing the curves of constant potential
energy. The force at any point is always normal to the equipotential curve
or surface passing through the point in question.

3.7. Conditions for the Existence of a Potential Function

In Chapter 2 we found that one-dimensional motion of a particle is

always conservative if the force is a function of position only. The question
naturally arises as to whether or not the corresponding statement is true for
the general case of two- and three-dimensional motion. That is, if the force
acting on a particle is a function of the position coordinates only, is there
always a function V which satisfies Equations (3.10) above? The answer to
this question is no; only if the force components satisfy certain criteria does
a potential function exist.

Let us assume that a potential function does exist, that is, that Equations
(3.10) hold. Then we have

oF, ?V oF, 2V
Ay dy 0z éx  oxdy
This order of differentiation can be reversed, the two expressions are
equal. Hence we can write
oF, 9F, oF, OF, aF, oF,

v = — .14
dy oz dz oz dz Ay (3.14)
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These are the necessary conditions, then, on F,, F,, and F, for a potential
function to exist; they express the condition that F-dr = F.dx -+ F, dy +
F.dzis an exact differential. It is also possible to show that they are sufficient
conditions, that is, if Equations (3.14) hold at all points, then the force
components are indeed derivable from a potential funetion V{(z,y,2), and the
sum of the kinetic energy and the potential energy is a constant.!

The criteria for a force field to be conservative are conveniently expressed
in terms of the del operator. In this application we introduce the cross
product of the del operator:

. GFZ_?& .(0F, OF, aF, oF,
VxF_l(ay az)_*—“'(éz_ax)_i_k(%_ay) (3:15)

The cross product as defined above is called the “curl of F.”” According to

Equations (3.14), we see that the components of the curl each vanish if the
force F is conservative. Thus the condition for a force to be conservative
can be written in the compact form

VXF=0 (3.16)

Mathematically, the above equation represents the condition that the expres-
sion F-dr is an exact differential, or in other words, that the integral [F-dr
is independent of the path of integration. Physically, the vanishing of the
curl of F means that the work done by F on a moving particle is independent
of the path of the particle in going from one given point to another.

There is a third expression involving the del operator, namely the dot
product V-F. This is called the “divergence of F.” In the case of a force
field, the divergence gives a measure of the density of the sources of the field
at a given point. The divergence is of particular importance in the theory
of electricity and magnetism.

Expressions for the gradient, curl, and divergence in cylindrical and
spherical coordinates are given in Appendix IV.

EXAMPLES

1. Find the force field of the potential function V = a2 4 zy + z=.
Applying the del operator, we have

F=-VV=—-i@z+y+2) —jr—k

1 See any advanced calculus textbook, for example, A. E. Taylor, Advanced Calculus,
Ginn, Boston, 1955. An interesting discussion of the conservancy criteria when this field
contains singularities has been given by Feng in Amer. J. Phys. 37, 616 (1969).
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2. Is the force field F = iry + jrz + Kyz conservative? The curl of F is

i j k
d/0x o/dy 9/9z
xy z2 yz

VXF = =iz—z)+§j0+k(z —1x)

The final expression is not zero, hence the field is not conservative.

3. For what values of the constants a, b, and ¢ is the force F =
i(axz + by?) + jery conservative? Taking the curl, we have
i i k
a/ox  8/dy 9/0z
axr + by* cxy 0

VXF = = k(c — 2b)y

This shows that the force is conservative, provided ¢ = 2b. The value of a
is immaterial.

4, Show that the inverse-square law of force in three dimensions F =
(—k/r)e, is conservative by the use of the curl. Use spherical coordinates.
The curl is given in Appendix IV as

e er eursind
1 aJ d ad
VXF= — = —
X r2sinf |dar 96 do

F, rFy rF,sné

We have F, = —k/r, Fo = 0, F, = 0. The curl then reduces to

e 9 [—k e; d <—k
VXF= ——}-—=={—) =
X rsin03¢(r2> r 08 r"’) 0

which, of course, vanishes since both partial derivatives are zero. Thus the
force in question is conservative.

3.8. Forces of the Separable Type

It is often the case that a coordinate system can be chosen such that
the components of a force field involve the respective coordinates alone, that is

F = iF(z) + jF,(y) + kF.(2) (3.17)
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Forces of this type are said to be separable. It is readily verified that the
curl of such a force is identically zero and hence, that the field is conservative
regardless of the particular forms of the force components as long as each is a
function of only the one coordinate involved. The integration of the differ-
ential equations of motion is then very simple, because each eomponent
equation is of the type mé = F(z). In this case the equations can be solved
by the methods described under rectilinear motion in the previous chapter.

In the event that the force components involve the time and the time
derivatives of the respective coordinates, then it is no longer true that the
force is necessarily conservative. Nevertheless, if the force is separable, then
the component equations of motion are of the form mi = F(z,i,l) and may
be solved by the methods used in the previous chapter. Some examples of
separable forces, both conservative and nonconservative, will be discussed
in the sections to follow.

3.9. Motion of a Projectile in a
Uniform Gravitational Field

One of the famous classical problems of particle dynamies is the motion
of a projectile. We shall study this problem in some detail because it il-
lustrates most of the general principles that have been cited in the foregoing
sections.

No Air Resistance

First, for simplicity, we consider the case of a projectile moving with no
air resistance. In this idealized situation there is only one force acting,
namely the force of gravity. Choosing the z axis to be vertical, we have the
differential equation of motion

2.
md—g = —mgk
If we further idealize the problem and assume that the acceleration of gravity
g is constant, then the force function is clearly of the separable type and is
also conservative since it is a special case of that expressed by Equation
(3.17). We shall particularize the problem further by choosing the initial
speed to be », and the initial position to be at the origin at time { = 0. The
energy equation (3.9) then reads -

Im(Et + ¢ + &) + mgz = moe®

or, equivalently
12 = v — 292 (3.18)
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thus giving the speed as a function of height. This is all the information we

can obtain directly from the energy equation.
In order to proceed further, we must go back to the differential equation

of motion. This can be written

which is of the form discussed in Section 1.20. It can be integrated directly.
A single integration gives the velocity as

d
d_:. = —gtk + v,

in which the constant of integration v, is the initial velocity. Another integra-
tion yields the position vector

= —1gt’k + vt 3.19)

The constant of integration 1y, in this case, is zero since the initial position of
the projectile is taken to be the origin. In components, the above equation is

T = dol
Yy = yo
2 = Zot - %gtz

Here iy, 30, and 2, are the components of the initial velocity vo. We have thus
solved the problem of determining the position of the projectile as a function
of time.

Concerning the path or trajectory of the projectile, we notice that if
the time ¢ is eliminated from the z and y equations, the result is

y = bx

in which the constant b is given by
b=
Lo

Thus the path lies entirely in a plane. In particular, if 3, = 0, then the path
lies in the zz plane. Next, if we eliminate ¢ between the z and z equations,
we find the equation of the path to be of the form

2 = ar — Ba?

where a = 2/do and B = g/2#:*. Hence the path is a parabola lying in the
plane y = bxz. This is shown in Figure 3.3.
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FIGURE 3.3 Path of a projectile moving in three dimensions.

Linear Air Resistance

‘We now consider the motion of a projectile for the more realistic situation
in which there is a retarding force due to air resistance. In this case the
motion is not conservative. The total energy continually diminishes as a
result of frictional loss.

For simplicity, let us assume that the law of air resistance is linear so that
the resisting force varies directly with the velocity v. It will be convenient
to write the constant of proportionality as my where m is the mass of the
projectile. Thus we have two forces acting on the projectile, namely the air
resistance —myv, and the force of gravity which is equal to —mgk, as
before. The differential equation of motion is then

m = —myv — mgk

or
at?

or, upon cancelling the m’s, we have

d’r
d_t2=_7v_gk

The integration of the above equation is conveniently accomplished by
expressing it in component form as follows:

i = —v1
¥y=—vy
2= —v2—yg

We now see that the equations are separated. Hence each can be solved
individually by the methods of the previous chapter. Using our results
from Section 2.9, we can write down the solutions immediately. They are
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T = Lot
Y = Yo (3.20)

. g
2=z " —=(1—¢em
. o ( )
for the velocity components, and
%o
r==(1—em
5 ( )
Yo

= (Z+8)a-en-L

for the positional coordinates. Here, as before, the initial velocity components
are &, 7o, and 2o, and the initial position of the projectile is taken as the origin.

As in the case of zero air resistance, the motion remains entirely in the
plane y = bx with b = g,/#,. The path in this plane is not a parabola, how-
ever, but is a curve that lies below the corresponding parabolic trajectory.
This is illustrated in Figure 3.4. Inspection of the z and y equations shows
that, for large t, the values of  and y approach the limiting values

:i?o 0
r— — — =
Y Y
Path with no air resistance
z ,/
PN
7 - > ~ .
7/ \\ _o— Vertical asymptote
/ N
’/ \
/ \\
/,
/ \
/ Path with \
p air resistance \
Y
\
\
\
\
0 X

FIGURE 3.4 Comparison of the paths of a projectile moving with and
without air resistance.
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This means that the complete trajectory has a vertical asymptote as shown
in the figure.

The final solution of the motion of a projectile with linear air resistance,
expressed by Equations (3.21), can be written vectorially in the following way:

r=(ﬂ+¥)u—rw—kg
Y Y Y

That it is a solution of the vector differential equation of motion is easily
verified by differentiation.

It is instructive to consider the case in which the air resistance is very
small, that is, when the value of the quantity v¢ in the exponential factors is
much smaller than unity. For this purpose we use the exponential series

2 3
e=ldutgmtg+

in which we let v = —+t. The result, after cancellation and collection of
terms, is expressible in the form

r = vot — g’k — Ar

i {8 A i
Ar=7[vO(2—!—%+ - -)—kg<3—!—%+ e >]

The quantity Ar can be regarded as a correction to the zero-resistance path
that gives the true path.

In the actual motion of a projectile through the atmosphere, the law of
resistance is by no means linear, but is a very complicated function of the
velocity. An accurate calculation of the trajectory can be done by means
of numerical integration methods aided by the use of high-speed computers.

where

3.10. The Harmonic Oscillator in Two
and Three Dimensions

In this section we consider the motion of a particle that is subject to a
linear restoring force which is always directed toward a fixed point, the origin
of our coordinate system. Such a force can be represented by the expression

F=—Ir
Accordingly, the differential equation of motion is simply expressed as

dr

mog = —kt (3.22)

The situation can be represented approximately by a particle attached to a
set of elastic springs as shown in Figure 3.5. This is the three-dimensional
generalization of the linear oscillator studied earlier in Section 2.12.
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FIGURE 3.5 Model of a three-dimensional harmonic oscillator.

The Two-Dimenstonal Oscillator
For the case of motion in a single plane, the above differential equation
is equivalent to the two component equations
mi = — kx

mij = — ky

These are separated, and we can immediately write down the solutions in
the form

z = A cos (wf + a) y = B cos (wt + B) (3.23)

in which

The constants of integration A, B, «, and 8 are determined from the initial
conditions in any given case.

In order to find the equation of the path, we eliminate the time ¢ between
the two equations. To do this, let us write the second equation in the form

y = Beos (wt + a + A)
where
A=f—a
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Then
y = Blcos (vl + @) cos A — sin (wf + ) sin A]
From the first of Equations (4.23), we then have

y _z 2\ .
]—3=ZCOSA— 1—22 sin A
or, upon squaring and transposing terms, we obtain

_a_ci _ 2cos A
A~ "WT4B

¥
+ p = sin’A (3.24)

which is a quadratic equation in z and y. Now the general quadratic
ar +bxy+cy*+detey=7F
represents an ellipse, a parabola, or a hyperbola, depending on whether the
discriminant
b — 4ac
is negative, zero, or positive, respectively. In our case the discriminant is

equal to — (2 sin A/AB)? which is negative, so the path is an ellipse as shown
in Figure 3.6.

FIGURE 3.6 Elliptical path of motion of a two-dimensional harmonic
oscillator.

In particular, if the phase difference A is equal to /2, then the equation
of the path reduces to the equation

xz y2
ptp=1

which is the equation of an ellipse whose axes coincide with the coordinate
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axes. On the other hand, if the phase difference is 0 or =, then the equation
of the path reduces to that of a straight line, namely

B
y=:l:Zx

The positive sign is taken if A = 0, and the negative sign if A = x. In the
general case, it is possible to show that the axis of the elliptical path is inclined
to the z axis by the angle ¥ where

2AB cos A
tan 2\0 = F% (325)

The derivation is left as an exercise.

The Three-Dimenstonal Harmonic Oscillator

In the case of three-dimensional motion the differential equation of
motion is equivalent to the three equations

mié = —kx my = —ky mE = —kz

which are separated. Hence the solutions may be written in the form of
Equations (3.23) or, alternately, we may write

z = A, sin wt + B cos wt
y = A, sin wt + By cos wt (3.26)
2z = Assin ot + Bs cos wt

The six constants of integration are determined from the initial position
and velocity of the particle. Now Equations (3.26) can be expressed veec-
torially as

r = Asinwt 4+ B cos wt

in which the components of A are A;, A,, and 43, and similarly for B. It is
clear that the motion takes place entirely in a single plane which is common
to the two constant vectors A and B, and that the path of the particle in
that plane is an ellipse, as in the two-dimensional case. Hence the analysis
concerning the shape of the elliptical path under the two-dimensional case
also applies to the three-dimensional case.

Nonisotropie Oscillator

The above discussion considered the motion of the so-called three-
dimensional tsotropic oscillator, wherein the restoring force is independent
of the direction of the displacement. If the restoring force depends on the
direction of the displacement, we have the case of the nonisotropic oscillator.
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For a suitable choice of axes, the differential equations for the nonisotropic
case can be written

mi = —kiz
myj = —koy (3.27)
mé = —ksz

Here we have a case of three different frequencies of oscillation: w1 = v/k;/m,
wr = Vky/m, ws = \/ks/m, and the motion is given by the solutions

z = A cos (! + a)
y = B cos (wt + 8) (3.28)
z2 = C cos (wit + v)

Again, the six constants of integration in the above equations are determined
from the initial conditions. The resulting oscillation of the particle lies
entirely within a rectangular box (whose sides are 24, 2B, and 2C) centered
on the origin. In the event that wi, w,, and w; are commensurate, that is, if

“a_e _ % (3.29)

where 71, ne, and n; are integers, the path, called a Lissajous figure, will be
closed, because after a time 2mwni/wi = 2rng/we = 27ns/w; the particle will
return to its initial position and the motion will be repeated. [In Equation
(3.29) it is assumed that any common integral factor is canceled out.] On
the other hand, if the «’s are not commensurate, the path is not closed.
In this case the path may be said to fill completely the rectangular box
mentioned above, at least in the sense that if we wait long enough, the particle
will come arbitrarily close to any given point.

The net restoring force exerted on a given atom in a solid crystalline
substance is approximately linear in the displacement in many cases. The
resulting frequencies of oscillation usually lie in the infrared region of the
spectrum: 102 to 10* vibrations per second.

3.11. Motion of Charged Particles in Electric
and Magnetic Fields

When an electrically charged particle is in the vicinity of other electric
charges, it experiences a force. This force F is said to be due to the electric
field E which arises from these other charges. We write

F =¢E
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where ¢ is the electric charge carried by the particle in question.? The
equation of motion of the particle is then
d’r

mos = qE (3.30)

or, in component form,

mi = qF,
my = qE,
mé = qF,

The field components are, in general, functions of the position coordinates
z, 9, and z. In the case of time-varying fields (that is, if the charges producing
E are moving) the components, of course, also involve ¢.

Let us consider a simple case, namely that of a uniform constant electric
field. We can choose one of the axes, say the z axis, to be in the direction of
the field. Then E, = E, = 0, and £ = E,. The differential equations of
motion of a particle of charge ¢ moving in this field are then

-

=20 =20 g = = constant
m

These are of exactly the same form as those for a projectile in a uniform
gravitational field. The path is therefore a parabola.
1t is shown in textbooks dealing with electromagnetic theory?® that

VXE=0

if E is due to static charges. This means that motion in such a field is con-
servative, and that there exists a potential function ® such that E = —V®.
The potential energy of a particle of charge ¢ in such a field is then ¢®, and
the total energy is constant and is equal to 3muv? + ¢d.

In the presence of a static magnetic field B (called the magnetic induction)
the force acting on a moving particle is conveniently expressed by means of
the cross product, namely,

F = ¢(v X B) (3.31)

2 In mks units F is in newtons, ¢ in coulombs, and E in volts per meter. In cgs units
F is in dynes, ¢ in electrustatic units, and E in statvolts per centimeter.

3 For example, J. C. Slater and N. H. Frank, Electromagneiism, McGraw-Hill, New
York, 1947.
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where v is the velocity, and ¢ is the charge.t The differential equation of
motion of a particle moving in a purely magnetic field is then

mST = g(v X B) (3.32)

The above equation states that the acceleration of the particle is always at
right angles to the direction of motion. This means that the tangential
component of the acceleration (9) is zero, and so the particle moves with con-
stant speed. This is true even if B is a varying function of the position r as
long as it does not vary with time.

EXAMPLE

Let us examine the motion of a charged particle in a uniform constant
magnetic field. Suppose we choose the z axis to be in the direction of the
field; that is, we shall write

B = kB
The differential equation of motion now reads
&r ijk
mﬁ=q(vxk3)=qBa'c Y Z
0 01

m(ié + §y + k2) = qB(iy — i2)

Equating components, we have

mi = ¢By
myj = —qBz (3.33)
2=0

Here, for the first time, we meet a set of differential equations of motion
which are not of the separated type. The solution is relatively simple, how-
ever, for we can integrate at once with respect to ¢ to obtain
mi = qBy + &
my = —qBx + ¢
Z = constant = 2
or

t=wy +C = —wr+ Ce 2= 2 (3.34)

¢ Equation (3.31) is valid for mks units: F is in newtons, ¢ in coulombs, » in meters
per second, and B in webers per square meter. In cgs units we must write F =(g/c)
(v X B), where F is in dynes, ¢ in electrostatic units, ¢ is the speed of light—3 X 10%
cm per sec—and B is in gauss. (See Slater and Frank, footnote 3.)
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where we have used the abbreviation w = ¢B/m. The ¢’s are constants
of integration, and Cy = ¢;/m, Cy = ¢;/m. Upon inserting the expression for
y from the second part of Equation (3.34) into the first part of Equation
(3.33), we obtain the following separated equation for z:

Z + o’r = o’a (3.35)
where @ = Cy/w. The solution is clearly

z =a -+ A cos (wt + 6p) (3.36)

where A and 6, are constants of integration. Now, if we differentiate with
respect to t, we have

& = —Awsin (ot + 60) (3.37)

The above expression for # may be substituted for the left side of the first
of Equations (3.34) and the resulting equation solved for y. The result is

y =b— Asin (wt + 60) (3.38)

where b = —Ci/w. To find the form of the path of motion, we eliminate
t between Equation (3.36) and Equation (3.38) to get

(z—a)}+ (y — b)? = A? (3.39)

Thus the projection of the path of motion on the zy plane is a circle of radius

by

FIGURE 3.7 Helical path of a charged particle moving In a magnetic field.
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A centered at the point (a,b). Since, from the third of Equations (3.34),
the speed in the z direction is constant, we conclude that the path is a spiral.
The axis of the spiral path is in the direction of the magnetic field, as shown
in Figure 3.7. From Equation (3.37) we have

¥ = —Aw cos (wt + 6p) (3.40)
Upon eliminating ¢ between Equation (3.37) and Equation (3.40), we find

2
x) 92 o A2.2 — A2 ql}
B4t = A% = A (m) (3.41)
Letting v, = (22 + 7?)!”%, we see that the radius A of the spiral is given by
=a_,n
A = @ 51 qB (342)

If there is no component of the velocity in the z direction, the path is a circle
of radius A. It is evident that A is directly proportional to the speed vy,
and that the angular frequency « of motion in the circular path is independent
of the speed. wis known as the cylotron frequency. The cyclotron, invented
by Ernest Lawrence, depends for its operation on the fact that w is independent
of the speed of the charged particle.

3.12. Constrained Motion of a Particle

When a moving particle is restricted geometrically in the sense that it
must stay on a certain definite surface or curve, the motion is said to be
constrained. A piece of ice sliding around in a bowl, or a bead sliding on a
wire, are examples of constrained motion. The constraint may be complete,
as with the bead, or it may be one sided, as in the former example. Con-
straints may be fixed, or they may be moving. In this chapter we shall study
only fixed constraints.

The Energy Equation for Smooth Constraints

The total force acting on a particle moving under constraint can be
expressed as the vector sum of the external force F and the force of constraint
R. The latter foree is the reaction of the constraining agent upon the particle.
The equation of motion may therefore be written

dv
ma = F+R (3.43)

If we take the dot product with the velocity v we have
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m%—:-v — F-v+ Ry (3.44)

Now in the case of a smooth constraint—for example, a frictionless surface—
the reaction R is normal to the surface or curve while the velocity v is tangent
to the surface. Hence R is perpendicular to v and the dot product R-v
vanishes. Equation (3.44) then reduces to

%(% mv-v) = F.v

Consequently, if F is conservative, we can integrate as in Section 3.5, and we
find the same energy relation as Equation (3.9), namely,

gmv? + V(z,y,2) = constant = E

Thus the particle, although remaining on the surface or curve, moves in
such a way that the total energy is constant. We might, of course, have
expected this to be the case for frictionless constraints.

EXAMPLE

A particle is placed on top of a smooth sphere of radius a. If the particle
is slightly disturbed, at what point will it leave the sphere?
The forces acting on the particle are the downward force of gravity and
the reaction R of the spherical surface. The equation of motion is
dv
Let us choose coordinate axes as shown in Figure 3.8. The potential energy
is then mgz, and the energy equation reads

tm* + mgz = F

FIGURE 3.8 Forces acting on a particle sliding on a smooth sphere.
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From the initial conditions (v = O for z = a) we have E = mga, so, as the
particle slides down, its speed is given by the equation

v? = 2g(a — 2)

Now, if we take radial components of the equation of motion, we can write the
force equation as

2
—ﬂ=—-mgcos0+R=—ng+R
a a
Hence
z  mv 2 m

R—mg(—z—-a——mga—;2g(a—z)
=™ -

—a(3z 2a)

Thus R vanishes when z = %a, at which point the particle will leave the
sphere. This may be argued from the fact that the sign of K changes from
positive to negative there.

Motion on a Curve

For the case in which a particle is constrained to move on a certain
curve, the energy equation together with the equations of the curve in para-
metric form

r=2(s) y=y@) z=2(s

suffice to determine the motion. (The parameter s is the distance measured
along the curve from some arbitrary reference point.) The motion may be
found by consideration of the fact that the potential energy can be expressed
as a function of s alone, while the kinetic energy is just 3ms$?.. Thus the
energy equation may be written

m+ V() =E
from which s (hence z, 3, and z) can be obtained by integration. Alternately,
by differentiating the above equation with respect to ¢ and canceling the com-
mon factor §, we obtain the following differential equation of motion for the

particle:

., dV
m$ + i 0 (3.45)

This equation is equivalent to the equation
m§—F,=0

where F, is the component of the external force F in the direction of s. This
means that F, = —dV/ds.
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3.13. The Simple Pendulum

The above considerations are well illustrated by the simple pendulum—a
heavy particle attached to the end of a light inextensible rod or cord, the
motion being in a vertical plane. The simple pendulum is also dynamically
equivalent to a bead sliding on a smooth wire in the form of a vertical circular
loop. As shown in Figure 3.9, let 6 be the angle between the vertical and

[

FIGURE 3.9 The simple pendulum.

the line CP where C is the center of the circular path and P is the instantaneous
position of the particle. The distance s is measured from the equilibrium
position 0. From the figure, we see that the component F, of the force of
gravity mg in the direction of s is equal to —mg sin 9. If I is the length of
the pendulum, then 6 = s/I. The differential equation of motion then reads

S

mé§ + mg sin (—l) =0
or, in terms of §, we may write
G+ lgsin 8=0

It should be noted that the potential energy V can be expressed as mgz where
z is the vertical distance of the particle from O, namely,

V = mgz = mgl(1 — cos §)

= mgl — mgl cos (%)
Hence —dV/ds = —mg sin (s/l) = —mg éin 6 = F,.
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In order to find an approximate solution of the differential equation of

motion, let us assume that 6 remains small. In this case
sin 6 ~ ¢
so we have
i+70=0
This is the differential equation of the harmonic oscillator. The solution, as
we have seen in Section 2.12, is
6 = 8o cos (wot + o)

where wo = /g/l. 0o is the amplitude of oscillation, and ¢, is a phase factor.

Thus, to the extent that 6 is a valid approximation for sin 6, the motion is
simple harmonic, and the period of oscillation T is given by

n=%=%J§ (3.46)

wo

the well-known elementary formula.

3.14. More Accurate Solution of the Simple
Pendulum Problem and the Nonlinear Oscillator

The differential equation of motion of the simple pendulum
6+ i—]sin 6=0

is a special case of the general differential equation for motion under a non-
linear restoring force, that is, a force which varies in some manner other than
in direct proportion to the displacement. The equation of the general one-
dimensional problem with no damping may be written

E+f® =0 (3.47)
where £ is the variable denoting the displacement from the equilibrium posi-
tion, so that

f0) =0
Nonlinear differential equations usually require some method of approxima-

tion for their solution. Suppose that the function f(£) is expanded as a power
series in £, namely,
f&) =at + af +at® + - - -
The differential equation of motion is then
d*%

prattaftaft =0 (3.48)
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This is the expanded form of the general equation of motion of the nonlinear
oscillator without damping. The term a,f in the above equation is the linear
term. If this term is predominant, that is, if @, is much larger than the other
coefficients, then the motion will be approximately simple harmonic with
angular frequency a,'?. A more accurate solution must take into account
the remaining nonlinear terms.

To illustrate, let us return to the problem of the simple pendulum. If we
use the series expansion

6 6

sing =0 — 5 + f—)_' -
and retain only the first two terms, we obtain
i g 9
6+ 1 6 — 67 o (3.49)

as a second approximation to the differential equation of motion. We know
that the motion is periodic. Suppose we try a solution in the form of a simple
sinusoidal function

9 = A coswi

Inserting this into the differential equation, we obtain

—Aw? cos wt -+ ?A cos wt — 3 g 43 costwt =0

or, upon using the trigonometric identity
cos®u = 2 cosu + % cos3u
we have, after collecting terms,

gd

gA?d
3l ) cos wt — o cos 3wl = 0

(—sz +34 -

Excluding the trivial case A = 0, we see that the above equation cannot hold
for all values of £. Hence our trial function A cos wt cannot be a solution.
From the fact that the term in cos 3wt appears in the above equation, however,
we might suspect that a trial solution of the form

6 = A cos wt + B cos 3wt (3.50)
will represent a better approximation than A cos «f. This turns out to be
the case. If we insert the above solution into Equation (3.49), we find, after
a procedure similar to that above, the following equation:

24 g As) ( 2 _ gA?
( Ao + A - 8l cos wt + 9Bw + IB 4] cos 3wt
-+ (terms in higher powers of B and higher multiples of wt) = 0

Again the equation will not hold for all values of ¢, but our approximate solu-
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tion will be reasonably accurate if the coefficients of the first two cosine terms
can be made to vanish separately:

gaA?

Az 94 927 —9Bst + 9 p 947 _
Aw + A 8l 0 9Bw+lB 5] 0
From the first equation
AZ
With this value of «?, we find from the second equation
3
Be —4 1 A

A -
3(64 + 2742~ 192

Now, from our trial solution Equation (3.50) we see that the amplitude 6, of
the oscillation of the pendulum is given by
6=A+ B
A:l
=4-1%
or, if A is small,
o~ A

The meaning of Equation (3.51) is now clear. The frequency of osecillation
depends on the amplitude 6. In fact, we can write

1 1/2
w.’!Jlg(l - gaoz)

or, for the period, we have

-1/2
‘—“&r’\’zﬂ’j(l —_ éﬂoz)

~ T, (1 + IE 0 + - - ) (3.52)

where T is the period for zero amplitude.

The above analysis, although it is admittedly very crude, brings out two
essential features of free oscillation under a nonlinear restoring force; that is,
the period of oscillation is a funection of the amplitude of vibration, and the
oscillation is not strictly sinusoidal but can be considered as the superposition
of a mixture of harmonics. It can be shown that the vibration of a nonlinear
system driven by a purely sinusoidal driving force will also be distorted; that
is, it will contain harmonics. The loudspeaker of a radio receiver or a ‘‘hi-fi”’
system, for example, may introduce distortion (harmonics) over and above
that introduced by the electronic amplifying system.
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3.15. Exact Solution of the Motion of the Simple
Pendulum. by Means of Elliptic Integrals

From the expression for the potential energy of the simple pendulum
we can write the energy equation as follows:

im(16)2 + mgl(1 — cos 6) = E (3.53)

If the pendulum is pulled aside at an angle 6, (the amplitude) and released
(6o = 0), then E = mgl(1 — cos 6;). The above equation then reduces to

= gl'(—] (cos 6 — cos 6) (3.54)

after transposing terms and dividing by mil2. By use of the identity cos § =
1 — 25sin%(6/2), we can further write

4g . 00 . [/}
2 — 2 2 _
6 = I (sm 5 — sin 2) (3.55)
It is expedient to express the motion in terms of the variable ¢ defined by the

equation
sin (6/2) 1 . 8

= <) n— 3.56
¢ = Sn (00/2) ES0g (8.56)
Upon differentiating with respect to ¢, we have
.1 6\ ¢
(cos )¢ = 7 ¢o8 (é) 3 (3.57)

From Equations (3.56) and (3.57) we can readily transform Equation (3.55)
into the corresponding equation in ¢, namely,

& = % (1 — k2 sin ) (3.58)

The relationship between ¢ and ¢ is then found by separating variables and

integrating:
1 [® de \/i
t = J:/ —_— = -F ]C, 3.59
0Jo Vi—kamg  Ngl®® (3.59)

The function F(k,p) = ‘[) ¢ (1 — k?sin? )2 dyp is known as the incomplete
elliptic integral of the first kind. The period of the pendulum is obtained by
noting that 6 increases from 0 to 6, in one quarter of a cycle. Thus we see

that ¢ goes from 0 to /2 in the same time interval. Therefore, we may write
for the period T

{
= 4\/’ / — kz — \/; K(k) (3.60)
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[ (1 — k*sin? )17 dp = F(k,n/2) is called the com-

plete elliptic integral of the first kind. Values of the elliptic integrals are tabu-
lated.® An approximate expression may be obtained, however, by expanding
the integrand in Equation (3.60) by the binomial theorem and integrating
term by term. The result is

T—4\/1/1’/2<1~-!-]—c—2sin2 +‘--)d =2 \ﬁ(’l+’c—2+-~) 1)
= 7)o 5 @ o = 2w p n -} (3.61)

Now, for small values of the amplitude 6,, we have
9 6o®

2 = QN2 — ~
k s1112__4

The function K (k) = /

Thus we may write approximately

Tf_\:21r\/£(1+0—°2+ . ) (3.62)
g 16

which agrees with the value of T found in the previous section.

EXAMPLE

Find the period of a simple pendulum swinging with an amplitude of 20°.
Use tables of elliptic functions, and also compare with the values calculated
by the above approximations.

For an amplitude of 20° k = sin 10° = 0.17365, and 6,/2 = 0.17453
radians. The results are as follows:

From tables and Equation (3.60) T = 4 +/1/g K(10°) = +/1/g (6.3312)

From Equation (3.61) T = 2x 4/I/g (1 + 1 sin2 10°) = ~/1/g (6.3306)

From Equation (3.62) T = 2= +/I/g (1 + 622/16) = /1/g (6.3310)

Elementary formula Ty = 27 A/l/g = +/l/g (6.2832)

3.16. The Isochronous Problem

It is interesting to investigate the question of whether or not there is a
curve of constraint for which a particle will oscillate under gravity isochro-
nously, that is, with a period that is independent of the amplitude.

Let 6 be the angle between the horizontal and the tangent to the con-
straining curve (Figure 3.10). Then the component of the gravitational
force in the direction of motion is —mg sin §. The differential equation of

5 See, for example, L. M. Milne-Thomson, Jacobian Elliptic Function Tables, Dover,

New York, 1950; or B. O. Peirce, A Short Table of Integrals, Ginn, Boston, 1929. See also
Appendix III.
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mg
mg sin 8

FIGURE 3.10 Forces involved in the isochronous case.

motion along the path of constraint (assumed smooth) is then
m§ = —mgsin

But if the above equation represents simple harmonic notion along the curve,
we must have

m§ = —ks
Therefore, a constraining curve which satisfies the equation
s =csin g

will produce simple harmonic motion.
Now we can find z and y in terms of 8 from the above equation, as follows:

dr dxds

- dsdd = (cos 8)(c cos 8)
Hence

T = / ccos? 9 dg = 2 (26 + sin 28) (3.63)

Similarly,

dy _dyds _

20 = dsdo = (sin 8)(c cos 6)
So

Yy = /csinﬂcosf)d& = — 200320 (3.64)
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Equations (3.63) and (3.64) are the parametric equations of a cycloid. Thus a
constraining curve in the form of a cycloid will produce motion such that s
varies harmonically with time, and the period of oscillation will be independent
of the amplitude. As a corollary, we see that a particle starting from rest on
a smooth cycloidal curve takes the same time to reach the bottom regardless of
the point at which it begins.
The Dutch physicist and mathematician Christiaan Huygens discovered
the above facts in connection with attempts to improve the accuracy of pen-
" dulum clocks. He also discovered the theory of evolutes and found that the
evolute of a cycloid is also a cycloid. Hence, by providing cycloidal ‘cheeks”
for a pendulum, the motion of the bob must follow a cycloidal path and the
period is thus independent of the amplitude. Though ingenious, the inven-
tion never found extensive practical use.

3.17. The Spherical Pendulum

A classic problem in constrained motion is that of a particle which is
required to move on a smooth spherical surface, such as a small mass sliding
around inside a smooth spherical bowl. The case is perhaps more aptly
illustrated by a heavy bob attached to a light inextensible rod or cord which
is free to swing in any direction about a fixed point, see Figure 3.11. This is
the so-called spherical pendulum.

z

mg

X

FIGURE 3.11 The spherical pendulum.
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Approximate Solution in Rectangular Coordinates

There are two forces acting on the particle, namely the downward force
of gravity, and the tension S in the constraining rod or cord. The differential
equation of motion then reads

mf = mg + S

If we choose the z axis to be vertical, the rectangular components of the equa-
tion of motion are as follows:

mi = 8,
my = S,
mé =8, —mg
An approximate solution is readily obtained for the case in which the
displacement from the equilibrium position is very small. The magnitude
of the tension is then very nearly constant and equal to mg, and we have

lr| €1, lyl <1, z~0. The z and y components of S are then given by the
approximate relations

S, ~ —mg:E
l
Sy~ —mg%/

which are easily verified from the geometry of the figure. The z-y differential
equations of motion then reduce to

i+ !ll z=0
ﬂ+%y=0
These are similar to the equations of the two-dimensional harmonic oscillator

treated earlier in Section 3.10. The solutions are, as we have seen,

2= A cos (ot + a)
y = B cos (wt + 8)

1/2
()

as in the simple plane pendulum.

To the extent that our approximations are valid, the motion is such that
the projection on the zy plane is an ellipse. There are, of course, special
cases in which the projection is a straight line, or a circle, depending on the
initial conditions.

in which
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Solution tn Spherical Coordinates

For a more accurate treatment of the spherical pendulum than that given
above, we shall employ spherical coordinates as defined in Figure 3.11. The
tension S has only a radial component, but the weight mg has both a radial
component mg cos # and a transverse component —mgsin . Hence the
differential equation of motion can be resolved into spherical components as
follows:

ma, = F, = mgecos§ — S

mag = Fg = —mgsin 0§

ma, =F,=0
The three acceleration components a,, as, and a, are given in Chapter 1,
Section 1.25. Since the constraint is that

r = | = constant

we can ignore the radial component of the acceleration. The other two
components reduce to

as = 16 — 1¢? sin 6 cos 6

a, = lg sin 8 + 2146 cos 0
Thus, after transposing terms and performing the obvious cancellations, the
differential equations in ¢ and ¢ become

('9'—¢23in000s0+“llsin0=0 (3.65)
d,. .
Sed (¢sin?g) =0 (3.66)

The second equation implies that the quantity in parentheses is constant.
Let us call it A. It is, in fact, the angular momentum (per unit mass) about
the vertical axis. The reason that it is constant stems from the absence of
any moment of force about that axis. Then we can write

= S (3.67)
Upon inserting the above value of ¢ into Equation (3.65), we obtain the fol-
lowing separaled equation in 6:

i g _ 2cos0= 3.68
0+lsm0 hsin30 0 ( )

It is instructive to consider some special cases at this point. First, if the

angle ¢ is constant, then ¢ = Oand so 2 = 0. Consequently, Equation (3.68)
reduces to

5+lﬂsino=o

which, of course, is just the differential equation of the simple pendulum.
The motion takes place in the plane ¢ = ¢o = constant.
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The second special case is that of the conical pendulum; 6 = 6, = con-
stant. In this case 8§ = 0 and § = 0, so Equation (3.68) reduces to

g . _ p2C08f _
o b=k sin® fo
or
h? = % sin* 6, sec 6, (3.69)

From the value of h given by the above equation, we find from Equation (3.67)
that

P = !l—]sec o (3.70)
as the condition for conical motion of the pendulum.

The above equation can also be obtained by considering the forces acting
on the particle in its circular motion as shown in Figure 3.12. The accelera-
tion is constant in magnitude, namely pg® = (I sin fy)¢?, and it is directed
toward the center of the circular path. Hence, upon taking horizontal and
vertical components, we have

S sin 6y = (ml sin 6,)@®
S cos 8y = mg

which reduce to Equation (3.70) upon elimination of S.

FIGURE 3.12 The conical case of the spherical pendulum.
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Let us now consider the case in which the motion is almost conical; that is,
the value of @ remains close to the value 6. If we insert the expression for h?
given in Equation (3.69) into the separated differential equation for 6, Equa-
tion (3.68), the result is

sin* pcos 6 .
cos 8, sin® 0) =0 (3.71)

i+ lg(sin 6 —
It is convenient at this point to introduce the new variable ¢ defined as
E=6— 106
The expression in parentheses in Equation (3.71) may be expanded as a power
series in ¢ according to the standard formula

5 = SO + £ O +570) 5 + - - -

We find, after performing the indicated operations, that f(0) = 0 and f'(0) = 3
cos 6y + sec 6. Since we are concerned with the case of small values of ¢, we
shall neglect higher powers of ¢ than the first, and so we can write Equation
(3.71) as

E+ ;‘lbz =0 (3.72)

where b = 3 cos 6p + sec 6. The motion in £ or 6 is therefore given by

£E=06— 6, = £ cos (\/g—l?t + e) 3.73)

Thus @ oscillates harmonically about the value 8, with a period

l l
Ty = 2n NVgb 2 \/9(3 cos 6y + sec ) (3.74)

Now the value of ¢, from Equation (3.67), does not vary greatly from the value
given by the purely conical motion ¢o, so ¢ increases steadily during the
oscillation of 6 about 6. The path of the particle is shown in Figure 3.13.
During one complete oscillation of 6 the value of the azimuth angle ¢ increases
by the amount

o1 =2 @l
From the values of ¢ and T given above, we readily find
o1 = 27(3 cos? 6, + 1)1/

Let p denote the radius of the circle for § = 6, as in Figure 3.12. Then
cos? 0y = 1 — p?/lt, and consequently ¢ = 27 (4 — 3p2/1%)~12, Thus ¢ is
slightly greater than =. By expanding in powers of p, we find that the
excess Ay is given by

3r

Atp -g-

11

2.
Ft
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y

x
JAY S

FIGURE 3.13 Projection on the zy plane of the path of motion of the spherical
pendulum.

Earlier in this section we proved that the projection of the path of the pen-
dulum bob on the zy plane is approximately an ellipse if the angle ¢ is small.
We can now interpret the above result to mean that the major axis of the
ellipse is not steady, but precesses in the direction of increasing ¢. The axis
of the ellipse turns through the angle A¢ during each complete oscillation in 6.
This is illustrated in Figure 3.13.

Energy Considerations. Limits of the Vertical Motion

In order to relate the amplitude of the vertical oscillation of the spherical
pendulum to the parameters of the problem, it is advantageous to use the
energy equation. In our notation, the potential energy is given by V =
—mgl cos 6.

To find the kinetic energy, we use the fact that the components of the
velocity in spherical coordinates are (#,76,r¢sin 8). Thus, since r =1 =
constant, we have T == imy? = Im(26* + I’¢*sin? §). The energy equation
then reads

E = 1_n2_l_'*’ (8 4+ ¢* sin? ) — mgl cos 0
Let us solve the above equation for 2. To do this, we use the relation, derived

earlier, that ¢ = h/sin2 . Let us also set cos 6 = u. The result is

2E
mi?

2 h?
=+ Fu— 0 = @ (3.75)

The roots of the equation f(u) = 0 determine the limits, or turning points
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of the oscillation in 6, since § vanishes at those roots. The motion is confined

to those values of 8 such that f(u) is nonnegative. Thus the vertical oscilla-

tions lie between two horizontal circles, see Figure 3.14. If, in particular,

the two real roots which lie between 41 and —1 are equal, then the motion
is confined to a single horizontal circle, that is, we have the case of a conical
pendulum.

FIGURE 3.14 Illustrating the vertical motion of the spherical pendulum.

DRILL EXERCISES

3.1 Determine which of the following forces are conservative by find-
ing the curl:
(a) F = iz + jy
(b) F =iy + jo
() F=iy—ja
(d) F = ixy + jyz + kex
(e) F = iyz + jexr + kay
3.2 Find the value of the constant ¢ such that the following forces
are conservative:
(a) F = izy + jea?

M F=i’+4je4 k-
Yy y* Y

3.3 Find the force for each of the following potential energy functions:
(a) V = xyz
(b) V = k(z= + y° + 2)
(¢) V = kaeyPzr
(d) V = keloztBytvr2)
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3.4 Tind the potential function for those forces in Exercise 3.1 that
are conservative.

3.5 A particle of mass m moves in the force field given by the potential
function of Exercise 3.3(a). If the particle passes through the origin with
speed vy, what will its speed be if and when it passes through the point (2,2,2)?

PROBLEMS

3.6 Consider the two force functions
(a) F =iz + jy
(b) F=1iy — jz
Verify that (a) is conservative and that (b) is nonconservative by showing
that the integral [F-dr is independent of the path of integration for (a), but
not for (b), by taking two paths in which the starting point is the origin
(0,0), and the end point is (1,1). For one path take the linex = y. For the
other path, take the z axis out to the point (0,1) and then the line = 1 up
to the point (1,1).
3.7 Show that the variation of gravity with height can be accounted
for approximately by the following potential energy function:

V= mgz(l ——%)

in which R is the radius of the earth. Find the force given by the above
potential function. From this, find the component differential equations of
motion of a projectile under such a force.

3.8 A projectile is fired from the origin with initial speed v, at an angle
of elevation # with the horizontal. If air resistance is neglected, show that
if the ground is level, the projectile hits the ground a distance

v sin 26
g
from the origin. This is called the horizontal range. Also show that the
decrease in the horizontal range is approximately

413yy sin 6 sin 20
39

in the case of a linear air resistance.

3.9 Particles of mud are thrown from the rim of a rolling wheel. If
the forward speed of the wheel is v, and the radius of the wheel is b, show that
the greatest height above the ground that the mud can go is

u b
bt 5 T 20g

At what point on the rolling wheel does this mud leave?
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3.10 A gunis located at the bottom of a hill of constant slope ¢. Show
that the range of the gun measured up the slope of the hill is
2v4? cos 0 sin (8 — ¢)
gcos? ¢

where 8 is the angle of elevation of the gun, and that the maximum value of
the slope range is
1)02

g(1 + sin o)

3.11 Write down the component form of the differential equations of
motion of a projectile if the air resistance is proportional to the square of the
speed. Are the equations separated? Show that the z component of the
velocity is given by

& = Foe~
where s is the distance the projectile has traveled along the path of motion.

3.12 The initial conditions for a two-dimensional isotropic oscillator
are z(0) = 4, £(0) =0, y(0) = B, y(0) = wC where w is the frequency:
Show that the motion takes place entirely within a rectangle of dimensions
2A and 2(B% 4 C*Y2. Find the inclination ¢ of the axis of the elliptical
path in terms of A, B, and C.

3.13 A particle of unit mass moves in the three-dimensional nonisotropic
harmonic oscillator potential

V = a4 4> 4 922

If the particle passes through the origin with unit speed in the (1,1,1) direction
at time ¢ = 0, determine z, ¥, and z as functions of time.

3.14 An atom is situated in a simple cubic crystal lattice. If the po-
tential energy of interaction between any two atoms is of the form ¢r—= where
c and a are constants and r is the distance between the two atoms, show that
the total energy of interaction of a given atom with its six nearest neighbors
is approximately that of the three-dimensional harmonic oscillator potential

V=A4B@a*+y*42)

where A and B are constants. [Note: Assume that the six neighboring atoms
are fixed and are located at the points (+d,0,0), (0,4d,0), (0,0,=4d), and that
the displacement (z,y,2) of the given atom from the equilibrium_position
(0,0,0) is small compared to d.] ThenV = D cr. = where ry = [(d — z)2 +
y* -+ 2%]'/? with similar expressions for 72, 3, . . ., 7.  Use the binomial theorem
to obtain the required result.

3.15 An electron moves in a force field composed of a uniform electric
field E and a uniform magnetic field B which is at right angles to E. Let



116 GENERAL MOTION OF A PARTICLE IN THREE DIMENSIONS

E = jE and B = kB. Take the initial position of the electron at the origin
with initial velocity vo = iv, in the z direction. Find the resulting motion of
the particle. Show that the path of motion is a cycloid:

x = asin wt + bt
y = ¢(1 — cos wi)
z=0

Cycloidal motion of electrons is utilized in the magnetron
tube used to produce high-frequency radio waves.

3.16 A particle is placed on the side a smooth sphere of radius b at a
distance b/2 above the central plane. As the particle slides down the side of
the sphere, at what point will it leave?

an electronic

3.17 A bead slides on a smooth wire bent into the form of a circular
loop of radius b. If the plane of the loop is vertical, and if the bead starts
from rest at a point which is level with the center of the loop, find the speed of
the bead at the bottom and the reaction of the wire on the bead at that point.

3.18 In the above problem, determine the time for the bead to slide to
the bottom.

3.19 In alaboratory experiment a simple pendulum is used to determine
the value of g. If the amplitude of oscillation of the pendulum is 30°, find the
error incurred in the use of the elementary formula

T=21r,\ﬁ—
g

3.20 A spherical pendulum of length 1 m is undergoing small oscillations
about a conical angle 6. If §, = 30° find the period of the conical motion,
the period of the oscillation of § about 6, and the angle of precession Ag.

3.21 Prove that the two real roots that lie between +1 and —1 of the
equation f(u) = 0, Equation (3.75), are equal in the case of the conical
pendulum.

3.22 The string of a spherical pendulum of length [ is held initially at
an angle of 90° with the vertical. The bob is started with a horizontal velocity
vo perpendicular to the string. If

v? = 3gl

find the lowest level to which the pendulum bob descends during its motion.
[Hint: From the initial conditions, ¥ = 0 is one root of the equation f(u) = 0.]



4. Noninertial
Reference
Systems

It is frequently very convenient and sometimes necessary, in
deseribing the motion of a particle, to use a coordinate system which is not
inertial. A coordinate system fixed to the earth, for example, is the most
convenient one to use in expressing the motion of a projectile, although the
earth is accelerating and rotating.

4.1. Translation of the Coordinate System

The simplest type of motion of the coordinate system is that of pure
translation. In Figure 4.1 OXYZ are the primary coordinate axes (assumed
fixed), and Ozyz are the moving axes. In the case of pure translation, the
respective axes OX and Oz, and so on, remain parallel. The position vector
of a particle P is denoted by R in the primary or fixed system, and by r in the
moving system. The displacement QO of the moving origin is denoted by

R,. Thus
R=r+R, 4.1)

Taking the first and second derivatives with respect to the time ¢, we find the
velocity and acceleration vectors to be given by

A=a+ A 4.3)

in which Vyand A, are the velocity and acceleration, respectively, of the moving

117
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z

FIGURE 4.1 Relationship between the position vectors for two coordinate
systems undergoing pure translation relative to one another.

origin, and v and a are the velocity and acceleration, respectively, of P in the
moving system.

In particular, if the moving system is not accelerating, so that Ay = 0,
then A=a

That is, the acceleration is the same with respect to either system. Con-
sequently, if the primary system is inertial, then the moving system is also
inertial. This statement is true only for the case in which there is no rotation
of the moving system. The subject of rotation will be studied in Section 4.3
below.

4.2. Inertial Forces

If the primary system is inertial so that Newton’s second law
F = mA
is valid, then, from Equation (4.3), the equation of motion in the moving
system is
F — mA, = ma 4.4)
Thus an acceleration A, of the reference system can be accounted-for by the
addition of a term —mA, to the force F. We shall call this term the inertial
term. If we wish, we can write
((Fn = ma (4.5)

for the equation of motion in the moving system if we include the ingrtial
term as a part of the force “F.” This term is not due to interactions with
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other bodies, as are ordinary forces, but stems from the choice of a reference
system. An inertial reference system, as discussed in Chapter 2, is, by defini-
tion, one in which there are no inertial terms in the equation of meotion.
Sometimes the inertial terms in the equations of motion are called inertial
forces or fictitious forces. Whether or not one wishes to call them ‘“forces” is
purely a matter of terminology. In any case, these terms are present if an
accelerated coordinate system is used to describe the motion of a particle.

EXAMPLE

A block of wood rests on a rough horizontal table. If the table is acceler-
ated in a horizontal direction, under what conditions will the block slip? Let
& be the coefficient of friction between the block and the table top. Then the
force of friction F has a maximum value of umg, where m is the mass of the
block. The condition for slipping is that the inertial force —mA, exceeds the
frictional force where A, is the acceleration of the table. Hence the condition

for slipping is
[—=mAq| > pmg
or Ao > ug

4.3. General Motion of the Coordinate System

We now consider the case in which the reference system undergoes both
translation and rotation relative to an inertial system. The position vector
of the particle in the inertial system is denoted by R, as above, and in the

moving system by r, Figure 4.2. P

FIGURE 4.2 Geometry for the general case of translation and rotation of the
coordinate system.
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w
z Axis of

rotation

FIGURE 4.3 The angular velocity vector of a rotating coordinate system.

wxr

Axis of rotation

o

FIGURE 4.4 Illustrating the centripetal acceleration.

Let the direction of the axis of rotation of the moving system be specified
by the unit vector e, as shown in Figure 4.3, and let » be the angular speed
about this axis. Then the angular velocity of the moving system is

® = we

We have previously shown in Section 1.25 that the velocity imparted to
a particle due to rotation about an axis can be expressed by the cross product

Vot = @ X T. (46)
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Consequently Equation (4.2) can be generalized to include rotation by writing

%Fl"—!-m)(r—}—vo 4.7
In the above equation the dot above a vector denotes the tvme derivative of that
veclor in the rolating coordinale system. We shall employ this eonvention in
the remainder of this chapter.

To summarize, the velocity of a moving particle measured in a primary
inertial coordinate system can be expressed as the sum of three vectors (1) the
velocity T of the particle in the moving system, (2) the rotational velocity
» X r that the particle has as a result of being in the rotating system, and
(3) the velocity V; of the origin of the moving system.

Now a little reflection will show that for the case of any vector quantity q,
the time derivative in the primary system is given by adding the term » X q
to the time derivative in the rotating system, namely

(3) -a+oxa “8)
¢ fixed
This is a very important result and the reader should take time to convince
himself that it is correct. A very direct but slightly laborious proof consists
of expressing q in terms of its components in the rotating system. See
Problem 4.13 at the end of the chapter.

As a particular example, if we let @ = o, then we find

<d_‘-’> .
dt fixed e

since X o = 0. That is, angular acceleration is the same in both systems.
Given Equation (4.8) it is easy to derive the relationships for higher time

derivatives. Thus for the second derivative we find

d2
(@%) =i+ (X +(6Xq+oX@+oXq)
fixed

=d+20Xq+e6Xqg+ 0oX(0Xq) (4.9)

Let us apply Equation (4.9) to find the relationship between the accelera-
tion vectors. Let q be equal to the quantity dR/dt — Vo =1 + o Xr. We
then find the following result:

R = F+20Xi+oXT+0X ©X1)+ A (4.10)
The steps are left as an exercise. The first term on the right-hand side is just
the acceleration of the particle in the moving system. The next three terms
are rotational terms for the acceleration of the particle as seen in the fixed

system. The last term is the acceleration of the moving origin.
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The term 20 X I is known as the Coriolis acceleration. The term & X r
is the transverse acceleration. The last term o X (0 X r) is the centripetal
acceleration. It is always directed toward the axis of rotation and is per-
pendicular to that axis, as shown in Figure 4.4

EXAMPLES

1. A wheel of radius b rolls along the ground with constant forward speed
v. Find the acceleration, relative to the ground, of any point on the rim.
Let us choose a coordinate system fixed to the rotating wheel, and let the mov-
ing origin be at the center with the x axis passing through the point in question,
as shown in Figure 4.5. Then we have

r =ib £r=0 =0

The angular velocity vector is given by

FIGURE 4.5 Rotating coordinate system fixed to a rolling wheel.
v
o =ko=k+
b

for the choice of coordinates show) ., Hence all terms in the expression for
acceleration vanish except the centripetal term. It is given by
T A=eX (0X1) = ke X (ke X ib)

Px X (k X i)

e
X

ol % ol % <
I
=
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Thus A is of magnitude »2/b and is always directed toward the center of the
rolling wheel.

2. A bicycle travels with constant speed around a track of radius p.
What is the acceleration of the highest point on one of its wheels? Let »
denote the speed of the bicycle and b the radius of the wheel. We choose a
coordinate system with origin at the center of the wheel and with the z axis

horizontal pointing toward the center of curvature C of the track. Rather
than have the moving coordinate system rotate with the wheel, we choose a
system in which the z axis remains vertical as shown in Figure 4.6. Thus the
Ozyz system rotates with angular velocity

v
o=k-
P

and the acceleration of the moving origin is

FIGURE 4.6 Wheel rolling on a curved track.

Ap=1i-

Since each point on the wheel is moving in a circle of radius b with respect to
the moving origin, the acceleration in the Ozyz system of any point on the
wheel is directed toward O and has magnitude v?/b. Thus, in thé moving
system we have

- v?
Tr = —kz
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for the point at the top of the wheel. Also, the velocity of this point in the

moving system is given by

F=—jv
so the Coriolis acceleration is
. v . 2,
20)(r=2(—k)x (—jv) =2-1i
P p

Since the angular velocity o is constant, the transverse acceleration is zero.
The centripetal acceleration is also zero, because

2
©X @X1) = kX (kX bk =0

Thus the total acceleration of the highest point on the wheel is

4.4. Dynamics of a Particle in a
Rotating Coordinate System

Since the primary coordinate system is assumed to be an inertial system,
then the fundamental equation of motion is

d’R

F=mae

In view of Equation (4.10), we can now write the equation of motion in terms
of the moving coordinates as follows:

F—mA;—2mo XTI —moXr—meX(@Xr)=mf (4.11)

The terms have been transposed in order to display them in the form of inertial
forces to be added to the physical force F. The inertial terms have been given

names.

The Coriolis force:



4.4 Dynamics of a Particle in a Rotating Coordinate System 125

Feor = —2me X £
The transverse force:
; Fioe = —mo X1
The centrifugal force:
Fent = —mo X (@ X 1)
The remaining force —mA, is the inertial term due to translation of the
coordinate system and has been discussed in Section 4.2 above.

Again, as in the previous discussion of the inertial term —mA,, we can
write the equation of motion in the moving system as

“F” = mi
A Y
.—.]_.____..__m.——-—) F(cemrimgan
F (Coriotis v
m

F (transverse}

o

FIGURE 4.7 Illustrating the inertial forees arising from rotation of the coor-
dinate system. The forces are drawn separately for clarity.
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in which the total “force’ is given by
“F” = F + FCor + Ftrans + Fcent - mAO (412)‘

The four inertial terms on the right-hand side all depend on the particular
coordinate system in which the motion is described. They arise from the
inertial properties of matter rather than from the presence of other bodies.

The Coriolis force is particularly interesting. It is present only if a
particle is moving in a rotating coordinate system. Its direction is always
perpendicular to the velocity vector of the particle in the moving system.
The Coriolis force thus seems to deflect a moving particle at right angles to
its direction of motion. This force is important, for example, in computing the
trajectory of a projectile. Coriolis effects are also responsible for the ecircula-
tion of air around high- or low-pressure areas on the earth’s surface. Thus
in the case of a high-pressure area the air tends to flow outward and to the
right in the northern hemisphere, so that the circulation is clockwise. In
the southern hemisphere the reverse is true.

The transverse force is present only if there is an angular acceleration of
the rotating coordinate system. This force is always perpendicular to the
radius vector r, hence the name transverse.

Finally, the centrifugal force is the familiar forece arising from rotation
about an axis. This force is always directed outward away from the axis
of rotation and is perpendicular to that axis. If 8§ is the angle between the
radius vector r and the rotation vector o, then the magnitude of the centrifugal
force is clearly mrw? sin 6 or mpw?® where p is the perpendicular distance from
the moving particle to the axis of rotation. The various forces are illustrated
in Figure 4.7.

EXAMPLES

1. A bug crawls outward with constant speed v along the spoke of a
wheel which is rotating with constant angular velocity w about a vertical axis.
Find all the forces acting on the bug. First, let us choose a coordinate system
fixed on the wheel, and let the z axis point along the spoke in question. Then
we have

r=ir =1
F=it=1iv
f=0

for the equations of motion of the bug as described in the rotating system.
If we choose the z axis to be vertical, then

o = ko

The various forces are then given by the following:
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Coriolis force
—2me X T = —2mwr(k X i) = —2mwvj

Transverse force

1
=

—mod X r (0 = constant)

Centrifugal force

—me X (0 X 1) = —mo?k X (k X iz)]
—mo?(k X jr)

= mwixi

Thus, Equation (4.11) reads
F — 2mwvj + me?zi = 0

Here F is the real force exerted on the bug by the spoke. The forces are
shown in Figure 4.8.

Centrifugal
force

Coriolis
force

FIGURE 4.8 Forces on a bug crawling outward along a radial line of a rotating
turntable.

2. In the above problem, find how far the bug can crawl before it starts
to slip, given the coefficient of friction u between the bug and the spoke.
Since the force of friction F has a maximum value of umyg, slipping will start
when

|F| = umg
or
[@mww)? 4+ (mw?z)?V2 = umg

Upon solving for z, we find

(u2g2 — 4w2v2)ll2
e

for the distance the bug can crawl before slipping.
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4.5. Effects of the Earth’s Rofation

Let us apply the theory developed in the foregoing sections to a coordinate
system which is moving with the earth. Since the angular speed of the earth’s
rotation is 2r radians per day, or about 7.3 X 105 radian per sec, we might
expect the effects of such rotation to be relatively small. Nevertheless, it is
the spin of the earth that produces the equatorial bulge; the equatorial radius
is some 13 miles greater than the polar radius.

Static Effects. The Plumb Line

We consider first the case of a particle which is at rest on the surface of
the earth. For definiteness, we shall take the particle to be the bob at the
end of a plumb line. Let us choose the origin of our coordinate system to be
at the position of the bob, so that r = 0. Now the angular velocity vector @
is in the direction of the earth’s axis and is very nearly constant; that is, the
angular acceleration w is zero. For the static case, then, all terms in the
equation of motion Equation (4.11), vanish except the applied force F and
the inertial term —mA,. The result is

F—’I’)’LAO=0

The force F is given by the vector sum of two forces: the true gravitational
attraction of the earth (which we shall call mG) and the vertical tension of the
plumb line (which we shall denote by —mg). The forces are shown in
Figures 4.9 and 4.10. We have then

mG — mg — mA, =0 (4.13)
or

8 =G - A

Now the vector mG is in the direction of the center of the earth. The accelera-
tion A, is just the centripetal acceleration of our moving origin. Its magni-
tude is pw? or (r.cos A\)w?, where 7, is the radius of the earth, and ) is the
geocentric latitude. The term —mA, (the centrifugal force) is of magnitude
(mr.cos Nw?. It is directed away from and is perpendicular to the earth’s
axis, as indicated in Figure 4.9. Thus the plumb line does not point to the
earth’s center, but deviates by a small angle e. From Equation (4.13) the
vector mg may be represented diagrammatically as the third side of a triangle,
the other two sides of which are mG and —mA, (Figure 4.10). Applying the
law of sines, we have
sine  sinA
mret cosN  mg

or, since ¢ is small,
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AN
\4

FIGURE 4.9 Gravitational and centrifugal forces on a particle on the surface
of the earth.

2 2
sine~e =L sinAcosh = =2 sin 2\ (4.14)
g 29
Thus e vanishes at the equator (A = 0) and at the poles (A = +90°), as we
would expect. The maximum deviation of the plumb line from the ‘“true”
vertical is at A = 45° where

= rﬁ.z. ~ —3 1 ~ .l_

€maz = 29 = 1.7 X 1073 radian ~ 0

The shape of the earth is such that the plumb line is normal to the surface
of the earth at any point. The resulting cross section is approximately
elliptical (Figure 4.11). In the above analysis it is assumed that the gravita-
tional force mG is constant and is directed toward the center of the earth.

degree

mG
myg

-mA,

o

FIGURE 4.10 Vector diagram defining the quantity mg.
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Normal to
earth’s surface

> /
| /
/

FIGURE 4.11 Exaggerated diagram showing the flattening of the earth due to
rotation.

This assumption is not strictly valid, because the earth is not a true sphere.
Local variations owing to mountains, mineral deposits, and so on, also affect
the direction of the plumb line to a slight extent.

Dynamic Effects. Motion of a Projectile
The equation of motion Equation (4.11) can be written
mf =F + (mG — mAg) — 2mo X T — mo X (0 X 1)

where F represents any applied forces other than gravity. But, from the
static case considered above, the combination mG — mA, is called mg, hence
we can write the equation of motion as

mf =F +mg — 2mo X T — me X (@ X 1)

Let us consider the motion of a projectile. If we neglect air resistance, then
F = 0. Furthermore, the term —mo X (o X 1) is very small compared to
the other terms, so we shall neglect it. The equation of motion then reduces
to

mf = mg — 2meo X T (4.15)

in which the last term is the Coriolis force.

To solve the above equation we shall choose the directions of the coor-
dinate axes Ozyz such that the z axis is vertical (in the direction of the plumb
line), the z axis is to the east, and the y axis points north (Figure 4.12).
With this choice of axes, we have

g = —kg
and
® = wl+ oj+ wk
(weosN)j + (wsin Nk

Therefore
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z (vertical)

Equator

FIGURE 4.12 Coordinate axes for analyzing projectile motion.

i j k
OXt=|w w
& y z

i(wé cos A — wy sin A) + j(ws sin \) + k(—wZ cosA) (4.16)

Upon using the above expressions for @ X f in Equation (4.15) and canceling
the m’s and equating components, we find

£ = —2w(Zcos\ — gsin ) (4.17)
j = —=2w(Zsin}) (4.18)
2= —g+4 2wtcosA (4.19)

for the component differential equations of motion. These equations are
not of the separated type, but we can integrate once with respect to ¢ to obtain

& = —2w(zcos A — ysinA) + @ (4.20)
7= —2wzsin X + Yo (4.21)
2= —gt+ 2wxrcosX + 2 (4.22)

The constants of integration %o, 4o, and Z, are the initial components of the
velocity. The values of § and 2 from the last two equations above may be
substituted into Equation (4.17). The result is

% = 2wgt cos A — 2w(20 cOS A — Po Sin A) .(4.23)
where terms involving w? have been neglected. We now integrate again to get
2 = wgl? cos N — 2wi(Zg cos A — gosinA) + &

and therefore
z = 3wyt cos N — wi?(Zp cos A — gosin N) + ot (4.24)



132 NONINERTIAL REFERENCE SYSTEMS

The above value of ¥ may be inserted into Equations (4.21) and (4.22). The
resulting equations, when integrated, yield

Y = Yol — wipl?sin A (4.25)
2= —3gi2 + 2ot + wiof? cos A (4.26)

where, again, terms of order »* have been ignored, and the projectile is as-
sumed to be at the origin at time ¢ = 0.

Let us consider some special cases. First, if a particle is dropped from
rest (Zo = 3o = 2, = 0), we have

T = %wgt® cos A
y=0
2= —ggf

Thus the particle drifts to the east. If it falls through a vertical distance b,
then 2 ~ 2h/g, and so the eastward drift is

1 cos A (8h3)”2
2w ot
3 g

Since the earth turns to the east, common sense would seem to say that the
particle should drift westward. Can the reader think of an explanation?

As a second special case, consider a projectile fired with a very high veloc-
ity in a nearly horizontal direction, and let us take this direction to be east.
Then & = vy, and g = 2y = 0. From Equation (4.25) we have

Yy = —owvpt? sin A

which means that the projectile drifts to the right. If H is the horizontal
range, then H = uit;, where ¢, is the time of flight. The drift of the projectile
to the right (in traversing the eastward distance H) is then approximately
2
ol sin A
Vo

It can be shown that this is the amount of drift, regardless of the direction in
which the projectile is initially aimed, provided the trajectory is flat.

4.6. The Foucauit Pendulum

In this section we shall study the effect of the earth’s rotation on the mo-
tion of a spherical pendulum. As in the approximate treatment of the spheri-
cal pendulum given in Section 3.17, we shall use rectangular coordinates. As
shown in Figure 4.13, the force acting on the pendulum bob is the vector sum
of the vertical term mg and the tension S in the cord. The differential equa-
tion of motion is then

mt =mg + 8 — 2mew X F (4.27)
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2,2’

FIGURE 4.13 The Foucault pendulum.

where the term —mo X (0 X r) has been neglected. The components of
o X I are given by Equation (4.16) above, and the z-y components of S are,
as in Section 3.17,

s,=—sz 8, ==Ys

Equation (4.27) then resolves into

mi = :l? S — 2mw(z cos N — g sin \) (4.28)
myj = ll~’-’ S — 2mei sin A (4.29)
mé = S, — mg -+ 2mwi cos A (4.30)

We are interested in the case where the displacement from the vertical is small,
so that the tension S is very nearly constant and equal to mg. Also, in this
case, we can neglect 2 compared to 3 in Equation (4.28). The z-y motion is
then given by the following differential equations:

¢=—§’x+2w’y'
y=—§—]y—2w':i:

where o = w sin \.
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A convenient method of solving the above pair of differential equations
is to multiply the second by ¢ and add the two together. The result is the
single equation

u+2m%+%u=o

in the complex variable u = z + 7.

We have already met a differential equation of this type in the study of
harmonic motion, Section 2.14, Equation (2.42). The general solution may be
written

u = Aent + Azeqzt

in which 4; and A4, are complex constants of integration, and ¢,q; are the roots
of the auxiliary equation

¢+2mq+%u=0

These roots are found to be expressible as
a9 = —Ue’ = wo)

in which w* = g/l. Here we have neglected «’? compared to ws. We can
now write the solution in the form

u = (Aleiwot + Aze—iwot)e—iw’t

In order to interpret the above result, let us temporarily set o’ = 0. Remem-
bering that z and y are the real and imaginary parts of 4, we can easily show
that the quantity in parentheses represents an elliptical path composed of
two perpendicular harmonic motions of frequency wp. If we now include the
term et we see that the result is merely to rotate the complex vector u
through an angle —«’t. This is the effect of the earth’s rotation, and is thus
seen to cause the elliptical path of the spherical pendulum to precess at an
angular rate o’ = wsin A\. This precession is, of course, superimposed on the
natural precession discussed in Section 3.17. The natural precession is
ordinarily much larger than the rotational precession under discussion.
However, if the pendulum is carefully started by drawing it aside with a
thread and letting it start from rest by burning the thread, the natural
precession is rendered negligibly small compared to the rotational effect.?

The rotational precession is clockwise in the Northern Hemisphere and
counterclockwise in the Southern. The period is 27/w’ = (24/A) hr. Thus
at a latitude of 45° the period is about 34 hr. The result was first demon-
strated by the French physicist Jean Foucault in Paris in the year 1851. The

1 For a quantitative treatment of the relative amounts of the two precessions, see
J. L. Synge and B. A. Griffith, Principles of Mechanics, McGraw-Hill, New York, 1959.
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Foucault pendulum has come to be a traditional display in the major plane-
tariums throughout the world.

DRILL EXERCISES

4.1 A noninertial coordinate system Ouzyz is accelerating with unit
acceleration in the direction of the z axis and is also rotating with constant
unit angular velocity about that axis. Determine the absolute acceleration
of a particle moving with unit speed along the y axis in terms of its distance y
from the origin.

4.2 A plumb line is carried along in a moving train. If m is the mass
of the plumb bob, find the tension in the cord and the deflection from the
local vertical if (a) the train is moving with constant acceleration ap in a
given direction, and (b) the train is rounding a curve of radius p with constant
speed vo. Neglect any effects due to the earth’s rotation.

4.3 Find the magnitude and direction of the Coriolis force on a racing
car of mass 10 metric tons traveling due south at a speed of 400 km/hr at
a latitude of 45°N.

4.4 A particle is dropped from a height of 200 m at a latitude of 40°N.
Find the deflection due to the Coriolis effect.

PROBLEMS

4.5 An automobile is traveling with constant forward acceleration as.
At a given instant the forward speed is ». Find which point on the tire has
the greatest absolute acceleration, relative to the ground, and find the direc-
tion and magnitude of this acceleration,

4.6 In the motion of the bicycle wheel, Example 2, p. 122, what is the
acceleration of the lowest point on the wheel?

4.7 Work Example 2, p. 122, by using a coordinate system with the
origin at the center of the turning radius, the z axis passing through the center
of the wheel, and the z axis vertical.

4.8 An insect crawls with speed v in a circular path of radius b on a
phonograph turntable that revolves with constant angular velocity w. De-
scribe the motion in a coordinate system fixed to the turntable. Find the
acceleration A of the insect relative to the outside, and find the force of fric-

“tion F exerted on the insect. In particular, ind A and F for the two cases

v = bw and v= —bw

Note that in the latter case, the insect is stationary relative to the outside.

4.9 Derive an expression for the third derivative of the position vector
d®R/d# in terms of the components in a rotating coordinate system.
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4.10 A projectile is shot vertically with initial speed v,. Neglecting air
resistance, and assuming that g is constant, find where the projectile lands
when it hits the ground.

4.11 A spherical pendulum of length [ undergoes small oscillations about
the conical angle 6,. For what value of 6, will the precession due to the earth’s
rotation just cancel the natural precession discussed in Chapter 4? Assume
that 6, is small. Find the approximate value for I = 10 m and A = 45°N.

4.12 The differential equation of motion of a charged particle in an
electric field E and a magnetic field B is

mf =qE +¢gv X B

in an inertial coordinate system. Show that if the motion is referred to a
coordinate system rotating with angular velocity (¢/2m)B, the equation of
motion becomes

mit = ¢k

where it is assumed that B is small enough so that terms of order B2 can be
neglected. This result is known as Larmor’s theorem.

4.13 Derive Equation (4.8) by using rectangular coordinates.



5. Central Forces
and Celestial Mechanics

A force whose line of action passes through a single point or
center and whose magnitude depends only on the distance from that center
is called a central force. Central forces are of fundamental importance in
physies, for they include such forces as gravity, clectrostatic forces, and
others. The forces of interaction between the fundamental particles of nature
are mostly central in the sense that, for two particles, either particle acts as
a center of force for the other. The main purpose of the present chapter is
to study the motion of a particle in a central force field with particular em-
phasis on gravitational fields.

5.1. The Law of Gravity

Newton announced his law of universal gravitation in 1666. It is no
exaggeration to state that this marked the beginning of.modern astronomy,
for the law of gravity accounts for the motions of the planets of the solar
system, their satellites, binary or double stars, and even stellar systems. The
law may be stated:

Every particle in the universe attracts every other particle with a force
that varies directly as the product of the masses of the two particles and
inversely as the square of their distance apart. The direction of the force is
along the straight line joining the two particles.

We can express the law vectorially by the equation

137
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mm; [ Ty
v, =52 (2) o
where F;; is the force on particle 7, of mass m; exerted by particle j, of mass
m;. The vector ry; is the directed line segment running from particle ¢ to
particle j, as shown in Figure 5.1. The law of action and reaction requires
that F;; = —F,;. The constant of proportionality G isknown as the universal
constant of gravitation. Its value is determined in the laboratory by care-
fully measuring the force between two spherical bodies of known mass. The

FIGURE 5.1 Action and reaction in Newton’s law of gravity.

currently accepted value of @, as obtained at the U.S. National Bureau of

Standards, is d .
G = (6.673 & 0.003) X 10~ YT

All of our present knowledge of the masses of astronomical bodies, including

the earth, is based on the value of G.

5.2. Gravitational Force Between a
Uniform Sphere and a Particle

In Chapter 2, where we discussed the motion of a falling body, it was
asserted that the gravitational force of the earth on a particle above the earth’s
surface is inversely proportional to the square of the particle’s distance from
the center of the earth; that is, the earth attracts as if all of its mass were con-
centrated at a single point. We shall now prove that this is true for any uni-
form spherical body, or any spherically symmetric distribution of matter.

Consider first a thin uniform shell of mass M and radius R. Let r be the
distance from the center O to a test particle P of mass m (Figure 5.2). Itis
assumed that r > RE. We shall divide the shell into circular rings of width
R A6 where, as shown in the figure, the angle POQ is denoted by 6, @ being
a point on the ring. The circumference of our representative ring element is
therefore 2rR sin 6, and its mass AM is given by



5.2 Gravitational Force Between a Uniform Sphere and a Particle 139

AM ~ p2xR? sin 8 A9

where p is the mass per unit area of the shell.

FIGURE 5.2 Coordinates for calculating the gravitational field of a spherical
shell.

Now the gravitational force exerted on P by a small subelement @ of the
ring (which we shall regard as a particle) is in the direction PQ. Let us
resolve this force AF, into two components, one component along PO, of
magnitude AF, cos ¢, the other perpendicular to PO, of magnitude AF, sin ¢.
Here ¢ is the angle OPQ, as shown in the figure. From symmetry we can
easily see that the vector sum of all of the perpendicular components exerted
on P by the whole ring vanishes. The force AF exerted by the entire ring is
therefore in the direction PO, and its magnitude AF is obtained by summing
the components AF, cos ¢. The result is clearly
m;/izM cos ¢ = G m2rxpR? S:;;l # cos ¢ Af
where u is the distance PQ (the distance from the particle P to the ring)
as shown. The magnitude of the force exerted on P by the whole shell is
then obtained by taking the limit of A6 and integrating:

" sin @ cos ¢ df
F = Gm2#rpR? /0 —

The integral is most easily evaluated by expressing the integrand in terms of u.
From the triangle OPQ we have, from the law of cosines,
72 + R? — 2rR cos 8 = u?
Differentiating, we have, since both R and r are constant,
rRsin 0df = udu

Also, in the same triangle OPQ, we can write
u? +r2 — R

2ru
Upon performing the substitutions given by the above two equations, we
obtain

AF =@

COs ¢ =
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f=x 2 2 _ P2
F = Gm21rpR2/ wtr— R du

0=0 2Rr?
GmM [TTE rz — R?

= IR o (1 + 7 )du

_ GmM

r2

where M = 4wpR? is the mass of the shell. We can then write vectorially
Mm
e,

r2

F=-G (5.2)

where e, is the unit radial vector from the origin O. The above result means
that a uniform spherical shell of matter attracts an external particle as if
the whole mass of the shell were concentrated at its center. This will be true
for every concentric spherical portion of a solid uniform sphere. A uniform
spherical body, therefore, attracts an external particle as if the entire mass of
the sphere were located at the center. The same is true also for a nonuniform
sphere as long as the distribution of mass is radially symmetric.

It can be shown that the gravitational force on a particle located inside a
uniform spherical shell is zero. The proof is left as an exercise.

5.3. Potential Energy in a Gravitational Field.
Gravitational Potential

In Chapter 2, Section 2.11, we proved that the inverse-square law of force
leads to an inverse first power law for the potential energy function. In this
section we shall derive this same relationship in a more physical way.

Let us consider the work W required to move a test particle of mass m
along some prescribed path in the gravitational field of another particle of
mass M.

We shall place the particle of mass M at the origin of our coordinate
system, as shown in Figure 5.3(a). Since the force F on the test particle is
given by F = —(GMm/r*)e,, then, to overcome this force, an external force
—F must be applied. The work dW done inr moving the test particle through
a distance dr is thus given by

GMm

r2

dW = —F.dr = e,-dr (5.3)

Now we can resolve dr into two components: e, dr parallel to e, (the radial
component) and the other at right angles to e, [Figure 5.3(b)]. Clearly,

e,+dr = dr
and so W is given by
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r4

M
y
(a)
X
\
\
\
dr \\
X
-~
-~ dr
r
M

(b)

FIGURE 5.3 Diagram for finding the work required to move a test particle
from one point to another in a gravitational field.

W = GMm f T GMm (l - l) (5.4)
n T T2 T

where r and 7, are the radial distances of the particle at the beginning and
end, respectively, of the path. Thus the work is independent of the partic-
ular path taken; it depends only on the end points. This verifies a fact we

already knew, namely that the inverse-square law of force is conservative.
We can define the potential energy of a particle of mass at a given point
in the gravitational field of another particle as the work done in moving the
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test particle from some (arbitrary) reference position to the point in question.
It is convenient to take the reference position at infinity.! Putting r, = »
and r, = 7 in Equation (6.4), we have

_ GMm

r

V() = GMm / rf—: = (5.5)

It is sometimes convenient to define a quantity ®, called the gravitational
potential, as the gravitational potential energy per unit mass:

Thus the gravitational potential in the field of a particle of mass M is given by

_ oM

r

P = (5.6)

If we have a number of particles M., Ms, . . . M, . . . located at the posi-
tions 1y, Iy, . . . I; . . ., then the gravitational potential at the point (z,y,2)
is the sum of the gravitational potentials of all the particles, that is

Py = 28 = —GZ s (5.7)

+

in which u; is the distance from the particle 7, of mass M, to the field point
r(z,y,2). Thus

U; = |l' - ril

The ratio of the gravitational force on a given particle to the mass of that
particle is called the gravitational field intensity. It is denoted by g. Then

F
S=n
The relationship between field intensity and the potential is the same as that
between the force F and the potential energy V, namely

GC=—-V& (5.8)
F=-vV
The gravitational field intensity can be calculated by first finding the potential
function from Equation (5.7) and then calculating the gradient. This

1 It is important to note that it is not legitimate to define potential energy as the integral
of F-dr unless we know in advance that F is conservative, that is, that a potential function
exists.
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method is usually simpler than the method of calculating the field directly
from the inverse-square law. The reason is that the potential is a scalar sum
whereas the field is given by a vector sum. The situation is quite analogous
to the theory of electrostatic fields. In fact, one can apply any of the cor-
responding results from electrostatics to find gravitational fields and potentials
with the proviso, of course, that there are no negative masses.

Potential of a Uniform Spherical Shell

As an example, let us find the potential function for a uniform spherical
shell. By using the same notation as that of Figure 5.2, we have

_ __G/'ﬂl= _G/21rpR2Sin0d0
u U

From the same relation between u and 6 that we used earlier, we find that the
above equation may be simplified to read

[

—R T

o= —@

(5.9)

where M is the mass of the shell. This is the same potential function as that
of a single particle of mass M located at O. Hence the gravitational field
outside the shell is the same as if the entire mass were concentrated at the
center. It is left as a problem to show that, with an appropriate change of
the integral and its limits, the potential inside the shell is constant and hence
that the field there is zero.

Potential and Field of a Thin Ring

We now wish to find the potential function and the gravitational field
intensity in the plane of a thin circular ring. Let the ring be of radius R
and mass M. Then, for an exterior point lying in the plane of the ring,

Figure 5.4, we have
2x
® = _G/@_/.r= _G/ uR d§
U 0 u

in which y is the linear density of the ring. In order to evaluate the integral,
we shall express the integrand in terms of the angle ¢ shown. In the triangle
OPQ we have

Rsiny = rsin ¢
Differentiating,
Rcosy dy =rcospde = 7cos o(—df — dy)

The last step follows from the fact that § + ¢ + ¢ = x. Upon transposing
terms and using the relation 4 = R cosy 4+ r cos ¢, we obtain
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FIGURE 5.4 Coordinates for calculating the gravitational field of a ring.

udy = —reospdfd = —(r2 — R%sin? )12 do
Hence the integral above becomes
/2
& = —GuRA ﬁ (® — R?sin? )12 dy = —@ 4“7R K (If) (5.10)

where K is the complete elliptic integral as defined in Section 3.15. By &x-
panding the integrand as a series and integrating term by term, we can also

write
e B (x R
¢ = Gr(2+8r2+ )

GM R?
(i m )

The field intensity at a distance r from the center of the ring is then in the
radial direction (since & is not a function of 4), and is given by

6_<I>e _ ( G_]l{ 3GMR:
ar 72 4r? B A

(;=_

Thus the field is nof given by an inverse-square law. If r is very large com-
pared to R, however, the first term predominates, and the field is approxi-
mately of the inverse-square type. In fact, the same is true for a finite body
of any shape; that is, for distances large compared to the linear dimensions of the
body, the field tends to become prodominantly inverse square.

5.4. Potential Energy in a General Central Field

We have previously shown that a central field of the inverse-square type
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is conservative. Let us now consider the question as to whether or not any
central field of force is conservative. A general isotropic central field can be
expressed in the following way:

F = f(r)e, (5.11)
in which e, is the unit radial vector. To apply the test for conservativeness,

wecalculate thecurlof F. It isconvenient heretoemploy spherical coordinates
for which the curl is given in Appendix IV. We find

e, er eyrsing
R )
r2sin 6)or 96 o¢
F, rFy rFssinéd

VXF =

For our eentral force F, = f(r), Fo = 0, Fy = 0. The curl then reduces to

VxF—rsin06¢ rao—o
The two partial derivatives both vanish since f(r) does not depend on the
angular coordinates ¢ and 6. Thus the curl vanishes and so the general
central field defined by Equation (5.11) is conservative. We recall that the
same test was applied to the inverse-square field in Section 3.7, Example 4.
We can now define a potential energy

V) = — j; F.dr = — /: 7(r) dr (5.12)

This allows us to calculate the potential energy function, given the force
function. Conversely, if we know the potential energy function, we have

_ V()
f(T) - or
giving the force function for a central field.

(5.13)

5.5. Angular Momentum in Central Fields

We previously proved in Section 3.2 that the time rate of change of the
quantity r X p, the angular momentum, is equal to the moment of the force
acting on a particle about a given origin. Let us denote the angular momen-
tum by the symbol L. Then the angular momentum theorem states that

dL

= = F 5.14
7 r X ( )

Let us apply the above general rule to the particular case of a particle
moving in a central field. Here the force F acts in the direction of the radius
vector r. Hence the cross product r X F vanishes, that is, there is zero
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moment. Consequently, for any central field
dL
E = 0
L = constant
The angular momentum of a particle moving in a central field always remains
constant.

As a corollary, it follows that the path of motion of a particle in a central
field remains in a single plane, because the constant angular momentum
vector L is normal to both r and v, and therefore is normal to the plane in
which the particle moves. Thus it is possible, without loss of generality,
to employ plane polar coordinates in treating central motion.

and therefore

Magnitude of the Angular Momentum

In order to determine the magnitude of the angular mon entum, it is
convenient to resolve the velocity vector v into radial and transverse compo-
nents in polar coordinates. Thus we can write

v = e, + rfe;
in which e, is the unit radial vector and e is the unit transverse vector. The
magnitude of the angular momentum is then given by
L = |r X mv| = |re, X m(ie, + rfey)]
Since e, X e, = 0 and e, X € = 1, we find
L = mr* = constant
for a particle moving in a central field of force.

5.6. The Law of Areas. Kepler's Laws
of Planetary Motion

The angular momentum of a particle is related to the rate at which the
position vector sweeps out area. To show this, consider Figure 5.5 which
illustrates two successive position vectors r and r + Ar representing the

FIGURE 5.5 Area swept out by the radius vector.
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motion of a particle in a time interval Af. The area AA of the shaded tri-
angular segment lying between the two vectors is expressible as

AA = 3r X Ar|
Upon division by At and taking the limit, we have

‘% - % It X ] (5.15)
From the definition of L, we can further write
dA 1 L

for the rate at which the radius vector sweeps out area. Since the angular
momentum L is constant in any central field, it follows that the areal velocity
dA/dt is also constant in a central field.

Kepler’s Laws

The fact that the planets move about the sun in such a way that the
areal velocities are constant was discovered empirically by Johannes Kepler
in 1609. Kepler deduced this rule, and two others,? from a painstaking study
of planetary positions recorded by Tycho Brahe. Kepler’s three laws are:

(1) Each planet moves in an ellipse with the sun as a focus.

(2) The radius vector sweeps out equal areas in equal times.

(3) The square of the period of revolution about the sun is proportional
to the cube of the major axis of the orbit.

Newton showed that Kepler’s three laws are consequences of the law of grav-
ity. From the argument leading to Equation (5.16), we see that the second
law comes about from the fact that the gravitational field of the sun is central.
The other two laws, as we shall show later, are consequences of the fact that
the force varies as the inverse square of the distance.

5.7. Orbit of a Particle in a Central-Force Field

To study the motion of a particle in a central field, it is convenient to

express the differential equation of motion
mf = f(r)e,
in polar coordinates. As shown in Chapter 1, the radial component of T is
# — ré?, and the transverse component is 2/4¢ + r§. The component differen-
tial equations of motion are then
m(# — ré?) = f(r) (5.17)
m(2r +r8) =0 (5.18)

2 The third law was announced in 1619.
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From the latter equation it follows that

d
—(%6) =0
or di
70 = constant = h (5.19)
From Equation (5.14) we see that
’ L
h=— (5.20)

Thus & is the angular momentum per unit mass. Its constancy is simply a
restatement of a fact which we already know, namely, that the angular mo-
mentum of a particle is constant when it is moving under the action of a
central force.

Given a certain radial force function f(r), we could, in theory, solve the
pair of differential equations [Equations (5.17) and (5.18)] to obtain r and 8 as
functions of £. It is often the case that one is interested only in the path in
space (the orbit) without regard to the time t. To find the equation of the
orbit, we shall use the variable u defined by

1
r= (5.21)
Then
1. 1,du_ _,du
v L v LT R T (5.22)

The last step follows from the fact that
0 = hu? (5.23)
according to Equations (5.19) and (5.21).
Differentiating a second time, we have

po _pddu_du
F= _hdt Fr i 35 = hu T (5.24)
From these values of r, §, and #, we readily find that Equation (5.17) trans-
forms to

d*u 1 -

The above equation is the differential equation of the orbit of a particle
moving under a central force. The solution gives « (hence r) as a function
of 6. Conversely, if one is given the polar equation of the orbit, namely,
r = r(6) = u~}, then the force function can be found by differentiating to get
d*u/d6® and inserting this into the differential equation.

EXAMPLES

1. A particle in a central field moves in the spiral orbit
r = ct
Determine the form of the force function. We have
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el
T2
and
—_— 2,
B Gt
Then, from Equation (5.25),
1
bou? +u = — — f(u)
Hence
fw™) = —mh*(6cut + ud)
and
6 1
) = —mie (%4 5)

Thus the force is a combination of an inverse cube and inverse fourth power

law.
2. In the above problem, determine how the angle 8 varies with time.

Here we use the fact that A = r26 is constant. Thus

1
— 2 —
6 =hut=nh o
or
h
6 do = 2 dt
and so, by integrating, we find
¢,
5 = he2t

where the constant of integration is taken to be zero. Then
6 = Cps

where
‘ C = constant = (5h¢2)15

5.8. Energy Equation of the Orbit

The square of the speed is given in polar coordinates by
P2 = 72 -+ 7’262
Sinece a central force is conservative, the total energy T + V is constant and
is given by
im@® + r2®) + V(r) = E = constant (5.26)
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We can also write the above equation in terms of the variableu = 1/r. From
Equations (5.22) and (5.23) we obtain

Lo [(2Y 4] 4 vy = (527

In the above equation the only variables occurring are v and 8. We shall call
this equation, therefore, the energy equation of the orbit.

EXAMPLE

In the example of the preceding section we had for the spigal orbitr = c@:
du —2
¥ T2 g8 __9n1/2,3/2
70 p 6 2c1y
so the energy equation of the orbit is
Imht(dcd +ut) + V =F

1 4c 1
Vir) = F — émhz(r—3 +-)

r2

Thus

This readily gives the force function of the example above, since f(r) =
—dV/dr.

5.9. Orbits in an Inverse-Square Field

The most important type of central field is that in which the force varies
inversely as the square of the radial distance:

=5

In the above equation, since we have included a minus sign, the constant of
proportionality k is positive for an attractive force, and vice versa. (As we
have seen in Section 5.2, k = GMm for a gravitational field.) The equation
of the orbit [Equation (5.25)] then becomes

d*u k

The general solution is clearly
k
’U«=ACOS(0—00)+W

or
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1
"= A cos (0 — 60) + k/mh?

The constants of integration A and 6, are determined from the initial condi-
tions. The value of 8, merely determines the orientation of the orbit, so we
can, without loss of generality in discussing the form of the orbit, choose
6o = 0. Then

(5.29)

1
"= A cos 0 + k/mh

This is the polar equation of the orbit. It is the equation of a conic section
(ellipse, parabola, or hyperbola) with the origin at a focus. The equation
can be written in the standard form

(5.30)

1+e

r =T 1T+ ecosd (5.31)
where
9
¢ = ATE (5.32)
k
and
mh?
To = D) (5.33)

The constant e is called the eccentricity. The different cases, illustrated in Fig-
ure 5.6, are

e < 1:ellipse

e = 0:circle (special case of an ellipse)

e = l:parabola

e > l:hyperbola

From Equation (5.31), ro is the value of r for 8 = 0. The value of r for
6 = = is given by

—
Y

+

l—e

Ty = To (5.34)

In reference to the elliptic orbits of the planets around the sun, the
distance o is called the perthelion distance (closest to the sun) and the distance
71 is called the aphelion distance (farthest from the sun). The corresponding
distances for the orbit of the moon around the earth—and for the orbits of the
earth’s artificial satellites—are called the perigee and apogee distances,
respectively.

The orbital eccentricities of the planets are quite small. (See Table 5.1
below.) For example, in the case of the earth’s orbit ¢ = 0.017, r, =
91,000,000 miles, and r; = 95,000,000 miles. On the other hand, the comets
generally have large orbital eccentricities (highly elongated orbits). Halley’s
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%
<], parabola % e> 1, hyperbola

%

, ellipse

e =0, circle

FIGURE 5.6 The family of central conics.

comet, for instance, has an orbital eccentricity of 0.967 with a perihelion
distance of only 55,000,000 miles, while at aphelion it is beyond the orbit of
Neptune. Many comets (the nonrecurring type) have parabolic or hyperbolic
orbits.

Orbital Parameters from Initial Conditions

From Equation (5.33) we find the eccentricity can be expressed as

mh?

Let vy be the speed of the particle at § = 0. Then, from the definition of the
constant h we have

h =14 = Tozao = ToVo
The eccentricity is then given by

2
e = ’ﬁ%’”_" -1 (5.36)
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For a circular orbit (¢ = 0) we have then k = mroo® or

k my?

7o To

Now let us denote the quantity k/mr, by v2, so that if v = v, the orbit is a
circle. The expression for the eccentricity, Equation (5.36), can then be
written

e = (vo/ve)* — 1 (5.37)

and the equation of the orbit can be written as

(vo/ve)? (5.3%)

T = T {(0o/v)t — 1] cos 8

The value of r, is given by 8 = =, thus

(vo/vo)?

T T (n/o )

EXAMPLE

A rocket satellite is going around the earth in a circular orbit of radius r,.
A sudden blast of the rocket motor increases the speed by 10 percent. Find
the equation of the new orbit, and compute the apogee distance. Let v, be
the speed in the circular orbit, and let v be the new initial speed; that is

v = 1.1v,

Equation (5.38) of the new orbit then reads

r 1.21
14+ 0.2l cos 6

r =

Perigee

Apogee

FIGURE 5.7 Space rocket changing from a circular orbit to an elliptical orbit.
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and the apogee distance is
T =To

The orbits are shown in Figure 5.7.
5.10. Orbital Energies in the Inverse-Square Field
Since the potential-energy function V(r) for an inverse-square force field

is given by
Vi) = —

= I3

= —ku

the energy equation of the orbit, Equation (5.27), then reads

2
%mh2 [(%‘-;) + u’] —ku=F

or, upon separating variables,
_(2E | 2%ku  \7”
d"—(m—m+m—m‘“) du

Upon integrating, we find

. ]
6 =sm [(kz + 2Empayi | T &
where 6, is a constant of integration. If we let 8, = —=/2 and solve for u, we
obtain
w = 511+ (14 2Emh-2) cos o)
or

~ mh2k1
S T¥ (1 + 2Emh%2)E cos 6

This is the polar equation of the orbit. If we compare it with Equations (5.31)
and (5.32), we see that the eccentricity is given by

e = (1 + 2Emhk-2)v2 (5.40)

The above expression for the eccentricity allows us to classify the orbits ac-
cording to the total energy E as follows

E <0 e < 1:closed orbits (ellipse or circle)
E =0 e = 1:parabolic orbit
E >0 e> 1:hyperbolic orbit

Since £E = T + V and is constant, the closed orbits are those for which
T < |V|, and the open orbits are those for which T > |V|.

(5.39)

r
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EXAMPLE

A comet is observed to have a speed v when it is a distance ry from the
sun, and its direction of motion makes angle ¢ with the radius vector from
the sun. Find the eccentricity of the comet’s orbit.

In the sun’s gravitational field £k = GMm, where M is the mass of the
sun, and m is the mass of the body. The total energy E is then given by

1
E = -m® — GMm = %mvo2 — Q_J:!Ln = constant
0

2 T

and the orbit will be elliptic, parabolic, or hyperbolic, according to whether
E is negative, zero, or positive. Accordingly, if v is less than, equal to, or
greater than 2GM /ro, the orbit will be an ellipse, a parabola, or a hyperbola,
respectively. Now

h = Ierl = 7y Sin ¢

The eccentricity e, from Equation (5.40), therefore has the value

2G M\ retvg? sin? ¢ |2
—_ 2
= [1+ (- 20 )i

The product GM may be expressed in terms of the earth’s speed v, and orbital
radius 7, (assuming a circular orbit), namely,

GM = rp?

The equation giving the eccentricity can then be written
_ 1)02 27‘3 7‘021)02 N 12
e = [1 + (v,"’ o > i sin? ¢

Limits of the Radial Motion

From the radial equation of the orbit, Equation (5.39), we see that the
values of r for § = 0, r;, and for § = , r;, are given by

_ mh2k?
= TF A F 2Emitk )R (5.41)
271
= ik (5.42)

1 — (1 4 2Emh?—2)12

Now in the case of an elliptical orbit, E is negative, and the major axis 2a of
the ellipse is given by

20a =10+ n
We then find that
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_k
LBl
Thus the value of a is determined entirely from the total energy.
In the case of a circular orbit of radius a, we have

2a =

V=-— g = constant
k

E = — — = constant
2a

Thus the kinetic energy is given by
—_ 1 2 — —_ k
T = 5 MVt = E V = 2%

It can be shown that the time average of the kinetic energy for elliptic motion
in an inverse-square field is also k¥/2a, and that the time average of the poten-
tial energy is —k/a, where a is the semimajor axis of the ellipse. The proof
is left as an exercise.

5.11. Periodic Time of Orbital Motion

In Section 5.6 we showed that the areal velocity 4 of a particle moving in
any central field is constant. Consequently, from Equations (5.16) and (5.20),
the time #); required for a particle to move from one point P; to any other
point P, (Figure 5.8) is given by
Ay 2

2m
tl2—'2" = A12-L* —Au}—L

where Ay, is the area swept out by the radius vector between P; and P-..
Let us apply the above result to the case of an elliptic orbit of a particle
in an inverse-square field. Since the area of an ellipse is mab, where a and b

Py

o

FIGURE 5.8 Area swept out by radius vector.



5.11 Periodic Time of Orbital Motion 157

are the semimajor and the semiminor axes, respectively, then the time r re-
quired for the particle to complete one orbital path is expressed by

=7 (5.43)

But for an ellipse

where ¢ is the eccentricity. Thus we can write

2
T=27rTa\/l—e2

Furthermore, if we refer to Equations (5.33) and (5.34), we find that the
major axis is given by

2 2
2a=ro+r1=7—n£< S 1) 2mh

E\1+e T—¢) kl-—e&)
We can therefore express the period as
m 1/2
T =27 (E) a’/? (5.44)

Thus, for a given inverse-square force field the period depends only on the
size of the major axis of an elliptical orbit.

Since, for a planet of mass m moving in the sun’s gravitational field,
k = GMm, we can write for the period of orbital motion of a planet

T = cadl? (5.45)

where ¢ = 2r(GM)~12. Clearly, ¢ is the same for all planets. Equation
(5.45) is a mathematical statement of Kepler’s third law. If a is expressed
in astronomical units (93,000,000 miles = @carin = 1 astronomical unit) and

TABLE 5.1
Semimagor Axis in
Planet Astronomical Units Period in Years Eccenlricity
Mercury 0.387 0.241 0.206
Venus 0.723 0.615 0.007
Earth 1.000 1.000 0.017
Mars 1.524 1.881 0.093
Jupiter 5.203 11.86 0.048
Saturn 9.539 29.46 0.056
Uranus 19.19 84.02 0.047
Neptune 30.06 164.8 0.009

Pluto 39.46 247.7 0.249
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7 18 in years, then the numerical value of ¢ is unity. In Table 5.1 are listed
the periods, semimajor axes in astronomical units, and the orbital eccentricities
of the planets of the solar system.

5.12. Motion in an Inverse-Square Repulsive Field.
Scattering of Atomic Particles

There is an important physical application involving motion of a particle
in a central field in which the law of force is of the inverse-square repulsive
type, namely the deflection of high-speed atomic particles (protons, alpha
particles, and so on) by the positively charged nuclei of atoms. The basic
investigations underlying our present knowledge of atomic and nuclear struc-
ture are scattering experiments, the first of which were carried out by the
British physicist Lord Rutherford in the early part of this century.

Consider a particle of charge ¢ and mass m (the incident high-speed.
particle) passing near a heavy particle of charge @ (the nucleus, assumed
fixed). The incident particle is repelled with a force given by Coulomb’s law:

1) =%

where the position of @ is taken to be the origin. (We shall use cgs electro-
static units for @ and g. Then r is in centimeters, and the force is in dynes.)
The differential equation of the orbit then takes the form

du __Q
@ TS T
and so the equation of the orbit is
_ 1
A cos (8 — 6p) — Qg/mh2

We can also write the equation of the orbit in the form given by Equation
(5.39), namely

ul=r

- mh* Qg (5.46)
—1 4+ (1 + 2Emh2Q2q~2)'"2 cos (6 — 6y) )
since k = —@Qqg. The orbit is a hyperbola. This may be seen from the
physical fact that the energy E is always greater than zero in a repulsive
field of force. (In our case E = jmuv? + Qg/r.) Hence the eccentricity e,
the coefficient of cos (6 — 6), is greater than unity, which means that the orbit

must be hyperbolic.

The incident particle approaches along one asymptote and recedes along
the other, as shown in Figure 5.9. We have chosen the direction of the polar
axis such that the initial position of the particleis § = 0, r = ». It is clear

r
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Hyperbolic path

FIGURE 5.9 Hyperbolie path of a charged particle moving in the inverse-
square repulsive field of another charged particle.

from either of the two equations of the orbit that r assumes its minimum
value when cos (8 — 6;) = 1, thatis, when 8 = 8. Sincer = « when§ = 0,
then r is also infinite when 8 = 26, Hence the angle between the two
asymptotes of the hyperbolic path is 26,, and the angle ¢ through which the
incident particle is deflected is given by

¢ =T — 200
Furthermore, in Equation (5.47) the denominator on the right vanishes at
0 =0and § = 26,. Thus,
—14+ (1 + 2Emh2Q2q%)2 cos 6y = 0

from which we readily find

tan 8 = (2Em)!?hQ-'q! = cotg (5.47)
The last step follows from the angle relationship given above,

In applying the above equation to scattering problems, it is convenient
to express the constant h in terms of another quantity p called the ¢mpact
parameter. The impact parameter is the perpendicular distance from the
origin (scattering center) to the initial line of motion of the particle, as shown
in Figure 5.9. We have then

h=|rX vl =opy

where v is the initial speed of the particle. We know also that the energy E
is constant and is equal to the initial kinetic energy imuve?, because the initial



160 CENTRAL FORCES AND CELESTIAL MECHANICS

potential energy is zero (r = «). Accordingly, we can write the scattering
formula, Equation (5.47), in the form

pmot _ 2pF

Q Qg (549

¢ _
cotz—

EXAMPLES

1. An alpha particle emitted by radium (E = 5 million electron volts =
5% 105 X 1.6 X 1072 erg) suffers a deflection of 90° upon passing near a
gold nucleus. What is the value of the impact parameter? For alpha
particles ¢ = 2¢, and for gold @ = 79, where ¢ is the elementary charge.
(The charge carried by a single electron is —e.) In our units e = 4.8 X
107 esu. Thus, from Equation (5.48),

_ Qg 02X 79X (48) + 10 cm
P =g cotdd = 5T 1.6 X 10
2.1 X 102 ¢m

2. Calculate the distance of closest approach of the alpha particle in the
above problem. The distance of closest approach is given by the equation
of the orbit [Equation (5.46)] for 8 = 6, thus

o mhﬁQ_lq‘l
min =TT 11 4 2EmiiQ-2q )P

Upon using Equation (5.48), the above equation, after a little algebra, can be
written

foin = p cot (¢/2) _ _pcos (¢/2)
™R T T4 [T cof? (/21 1 — sin (¢/2)

Thus, for ¢ = 90 degrees, we find rmim = 241 p = 5.1 X 1072 em.
Notice that the expressions for Tmin become indeterminate when h =
= 0. In this case the particle is aimed directly at the nucleus. It ap-
proaches the nucleus along a straight line, and, being continually repelled by
the coulomb force, its speed is reduced to zero when it reaches a certain point,
Tmin, from which point it returns along the same straight line. The angle of
deflection is 180°. The value of 7, in this case is found by using the fact
that the energy E is constant. At the turning point the potential energy is
Qq/7min, and the kinetic energy is zero. Hence E = }mv? = Qq/Tmin, and
Qq
Tmin = ’E

For radium alpha particles and gold nuclei we find 7, =~ 107? em when the
angle of deflection is 180°. The fact that such deflections are actually ob-
served shows that the order of magnitude of the radius of the nucleus is at
least as small as 10~!% cm.
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5.13. Motion in a Nearly Circular Orbit. Stability

A circular orbit is possible under any attractive central force, but not all
central forces result in siable circular orbits. We wish to investigate the fol-
lowing question: If a particle traveling in a circular orbit suffers a slight dis-
turbance, will the ensuing orbit remain close to the original circular path? In
order to answer the query, we refer to the radial differential equation of motion.
Since § = h/r?, we can write the radial equation as follows:

mt — "% — 1r) (5.49)

Now for a circular orbit, r is constant, and # = 0. Thus, calling a the radius
of the circular orbit, we have

~ ™ _ fa) (5.50)

for the force at r = a.
Now let us express the radial motion in terms of the variable z defined by
T=r—a
The differential equation can then be written
mi — mh*(z + a)=* = f(x + a) (5.51)

Expanding the two terms involving x 4+ a as power series in z, we obtain
mg — mhza*3(1 - 35——}— .- ) = f(a) + fl(@)e + - - -

The above equation, by virtue of the relation shown in Equation (5.50),
reduces to

mi + [“T?’ f(a) — f’(a)] =0 (5.52)

if we neglect terms involving x? and higher powers of z. Now, if the coeflicient
of z (the quantity in brackets) in the above equation is positive, then the
equation is the same as that of the simple harmonic oscillator. In this case the
particle, if perturbed, oscillates harmonically about the circle r = q, so the
circular orbit is a stable one. On the other hand, if the coefficient of z is
negative, the motion is nonoscillatory, and the result is that z eventually
increases exponentially with time; the orbit is unstable. (If the coefficient
of z is zero, then higher terms in the expansion must be included in order to
determine the stability.) Hence we can state that a cireular orbit of radius a
is stable if the force function f(r) satisfies the inequality
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f(@) +31'(@) <0 (5.53)

In particular, if the radial force function is a power law, namely,
fr) = —crm
then the condition for stability reads

a
—car — 3 cna* 1 < 0

which reduces to
n> —3

Thus the inverse-square law (n = —2) gives stable circular orbits, as does the
law of direct distance (n = 1). The latter case is that of the two-dimensional
harmonic oscillator. For the inverse fourth power (n = —4) circular orbits
are unstable. It can be shown that circular orbits are also unstable for the
inverse cube law of force (n = —38). To show this it is necessary to include
terms of higher power than one in the radial equation.

5.14. Apsides and Apsidal Angles
for Nearly Circular Orbits

An apsis, or apse, is a point in an orbit at which the radius vector assumes
an extreme value (maximum or minimum). The perihelion and aphelion
points are the apsides of planetary orbits. The angle swept out by the
radius vector between two consecutive apsides is called the apsidal angle.
Thus the apsidal angle is = for elliptic orbits under the inverse square law of
force.

In the case of motion in a nearly circular orbit, we have seen that r
oscillates about the circle r = a (if the orbit is stable). From Equation (5.52)
it follows that the period 7, of this oscillation is given by

=2 m
\[— 250 + @]

The apsidal angle in this case is just the amount by which the polar angle 8
increases during the time that r oscillates from a minimum value to the suc-
ceeding maximum value. This time is clearly .. Now § = h/r?, therefore §
remains approximately constant, and we can write

92% _ [_@}1/2

ma

The last step above follows from Equation (5.50). Hence the apsidal angle
is given by
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_1 J"(tz)]_”2
{l/ = 57'9 =T [3 + af(a) (554)
Thus for the power law of force f(r) = —cr®, we obtain

¥ = (3 + n)2

The apsidal angle is independent of the size of the orbit in this case. The
orbit is re-entrant, or repetitive, in the case of the inverse-square law (n = —2)
for which ¢ = = and also in the case of the linear law (n = 1) for which
¥ = x/2. If, however, say n = 2, then ¢ = n/+/5 which is an irrational
multiple of 7, and so the motion does not repeat itself.

If the law of force departs slightly from the inverse-square law, then the
apsides will either advance or regress steadily, depending on whether the
apsidal angle is slightly greater or slightly less than #. (See Figure 5.10.)

Apsidal angle

FIGURE 5.10 The apsidal angle.

Let us suppose, for example, that the force is of the form
fo)y=—5-4 (5.55)

where e is very small. (This is the form of the force function in the plane of a
ring, as shown in Example 2, Section 5.3.) The apsidal angle, from Equation

(5.54), is
_ 2ka~? + 4ea5\ 12
v = r(3 To T o ea“)

(Lesme)™
="\ T ¥ dia>
~r (1 + kiaz) (5.56)

In the last step above we have neglected powers of the quantity ¢/ka?® higher
than one. We see that the apsides advance if ¢is positive, whereas they regress

if € is negative.
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For a given planet, the gravitational perturbation owing to the other
planets in the solar system is indeed approximated by a term of the form ¢/r4
in Equation (5.55). The cumulative effect of one planet may be considered
to be approximately the same as if that planet were smeared out into a ring,
Section 5.3. For the innermost planet, Mercury, the calculated perturbations
are such as to cause an advance of Mercury’s perihelion of 531 sec of arc per
century. The observed advance is 574 sec per century. The discrepancy of
43 sec per century is apparently explained by Einstein’s general theory of
relativity.

The gravitational field near the earth departs slightly from the inverse-
square law. This is due to the fact that the earth is not quite a true sphere.
As a result, the perigee of an artificial satellite whose orbit lies near the earth’s
equatorial plane will advance steadily in the direction of the satellite’s motion.
The observation of this advance is, in fact, one method of accurately deter-
mining the shape of the earth. Such observations have shown that the earth
is slightly pear-shaped. In addition to causing an advance of the perigee of
an orbiting satellite, the earth’s oblateness also causes the plane of the orbit
to precess if the orbit is not in the plane of the earth’s equator.

DRILL EXERCISES

5.1 By equating the gravitational force to the centripetal force, show
that the period of revolution of a planet moving in a circular orbit is propor-
tional to the 3/2 power of the radius of the orbit.

5.2 Find the radius required for a synchronous (24 hr) satellite going
in a circular orbit around the earth.

5.3 Compute the mass of the earth from the fact that the period of the
moon’s revolution around the earth is 27.3 days, and the radius of the moon’s
orbit, assumed circular, is 3.84 X 10° km.

PROBLEMS

5.4 Verify that the gravitational field on the inside of a thin spherical
shell is zero (a) by finding the field directly, and (b) by calculating the poten-
tial and showing that it is constant over the interior of the shell.

5.5 Show that a particle dropped into a straight hole drilled through
the earth, passing through the center, would execute simple harmonic motion.
Find the period of oscillation, and show that it depends only on the density
of the earth, not the size. Assume the earth to be a uniform solid sphere.

5.6 A particle slides through a smooth straight tube that passes
obliquely through the earth. Show that the motion is simple harmonic with
the same period as that of Problem 5.5. Neglect any effects of rotation.
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5.7 If the solar system was embedded in a uniform dust cloud of
density p, what would be the law of force on a planet a distance r from the
center of the sun?

5.8 A particle moving in a central field describes the spiral orbit
r = roeb®. Show that the force law is inverse-cube and that 6 varies loga-
rithmically with &.

5.9 A particle moves in an inverse-cube field of force. Show that, in
addition to the exponential spiral orbit of Problem 5.8, there are two other
possible types of orbit, and give their equations.

5.10 The orbit of a particle moving in a central field is a circle passing
through the origin, namely r = o cos 6. Show that the force law is inverse-
fiftth power.

5.11 A particle moves in a spiral orbit given by » = af. If 0 increases
linearly with ¢, is the force a central field? If not, determine how 6 would
have to vary with ¢ for a central force.

5.12 A rocket ship is initially going in a circular orbit close to the carth.
It is desired to place the ship into a new orbit such that the apogee distance
is equal to the radius of the moon’s orbit around the earth. If a single rocket
thrust is used to accomplish this, determine the ratio of the final and initial
speeds. Assume that the radius of the original circular orbit is 5 the distance
to the moon. Second, calculate the apogee distance if the speed ratio is
1 percent too great. This problem illustrates the extreme accuracy needed
to achieve a circumlunar orbit.

5.13 Compute the period of Halley’s comet from the data given in the
text, Section 5.9. Find also the comet’s speed at perihelion and aphelion.

5.14 A comet is first seen at a distance of d astronomical units from the
sun and it is traveling with a speed of ¢ times the earth’s speed. Show that
the orbit of the comet is hyperbolic, parabolic, or elliptic, depending on whether
the quantity ¢%d is greater than, equal to, or less than 2, respectively.

5.15 A particle moves in an elliptic orbit in an inverse-square force field.
Prove that the product of the minimum and maximum speeds is equal to
(2ra/7)* where a is the semimajor axis and 7 is the periodic time.

5.16 Prove the statement made in Section 5.10 that the time average of
the potential energy of a particle deseribing an elliptical orbit, in the inverse-
square force field f(r) = —k/r? is —k/a where a is the semimajor axis of the
ellipse.

5.17 Find the apsidal angle for nearly circular orbits in a central field
for which the law of force is

e~ br
10 = —kS

5.18 If the solar system was embedded in a uniform dust cloud (Problem
5.7) what would the apsidal angle of a planet be for motion in a nearly circular
orbit? This was once suggested as a possible explanation for the advance of
the perihelion of mercury.
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5.19 Show that the radial differential equation of motion of a particle
in a central field, Equation (5.49), is the same as that of a particle undergoing
rectilinear motion in an “effective potential” U(r) given by

UE) = Vi) + 3

in which the true force f(r) = —dV(r)/dr. Make a rough plot of U(r) for
the case of a stable circular orbit, say V(r) = —k/r, and for an unstable one,
say V(r) = — k/r.

5.20 Show that the stability condition for a circular orbit of radius a is
equivalent to the condition that d?U/dr? > 0 for r = a where U(r) is the
“effective potential”’ defined in the previous problem.

5.21 Find the condition for which circular orbits are stable if the force
function in a central field is of the form

5.22 Show that a circular orbit of radius r is stable in Problem 5.17
if r is less than b1, )

5.23 A comet is going in a parabolic orbit lying in the plane of the earth’s
orbit. Regarding the earth’s orbit as circular of radius a, show that the
points where the comet intersects the earth’s orbit are given by

- 2p
cos 0 = 1+-a—

where p is the perihelion distance of the comet defined at 6 = 0.
5.24 Use the result of the above problem to show that the time interval
that the comet remains inside the earth’s orbit is the fraction

1/2 /2
(-
3r \a a

of a year, and that the maximum value of this time interval is 2/3x year, or
about 11 weeks.

5.25 Inadvanced texts on potential theory it is shown that the potential
energy of a particle of mass m in the gravitational field of an oblate spheroid,
like the earth, is approximately

V(r) = —2(1 +T52)

where r refers to distances in the equatorial plane, ¥ = GMm as before, and
e = (3)RAR in which R is the equatorial radius and AR is the difference
between the equatorial and polar radii. From this, find the apsidal angle for
a satellite moving in a nearly circular orbit in the equatorial plane of the earth
where B = 4000 mi, AR = 13 mi.

5.26 According to the special theory of relativity, a particle moving in a
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central field with potential energy V(r) will describe the same orbit that a
particle with a potential energy

_E-VOP

v
(r) 2m002

would deseribe according to nonrelativistic mechanics. Here E is the total
energy, mo is the rest mass of the particle, and ¢ is the speed of light. From
this, find the apsidal angle for motion in an inverse-square force field,
V() = —k/r.

5.27 An asteroid is observed to have a speed v, when it is a distance r,
from the sun, and its direction of motion makes an angle ¢ with the radius
vector from the sun. Show that the major axis of the elliptical orbit of the
asteroid makes an angle

2702
cot™! (tan ¢ — —— csc 2<p)
TaVq

with the initial radius vector of the asteroid, where r, and v, are the earth’s
orbital radius and speed, respectively.



6. Dynamics
of Systems
of Many Particles

In studying a system or collection of many free particles,
we shall be mainly interested in the general features of the motion of such a
system. ‘

6.1. Center of Mass and Linear Momentum

Our general system consists of n particles of masses my, ms, . . ., M,
whose position vectors are, respectively, ri, r;, . . ., rn. We define the
center of mass of the system as the point whose position vector r.. (Figure 6.1)
is given by

_ml + mg+ - - -+ mul, _ Zmi,
- m+mg+ -+ my, m

(6.1)
where m = = m; is the total mass of the system. The above definition is
clearly equivalent to the three equations

Zmﬂ; Zmiyi E’miz;
Lem = ——— om — 2om = —

m m m

We define the linear momentum p of the system as the vector sum of the
momenta of the individual particles, namely,

p = Zp:; = Zmyv; (6.2)-

168
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X

FIGURE 6.1 Center of mass of a system of particles.

From Equation (6.1}, by differentiating with respect to the time ¢, it follows
that

P = Zmy; = MVen (6.3)

that is, the linear momentum of a system of particles is equal to the velocity
of the center of mass multiplied by the total mass of the system.

Suppose now that there are external forces Fi, Fo, . . . , F,, . . ., F,
acting on the respective particles. In addition, there may be internal forces of
interaction between any two particles of the system. We shall denote these
internal forces by F.;, meaning the force exerted on particle < by particle j,

with the understanding that F;; = 0. The equation of motion of particle 7 is
then

F, 4 z Fij=m¥ =p; (6.4)

=1
where F, means the total external force acting on particle 7. The second term
in the above equation represents the vector sum of all the internal forces

exerted on particle 7 by all other particles of the system. Adding Equation
(6.4) for the n particles, we have

n n

REPPRE
1 7 i=1

1= =1

| Gt

p: (6.5)
i=1

1

In the double summation above, for every force F.; there is also a force Fj;,
and these two forces are equal and opposite
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F;j = —Fj; (6.6)

from the law of aetion and reaction, Newton’s third law. Consequently, the
internal forces cancel in pairs, and the double sum vanishes. We can there-
fore write Equation (6.5) in the following way:

EF,’ = EI.), = i) = Macm (67)

In words: The acceleration of the center of mass of a system of particles is the
same as that of a single particle having a mass equal to the total mass of the system
and acted upon by the sum of the external forces.

Consider, for example, a swarm of particles moving in a uniform gravita-
tional field. Then, since F; = m.8 for each particle,

EF,‘ = Emlg = mg
The last step follows from the fact that g is constant. Hence

This is the same as the equation for a single particle or projectile. Thus the
center of mass of the shrapnel from an artillery shell that has burst in mid-air
will follow the same parabolic path that the shell would have taken had it not
burst.

In the special case in which there are no external forces acting on a sys-
tem (or if T F; = 0), then 4., = 0 and V., = constant. Thus the linear
momentum of the system remains constant:

2p:; = P = mV,, = constant (6.9)

This is the principle of conservation of linear momentum. In Newtonian
mechanics the constancy of the linear momentum of an isolated system is
directly related to, and is in fact a consequence of, the third law. But even
in those cases in which the forces between particles do not directly obey the
law of action and reaction, such as the magnetic forces between moving
charges, the principle of conservation of linear momentum still holds when
due account is taken of the total linear momentum of the particles and the
electromagnetic field.*

6.2. Angular Momentum of a System

We previously stated that the angular momentum of a single particle is
defined as the cross product r X mv. The angular momentum L of a system
of particles is defined accordingly, as the vector sum of the individual angular
momenta, namely

1 See, for example, W. T. Scott, The Physics of Electricity and M agnetism, 2d ed., John
Wiley and Sons, Inc., New York, 1966.
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L= .'21 (r. X myv;)

Let us calculate the time derivative of the angular momentum. Using the
rule for differentiating the cross product, we find

dL n n
w z (vi X mivs) + z (r; X ma,) (6.10)
=1

=1

Now the first term on the right vanishes, because v; X v; = 0 and, since m.a;
is equal to the total force acting on particle 7, we can write

L Slex(es )

i1 7=1

n

=zrixFi+iiriXFij (6.11)

i=1 im=l j=1

where, as in Section 6.1, F; denotes the total external force on particle ¢, and
F;; denotes the (internal) force exerted on particle ¢ by any other particle j.
Now the double summation on the right consists of pairs of terms of the form

(r: X F,j) + (r; X Fj) (6.12)

Denoting the vector displacement of particle j,relative to particle ¢ by r;;, we
see from the triangle shown in Figure 6.2 that

P =%; — Iy (613)

o
FIGURE 6.2 Definition of the vector r;;.
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Therefore, since F;; = —F;, the expression (6.12) reduces to
—~r; X Fy (6.14)

which clearly vanishes if the internal forces are central, that is, if they act
along the lines connecting pairs of particle. Hence the double sum in Equa-

tion (6.11) vanishes. Now the cross product r; X F,is the moment of the
external force F,. The sum > r; X F, is therefore the total moment of all
the external forces acting on the system. If we denote the total external
moment by N, the Equation: (6.11) takes the form

dL
o =N (6.15)

That is, the time rate of change of the angular momentum of a system s equal to
the total moment of all the external forces acting on the system.

If a system is isolated, then N = 0, and the angular momentum remains
constant in both magnitude and direction:

L = 2r; X m;v; = constant (6.16)

This is a statement of the principle of conservation of angular momentum. 1t
is a generalization for a single particle in a central field. Like the constancy of
linear momentum discussed in the preceding section, the angular momentum
of an isolated system is also constant in the case of a system of moving charges
when the angular momentum of the electromagnetic field is considered.?

6.3. Kinetic Energy of a System of Particles

The total kinetic energy T of a system of particles is given by the sum of
the individual energies, namely,

T = E%mivﬁ = Z%mi(vi-vi) (617)
As shown in Figure 6.3, we can express each position vector r, in the form
I; =Tcm '+: T, (618)

where ¥; is the position of particle 7 relative to the center of mass. Taking
the derivative with respect to ¢, we have

Vi = Ven + Vi (6.19)

Here V.., is the velocity of the center of mass and ¥, is the velocity of particle ¢
relative to the center of mass. The expression for T' can therefore be written

2 See footnote 1.
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Center of mass

FIGURE 6.3 Definition of r;.

TV= E%mi(vcm + vi)' (vcm + ‘-71)
= z%mivcmz + Emi(vcm'{ﬂ') + E%m,@ﬁ
= %vc,,ﬁZm,- + V,fE’”l,'V; + E—;—ma')f

Now, from Equation (6.18), we have
ZmiE; = Zm(t; — L) = Z2ME; — Mo = 0
Similarly, we obtain
Zm¥; =0
Therefore the expression for the kinetic energy reduces to
T = imvm? + Zimsd (6.20)

Thus the total kinetic energy of a system of particles is given by the sum of
the kinetic energy of translation of the center of mass (the first term on the
right) plus the kinetic energy of motion of the individual particles relative to
the center of mass (the last term). This separation of kinetic energy into its
parts is convenient, for example, in molecular physics. Thus, for a molecule,
the total kinetic energy consists of translational energy of the whole molecule
plus the energy of vibration and rotation within the molecule.

6.4. Motion of Two Interacting Bodies.
The Reduced Mass

Let us consider the motion of a system consisting of two bodies (treated
as particles) that interact with one another by a central force. We shall
assume the system is isolated, and hence the center of mass moves with
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constant velocity. For simplicity, we shall take the center of mass as the
origin. We have then

m1f1 + m2f2 = 0 (6.21)
where, as shown in Figure 6.4, the vectors ¥, and ¥, represent the positions of

the particles m; and m,, respectively, relative to the center of mass. Now, if
R is the position vector of particle 1 relative to particle 2, then

FIGURE 6.4 The two-body problem.

R=F — T = f,(l + 1"-‘) (6.22)
mq

The last step follows from Equation (6.21).
The differential equation of motion of particle 1 relative to the center of
mass is
dar R
m jjt‘z‘l =F = f(») o (6.23)
in which f(r) is the magnitude of the mutual force between the two particles.
By using Equation (6.22), we can write

dR R
pogp =1®) (6.24)
where
_ mims
= (6.25)

The quantity u is called the reduced mass. The new equation of motion,
(6.24), gives the motion of particle 1 relative to particle 2. This equation
is precisely the same as the ordinary cquation of motion of a single particle
of mass ¢ moving in a central field of force given by f(r). Thus the fact that
my is moving relative to the center of mass is automatically accounted for
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by replacing m; by the reduced mass u. If the bodies are of equal mass
m, then u = m/2. On the other hand, if m. is very much greater than m,, so
that my/m, is very small, then u is nearly equal to m,.

For two bodies attracting one another by gravitation, we have

f(®) =

Gmm,
-

(6.26)

In this case the equation of motion is
.. G R
u = — ’g;mz (E) (6.27)

This is the same as the equation of a single particle in an inverse-square central
field (as treated in Chapter 5). Since the choice of subseripts is arbitrary, we
conclude that either particle describes a central conic about the other as a
focus. Thus, regarding the earth and the moon as an isolated system, the
moon.describes an ellipse with the center of the earth as a focus, and the
earth describes an ellipse with the center of the moon as a focus.

6.5. Collisions

Whenever two bodies undergo a collision, the force that either exerts on
the other during the contact is an internal force, if the two bodies are re-
garded together as a single system. The total linear momentum is therefore
unchanged. We can therefore write

p:+p.=p’ +pf (6.28)

or, equivalently
MiVy + MeVe = myVy' + mavy’ (6.29)

The subscripts 1 and 2 refer to the two bodies, and the primes indicate the
respective momenta and velocities afier the collision. The above equations
are quite general. They apply to any two bodies regardless of their shapes,
rigidity, and so on.

With regard to the energy balance, we can write

Pt opE _p?
oo, 20 = Gy T o T € (6.30)

or
'%mﬂ)]? + %mgvzz = %ml’l)l"‘) + %m21)2'2 + Q (631)

Here the quantity Q is introduced to indicate the net energy loss, or gain, that
occurs as a result of the collision.

In the case of a perfectly elastic collision, there is no change in the total
kinetic energy, so that Q@ = 0. If there is an energy loss, then @ is positive.
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This is called an endoergic collision. It may happen that there is an energy
gain. This would occur, for example, if an explosive was present on one of
_ the bodies at the point of contact. In this case @ is negative, and the collision
is called exoergic.

The study of collisions is of particular importance in atomic and nuclear
physies. Here the bodies involved may be atoms, nuclei, or various elemen-
tary particles, such as electrons, protons, and so on.

Direct Collisions

Let us consider the special case of a head-on collision of two bodies, or
particles, in which the motion takes place entirely on a single straight line,
as shown in Figure 6.5. 1In this case the momentum balance equation, Equa-
tion (6.29), can be written without the use of vector notation as

my my
o @—r % X
1 2
mym,
0 227, o
—
Yo

m, m,
0 @ 3 v @ ’v, x
1 2
FIGURE 6.5 Head-on collision of two particles.

My + mave = muw + move’ (6.32)

The direction along the line of motion is given by the signs of the v’s.

In order to compute the values of the velocities after the collision, given
the values before the collision, we can use the above momentum equation
together with the energy balance equation, Equation (6.31), if we know the
value of Q. It is often convenient in this kind of problem to introduce another
parameter e called the coefficient of restitution. This quantity is defined as
the ratio of the speed of separation v’ to the speed of approach v. In our
notation, ¢ may be written as

v’ — o] - 1’_'

€= lvg—vll —V

(6.33)
The numerical value of ¢ depends primarily on the composition and physical
makeup of the two bodies. It is easy to verify that in a perfectly elastic
collision, the value of e = 1. To do this, we set @ = 0 in Equation (6.31),
and solve it together with Equation (6.32), for the final velocities.
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In the case of a perfectly inelastic collision, the two bodies stick together
after colliding, so that ¢ = 0. For most real bodies, ¢ has a value somewhere
between the two extremes of 0 and 1. For ivory billiard balls, it is about 0.95.
The value of the coefficient of restitution may also depend on the speed of
approach. This is particularly evident in the case of a silicone compound
known under a trade name as “‘silly putty.” A ball of this material bounces
when it strikes a hard surface at high speed, but at low speeds it acts like
ordinary putty.

We can calculate the values of the final velocities from Equation (6.32)
together with the definition of the coefficient of restitution, Equation (6.33).
The result is

r_ (m1 — ema)vr + (Mg + emy)vy

U1

my A+ (7.6
0! = (my + emy)v, + (’mz — em1)2)2
? my -+ my

Taking the inelastic case by setting e = 0, we find, as we should, that vy’ = v/,
that is, there is no rebound. On the other hand, in the special case that the
bodies are of equal mass, m, = m,, and are perfectly elastic, e = 1, then we
obtain

v = v

Uz, =0

The two bodies, therefore, just exchange their velocities as a result of the
collision.

In the general case of a direct nonelastic collision, it is easily verified that
the energy loss @ is related to the coefficient of restitution by the equation

Q=31 —¢)

in which g = mums/(m1 + my) is the reduced mass, and v = v — 1] is the
relative speed before impact. The derivation is left as an exercise.

6.6. Oblique Collisions and Scattering. Comparison of
Laboratory and Center-of-Mass Coordinates

We now turn our attention to the more general case of collisions in which
the motion is not confined to a single straight line. Here the vectorial form of
the momentum equations, Equations (6.28) and (6.29), must be employed.
Let us study the special case of a particle of mass m; with initial velocity
v; (the incident particle) that strikes a particle of mass m, that is initially at
rest (the target particle). 'This is a typical problem found in nuclear physics.
The momentum equations in this case are
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P =p' +p/ (6.35)
mvy = mlvl' "I'— m2V2’ (636)

The energy balance condition is

Pt _p? p
omn ~ Imy + oy +Q (6.37)

or
%"’)’lﬂ)].2 = %mlvl'z + ’%m2U2,2 + Q (6.38)

Here, as before, the primes indicate the velocities and momenta after the col-
lision, and @ represents the net energy that is lost or gained as a result of the
impact. The quantity @ is of fundamental importance in atomic and nuclear
physics, since it represents the energy released or absorbed in atomic and
nuclear collisions. In many cases the target particle is broken up or changed
by the collision. In such cases, the particles that leave the collision are dif-
ferent from the particles that enter. This is easily taken into account by
assigning different masses, say ms and m, to the particles leaving the collision.
In any case, the law of conservation of linear momentum is always assumed
to be valid. According to the theory of relativity, however, the mass of a
particle varies with speed in a definite way which we shall study in a later
chapter. For now, we can state that the momentum conservation expressed
by Equation (6.28) is relativistically correct, by assuming that mass is a func-
tion of speed.

Center-of-Mass Coordinates

Theoretical calculations in nuclear physics are often done in terms of
quantities referred to a coordinate system in which the center of mass of the
colliding particles is at rest. On the other hand, the experimental observa-
tions on scattering of particles are carried out in terms of the laboratory
coordinates. It is of interest, therefore, to consider briefly the problem of
conversion from one coordinate system to the other.

The velocity vectors in the laboratory system and in the center-of-mass
system are illustrated diagramatically in Figure 6.6. In the figure, ¢ is the
angle of deflection of the incident particle after it strikes the target particle
and ¢ is the angle that the line of motion of the target particle makes with the
line of motion of the incident particle. Both ¢ and ¢; are measured in the
laboratory system. In the center-of-mass system, since the center of mass
must lie on the line joining the two particles at all times, both particles ap-
proach the center of mass, collide, and recede from the ‘center of mass in oppo-
site directions. The angle ¢ denotes the angle of deflection of the incident
particle in the center-of-mass system as indicated.

From the definition of the center of mass, the linear momentum in the
center-of-mass system is zero both before and after the collision. Hence we
can write
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v,
m, Vi m,
Center-of-mass

/ system

Laboratory B
system 2 V2 / m,

f,
V2

FIGURE 6.6 Comparison of laboratory and center-of-mass coordinates.

PL+p=0 (6.39)
p/+p' =0 (6.40)

The bars are used to indicate that the quantity in question is referred to the
center-of-mass system. The energy balance equation reads

pe o Ppf P B (6.41)

om | 2ms  2m, | 2my

We can eliminate p. and p,’ from the energy equation by using the momentum
relations. The result, which is conveniently expressed in terms of the re-
duced mass, is
Pt
%= 2,‘ + Q (6.42)
The momentum relations, Equations (6.39) and (6.40), expressed in
terms of velocities, read

mlvl + Msz = (6.43)
mﬁl' + 7)’I2‘_/2' =0 (644)
The velocity of the center of mass is
mivy
Vem = —— —— 6.45
my + me (6.45)
Hence we have
= _ — MaVy
Vi=WV; Vem m—l T m, (6.46)

The relationships among the velocity vectors v.., vi’, and ¥," are shown

in Figure 6.7. From the figure, we see that
Ull sin 01 = ?711 sin 4 (6-47)
v’ oS @1 = 7y €08 0 + Veny (6.48)
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FIGURE 6.7 Relationships between the velocity vectors in the laboratory
system and the center-of-mass system.

Hence, by dividing, we find the equation connecting the scattering angles to be
expressible in the form

sin §
tan ¢ = ’—Ym (649)
in which v is a numerical parameter whose value is given by
v
g VTt (6.50)

7’ - 171’("”1 + m2)
The last step follows from Equation (6.45).

Now we can readily calculate the value of 7, in terms of the initial energy
of the incident particle from the energy equation, Equation (6.42). This
gives us the necessary information to find v and thus determine the relation-
ship between the scattering angles. For example, in the case of a perfectly
elastic collision, @ = 0, we find from the energy equation that 7, = 7/, or
71 = 7. This result, together with Equation (6.46) yields the value

O
Y= m (6.51)
for an elastic collision.

Two special cases of such elastic collisions are instructive to consider.
First, if the mass m, of the target particle is very much greater than the mass
my of the incident particle, then v is very small. Hence tan ¢; = tan 6, or
¢1 =~ 6. That is, the scattering angles as seen in the laboratory and in the
center-of-mass systems are nearly equal.

The second special case is that of equal masses of the incident and target
particles m; = m,. In this case v = 1, and the scattering relation reduces to

tan —-_.ﬂl_e_.—tang
1= T¥coso N2

[/}

‘P1=§

That is, the angle of deflection in the laboratory system is just half that in
the center-of-mass system. Furthermore, since the angle of deflection of the
target particle is # — 0 in the center-of-mass system, as shown in Figure 6.6,
then the same angle in the laboratory system is (# — 6)/2. Therefore the
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two particles leave the point of impact at right angles to each other as seen in
the laboratory system.
In the general case of nonelastic collisions, it is left as a problem to show

that v is expressible as
—1/2
7=%[1—%(1+1—m’1—:>} (6.52)

in which T is the kinetic energy of the incident particle as measured in the
laboratory system.

6.7. Impulse in Collisions

Forces of extremely short duration in time, such as those exerted by
bodies undergoing collisions, are called impulsive forces. If we confine our
attention to one body, or particle, the differential equation of motion, as we
know, is

d(mv)
FTa F (6.53)
or, in differential form
dimv) = F di (6.54)

Let us take the time integral over the interval ¢ = #; to £ = ;. This is the
time during which the force is considered to act. Then we have

A(my) = L" F dt (6.55)

The time integral of the force is the impulse, previously defined in Section 2.8.
It is customarily denoted by the symbol P. The above equation is, accord-
ingly, expressed as

A(mv)=P (6.56)

We can think of an ideal impulse as produced by a force that tends to
infinity but lasts for a time interval which approaches zero in such a way that
the integral [F d¢ remains finite. Such an ideal impulse would produce an
instantaneous change in the momentum and velocity of a body without pro-
ducing any displacement

Relationship between Impulse and Coefficient of Restitution

Let us apply the concept of impulse to the case of the direct collision of
two spherical bodies (treated in Section 6.5). We shall divide the impulse into
two parts, namely, the impulse of compression, P., and the impulse of resti-
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tution, P,.  We are concerned only with components along the line of centers.
Therefore, for the compression we can write

M1y — Mty = pc (6-57)

Moly — Moly = —Pc (6.58)’
where v, is the common velocity of both particles at the instant their relative
speed is zero. Similarly, for the restitution, we have

’mlvl’ - MYy = P,. (659)

mawy’ — mavy = — P, (6.60)
Upon eliminating v, from Equations (6.57) and (6.58) and also from Equations
(6.59) and (6.60), we obtain the following pair of equations

mlm2(1)2 — 01) = pc(ml + mz)
mlmz(?h' - 02') = pr(ml + mz)

Division of the second equation by the first yields the relation

1)2’ — 1)1' _ E
n—1 P, (6.61)

But the left-hand side is just the definition of the coefficient of restitution e.
Hence we have

P,
<=3 (6.62)

The coefficient of restitution is thus equal to the ratio of the impulse of restitu-
tion to the impulse of compression.

6.8. Motion of a Body with Variable Mass.
Rocket Motion

In the case of a body whose mass changes with time, it is necessary to
use care in setting up the differential equations of motion. The concept of
impulse can be helpful in this type of problem.

Consider the general case of the motion of a body with changing mass.
Let F... denote the external force acting on the body at a given time, and let
Am denote the increment of the mass of the body that occurs in a short time
interval At. Then F...At is the impulse delivered by the external force, and
we have

F..At = (ptotal)t+At - (pmtal)t

for the change in the total linear momentum of the system. Hence if v de-
notes the velocity of the body and V the velocity of the mass increment Am
relative to the body, then we can write
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FexAl = (m 4 Am)(v + AV) — [mv + Am(v + V)]
This reduces to
F..At = mAV + AmAv — VAm
or, by dividing by At, we can write

_yam

AV
Fnt = ()TI, + Am) Z_t Az

Thus, in the limit as At approaches zero, we have the general equation
Foo = mv —Vm (6.63)

Here the force F,,; may represent gravity, air resistance, and so on. In the
case of rockets, the term V7 represents the thrust.

Let us apply the equation to two special cases. First, suppose that a
body is moving through a fog or mist so that it collects mass as it goes. In this
case the initial velocity of the accumulated matter is zero. Hence V = —v,
and we get
d(mv)

di

Foo = mV + v = (6.64)
for the equation of motion. It applies only if the initial velocity of the matter
that is being swept up is zero. Otherwise the general equation (6.63) must
be used.

For the second case, consider the motion of a rocket. In this instance
the sign of 7 is negative, because the rocket is losing mass in the form of
ejected fuel. Hence Vi is opposite to the direction of V, the relative velocity
of the ejected fuel. For simplicity we shall solve the equation of motion for
the case in which the external force F..; is zero. Then we have

mv = Vm (6.65)

We can now separate the variables and integrate to find v as follows:

If it is assumed that V is constant, then we can integrate between limits to find
the speed as a function of m:

v m
/ dv=-v | &
L7] mo m

v=vo+Vlnﬂ°
m

Here my is the initial mass of the rocket plus unburned fuel, m is the mass at
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any time, and V is the speed of the ejected fuel relative to the rocket. Owing
to the nature of the logarithmic function, it is necessary to have a large fuel to
payload ratio in order to attain the large speeds needed for satellite launching.

DRILL EXERCISES

6.1 A system consists of three particles, each of unit mass, with
instantaneous positions and velocities as follows:

n=i+j+k vi = —i
r2=i+k V2=2j
r3=k V3=i+j—+—k

Calculate the following quantities:

(a) The instantaneous position of the center of mass

(b) The velocity of the center of mass

(c¢) The linear momentum of the system

(d) The angular momentum of the system about the origin

(e) The kinetic energy

6.2 A gun of mass m fires a bullet of mass ym where v is a small fraction.

If v, is the speed of the bullet just as it leaves the gun barrel, what is the recoil
speed of the gun?

PROBLEMS

6.3 A block of wood of mass m rests on a horizontal surface. A bullet
of mass ym is fired horizontally with speed v, into the block, coming to rest in
the block. What fraction of the original kinetic energy of the bullet is lost
as heat in the block, immediately upon impact? If u is the coefficient of
sliding friction of the block, how far will it slide before coming to rest?

6.4 An artillery shell is fired at angle of elevation of 45° with an initial
speed vo. At the uppermost part of the trajectory the shell bursts into two
equal fragments, one of which moves directly downward, relative to the
ground, with initial speed 4/2v,. What is the direction and speed of the other
fragment immediately after the burst.

6.5 Three particles of equal mass lie on a straight line along which the
particles move. Initially the particles are located at the points —1, 0, and
+1, and their velocities are 4v,, 2vy, and v, respectively. Find the final
velocities of the particles assuming that all collisions are perfectly elastic.

6.6 A ball is dropped from a height % onto a horizontal pavement. If
the coefficient of restitufion is ¢, show that the total vertical distance the ball
goes before the rebounds cease is 2(1 4 ¢)/(1 — ¢, and find the total length

of time that the ball bounces.
6.7 Consider the earth and the moon as an isolated system, and show

that each describes an ellipse about their common center of mass.
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6.8  Show that the kinetic energy of a two-particle system is my.? +
3uv? where m = my + ms, v is the relative speed, and u is the reduced mass.
6.9 If two bodies undergo a direet collision, show that the loss in kinetic
energy is equal to
V(1 — ¢)
where p is the reduced mass, v is the relative speed before impact, and e is the
coeficient, of restitution.

6.10 A moving particle of mass m; collides elastically with a target
particle of mass m, which is initially at rest. If the collision is head-on, show
that the incident particle loses a fraction 4u/m of its original kinetic energy
where u is the reduced mass and m = m; + m,.

6.11 Show that the angular momentum of a two-particle system is

rmxmvcm+RXMv

where m = my + ms, p is the reduced mass, R is the relative position vector,
and v is the relative velocity of the two particles.

6.12 Show that the constant ¢ in Equation (5.58) for the period of a
planet around the sun should be 2#{G(M 4 m)]~1/? rather than 2x(GM)-2
where M is the mass of the sun and m is the mass of the planet.

6.13 A proton of mass m, with initial velocity v, collides with a helium
atom, mass 4m,, that is initially at rest. If the proton leaves the point of
impact at an angle of 45° with its original line of motion, find the final veloc-
ities of each particle. Assume that the collision is perfectly elastic.

6.14 Work the above problem for the case that the collision is inelastic
and that Q is equal to % of the initial energy of the proton.

6.15 Referring to Problem 6.13, find the scattering angle of the proton
in the center-of-mass system.

6.16 Find the scattering angle of the proton in the center-of-mass system
for Problem 6.14.

6.17 A particle of mass m with initial momentum p; collides with a
particle of equal mass at rest. If the magnitudes of the final momenta of the
two particles are p// and py/, respectively, show that the energy loss of the
collision is given by

Qz—p“p2 cos ¥
m

where y is the angle between the paths of the two particles after colliding.

6.18 Find the equation of motion for a rocket fired vertically upward,
assuming g is constant. Find the ratio of fuel to payload to acheive a final
speed equal to the escape speed v, from the earth if the speed of the exhaust
gas is kv, where k is a given constant, and the fuel burning rate is . Compute
the numerical value of the fuel-payload ratio for & = §, and m is equal to
1 percent of the initial mass of fuel, per second.
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6.19 Find the differential equation of motion of a raindrop falling
through a mist collecting mass as it falls. Assume that the drop remains
spherical and that the rate of accretion is proportional to the cross-sectional
area of the drop multiplied by the speed of fall. Show that if the drop starts
from rest when it is infinitely small, then the acceleration is constant and
equal to g/7.

6.20 A uniform heavy chain of length a hangs initially with a part of
length b hanging over the edge of a table. The remaining part, of length a-b,
is coiled up at the edge of the table. If the chain is released, show that the
speed of the chain when the last link leaves the end of the table is
[2g9(a® — b%)/3a?]2.

6.21 A rocket traveling through the atmosphere experiences a linear air
resistance —kv. Find the differential equation of motion when all other
external forces are negligible. Integrate the equation and show that if the
rocket starts from rest, the final speed is given by v = Va[l — (m/mo)!9]
where V is the relative speed of the exhaust fuel, « = |m/k| = constant, and
mo is the initial mass of the rocket plus fuel, m being the final mass of the
rocket.



7 . Mechanics
of Rigid Bodies.
Planar Motion

A rigid body may be regarded as a system of particles whose
relative positions are fixed, or, in other words, the distance between any two
particles is constant. This definition of a rigid body is idealized. In the
first place, as pointed out in the definition of a particle, there are no true
particles in nature. Secondly, real extended bodies are not strictly rigid;
they become more or less deformed (stretched, compressed, or bent) when
external forces are applied. We shall for the present, however, neglect such
deformations.

7.1. Center of Mass of a Rigid Body

We have already defined the center of mass (Section 6.1) of a system of
particles as the point (Zcm,Yem,2em) Where

21‘{7714 Ey(”’n EZ,’”I,,'

T Zme YT Zme T Zma
1 1 1

For a rigid extended body, we can replace the summation by an integration
over the volume of the body, namely,

o = /}px;v Yom = % rom = /}pz:v (1.1)
| pdv L pdy | o dv

where p is the density, and dv is the element of volume.

187
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If a rigid body is in the form of a thin shell, the equations for the center

of mass become
e pr ds yon = pr ds = Lpz ds 73
L pds /; pds j; pds

where ds is the element of area, and p is the mass per unit area, the integra-
tion extending over the area of the body.
Similarly, if the body is in the form of a thin wire, we have

_[mﬂ _ﬁwﬂ —ﬁmﬂ‘
Fom = [oa Yom = [oa Fon = [ pa @3)

In this case p is the mass per unit length, and dl is the element of length.
For uniform homogeneous bodies, the density factors p are constant in
each case and therefore may be canceled out in each equation above.
If a body is composite, that is, if it consists of two or more parts whose
centers of mass are known, then it is clear, from the definition of the center
of mass, that we can write

_x1m1+xzm2+ e

X = -
™ Tt me + -

with similar equations for y.», and z... Hence (21,y1,z1) is the center of mass of
the part mi, and so on.

(7.4

Symmetry Considerations

If a body possesses symmetry, it is possible to take advantage of that
symmetry in locating the center of mass. Thus, if the body has a plane of
symmetry, that is, if each particle m; has a mirror image of itself m, relative
to some plane, then the center of mass lies in that plane. To prove this, let
us suppose that the xy plane is a plane of symmetry. We have then

_ Z(zmi + zim)
fn = TS ma + md)

But m; = m, and z; = —z;/. Hence the terms in the numerator cancel in

pairs, and so 2., = 0; that is, the center of mass lies in the zy plane.
Similarly, if the body has a line of symmetry, it is easy to show that the
center of mass lies on that line. The proof is left as an exercise.

Solid Hemisphere

To find the center of mass of a solid homogeneous hemisphere of radius a,
we know from symmetry that the center of mass lies on the radius that is
normal to the plane face. Choosing coordinate axes as shown in Figure 7.1,
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we have that the center of mass lies on the z axis. To calculate z.,, we use a
circular element of volume of thickness dz and radius (a®> — 2?)'2, as shown.
Thus

dv = 7(a? — 2%) dz
Therefore
L * owz(a? — 2) dz
ﬁ)a pr(a? — 2%) dz

- %a (7.5)

Zem =

Hemispherical Shell

For a hemispherical shell of radius ¢ we use the same axes as in the
previous problem (Figure 7.1). Again, from symmetry, the center of mass is

FIGURE 7.1 Coordinates for calculating the center of mass of a hemisphere.

located on the z axis. For our element of surface we choose a circular strip
of width a d8. Hence we can write

ds = 2x(a® — 2%)Y%a df
But 6 = sin™! (z/a), so d§ = (a? — 2?)-12dz. Therefore
ds = 2ma dz

The location of the center of mass is accordingly given by
ﬁ) p2raz dz

Zem = 2
/(; p2wa dz

- %a (7.6)

Semicircle

To find the center of mass of a thin wire bent into the form of a semicircle
of radius a, we use axes as shown in Figure 7.2. We have

dl = adé
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z

dl
do

FIGURE 7.2 Coordinates for calculating the center of mass of a
semicircular wire.

and
z=aslné
Hence

" p(asin 6)a do
%n=£;———————-=ga (7.7)
[)Tpacw T

Semicircular Lamina

In the case of a uniform semicircular lamina, the center of mass is on
the z axis (Figure 7.2). It is left as a problem to show that

4
Zem = g; a (78)

7.2. Some Theorems on
Static Equilibrium of a Rigid Body

We have found (Section 6.1) that the acceleration of the center of mass
of a system is equal to the vector sum of the external forces divided by the
mass. In particular, if the system is a rigid body, and if the sum of all the
external forces vanishes

Fi+F+ - - =0 (7.9)

then the center of mass, if initially at rest, will remain at rest. Thus Equation
(7.9) expresses the condition for translational equilibrium of a rigid body.
Similarly, the vanishing of the total moment of all the applied forces

nXF+rnXF.4+ .- =0 (7.10)

means that the angular momentum of the body does not change (Section 6.2).
This is the condition for rotational equilibrium of a rigid body—that is, the
condition that the body, if initially at rest, will not start to rotate. Equations
(7.9) and (7.10) together constitute the necessary conditions for complete
equilibrium of a rigid body.
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Equilibrium in a Unzform Gravitational Field

Let us consider a rigid body in a uniform gravitational field, say at the sur-
face of the earth. Since the sum of the gravitational forces is equal to mg
where m is the mass of the body, we can write the condition for translational
equilibrium as

F,+F.+ - - +mg=0 (7.11)
where Fy, F», and so on, are all the external forces other than gravity.

Similarly, the condition for rotational equilibrium may be written

rle1+r2xF2+---+2r,~)(mig=0 (7.12)

But g is a constant vector, so we can write
zr,- X mg = (Z m,-ri) X8 = Mlom X & =Tem Xmg  (7.13)
The above equation states that the moment of the force of gravity about

any point is the same as that of a single force mg acting at the center of mass.!
The equation for rotational equilibrium then becomes

nXF4+nXEF+ - 4+r,Xmg=0 (7.14)

Equilibrium Under Coplanar Forces

If the lines of action of a set of forces acting on a rigid body are coplanar,
that is, if they all lie in a plane, then we can write F; = iX; + jY3, and so on.
The component forms of the equations of equilibrium, Equations (7.9) and
(7.10), (which the student will recall from elementary physics) are then

Translational equilibrium:

X1+X2+...=0 Y1+Y2+...=0 (7.15)
Rotational equilibrium:
Y —ypXa Y, —ypXo4 - - - =0 (7.16)

7.3. Rotation of a Rigid Body About a Fixed Axis.
Moment of Inertia

The simplest type of rigid-body motion, other than pure translation, is
that in which the body is constrained to rotate about a fixed axis. Let us
choose the 2z axis of an appropriate coordinate system as the axis of rotation.

1 The apparent center of gravitational force is called the center of gravity. In a uniform
gravitational field such as we are considering, the center of mass and the center of gravity
coincide.
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The path of a representative particle m; located at the point (x;,3;,2;) is then
a circle of radius (z2 4 y2)!? = R, centered on the z axis. A representative
cross section parallel to the 2y plane is shown in Figure 7.3.

FIGURE 7.3 Cross section of a rigid body that is rotating about the 2z axis.

The speed v; of particle 7 is given by
¥ = Riw = (:12,'2 + y.'z)”*w (717)

where w is the angular speed of rotation. From a study of the figure, we see
that the velocity has components as follows:

I = —v;8in o = —wy; (7.18)
Yi = 1;COS ¢ = wI; (7.19)
2, =0 (7.20)

where ¢ is defined as shown in the figure. The above equations can also be
obtained by taking the components of
Vi=0XTI; (7.21)

where o0 = kaw.
Let us calculate the kinetic energy of rotation of the body. We have

T = z%m.-v.-’ =1 (2 m,-n,-z) o = 3 (7.22)

where

I= z mRE = EM.-(xf + ) (7.23)
+ 1

The quantity I, defined by the above equation, is of particular importance

in the study of the motion of rigid bodies. It is called the moment of inertia.

To show how the moment of inertia further enters the picture, let us next

calculate the angular momentum about the axis of rotation. Since the angu-

lar momentum of a single particle is, by definition, r; X m;, the zcomponentis

m,-(:c,-yi - y,'ii.') = m,-(x,-’ + y.-")w = m.—R,’w (724)
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where we have made use of Equations (7.18) and (7.19). The total z compo-
nent of the angular momentum, which we shall call L, is then given by sum-
ming over all the particles, namely,

L= zm,.n,-zw = I (7.25)

In Section 6.2 we found that the rate of change of angular momentum for any
system is equal to the total moment of the external forces. For a body
constrained to rotate about a fixed axis, we have

_dL _ d(w)

N = T a (7.26)
where N is the total moment of all the applied forces about the axis of rotation
(the component of N along the axis). If the body is rigid, then I is constant,
and we can write

dw
N=1I yr (7.27)
The analogy between the equations for translation and for rotation about a

fixed axis is shown below:

Translation Rotation
Linear momentum p = my Angular momentum L = Jw
Force F =mp Torque N =1I&
Kinetic energy T = im? Kinetic energy T = 3lw?

Thus the moment of inertia is analogous to mass; it is a measure of the rota-
tional inertia of a body relative to some fixed axis of rotation, just as mass is a
measure of translational inertia of a body.

7.4. Calculation of the Moment of Inertia

In actual calculations of the moment of inertia Zmr? for extended bodies,
we can replace the summation by an integration over the body, just as we did
in calculation of the center of mass. Thus we may write

I = [R2dm (7.28)
where dm, the element of mass, is given by a density factor multiplied by an
appropriate differential (volume, area, or length). It is important to remem-
ber that R is the perpendicular distance from the element of mass to the axis

of rotation.
In the case of a composite body, it is clear, from the definition of the mo-

ment of inertia, that we may write
I=L+1,4+ .- (7.29)
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where I, I,, etc., are the moments of inertia of the various parts about the
particular axis chosen.
Let us calculate the moments of inertia for some important special cases.

Thin Rod

For a thin uniform rod of length a and mass m, we have, for an axis
perpendicular to the rod at one end [Figure 7.4(a)],

I=["2%dz = 4pat = ima? (7.30)

The last step follows from the fact that m = pa.
If the axis is taken at the center of the rod [Figure 7.4(b)], we have

(a) (b)

FIGURE 7.4 Coordinates for calculating the moment of inertia of a rod
(a) about one end (b) about the center.

a/2
1= /_m 2*p dr = fypa = fyma’ (7.31)

" Hoop or Cylindrical Shell

In the case of a thin circular hoop or cylindrical shell, for the central or
symmetry axis all particles lie at the same distance from the axis. Thus

I = ma? (7.32)

where a is the radius, and m is the mass.

Circular Disc or Cylinder

To calculate the moment of inertia of a uniform circular disc of radius
and mass m, we shall use polar coordinates. The element of mass, a thin ring
of radius r and thickness dr, is given by

dm = p2grdr

where p is the mass per unit area. The moment of inertia about an axis
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through the center of the disc normal to the plane faces (Figure 7.5) is obtained
as follows:

a 4
I-= / p(r%) 27 dr) = 2mp & = L2 (7.33)
0 2

The last step results from the relation m = pwa?®.

FIGURE 7.5 Coordinates for finding the moment of inertia of a disc.

Clearly, Equation (7.33) also applies to a uniform right-circular cylinder
of radius @ and mass m, the axis being the central axis of the cylinder.

Sphere

Let us find the moment of inertia of a uniform solid sphere of radius a
and mass m about an axis (the z axis) passing through the center. We shall
divide the sphere into thin circular discs, as shown in Figure 7.6. The moment

L7777

FIGURE 7.6 Coordinates for finding the moment of inertia of a sphere about
the z axis.
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of inertia of a representative disc of radius y, from Equation (7.33), is }y? dm.
But dm = pry dz, hence

I = /_aa %‘n‘py4 dz = /ja %Tp(ﬂﬁ - z2)2 dz = 13571'00/5 (734)

The last step above should be filled in by the student. Since the mass m is
given by

m = 4watp
we have

I = 3ma? (7.35)

Spherical Shell

The moment of inertia of a thin uniform spherical shell can be found very
simply by application of Equation (7.34). If we differentiate with respect
to a, namely,

dI = §mpat da

the result is the moment of inertia of a shell of thickness da and radius a. The
mass of the shell is 4xa?p da. Hence we can write

= gma? (7.36)

for the moment of inertia of a thin shell of radius a and mass m. The student
should verify the above result by direct integration.

Perpendicular-Axis Theorem

Consider a rigid body which is in the form of a thin plane lamina of any
shape. Let us place the lamina in the zy plane (Figure 7.7). The moment
of inertia about the z axis is given by

I, = z mi(zd + yd) = 2 m + Z myys*

y

z

FIGURE 7.7 The perpendicular axis theorem.
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But the sum z m,z is just the moment of inertia I, about the y axis, because

13

2;is zero for all particles. Similarly, z my 2 is the moment of inertia I, about

the z axis. The above equation can therefore be written
I, = Iz + Iy (737)

This is the perpendicular-axis theorem. In words: The moment of inertia
of any plane lamina about an axis normal to the plane of the lamina is equal
to the sum of the moments of inertia about any two mutually perpendicular
axes passing through the given axis and lying in the plane of the lamina.

As an example of the use of this theorem, let us consider a thin circular
disc in the zy plane (Figure 7.8). From Equation (7.33) we have

FIGURE 7.8

I.=3ima?=1,+1,

In this case, however, we know from symmetry that I, = I,. Therefore we
must have

I, =1, = {ma? (7.38)
for the moment of inertia about any axis in the plane of the disc passing

through the center. Equation (7.38) can also be obtained by direct
integration.

Parallel-Axis Theorem

Consider the equation for the moment of inertia about some axis, say the z
axis,

I= zms‘(xiz + 4

Now we can express z; and y; in terms of the coordinates of the center of mass
(TemyYemy2em) a0d the coordinates relative to the center of mass (Z,,7:,2:) (Figure
7.9) as follows:
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FIGURE 7.9 Parallel axis theorem.

ZTi = Zem + T; Yi = Yem + gi (739)

We have, therefore, after substituting and collecting terms,
I =Y mi(@2+ 52 + ), m(en? + Youd)
3 3
+ 22 z M + 2Yem 2 mg;  (7.40)

The first sum on the right is just the moment of inertia about an axis parallel
to the z axis and passing through the center of mass. We shall call it I.n.
The second sum is clearly equal to the mass of the body multiplied by the
square of the distance between the center of mass and the z axis. Let us call
this distance I. That is, I* = zew? + Yom’.

Now, from the definition of the center of mass,

Zmizi,- = Em.fg,- =0

Hence, the last two sums on the right of Equation (7.40) vanish. The final
result may be written

I =1+ mp (7.41)

This is the parallel-axis theorem. It is applicable to any rigid body, solid
as well as laminar. The theorem states, in effect, that the moment of inertia
of a rigid body about any axis is equal to the moment of inertia about a parallel
axis passing through the center of mass plus the product of the mass of the
body and the square of the distance between the two axes.

Applying the above theorem to a circular dise, we have, from Equations
(7.33) and (7.41),

I = }ma® + ma® = $ma? (7.42)
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for the moment of inertia of a uniform circular disc about an axis perpendicular
to the plane of the disc and passing through the edge. Furthermore, from
Equations (7.38) and (7.41), we find

I = ima? + ma? = §ma? (7.43)

for the moment of inertia about an axis in the plane of the disc and tangent to
the edge.

Radius of Gyration

For some purposes it is convenient to express the moment of inertia of a
rigid body in terms of a distance k called the radius of gyration, where k is
defined by the equation

I=mk* or k= \/ﬁ% (7.44)

For example, we find for the radius of gyration of a thin rod about an axis
passing through one end {refer to Equation (7.30)]

k= \/ ama® - a_
m 3
Moments of inertia for various objects can be tabulated simply by listing the
squares of their radii of gyration, as in Appendix VI.

7.5. The Physical Pendulum

A rigid body which is free to swing under its own weight about a fixed
horizontal axis of rotation is known as a physical pendulum or compound
pendulum. A physical pendulum is shown in Figure 7.10, where O répresents
the location of the axis of rotation, and CM is the center of mass. The distance
between O and CM is I, as shown.

Denoting the angle between the line OCM and the vertical line OA by 6,
the moment of the gravitational force (acting at CM) about the axis of rotation
is of magnitude

mgl sin 9

The fundamental equation of motion N = I then takes the form —mglsin 8 =
Id or

=, mgl .
6+ T sing =0 (7.45)
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A

FIGURE 7.10 The physical pendulum.

The above equation is identical in form to the equation of motion of a simple
pendulum. For small oscillations, as in the case of the simple pendulum, we
can replace sin 6 by 6:

9.+7_rz_lg_l0=0 (7.46)

The solution is
6 = 6y cos 2nft + € (7.47)

where 6, is the amplitude and ¢ is a phase angle. The frequency of oscilla-
tion f is given by

_ 1 [mgl
f=5 \/T (7.48)

The perioed T is therefore given by

_1_, [
T = 7= 2 \/mgl (7.49)

(To avoid confusion, we shall not use a specific symbol to designate the
angular frequency 2xf.) We can also express the period in terms of the radius

of gyration k, namely,
2
T =2 \/E (7.50)
gl

Thus the period is the same as that of a simple pendulum of length k2/1.
As an example, a thin uniform rod of length a swinging as a physical
pendulum about one end (k* = a?/3) has a period
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2_a,
T-21r ’g&

Center of Oscillation

By use of the parallel-axis theorem, we can express the radius of gyration
k in terms of the radius of gyration about the center of mass k.., as follows:

I = I+ md
or
mk? = mk..2 + mit
Canceling the m’s, we get
=kt + B (7.51)

Equation (7.50) can therefore be written as

2 2
T = 2n /"—'"—gf—l (7.52)

Suppose that the axis of rotation of a physical pendulum is shifted to a
different position O’ at a distance !’ from the center of mass, as shown in
Figure 7.10. The period of oscillation 77 about this new axis is given by

T/ —_ 21r kcm2 + llz
N o

It follows that the periods of oscillation about O and about 0’ will be equal,
provided
kem® + 1 kem® + 1
l B v
The above equation readily reduces to

The point O/, related to O by the above equation, is called the center of oscilla-
tion for the point O. It is clear that O is also the center of oscillation for 0'.
Thus, for a rod of length a swinging about one end, we have k., = a?/12 and
1= a/2. Hence, from Equation (7.53), I’ = a/6, and so the rod will have the
same period when swinging about an axis located a distance a/6 from the
center as it does for an axis passing through one end.

7.6. A General Theorem Concerning Angular Momentum

In order to study the more general case of rigid-body motion, that in
which the axis of rotation is not fixed, we need to develop a fundamental
theorem about angular momentum. In Section 6.2 we showed that the time



202 MECHANICS OF RIGID BODIES. PLANAR MOTION

rate of change of angular momentum of any system is equal to the applied
torque:

dL
7 =N (7.54)
or, explicitly
%Z (r; X miv;) = z (r; X F) (7.55)
In the above equation all quantities are referred to some inertial coordinate

system.

Let us now introduce the center of mass by expressing the position vector
of each particle r; in terms of the position of the center of mass r... and the
position vector of particle 7 relative to the center of mass ¥, (as in Section
6.3), namely,

I = Tm + f‘l
and

Vi = Vem + vi

Equation (7.55) then becomes

gt z [(rcm + f'z) x mi(vcm + vu)] = z (rm + f'l) x F, (756)

Upon expanding and using the fact that ZmF; and Z2m.,¥, both vanish, we find
that Equation (7.56) reduces to

rcmxzmiacm'Fg‘t fzxmivizrcmszi'*_ZfixFi (7~57)

where acm = Vem.
In Section 6.1 we showed that the translation of the center of mass of any
system of particles obeys the equation

ZE=2m@=m%, (7.58)

Consequently, the first term on the left of Equation (7.57) cancels the first
term on the right. The final result is

%z EXmy = z L. XF,; (7.59)

The sum on the left in the above equation is just the angular momentum of
the system about the center of mass, and the sum on the right is the total
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moment of the external forces about the center of mass. Calling these
quantities L and N, respectively, we have
dL

This important result states that the time rate of change of angular momentum
about the center of mass of any system is equal to the total moment of the
external forces about the center of mass. This is true even if the center of
mass is accelerating. If we choose any point other than the center of mass as
a reference point, then that point must be at rest in an inertial coordinate sys-
tem (except for certain special cases which we shall not attempt to discuss).
An example of the use of the above theorem is given in Section 7.8.

7.7. Laminar Motion of a Rigid Body

If the motion of a body is such that all particles move parallel to some
fixed plane, then that motion is called laminar. In laminar motion the axis
of rotation may change position, but it does not change in direction. Rota~
tion about a fixed axis is a special case of laminar motion. The rolling of a
cylinder on a plane surface is another example of laminar motion.

If a body undergoes a laminar displacement, that displacement can be
specified as follows: Choose some reference point of the body, for example,
the center of mass. The reference point undergoes some displacement Ar.
In addition, the body rotates about the reference point through some angle
Ap. Clearly, any laminar displacement can be so specified. Consequently,
laminar motion can be specified by giving the translational velocity of a con-
venient reference point together with the angular velocity.

The fundamental equation governing translation of a rigid body is

F = m¥o = mVen = mae, (7.61)

where F represents the sum of all the external forces acting on the body,
m is the mass, and a.. is the acceleration of the center of mass.
Application of Equation (7.25) to the case of laminar motion of a rigid

body yields _
L =1, (7.62)

for the magnitude of the angular momentum about an axis C passing through
the center of mass where w is the angular speed of rotation about that axis.
The fundamental equation governing the rotation of the body, Equation
(7.60), then becomes _

dL ) S
i Ioww = N (7.63)

where N is the total moment of the applied forces about the axis C.
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7.8. Body Rolling Down an Inclined Plane

As an illustration of laminar motion, we shall study the motion of a
round object (cylinder, ball, and so on) rolling down an inclined plane. As
shown in Figure 7.11, there are three forces acting on the body. These are

FIGURE 7.11 Body rolling an inclined plane.

(1) the downward force of gravity, (2) the normal reaction of the plane
Fx, and (3) the frictional force parallel to the plane F. Choosing axes as
shown, the component equations of the translation of the center of mass are

MEm = mgsin§ — F (7.64)
MYem = —mg cos 6 + Fy (7.65)

where 6 is the inclination of the plane to the horizontal. Since the body re- .
mains in contact with the plane, we have

Yem = constant
Hence
Gom = 0
Therefore, from Equation (7.65),
Fy = mgcos 6 (7.66)

The only force which exerts a moment about the center of mass is the
frictional force F. The magnitude of this moment is Fa where a is the radius
of the body. Hence the rotational equation, Equation (7.63), becomes

Imes = Fa (7.67)
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To discuss the problem further, we need to make some assumptions re-
garding the contact between the plane and the body. We shall solve the
equations of motion for two cases.

Motion with No Slipping

If the contact is perfectly rough so that no slipping can occur, we have
the following relations:
Tem = Q@
Eom = A@ = Aw (7.68)
fom = Q@ = Aw
where ¢ is the angle of rotation. Equation (7.67) can then be written
Iem

a

Fem = F (7.69)
Substituting the above value for F into Equation (7.64) yields
" . Iem .
MEem, = Mg SIN § — = Eem

Solving for &.m, we find

mg sin 6 gsin @

Tt Tm/@) 1 F ker/0D)

where k., is the radius of gyration about the center of mass. The body there-
fore rolls down the plane with constant linear acceleration and also with con-
stant angular acceleration by virtue of Equation (7.68).

For example, the acceleration of a uniform cylinder (k.. = a?/2) is

Fom

(7.70)

sing 2 .
i T3 =3 gsin §
whereas that of a uniform sphere (k.. = 2a?/5) is
sinf 5 .
‘({ Tz =3 gsin g
5

Energy Considerations

The above results can also be obtained from energy considerations. In
a uniform gravitational field the potential energy V of a rigid body is given by
the sum of the potential energies of the individual particles, namely,

V = Z(mige;) = myzem

where 2., is the vertical distance of the center of mass from some (arbitrary)
reference plane. Now if the forces, other than gravity, acting on the body
do no work, then the motion is conservative, and we can write
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T+V =T+ mgzex = E = constant
where T is the kinetic energy.

In the case of the body rolling down the inclined plane, Figure 7.11, the
kinetic energy of translation is ymi?, and that of rotation is 1I.mw?, so the
energy equation reads

imit, + 3 .mo? + mgzem = E

But w = Zm/a and 2., = —z.m sin 8. Hence
| 1 i2 .
5 mit, + 5 Mk o —a”-g' — MYTem sin 0 = K

In the case of pure rolling motion the frictional force does not affect the
energy equation, since this force is perpendicular to the displacement and
consequently does no work. Hence E is constant.

Differentiating with respect to ¢ and collecting terms yields

k

cm
(12

2
m;tc,,.:ic,,.(l + ) — MGEem sin 6 = 0
Canceling the common factor Z.. (assuming, of course, that &.» ## 0) and solv-
ing for #.., we find the same result as that obtained previously using forces
and moments.

Occurrence of Slipping

Let us now consider the case in which the contact with the plane is not
perfectly rough but has a certain coefficient of sliding friction . If slipping
occurs, then the magnitude of the frictional force F is given by

F = Fuux = uFy = umg cos 8 (7.71)
The equation of translation, Equation (7.64), then becomes
Mim = mg sin ¢ — umg cos 6 (7.72)
and the rotational equation, Equation (7.67), is
I .me = pmga cos 8 (7.73)

From Equation (7.72) we see that again the center of mass undergoes
constant acceleration:

Fem = g(sin 8 — u cos 6) (7.74)
and, at the same time, the angular acceleration is constant:

oo y,‘mg}z cos 8 _ ugt;c ::;S 6 (1.75)

Let us integrate these two equations with respeet to £, assuming that the
body starts from rest, that is, at { = 0, z.» = 0, ¢ = 0. We obtain

Tem = g(sin 6 — u cos 0)¢ 776
w = ¢ = g(ua cos 8/k2)t (7.76)
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Consequently, the linear speed and the angular speed have a constant ratio,
and we can write

Tem = YAW

where

sin@ — pcos® k.l (tano )
’y= = -—-—1

na? cos 0/ k.t a ©

(7.77)

Now aw cannot be greater than Z.,, so v cannot be less than unity.
The limiting case, that for which we have pure rolling, is given by & = aw,
that is,

vy=1
Solving for 4 in Equation (7.77) with v = 1, we find that the critical value of
is given by
L tan 6
Herit = 1 + (a/kcm)2

If u is greater than that given above, then the body rolls without slipping.
For example, if a ball is placed on a 45° plane, it will roll without slipping
provided u is greater than tan 45°/(1 + %) or 2.

(7.78)

7.9. Motion of a Rigid Body Under an Impulsive Force

In the previous chapter we introduced the concept of an impulsive force
acting on a particle. We found that the effect of such a force, or impulse, is to
produce a sudden change in the velocity of the particle. In this section we
shall extend the impulse concept to the case of laminar motion of an extended
rigid body.

Free Motion

Suppose a body is free to move in a plane and is subjected to an impulse P.
Then, according to the general theory discussed in Section 7.7, we have both
the translation and the rotation of the body to consider.

First, the translation is given by the general formula

F = mv..
If F is an impulsive type of force, we have
[Fdt = P = mav,,

Thus the result of the impulse is to cause the velocity of the center of mass to
change by the amount
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AV, = 7% (7.79)
Secondly, the rotation of the body is governed by the equation
N =1=In
We can integrate with respect to the time ¢ and obtain the following relation
N dt = .m0 (7.80)

We call the integral [Ndt the rotational impulse. Let us use the symbol L to
designate it. The effect of a rotational impulse, then, is to change the
angular velocity of the body by the amount

Y

Aw = I—{Jm (7.81)
Now if the primary impulse P is applied to the body in such a manner that
1ts line of action is a distance b from the center of mass, then the moment

N = Fb. Consequently,

L="FP (7.82)

We can then express the change in the angular velocity produced by an impulse
as

Aw = -I—pi) (7.83)

To summarize: the effect of an impulse on a rigid body that is free to move in
laminar motion is (1) to produce a sudden change in the velocity of the center of
mass—the translational effect, and (2) to produce a sudden change in the angular
velocity of the body—the rotational effect.

Constrained Motion

In the event that a body subjected to an impulse is not free, but is con-
strained to rotate about a fixed axis, we need only consider the rotation condi-
tion N = Io. Thus

INdt =L = Inw

In the above equation, I is the moment of inertia about the fixed axis of rota-
tion, and N is the moment about that axis. In this case the rotational impulse
L that is produced by a single primary impulse P whose line of action is a
distance b from the axis of rotation is also given by

L ="Pb
so that »
Aw = 79 (7.84)

is the change in the angular velocity about the fixed axis of rotation.
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Effect of Several Stmultaneous Impulses

If a number of different impulses are applied to a rigid body at the same
instant, the resulting change in the velocity of the center of mass and the
angular velocity of the body are obtained by properly adding the impulses
and the moments, respectively. Thus, the translational effect of several im-
pulses is obtained by vector addition of the individual impulses, so that
Equation (7.79) becomes

P+Pt

AVe = ————— (7.85)

Similarly, for the rotational effect, Equation (7.83) is modified to read

P1b1+P2b2+ coe
I

Aw = (7.86)

In the case of a body that is constrained to rotate about a fixed axis,
there is a secondary impulse due to the reaction of the axis on the body when-
ever an external impulse is applied. The motion is then determined by the
sum of all impulses according to the above equations.

EXAMPLES

1. Impulse Applied to a Free Rod

As an illustration of the above theory, consider a rod that is free to slide
on a smooth horizontal surface. Let an impulse P be applied to the rod a
distance b from the center of mass and in a direction at right angles to the
length of the rod, as shown in Figure 7.12.

If the rod is initially motionless, then the equations of translation and
rotation are, respectively,

P
Vem = — (7.87)
w = Ipb (7.88)

In particular, if the rod is uniform and of length 2a, then I., = ma?/3. -
Accordingly

w=p32 (7.89)

ma?

and thus the velocity imparted to the mass center is the same regardless of the
point of application of the impulse, whereas the angular velocity acquired by



210 MECHANICS OF RIGID BODIES. PLANAR MOTION

-
—f— CM  2a
b
?
I

FIGURE 7.12 Impulse applied to a free rod.

the rod depends on the location of the applied impulse. We see also, that the
final kinetic energy of the rod is

N D SR @(é)z
T_zmvcm+2lcmw—%+2m a

This clearly depends on the point at which the impulse is applied.

2. Impulse Applied to a Rod Constrained to Rotate About a Fired Axis

Let us next consider the case in which the same rod is constrained to rotate
about a fixed axis. Suppose the axis O is located at one end of the rod as
indicated in Figure 7.13. In this case we find the rotational equation for the
motion to be

L=Pa+b)=Iw (7.90)
Then, since I, = ($)ma?, we obtain
_ p3(a+b)
0=p20TD (7.91)

for the angular velocity imparted to the rod. Now, since the rod is rotating
about O, the center of mass is moving. Its speed is

Vem = Qw
or

ooy (7.92)

VUem =

We note that this is nof equal to P/m. At first sight this result may seem to
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Fixed axis

a+b

FIGURE 7.13 Impulse P applied to a rod that is constrained to rotate about
one end. The reactive impulse at the axis is B.

be in contradiction to the general equation for translation, Equation (7.79).
Actually, there is no contradiction, because there is also another impulse that
acts on the rod at the same time as the primary impulse. This second
impulse is the reactive impulse exerted on the rod by the axis at O. Let us
call this reactive impulse P,. The total impulse applied to the rod is then the
vector sum P + P,. The velocity acquired by the center of mass is
accordingly

. (7.93)

m

We can now calculate the value of Py by using the value of V.. given by
Equation (7:92). Thus

p3atd) P+ P
4ma  m
which yields

p, - b2 — (7.94)
for the impulse delivered to the rod by the constraining axis. From the law
of action and reaction, the impulse exerted by the rod on the axis at O is — P..

It should be noted that the reactive impulse vanishes if the point of appli-
cation of the primary impuise is properly chosen. This point is called the
center of percussion. In the case of the above rod this point is such that
b= a/3.
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7.10. Collisions of Rigid Bodies

In problems involving collisions of extended rigid bodies, the forces that
the bodies exert on each other during contact are always equal and opposite.
Therefore the principles of conservation of linear and angular momentum are
valid. The concepts of linear and rotational impulse are often helpful in
such problems.

EXAMPLE

Collision of a Ball and a Rod

Consider, as an example, the impact of a ball of mass m’ with a uniform
rod of length 2a and mass m. Let us suppose that the rod is initially at rest
on a smooth horizontal surface, as above, and that the point of impact is a
distance b from the center of the rod as shown in Figure 7.14. Equations
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FIGURE 7.14 Collision of a particle and a rod.

(7.87) and (7.88) give the motion of the rod after the impact in terms of the

impulse P delivered to the rod by the ball. We know also that the impulse

received by the ball as a result of the impact is —P. Hence we can write
the equations for translation as

P = mvom (7.95)

—P =m'(vi — W) (7.96)

in which V.., is the velocity of the center of mass of the rod after the impact,
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Vo is the initial velocity of the ball before impact, and v, is the final velocity of
the ball. The two equations of translation together imply conservation of
linear momentum, for, upon eliminating P, we have

m'vo = m'vy + mv,y, (7.97)

In order to determine the rotation of the rod after the impact, we can
make use of the principle of conservation of angular momentum. The initial
angular momentum of the ball, about the center of mass, is bm'v,, and the
final angular momentum is bm'v;.  For the rod, the initial angular momentum
is zero, and the final angular momentum is I.,w. Hence

bm'vy = bm'vy + I pw (7.98)

The above translational and rotational equations do not give us enough
information to find all three velocity parameters of the final motion, namely
V1, Uem, and w. In order to calculate the final motion completely, we need
another equation. This can be the energy balance equation

m'vg? = Im'v? + tmid, + e + Q (7.99)
in which @ is the energy loss. Alternatively, we can use the equation for the
coeflicient of restitution

_ speed of separation

speed of approach
In the problem under discussion, we have
speed of approach = v,

To find the speed of separation, we need to know the speed of the rod at the
point of impact. This is given by the sum of the translational speed of the
center of mass and the rotational speed of that point relative to the center.
Thus the speed of the impact point immediately after the collision is just
Vem + bw. Accordingly, we can write

speed of separation = vem + bw — vy
Therefore
Vo = VUem + bw — 1
We now have enough equations to solve for the final motion. Setting
I = ma?/3, we obtain
m b? -
Vem = vo(e—l— 1) (ﬁ'+3;1-§+ 1)

b= o — 2 Uom (7.100)

3b
W = Vem 07

The reader should verify this result.
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DRILL EXERCISES

7.1 Find the center of mass of the following:

(a) A thin uniform wire bent into a “U,”” each section being of the
same length a

(b) The area bounded by the parabola ¥ = aa? and the line y = b

(¢) The volume bounded by the paraboloid of revolution z =
a(z? + y*) and the plane z = b

(d) A solid uniform right circular cone of height %

7.2 A solid uniform sphere of radius a contains a spherical cavity of
radius b centered a distance ¢ from the center of the sphere, where a > b + ¢.
Find the center of mass.

7.3 Find the moments of inertia of each of the figures in Exercise 7.1
about their symmetry axes.

7.4 Find the moment of inertia of the sphere in Exercise 7.2 about an
axis passing through the centers of the sphere and the cavity.

7.5 Show that the moment of inertia of a solid uniform octant of a
sphere of radius @ is (2/5)ma® about an axis along one of the straight edges.
[Note: 'This is the same formula as that for a solid sphere of the same radius.]

PROBLEMS

7.6 A uniform wire bent into a semicircle hangs on a rough peg. The
line joining the ends of the wire makes an angle 8 with the horizontal, and the
wire is just on the verge of slipping. What is the coefficient of friction between
the wire and the peg?

7.7 A solid uniform hemisphere rests in limiting equilibrium against a
vertical wall. The rounded side of the hemisphere is in contact with the wall
and the floor. If the coefficient of friction u is the same for the wall and the
floor, find the angle between the plane face of the hemisphere and the floor.

7.8 A uniform hemispherical shell rests in limiting equilibrium on a
rough inclined plane of inclination §. The rounded side of the shell is in con-
tact with the plane, and the coeflicient of friction is u. Find the inclination
of the shell.

7.9 Given that a set of forces Fy, Fy, . . . acting on a rigid body is (a)
in translational equilibrium and (b) in rotational equilibrium about some point
0. Prove that the set of forces is also in rotational equilibrium about any
other point O'.

7.10 Show that the moments of inertia of a solid uniform rectangular
parallelepiped, elliptic cylinder, and ellipsoid are, respectively, (m/3)(a® + b?),
(m/4)(a? + b%), and (m/5)(a? + b?), where m is the mass, and 2a and 2b are
the principal diameters of the solid at right angles to the axis of rotation, the
axis being through the center in each case.



Problems 215

7.11 A circular hoop of radius @ swings as a physical pendulum about
a point on the circumference. Find the period of oscillation if the axis of rota-
tion is (a) normal to the plane of the hoop, and (b) in the plane of the hoop.

7.12 Show that the period of a physical pendulum is equal to 2x(d/g)'?,
where d is the distance between the point of suspension O and the center of
oscillation O'.

7.13 A uniform solid ball has a few turns of light string wound around it.
If the end of the string is held steady, and the ball is allowed to fall under
gravity, what is the acceleration of the center of the ball?

7.14 Two men are holding the ends of a uniform plank of length [ and
mass m. Show that if one man suddenly lets go, the load supported by the
other man suddenly drops from mg/2 to mg/4. Show also that the initial
downward acceleration of the free end is 2g.

7.15 A uniform solid ball contains a hollow spherical cavity at its center,
the radius of the cavity being 4 the radius of the ball. Show that the accelera-
tion of the ball rolling down a rough inclined plane is just %% of that of a
uniform solid ball with no cavity. [Note: This suggests a method for non-
destructive testing.]

7.16 Two weights of mass m; and m. are tied to the ends of a light in-
extensible cord. The cord passes over a pulley of radius @ and moment of
inertia I. Find the accelerations of the weights, assuming m; > m, and ne-
glecting friction in the axle of the pulley.

7.17 A uniform right-circular cylinder of radius a is balanced on the
top of a perfectly rough fixed cylinder of radius (b > a), the axes of the two
cylinders being parallel. If the balance is slightly disturbed, find the point at
which the rolling cylinder leaves the fixed one.

7.18 A ladder leans against a smooth vertical wall. If the floor is also
smooth, and the initial angle between the floor and the ladder is 6, show that
the ladder, in sliding down, will lose contact with the wall when the angle
between the floor and the ladder is sin™! (% sin 6,).

7.19 A long uniform rod of length [ stands vertically on a rough floor.
The rod is slightly disturbed and falls to the floor. (a) Find the horizontal
and vertical components of the reaction at the floor as functions of the angle 6
between the rod and the vertical at any instant. (b) Find also the angle at
which the rod begins to slip and in what direction the slipping occurs. Let u
be the coefficient of friction between the rod and the floor.

7.20 A billiard ball of radius a is initially spinning about a horizontal
axis with angular speed wy, and with zero forward speed. If the coefficient of
friction between the ball and the billiard table is g, find the distance the ball
travels before slipping ceases to occur.

7.21 A ball is initially projected, without rotation, at a speed v, up a
rough inclined plane of inclination § and coefficient of friction u. Find the
position of the ball as a function of time, and determine the position of the
ball when pure rolling begins. Assume that u is greater than # tan 6.
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7.22 (a) A uniform circular hoop rests on a smooth horizontal surface.
If it is struck tangentially at a point on the circumference, about what point
does the hoop begin to rotate? (b) Find the height at which a billiard ball
should be struck so that it will roll without slipping.

7.23 Show that the center of oscillation of a physical pendulum is also
the center of percussion for an impulse applied at the axis of rotation.

7.24 A ballistic pendulum is made of a long plank of length [ and mass m.
It is free to swing about one end O, and is initially at rest in a vertical position.
A bullet of mass m’ is fired horizontally into the pendulum at a distance [
from O, the bullet coming to rest in the plank. If the resulting amplitude of
oscillation of the pendulum is 6, find the speed of the bullet.

7.25 Two uniform rods A B and BC of equal mass m and equal length [
are smoothly joined at B. The system is initially at rest on a smooth hori-
zontal surface, the points 4, B, and C lying in a straight line. If an impulse P
is applied at A at right angles to the rod, find the initial motion of the system.
[Hint: Isolate the rods.]

7.26 Work the above problem for the case in which rods are initially at
right angles to each other.



8. Motion of
Rigid Bodies in
Three Dimensions

In the motion of a rigid body constrained either to rotate
about a fixed axis or to move parallel to a fixed plane, the direction of the axis
of rotation does not change. In the more general cases of rigid-body motion,
the direction of the axis of rotation varies. The situation here is considerably
more complicated. In fact, even in the case of a body on which no external
forces whatever are acting, the motion is not simple.

8.1. Angular Momentum of a Rigid Body.
Products of Inertia

Because of the fact that angular momentum is of capital importance in
the study of the dynamies of rigid bodies, we shall begin with a derivation of
the general expression for angular momentum of a rigid body. As defined in
Section 6.2, the angular momentum L of any system of particles is the vector
sum of the individual angular momenta of all the particles, namely,

L= Z (r; X mv,)

In this chapter we shall be concerned with the vectorial character of
angular momentum and its relation to the fundamental equation of rotational
motion

217
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dL
dt
in which N is the applied torque. The conditions under which the above equa-
tion is valid were discussed in Section 7.6 of the preceding chapter.

We shall first calculate the angular momentum of a rigid body which is
rotating about a single fixed point. In this case we can imagine a coordinate
system fixed in the body with origin O at the fixed point (Figure 8.1).

N:

Axis of
rotation

FIGURE 8.1 The velocity vector v; of a representative particle of a rigid body
rotating about a given axis defined by the angular velocity vector .

Referring to Section 1.26, we know that the velocity v, of any constituent
particle of the body is expressible as a cross product

V.=wXTr;

where o is the angular velocity of the body, and r; is the position vector of
the particle. Consequently, for all particles, the total angular momentum is

L= Y [mr X (0 X 1] (8.1)
Now the z component of the triple cross product
X (Xr)
is given by
[r: X (0 X 1)]. = w(y2 + 22) — w2y — a2 (82)

as may easily be shown by expansion of the determinant form of the cross
product. (The student should do this as an exercise.)
The 2z component of the angular momentum is therefore
Lz = Zmi[w,(y{" + 212) — WY — wz.’L','Z,,']
w,Em,»(yﬁ + Z,'z) — w,,Emixiyi —_ w,Zmixl-z,- (83)

Analogous expressions hold for L, and L,.
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In computing the angular momentum for an extended rigid body, the
summations are replaced by integrations over the volume, as before. We
introduce the following abbreviations:

I, =22+ z2)m = [(y* + 22) dm (moment of inertia about x axzs)

I, =2+ 2)m; = [(&2 4+ 22) dm (moment of inertia about y aris)
I.=2Z(x? 4 y)m; = [(2* + y®) dm  (moment of inertia about z axis)
I.=1,= —Zrym, = —fzydm (zy product of inertia)
I,=1I,= —2Zzzm; = —[xzdm (a2 product of inertia)
L,=1,= —2zym; = — ey dm (ey product of inertia)

We have already calculated the moments of inertia for a number of simple
cases in the preceding chapter. The products of inertia are found by a similar
type of calculation.

Using the above notation, we can express the angular momentum as

iL, + jL, + kL.

i([,_,wz + I:ywy + I,tzwz)
+ j(IIIIwZ + Iyywy + Iyzwz) + k(Izzwx + Izywy + Izzwz) (8.4)

L

It is apparent that the angular momentum vector L is not always in the same
direction as the axis of rotation or the angular velocity vector w.

EXAMPLE

A body of arbitrary shape rotates about the z axis. Find the angular
momentum L. Since, in this case, w, = w, = 0, and w, = w, then we have
immediately

L=1il,0+4+ jl.c+ Kkl .«

In particular, if either of the products of inertia I, or I, is not zero, then L
has a component perpendicular to w, and so the angular momentum is not in
the same direction as the axis of rotation. See the example at the end of the
following section.

8.2. Use of Matrices in Rigid Body Dynamics.
The Inertia Tensor

We now see that the rotational properties of a rigid body about a given
point require a set of nine quantities .., I, . . . in order to be completely
specified. There are many other examples that occur in which such sets of
quantities are required for the complete description of some physical property
at a point. Such sets are called tensors, provided they obey certain trans-
formation rules which we shall not attempt to discuss here. The set defined
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above is known as the inertia tensor of the body.
Consider the general expression for the angular momentum, Equation
(8.4). In matrix notation this equation reads

L; Izz Izy Izz Wz
Ly| =11 Iy L:f|w (8.5)
Lz IZZ' Izy IZZ wz

Here, as in the treatment of coordinate transformations in Section 1.15, vec-
tors are represented by column matrices. The 3 X 3 matrix involving the
moments and products of inertia embodies a complete characterization of a
rigid body with respect to its rotational properties. This matrix is a par-
ticular way of representing the inertia tensor.

Let us introduce a single symbol I for the inertia tensor. Then the angu-
lar momentum is expressed as

L=1le (8.6)

in which it 1s understood that the vectors L and o are column matrices.

Principal Axes

A considerable simplification in the mathematical formulas for rigid body
motion results if a coordinate system is employed such that the products of
inertia all vanish. The axes of such a coordinate system are said to be the
principal axes for the body at the point O, the origin of the coordinate system
in question.

If the coordinate axes are principal axes of the body, then the inertia
tensor takes the diagonal form

I.. 0 0
I1=|0 I, O (8.7

0 0 I,

In particular, the angular momentum becomes
L = il,0, + jl,w, + ki, (8.8)

when principal axes are used. In this case the three moments of inertia are
said to be the principal moments of the body at the point 0.

Let us investigate the question of finding principal axes. First, if the
body possesses some sort of symmetry, then it is usually possible to choose a
coordinate system by inspection such that the products of inertia each con-
sist of two parts of equal magnitude and opposite sign and therefore vanish,
For example, the symmetrical plane laminar body shown in Figure 8.2 has,
as principal axes at point O, the coordinate axes shown.

A body does not necessarily have to be symmetric in order that the prod-
ucts of inertia vanish, however. Consider, for example, a plane lamina of any
shape (Figure 8.3). If the zy plane is the plane of the lamina, then z = 0 and
both I,. and I,, vanish. Now, relative to any given origin in the plane of the
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lamina, it is easy to prove that there always exists a set of axes such that the
integral [zy dm vanishes. To show this, we observe that the integral changes

sign as the Oxy system is rotated through an angle of 90°, because the lamina

Y.

FIGURE 8.2 A symmetrical lamina located so that the zy product of inertia
is zero.

¢

FIGURE 8.3 Rotated axes.

passes from one quadrant to the next, as shown. Consequently, the integral
must vanish for some angle of rotation bétween 0° and 90°. This angle
defines a set of coordinate axes for which all products of inertia vanish. This
is, by definition, a set of principal axes.

It can be shown in a similar way that for any rigid body there always
exists a set of principal axes at any given point. A general method of finding
principal axes will be discussed in the next section.
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Suppose that a body is rotating about a principal axis, say the z axis.
Then w, = w, = 0, and w, = w. The expression for the angular momentum

reduces to one term

L =k/,0
whereas the angular velocity is

@ = kw
In this case the angular momentum vector is parallel to the angular velocity
vector or the axis of rotation. We have therefore the following important
fact: L is etther in the same direction as the axis of rotation, or is not, depending
on whether the axis of rotation is, or 1s not, a principal axis.

Dynamic Balancing

The above rule finds application in the case of a rotating device such as a
fiywheel or fan blade. If the device is statically balanced, the center of mass
lies on the axis of rotation. To be dynamically balanced the axis of rotation
must also be a principal axis so that, as the body rotates, the angular momen-
tum vector L will lie along the axis. Otherwise, if the rotational axis is not a
principal one, the angular momentum vector varies in direction: it describes a
cone as the body rotates (Figure 8.4). Then, since dL/df is equal to the
applied torque, there must be a torque exerted on the body. The direction of
this torque is at right angles to the axis. The result is a reaction on the bear-
ings. Thus in the case of a dynamically unbalanced rotator, there may be
violent vibration and wobbling, even if the rotator is statically balanced.

Angular
momentum

rotation

FIGURE 8.4 A rotating fan blade. The angular momentum vector L de-
seribes a cone about the axis of rotation when the blade is not dynamically
balanced.

EXAMPLE

A thin rod of length ! and mass m is constrained to rotate with constant
angular velocity o about an axis passing through the center making an angle «
with the rod. Find L. We choose principal axes fixed on the rod as shown in
Figure 8.5. Then we have
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and all other moments and products of inertia are zero. Since the axis of
rotation lies in the yz plane, the components of o are

w, =0

wy, = wsin o

w, = wCOS «

The angular momentum vector is therefore
L=j—wsna
12

Thus L remains in the y direction, as shown in the figure, and rotates with the
body around o. (It is easy to verify that r X mv for each part of the rod is
along y.) In particular, if @ = 90° then L and o point in the same direction,
namely, the direction of the y axis. Otherwise they are in different directions.

Axis of rotation

FIGURE 8.5 Rigid rod constrained to rotate about an oblique axis passing
through the center.

FIGURE 8.6 Rectangular lamina.
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8.3. Determination of Principal Axes

Evidently, the general problem of finding the principal axes of a rigid
body is equivalent to the mathematical problem of diagonalizing a 3 X 3
matrix. From matrix theory, it is known that any symmetrie square matrix
can be diagonalized. In our case I, = I,,, and similarly for the other pairs.
Hence the matrix is symmetric, and so there must exist a set of principal axes
at any point.

As shown in Appendix V, the diagonalization is accomplished by finding
the roots of the secular equation

=2l =0

where 1 is the unit matrix. Explicitly, this equation reads

Izz — A Iz‘y Ia:z
I, I,—x I.|=0 (8.9)
1. I, I.-—\

It is a cubic in A, namely
N+ AN+BA+C=0

in which 4, B, and C are simple functions of the I’s. The three roots, Ay, A,
and \; are the three principal moments of inertia.

In order to find the orientation of the principal axes, we make use of the
physical fact that when the body is rotating about one of its principal axes,
the angular momentum vector is in the same direction as the angular velocity
vector. Let the direction angles of one of the principal axes be a, 8, and ¥,
and let the body rotate with angular velocity o about this axis. The angular
momentum is then given by

L==Ilo

in which A is one of the three roots Aj, Az, or A\;.  Explicitly, the above equation
reads

Aw €OS o I.. I, I.][wcosa
MvcosB| = |1, I, I.||wcospB (8.10)
Aw cos v I, I,, I.||wcosy

In turn, this equation is equivalent to the three scalar equations
(Izz — N cosa+ IcosB+ 1..cosv =0
I.cosa~+ (I, — N cosB+ I,cosvy =0 (8.11)
I.cosa+ I, cosB+ (I, — \) cosy

in which the common factor w has been cancelled out. Thus the direction co-
sines of the principal axes can be found by solving the above equations. The
roots are not independent, for they must clearly satisfy the condition

cos’a + cos?B 4+ cos?y =1
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Determination of Principal Axes when One Is Known

In many instances a body possesses some kind of symmetry so that at
least one principal axis can be found by inspection. If such is the case, then
the other two principal axes can be determined as follows.

Suppose the z axis is known to be a principal axis at the origin in a suitable
coordinate system. Then, by definition

I.=1,=0

The other two principal axes must lie in the ay plane. The first two of
Equations (8.11) now reduce to

Iz — N cosa+ I,cos8=0
I cosa+ (I, — N cosB =0

Let 6 denote the angle between the x axis and one of the unknown principal
axes. Then tan 8 = cos 8/cos «. Elimination of A between the two equations
yields

I,(tan20 — 1) = (I, — I,;) tan 6

from which 6 can be found. In this application it is helpful to use the trigo-
nometric identity tan 26 = 2 tan /(1 — tan? §). This gives

oI,

zz Iyy

tan 26 = (8.12)

There are two values of ¢ lying between /2 and —#/2 that satisfy the above
equation, and these give the directions of the two principal axes in the zy
plane.

EXAMPLES

1. Find the directions of the principal axes in the plane of a rectangular
lamina, of sides @ and b, at a corner, Figure 8.6. From the previous chapter
we have

I, = jmb*
1,, = 3ma’
L. = I, + I, = ym(a® + b?)

The last equation follows from the perpendicular axis theorem. Since z = 0
for all points of the plate, the two products of inertia involving z must vanish:

I.,=1,=0
Finally, the xy product of inertia is given by

b a a2b?
I,,,=—/xydm=—// ypdrdy = —p—
0 0 4
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in which p is the mass per unit area. Furthermore, since

m = pad
we have
I, = —imab

for the zy product of inertia of the plate. The application of Equation (8.12)

then gives
—2(mab/4) _ 3ab

(mb¥/3) — (ma?/3)  2(a? — b?)

o_lt «1[__%_]
=M@ - )

tan 26 =

or

for the directions of the principal axes.

2. Find the principal moments of inertia of a square plate about a corner.
Here Equation (8.9) reads

Iml2 — N —iml? 0
—iml?  FmlP — A 0 =0
0 0 Imi2 — M\

or
[Gmiz — N = Gml](Gmlz = N) = 0
The second factor gives
A= Im?
for one of the principal moments. The first factor gives
Iml2 — N = £iml
or
A = fpml?
and
A = feml?
These three values of A are the three principal moments.

3. Find the directions of the principal axes for the above problem.
Equations (8.11) give

(Eml — N)cosa — fmlPcosB =0
—imlPcosa + (3ml2 — N cosB =0
(Eml* — N) cosy =0
From the last equation we see that v = 90° is one root. If we set X equal to
f2ml? the first equation becomes

cosa —cosB =0
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This, together with Equation (9.65) gives
2co8?a =1

or, taking the positive root, we have o = 45° for one principal axis. The other
is given by taking the negative root, that is @ = 135°. Thus one principal
axis is along the diagonal, the other perpendicular to the diagonal and in the
plane of the plate, and the third principal axis is normal to the plate.

8.4. Rotational Kinetic Energy of a Rigid Body

Let us calculate the kinetic energy of a rigid body which is turning about
a fixed point with angular velocity . For the velocity v; of a representative
particle 7, we have, as in our calculation of angular momentum

V,'=(:)x1'.'

where r; is the position vector of the particle relative to the fixed point. The
kinetic energy T is therefore given by the summation

T = 2 Imviev; = 72 [(@ X 1)« (mavy)]

Now in the triple scalar product we can exchange the dot and the cross.
(See Section 1.14.) Hence

T =) [0 X my)) = Jor ) (5 X my)

But 2 (r: X m:v,) is, by definition, the angular momentum L. Thus we can

write
T = je-L (8.13)

The above equation gives the rotational kinetic energy of a rigid body in
terms of the angular velocity o and the angular momentum L. It is analogous
with the equation T = 3v-p for the kinetic energy of translation of a particle
or system in which v is the velocity of the center of mass and p is the linear
momentum. The total kinetic energy of a moving and rotating body is the
sum 3e-L 4+ 3v-p.

By employing matrix notation for the angular momentum, we have

T = loTle (8.14)

Here the row matrix T is the transpose matrix of the column matrix o, and
| is the inertia tensor. In explicit form
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I,, I, I.][w.
T = %[wzwuwz] Iyz Iw qu Wy (8'15)
Izz Izy Izz

[CF]
or

T = %(I:c:cwz2 + Iyywy2 + Izzwz2 + QIy,wywz + QIzzw,w, + 2I,ywzwy) (8.16)

EXAMPLES

1. Find the inertia tensor for a square plate of side ! and mass m in a
coordinate system Oxyz where O is at one corner and the x and y axes are
along the two edges. Utilizing the results of the example in Section 8.3, we
have I, = I,, = ml}/8,1,, = 2ml*/3,I,, = —ml/4,I,, = I,, = 0. Hence
the inertia tensor is

ml2/3 —mi/4 0 op[ L -1 0
1= |-mP/4 mp3 0 |=7|-3 10
0 0 2mp/3 0 0 2

2. Find the angular momentum of the above plate when it is rotating
about a diagonal. In this case, the angular velocity vector can be expressed
as the column matrix

Wz w/V2 5 1
-

W,

Consequently, the angular momentum is

:l. _
_ mlw i _ mlw }
342 5 12v2],

3. Find the kinetic energy of rotation in the above problem. Using the
above results, we have

1

1 1 mltw?

— 2Tl — = T, — W
T—2(.)Iw 20)L o4 rt 1 0]]1
0

mlw?

12
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8.5. Moment of Inertia of a Rigid Body About an
Arbitrary Axis. The Momental Ellipsoid

Let us apply the fundamental definition
I = Em,‘R,’Z

to find the moment of inertia of a rigid body about any axis. In the above
formula R; is the perpendicular distance from the representative particle m;,
to the axis, as shown in Figure 8.7.

Suppose we designate the direction of the axis of rotation by the unit
vector n. Then

R; = Il',' X n|
where
r; = ir; + jy: + ka

is the position vector of the ith particle. Further, let cos a, cos 8, and cos v
be the direction cosines of the axis, that is

n=icosa+ jcosB + Kkcosy
Then we have
rRZ = |r; X 02 = (y; cosy — z; cos B)?
+ (2;cos a — x;c08 v)® + (x;cos B — ¥y, cos a)?
Upon rearranging terms, we find

R = (y.2 + 22)cos’ a + (2 + x2)cos? B + (2 + yP)cos? v
— 2 yzic0s vy cos B — 2 2,1,08 @ cOS ¥ — 2 X408 a cos B

The moment of inertia I = Zmr2 can thus be expressed as

I = I,.co8? a + I,co8*B + I..costvy
+ 21I,cosycosB + 2I,.co8xcosy + 2 I,008acosf (8.17)

The above formula gives the moment of inertia of a rigid body about any
axis in terms of the direction cosines of that axis and the moments and products
of inertia of the body in an arbitrary coordinate system which has its origin
on the axis. If the coordinate axes happen to be principal axes at the origin,
then the products of inertia vanish, and the formula reduces to the simpler one

I = I..c08 a + I,co8? B 4 I.cos?y (8.18)

A useful abbreviation of the general formula is obtained by the use of the
inertia tensor, namely,

I =nTin (8.19)
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FIGURE 8.7 Definition of the unit vector n giving the direction of the axis
of rotation.

The Momental Ellipsoid

A very instructive geometric interpretation of the general formula for the
moment of inertia may be obtained in the following way. Consider an arbi-
trary axis of rotation about a given point 0. We define a point P on the axis of
rotation such that the distance OP is numerically equal to the reciprocal of
the square root of the moment of inertia about the axis:

op - L

V1

Now let z, v, and 2z be the coordinates of the point P, and let o, 8, and v be the
direction angles of the line OP. Then we have cosa = 2/0P = z/1I,
cos B = y/OP = y~/1, cos v = z/OP = z+/1, so that

zvV/1
n=|yVI|=rvI
21

If we substitute into the general formula for the moment of inertia, Equation
(8.19), we obtain

rir =1 (8.20)

or, explicitly,
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22, + y, + 2. + 2yel,. + 222l + 22yl = 1 (8.21)

The above equation is the equation of a surface, Figure 8.8. It defines the
locus of points P as the direction of the axis OP is varied. Being of the sec-
ond degree, it is the equation of a general quadric surface in three dimensions.
Since I is never zero for any extended body, the surface is bounded and must
therefore be an ellipsoid.! It is called the momental ellipsoid of the body at

the point O.
If the coordinate axes are principal axes, the equation of the momental

ellipsoid is
2o + Yy + 2% = 1 (8.22)

Thus, the principal axes of the body coincide with the principal axes of the
momental ellipsoid. Since there are always at least three principal axes for
every ellipsoid, it follows that there always exist at least three principal axes
for a body at a given point.

If two of the three principal moments of inertia are equal, then the ellip-
soid of inertia is one of revolution. If all three principal moments are equal

X

FIGURE 8.8 One octant of the momental ellipsoid The distance OP is equal
to the reciprocal of the square root of the moment of inertia about the axis.

1In the case of an infinitely thin straight body, the moment of inertia about the axis
of the body is zero. The momental ellipsoid degenerates into a cylinder in this case.
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at a point O, the momental ellipsoid is a sphere, and it follows that the moment
of inertia is the same for any line passing through O, no matter what its direc-

tion may be.

EXAMPLE

Find the equation of the momental ellipsoid of a rectangular lamina of
sides a and b for coordinate origin at the center. From the moments of

mnertia, we have immediately

z

FIGURE 8.9 Momental ellipsoid of a rectangular block.-

mb? ma _y [ma? + mb*y
2(15) + v{55) + () =

for the equation of the momental ellipsoid. We note that the principal diam-
eters of the ellipsoid are in the ratios

b~':a7t:(a? 4 b?)712
For instance, if a/b = 2, the ratios are 2:1:2/4/5. Thus the long diameter of
the momental ellipsoid corresponds to the long axis of the lamina. The
ellipsoid is shown in Figure 8.9..

8.6. Euler’s Equations of Motion of a Rigid Body

Consider the fundamental equation governing the rotation of a rigid body
under the action of a torque
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We have shown that L is most simply expressed if the coordinate axes are
principal axes for the body, namely

L = il..w. + jl 0 + kKl .,

Here I.., I,,, and I., are the principal moments of inertia of the body at the
origin of the coordinate system. Now in order that the above expression for
the angular momentum remains valid as the body rotates, the coordinate sys-
tem must also rotate with the body. Thus the angular velocity of the body
and the angular velocity of the coordinate system are usually one and the
same. (There is an exception. If two of the three principal moments of
inertia are equal so that the momental ellipsoid is one of revolution, then the
coordinate axes need not be fixed in the body to be principal axes. This case
will be considered later in Section 8.8.)

According to the theory of rotating coordinate systems developed in
Chapter 4, the time rate of change of the angular momentum vector, when
referred to a rotating system, is given by the formula

dL _
dt

Thus, the equation of motion in the rotating system is

L+eoXL

N=L+4+woXL

In rectangular components, the above equation reads

N.=L.+ (@XL).
N,=1L,+ (@XL), (8.23)
N.=L + (eXL)

or more explicitly

N, = 1.0, + wywz(Izz - Iw)
Ny = Iyy(;)y + wzwz(lzz - Izz) (824)
Nz = Izzd’z + wzwy(lyy - III)

These are known as Euler’s equations for the motion of a rigid body. They

are of fundamental importance in the theory of rotation of extended rigid
bodies.

Body Constrained to Rotate Aboul a Fixed Axis
As an application of Euler’s equations, we consider the special case of a
rigid body that is constrained to rotate about a fixed axis with constant

angular velocity. Then

we =@y =w, =0
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and Euler’s equations then reduce to

N, = ww.(l.. — I,,)
Ny = wzwz(ln - Izz) (825)
N, = ow,(Iyy — I2)

These give the components of the torque exerted on the body by the con-
straining support.

In particular, if the axis of rotation is a principal axis, then two of the
three components of @ are equal to zero. Consequently, all three components
of the torque N vanish. This agrees with the previous statement concerning
dynamic balancing in Section 8.2.

EXAMPLE

Calculate the torque that must be exerted on a thin rod to cause it to
rotate with constant angular speed w about an axis through the center at an
angle « with the rod, as in the example on p. 222. Using the results of the
example cited, we find that Euler’s equations give the components of the

torque as
. 2
N, = o . me
w smacosa( 12)
N, =0
N.=0

Thus the torque vanishes if either the sine or the cosine vanishes, that is, if
a = 0 or 90°. In either case the rod is rotating about a principal axis.

8.7. Free Rotation of a Rigid Body Under No Forces.
Geometric Description of the Motion

Let us consider the case of a rigid body that is free to rotate in any direc-
tion about a certain point O. There are no torques acting on the body. This
is the case of free rotation and is exemplified, for example, by a body sup-
ported on a smooth pivot at its center of mass. Another example is that of a
rigid body moving freely under no forces or falling freely in a uniform gravi-
tational field so that there are no torques. The point O in this case is the
center of mass.

With zero torque the angular momentum of the body, as seen from the
outside, must remain constant in direction and magnitude according to the
general principle of conservation of angular momentum. However, with
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respect to rotating axes fixed in the body, the direction of the angular momen-
tum vector may change, although its magnitude must remain constant. This
fact can be expressed by the equation

L:L = constant

In terms of components referred to the principal axes of the body, the above
equation reads

I.2w? + 1,00, + 12,2 = L? = constant (8.26)

As the body rotates, the components of @ may vary, but they must always
satisfy the above equation.

Constant T

Constant L

z

FIGURE 8.10 Intersecting ellipsoids of constant L and constant T for a rigid
body undergoing free rotation.

A second relation is obtained by considering the kinetic energy of rotation.
Again, since there is zero torque, the total rotational kinetic energy must
remain constant. This may be expressed as

oL = 2T = constant

or, equivalently in terms of components,
It + Iyw? 4+ 1,02 = 2T = constant A (8.27)

We now see that the components of @ must simultaneously satisfy two
different equations expressing the constancy of kinetic energy and of magni-
tude of angular momentum. These are the equations of two ellipsoids whose
principal axes coincide with the principal axes of the body. The first ellipsoid,
Equation (8.26), has principal diameters in the ratios I,,7:1,,1:1,,7. The
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Stable

(a)

(b)

Unstable

{c)

Precession of w

FIGURE 8.11 Ellipsoids of constant L and constant T for a rigid body that is
rotating freely about the axis of (a) least, (b) greatest, and (c) intermediate

moment of inertia.
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second ellipsoid, Equation (8.27), has principal diameters in the ratios
IVl 720,72 Tt is known as the Poinsot ellipsoid and is similar to
the momental ellipsoid. As the body rotates, the extremity of the angular
velocity vector thus describes a curve which is the intersection of the two
ellipsoids. This is illustrated in Figure 8.10.

From the equations of the intersecting ellipsoids, it can be shown that
in the case where the initial axis of rotation coincides with one of the principal
axes of the body, then the curve of intersection diminishes to a point. In
other words, the two ellipsoids just touch at a principal diameter, and the
body rotates steadily about this axis. This is true, however, only if the
initial rotation is about the axis of either the largest or the smallest moment
of inertia. If it is about the intermediate axis, say the y axis where I, >
I,, > I.., then the intersection of the two ellipsoids is not a point, but a curve
that gees entirely around both, as illustrated in Figure 8.11. In this case
the rotation is unstable since the axis of rotation precesses all around the body.
These facts can easily be illustrated by tossing an oblong block, or a book,
into the air.

8.8. Free Rotation of a Rigid Body with an
Axis of Symmetry. Analytical Treatment

Although the geometric description of the motion of a rigid body given
in the preceding section is helpful in visualizing free rotation under no torques,
the method does not immediately give numerical values. We now proceed
to augment that description with an analytical approach based on the direct
integration of Euler’s equations.

We shall solve Euler’s equations for the special case in which the body
possesses an axis of symmetry, so that two of the three principal moments of
inertia are equal. (Actually, all that is required is that the momental ellip-
soid have an axis of symmetry, not the body itself.)

Let us choose the z axis as the axis of symmetry. We introduce the fol-
lowing notation:

I, = I, (moment of inertia about the symmetry axis)
I = I,, = I, (moment about the axes normal to the symmeiry axis)

For the case of zero torque, Euler’s equations then read
Ieo, + oI, —I) =0
IToy, + ww.(I — 1,) =0 (8.28)
I, =0
From the last equation it follows that

w, = constant
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Let us now define a constant Q as

Q= w, 7 (8.29)
Then the first two of Equations (8.28) may be written

@ + Q, =0 (8.30)

wy — Qw: =0 (8.31)

To separate the variables in the above pair of equations, we differentiate the
first with respeet to t and obtain

Ge + Qi = 0
Upon solving for @, and inserting the result into Equation (8.31), we find
& + Q. = 0
This is the equation for simple harmonic motion. A solution is
w; = wy cos (Q) (8.32)

in which w; is a constant of integration. To find w,, we differentiate the above
equation with respect to ¢ and insert the result into Equation (8.30). We can
then solve for w, to obtain

w, = wi sin (Qf) (8.33)

Thus w, and w, vary harmonically in time with angular frequency @, and their

X

FIGURE 8.12  Angular velocity vectors for the free precession of a dise.



8.8 Free Rotation of a Rigid Body with an Axis of Symmetry 239

phases differ by 7/2. It follows that the projection of & on the zy plane de-
scribes a circle of radius w; at the angular frequency Q.

We ean summarize the above results as follows: In the free rotation of a
rigid body with an axis of symmetry, the angular velocity vector describes a
conical motion (precesses) about the symmetry axis. It describes a surface
called the body cone. (See Figure 8.14.) The angular frequency of this
precession is the constant & defined by Equation (8.29). Let « denote the
angle between the symmetry axis (z axis) and the axis of rotation (direction
of @) as shown in Figure 8.12. Then we can express { as

Q= (ITS - 1) w COS o (8.34)

giving the rate of precession of the angular velocity vector about the axis of
symmetry.

Description of the Rotation of a Rigid Body Relative to a Fized
Coordinate System. The Eulerian Angles

In the foregoing analysis of the free rotation of a rigid body, the pre-
cessional motion was relative to a coordinate system fixed in the body and
rotating with it. In order to describe the motion relative to an observer
outside the body, we must use a fixed coordinate system. In Figure 8.13
the coordinate system OXYZ has a fixed orientation in space. The primed
system Oz'y'#’ is fixed in the body and rotates with it. A third system Oxyz
is defined as follows: The z axis coincides with the 2’ axis or symmetry axis of
the body, and the z axis is the line of intersection of the X1 plane with the

X

FIGURE 9.15 Diagram showing the relation of the Eulerian angles to the
fixed and rotating coordinate axes.
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z'y’ plane. The angle between the X axis and the z axis is denoted by o,
and that between the Z and z axes by 6. The turning of the body about the
symmetry axis is determined by the angle between the z axis and the z' axis,
denoted by ¥. The three angles ¢, 6, and ¢ are known as the Eulerian angles.

In the case in which there are no torques acting on the body, the angular
momentum vector L is constant in magnitude and direction in the fixed system
OXYZ. Letuschoose the Z axis as the direction of L. This is known as the
invariable line. From the figure we see that the components of L in the Ozyz
system are

L.=0
L,= Lsin# (8.35)
L. = Lcos 8

We again restrict ourselves to the case of a body with an axis of symmetry
(the z axis) so that the momental ellipsoid is one of revolution, and conse-
quently the Ozxyz axes are principal axes as well as the primed axes. We now
have from the first of Equations (8.35) that w, = 0. Hence o lies in the yz
plane. Let o denote the angle between the z axis and the angular velocity w.
The components of w are then given by

w, =0
wy = wSsin « (8.36)
w, = WCoS o
Consequently,
L: = Izzw: =0
L, =1, =Ilusina (8.37)

L, = Iw. = Iwcos a
It readily follows that

1" tan § = Il.tan a (8.38)
giving the relation between the angles 6 and a.

According to the above result, 6 is less than, or greater than «, depending
on whether 7 is less than I, or greater than I,, respectively. In other words,
the angular momentum vector lies between the symmetry axis and the axis
of rotation in the case of a flattened body (I < I,), whereas in the case of an
elongated body (I > I,) the axis of rotation lies between the axis of symmetry
and the angular momentum vector. The two cases are illustrated in Figure
8.14. In either case, as the body rotates, the axis of symmetry (z axis) de-
seribes a conical motion or precesses about the constant angular momentum
vector L. At the same time the axis of rotation (e vector) precesses about L
with the same frequency. The surface traced out by o about L is called the
space cone, Figure 8.14.

Referring to Figure 8.13, we see that the angular speed of rotation of the
yz plane about the Z axis is equal to the time rate of change of the angle ¢.
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(a) (b)

FIGURE 8.14 Free rotation of (a) a disc and (b) a rod. The space and body
cones are shown dotted.

Thus ¢ is the angular rate of precession of the axis of symmetry (and of the
vector) about the invariable line (L vector) as viewed from the outside.
From a study of the figure, it is clear that the components of w are

wr =0
w, = ¢sin§ (8.39)
w, = ¢ Cos 0 +

From the second of the above, and the second of Equations (8.36), we find
sin o
© Sin 6

¢ = (8.40)

The above equation can be put into a somewhat more useful form by expressing
6 as a function of « by means of Equation (8.38). After some algebra, we
obtain

I 2 1/2
¢ = w [1 + I—; - 1) cos? a] (8.41)

for the rate of precession of the axis of symmetry about the invariable line.

EXAMPLES

1. Free Precession of a Disc

As an example of the above theory, consider the case of a thin disc, or any
symmetrical laminar body. The perpendicular axis theorem gives
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L.+ 1, =1,
or, in our present notation
2 =1,
Consequently Equation (8.34) yields

Q=<%{— 1>wCOSa=wCOSa

for the rate of precession of the angular velocity vector about the symmetry
axis, as seen in a rotating coordinate system fixed o the disc. If the dise is
thick, then I, is not equal to 21, and the rate of precession is different from
the above expression, depending on the value of the ratio I/1,.

For the rate of precession of the symmetry axis about the L vector, or
z axis, as seen from the outside, Equation (8.41) gives

¢ = (1l + 3 cos? a)!/?
In particular, if « is quite small so that cos @ = 1, then we have approximately

Q=uw
p =~ 2w

Thus the symmetry axis precesses in space at just twice the angular speed of ro-
tation. This precession is manifest as a wobbling motion.

2. Free Precession of the Earth

In the motion of the earth, it is known that the axis of rotation is very
slightly inclined with respect to the geographic pole defining the axis of sym-
metry. The angle « is about 0.2 sec of arc (shown exaggerated in Figure 8.15.)
It is also known that the ratio of the moments of inertia I,/ is about 1.00327
as determined from the earth’s oblateness. From Equation (8.34) we have
therefore

2 = 0.00327w
Then, since w = 2r/day, the period of the above precession is calculated to be
2r 1
o = 000327 days = 305 days

The observed period of precession of the earth’s axis of rotation about the
pole is about 440 days. The disagreement between the observed and cal-
culated values is attributed to the fact that the earth is not perfectly rigid.

With regard to the precession of the earth’s symmetry axis as viewed from
space, Equation (8.41) gives

¢ = 1.00327w

The associated period is then



+8.9 Gyroscopic Precession. Motion of a Top 243

Symmetry
axis

Axis of
rotation

FIGURE 8.15 The earth with symmetry axis and the axis of rotation. The
angle « is greatly exaggerated.

20 2¢ 1

% = & 100327 = 0997 day

This free precession of the earth’s axis in space is superimposed upon a very
much longer gyroscopic precession of 26,000 years, the latter resulting from the
fact that there is actually a torque exerted on the earth (because of its oblate-
ness) by the sun and the moon. The fact that the period of gyroscopic preces-
sion is so much longer than that of the free precession justifies the neglect of
the external torques in calculating the period of the free precession.

8.9. Gyroscopic Precession. Motion of a Top

In this section we shall study the motion of a symmetrical rigid body
which is free to turn about a fixed point and on which there is exerted a torque,
instead of no torque, as in the case of free precession. The case is exemplified
by a simple gyroscope (or top).

The notation for our coordinate axes is shown in Figure 8.16(a). For
clarity, only the Z, y, and z axes are shown in Figure 8.16(b), the z axis being
normal to the paper. The origin O is the fixed point about which the body
turns.

The torque about O resulting from the weight is of magnitude mgl sin 6,
I being the distance from O to the center of mass C. This torque is about the
z axis, so that
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Z
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cm
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mg
0 Y
(b)
FIGURE 8.16 The simple gyroscope.
N, = mglsin 6§
N,=0 (8.42)
N.=0

Let us denote the angular velocity of the Ozyz coordinate system by ». In
terms of the Eulerian angles, the components of w are clearly

w, =40
wy = ¢sin 6 (8.43)
w, = ¢ cos b

Thus the angular momentum of the spinning top has the following components

Lz = Izzwz = 10
L, = Ly, = Iosin g (8.44)
Lz = In(wz + \0) = 13(¢ cos § + ‘[’) = ISS

Here we use the same notation for the moments of inertia as in the previous
section. In the last equation we have abbreviated the quantity ¢ cos 6 + ¢
by the letter S, called the spin.

The fundamental equation of motion, referred to our rotating coordinate
system, is

N=L+oXL
Thus, in component form, we have the following equations of motion:
mglsin @ = 1§ + 1,S¢ sin § — I¢? cos 0 sin @ (8.45)
0= I% (¢sin 8) — I,86 + I6¢ cos 8 (8.46)
0=1S8 (8.47)

The last equation shows that .S, the spin of the body about the symmetry
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axis, remains constant. Also, of course, the component of the angular mo-
mentum along that axis is constant

L, = I,S = constant (8.4%)

The second equation is then equivalent to
0= d% (I¢sin® 8 + IS cos 8)

so that
I¢osin? @ + 1,8 cos § = B = constant (8.49)

Steady Precession

Before proceeding with the integration of the remaining equations, we
shall discuss an interesting special case, namely that of steady precession.
This is the situation in which the axis of the gyroscope or top describes a
right-circular cone about the vertical (Z axis). In this case # = § = 0, and
Equation (8.45), after canceling the common factor sin 8, reduces to

mgl = 1,S¢ — I¢? cos 0
or, solving for S, we find
mg I .

S = — + — g .

S=1, + 7, ¢ cos 6 (8.50)
as the condition for steady precession. Here ¢ is the angular frequency of
the precession, that is, the angular frequency of the motion of the symmetry
or spin axis about the vertical. In particular, if ¢ is very small, then S is
large. (This is the usual case for a top or gyroscope.) Then the second term
on the right in Equation (8.50) may be ignored, and we may write
approximately :
mgl
1.8

which is the familiar result of elementary gyroscopic theory given in most
general physics textbooks. Actually, since Equation (8.50) is a quadratic
in ¢, there are two values of ¢ for a given value of S, but the above approxi-
mate value is the one that is usually observed.

(8.51)

P~

The Energy Equation and Nutation

If there are no frictional forces acting on the gyroscope to dissipate its
energy, then the total energy 7 4+ V remains constant:

o2 + Tw? 4+ 1,8) + mglcos 6§ = F
or equivalently, in terms of the Eulerian angles,
116 + I¢*sin? @ + 1,8%) + mglcos § = E
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From Equation (8.49), we can solve for ¢ and substitute into the above
equation. The result is

(B — IS cos 6)?

1., 1
5 162 + 57 st @ + 5 1,824+ mglcosd = E (8.52)

which is entirely in terms of 8. This equation allows us, in principle, to find 6
as a function of ¢ by integration. Let us make the substitution
u = cos @
Then 4 = —(sin §)§ = —(1 — u?)'?0. We find
w2 = (1 — uw)2E — I,8* — 2mglu)I* — (B — I,Su)xl2

or
= fu)
from which « (hence 6) can be found as a function of ¢ by integration:
du
t= | —/— (8.53)
Vi)

Now f(u) is a cubic polynomial, hence the integration can be carried out in
terms of elliptic functions.

We need not actually perform the integration, however, to discuss the
general properties of the motion. We see that f(u) must be positive in order
that ¢ be real. Hence the limits of the motion in 6 are determined by the
roots of the equation f(u) = 0. Since 8 must lie between 0 and 90 degrees,
then u must take values between 0 and +1. A plot of f(u) is shown in
Figure 8.17 for the case in which there are two distinct roots u; and u, between
0 and +1. The corresponding values of 8, namely 6, and 6, are then the
limits of the vertical motion. The axis of the top oscillates back and forth

flu)
U, uy Uy
| | l
§ |
| TN

FIGURE 8.17 Graph of the function f(u).
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between these two values of 6 as the top precesses about the vertical Figure
8.18. This oscillation is called nutation. If we have a double root, that is,
if u; = ws, then there is no nutation and the top precesses steadily. The
condition for a double root is, in fact, given by Equation (8.50).

FIGURE 8.18 Illustrating the nutation of a simple gyroscope.

Sleeping Top

Anyone who has played with a top knows that, if it is spinning sufficiently
fast and started in a vertical position, the axis of the top will remain fixed in
the vertical direction, a condition called sleeping. In terms of the above
analysis, we see that sleeping must correspond to a double root at v = +1.
In this case, since § = § = 0, E = mgh + 11,82 and B = I,8. The equation

fu) =0

then becomes

(1 — w)? [21}@ A+ u) - (I}f)z] =0

and we do, indeed, have a double root at w = +1. Now setting the bracketed
term in the above equation equal to zero gives us a third root us. We find
128
Ys = oT mgh

If the root us does not correspond to a physically possible value of 8, that is,
if us is greater than 1, then the vertical sleeping motion will be stable. This
gives

4Imgh

J

as the criterion for stability of the sleeping top. If the top slows down through

friction so that the above condition no longer holds, then it will begin to
undergo nutation and will eventually topple over.

S2> (8.54)
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DRILL EXERCISES

8.1 Write down the inertia tensor for a square plate of side l and mass m
for a coordinate system with origin at the center of the plate, the z axis being
normal to the plate, and the x and y axes parallel to the edges.

8.2 Find the angular momentum and kinetic energy of the above
plate when it is rotating about a diagonal, verifying Examples 2 and 3,
Section 8.4.

8.3 A “rigid body”’ consists of six particles, each of mass m, fixed to the
ends of three light rods of length 2a, 2b, and 2c, respectively, the rods being
held mutually perpendicular to one another at their mid points. Show that
a set of coordinate axes defined by the rods are principal axes, and write down
the inertia tensor for the system in these axes.

8.4 Find the angular momentum and the kinetic energy of the above
system when it is rotating with angular speed «» about an axis passing through
the origin and the point (a,b,c).

8.5 A uniform rectangular block spins about a long diagonal. Find
the inertia tensor for a coordinate system with origin at the center of the
block and with axes normal to the faces. Find also the angular momentum
and the kinetic energy. Find also the inertia tensor for axes with origin at
one corner.

PROBLEMS

8.6 Find the inertia tensor of & uniform triangular lamina AOB, where
the angle at O is a right angle, and the sides OA = a, OB = b are on the
and y axes. Find also the principal axes passing through O.

8.7 Find the equation of the momental ellipsoid of a uniform solid
right circular cylinder of radius a and length b. Choose coordinate axes with
origin at the center, the z axis being the central axis of the cylinder. Deter-
mine also the ratio of a to b in order that the momental ellipsoid is a sphere.

8.8 Show that the momental ellipsoid of any uniform lamina in the
shape of a regular polygon is an ellipsoid of revolution for axes with origin at
the center of the polygon.

8.9 A rectangular plate of sides 2a and a revolves about a diagonal.
Find the magnitude and direction of the torque exerted on the plate by the
supporting axis. Choose the origin to be at the center of the plate.

8.10 A lamina of arbitrary shape rotates freely under zero torque. Show
by means of Euler’s equations that the component w, of the angular velocity in
the plane of the lamina (the zy plane) is constant in magnitude, although the z
component of w is not necessarily constant. [Hint: Use the perpendicular
axis theorem.] What kind of lamina gives w, = constant?
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8.11 A square plate of side a rotates freely under zero torque. If the
axis of rotation makes an angle of 45° with the symmetry axis of the plate,
find the period of the precession of the axis of rotation about the symmetry
axis and the period of precession of the symmet#y axis about the invariable
line for two cases (a) a thin plate and (b) a thick plate of thickness a/4.

8.12 Arigid body having an axis of symmetry rotates freely about a fixed
point under no torques. If « is the angle between the axis of symmetry and
the instantaneous axis of rotation, show that the angle between the axis of
rotation and the invariable line (the L vector) is

[d, =1 tan a]
1 N A ——
tan [Is—kltan?a

where I, (the moment of inertia about the symmetry axis) is greater than I
(the moment of inertia about an axis normal to the symmetry axis). Show
that this angle cannot exceed tan—! (8-1/2),

8.13 Find the angle between @ and L for the two cases in Problem 8.11.

8.14 TFind the same angle for the earth.

8.15 A rigid body rotates freely about its center of mass. There are no
torques. Show by means of Euler’s equations that, if all three principal mo-
ments of inertia are different, then the body will rotate stably about either the
axis of greatest moment of inertia or the axis of least moment of inertia, but
that rotation about the axis of intermediate moment of inertia is unstable.
(This can be demonstrated by tossing a book into the air. Put an elastic
band around the book.)

8.16 A space platform in the form of a thin circular disc of radius @ and
mass m is rotating with angular speed w about its symmetry axis. A meteorite
strikes the platform at the edge, inparting an impulse P to the platform. The
direction of P is parallel to the axis of the platform. Find the resulting motion
of the platform.

8.17 A rigid body having an axis of symmetry rotates with angular
velocity o in three-dimensional motion about its center of mass. There is a
frictional torque —co exerted on the body, such as might be produced by air
drag. (a) Show that the component of @ in the direction of the symmetry axis
decreases exponentially with time. (b) Show also that the angle between the
angular velocity o and the symmetry axis steadily decreases if the moment of
inertia about the symmetry axis is the largest principal moment.

8.18 A simple gyroscope consists of a heavy circular disc of mass m and
radius @ mounted at the center of a thin rod of mass m/2 and length a. If the
gyroscope is set spinning at a given rate S, and with the axis at an angle of
45° with the vertical, show that there are two possible values of the precession
rate ¢ such that the gyroscope precesses steadily at a constant value of
¢ = 45°. Find the two numerical values of ¢ when S = 900 rpm and a =
10 cm.

8.19 If, instead of steady precession at constant 8, the gyroscope in the



250 MOTION OF RIGID BODIES IN THREE DIMENSIONS

above problem is started by releasing it at an angle of 6; = 45° and ¢ = 0
and with the same spin, set up the energy equation and find the other limit 6,
which the gyroscope axis makes with the vertical in its nutation.

8.20 The axis of a spinning gyroscope is constrained to remain in a hori-
zontal plane on the surface of the earth, but is free to point in any direction
in that plane. Show that the earth’s rotation produces a torque which tends
to cause the gyroscope’s axis to point in a north-south line. This is the prin-
ciple of the gyrocompass.

8.21 A pencil is set spinning in an upright position. How fast must the
spin be in order that the pencil will remain in the upright position? Assume
that the pencil is a uniform cylinder of length a and diameter b. Find the
value of the spin in revolutions per minute for ¢ = 20 ecm and b = 1 cm.



9. Lagrangian
Mechanics

The direct application of Newton’s laws to the motion of
simple systems will now be supplemented by a general, more sophisticated
approach—a very elegant and useful method for finding the equations of
motion for all dynamical systems, invented by the French mathematician
Joseph Louis Lagrange.

9.1. Generalized Coordinates

We have seen that the position of a particle in space can be specified by
three coordinates. These may be Cartesian, spherical, cylindrical, or, in
faet, any three suitably chosen parameters. If the particle is constrained to
move in a plane or on a fixed surface, only two coordinates are needed to
specify the particle’s position, whereas if the particle moves on a straight line
or on & fixed curve, then one coordinate is sufficient.

In the case of a system of N particles we need, in general, 3N coordinates
to specify completely the simultaneous positions of all the particles—the
configuration of the system. If there are constraints imposed on the system,
however, the number of coordinates actually needed to specify the configura-
tion is less than 3N. For instance, if the system is a rigid body, we need give
only the position of some convenient reference point of the body (for example,
the center of mass) and the orientation of the body in space in order to specify
the configuration. In this case only six coordinates are needed—three for
the reference point and three more (say the Eulerian angles) for the orientation.

251
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In general, a certain minimum number n of coordinates is required to
specify the configuration of a given system. We shall designate these coor-
dinates by the symbols

q1, G2y « - - 5 Qn

called generalized coordinates. A given coordinate g may be either an angle
or a distance. If, in addition to specifying the configuration of the system,
each coordinate can vary independently of the others, the system is said to
be holonomic. The number of coordinates n in this case is also the number
of degrees of freedom of the system.

In a nonholonomic system the coordinates cannot all vary independently;
that is, the number of degrees of freedom is less than the minimum number of
coordinates needed to specify the configuration. An example of a nonholo-
nomic system is a sphere constrained to roll on a perfectly rough plane. Five
coordinates are required to specify the configuration—two for the position of
the center of the sphere and three for its orientation. But the coordinates
cannot all vary independently, for, if the sphere rolls, at least two coordinates
must change. For the present, we shall consider only holonomic systems.

If the system is a single particle, the Cartesian coordinates are expressible
as functions of the generalized coordinates:

z = z(q) }  (one degree of freedom—motion on a curve)

z — ;Egi:gﬁ; } (two degrees of freedom—motion on a surface)
T = 2(q1,q2,05) )

¥ = y(q,92,9s) (three degrees of freedom—motion in space)

z = 2(q1,92,9s)

Suppose that the ¢’s change from initial values (qi,qs, . . .) to the neigh-
boring values (q: + 8¢1,q: + 8q2, . . .). The corresponding changes in the
Cartesian coordinates are given by

ox dx
8r = o2 5y 4+ o= N
T = 91+aq2 q: +

9y 9y
oy = Lo+ L sgo+ - - -
Y= 50 quaq2 7 +

and so on. The partial derivatives dx/d¢;, and so on, are functions of the ¢’s.
As a specific example, consider the motion of a particle in a plane. Let us
choose polar coordinates

g1 =7T Qe = 7]
Then

x = x(r6) =rcosé
y = y(r,8) = rsin b

and
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61—%6 +—60—c0508r—-—rsm060

oy = ar6r+ 6060 sin 8 ér 4 r cos 6 60
giving the changes in z and y that correspond to small changes in r and 6.

Consider now a system consisting of a large number of particles. Let the
system have n degrees of freedom and generalized coordinates

491, 92 . - .y @qn
Then, in a change from the configuration (1,2, . . . ,¢»), to the neighboring
configuration (1 + 8¢y, . . . , ¢. + 8¢.), a representative particle z moves from

the point (x;y:,2:,) to the neighboring point (z; + éx.,y: + dy.,2; + 82) where

ox, = zax,aqk
5yi=zay‘8k
.

The partial derivatives are again functions of the ¢’s. We shall adopt the
convention of letting the subseript 7 refer to the rectangular coordinates, and
the subscript k refer to the generalized coordinates. Let us further adopt the
convenient notation of letting the symbol x; refer to any rectangular coordi-
nate. Thus, for a system of N particles, ¢ would take on values between 1 and

3N.

9.2. Generalized Forces

If a particle undergoes a displacement ér under the action of a force F,
then we know that the work 8W done by the force is given by

oW =F.or = F,o0 + F, oy + F, 62

In our newly adopted notation, the expression for the work is given by

oW = ZF,.ax.. (9.1)

It is clear that the above formula holds not only for a single particle, but also
for a system of many particles. For one particle, 7 goes from 1 to 3. For N
particles, 7 ranges from 1 to 3N.
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Now let us express the increments éz;: in terms of the generalized coor-

dinates. Then
w3 n)
o,
5 ()

1]

By reversing the order of summation, we have

-3 (5 2)n

W =) Qudge 9.2)
k

-3 (n2)

The quantity @« defined by the above equation is called the generalized force
associated with the coordinate g;. Since the product @, 8¢: has the dimen-
sions of work, then Qi has the dimensions of force if g, is a distance, and the
dimensions of torque if g is an angle.

It is usually unnecessary, and even impractical, to use Equation (9.3) to
calculate the actual value of Qy; rather, each generalized force Q. can be found
directly from the fact that Q. 8¢ is the work done on the system by the external
forces when the coordinate gx changes by the amount 8¢, (the other generalized
coordinates remaining constant). For example, if the system is a rigid body,
the work done by the external forces when the body turns through an angle
80 about a given axis is Ly 56, where L is the magnitude of the total moment
of all the forces about the axis. In this case L, is the generalized force
associated with the coordinate 6.

This can be written

where

Generalized Forces for Conservative Systems

We have seen in Chapter 3 that the rectangular components of the force
acting on a particle in a conservative field of foree are given by

F‘_—Ex_.

where V is the potential energy function. Accordingly, our formula for the
generalized force becomes
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1% ax;
Q= - (2 a—E)

*

Now the expression in parentheses is just the partial derivative of the function
V with respect to ¢x. Hence
v
Q= — 0 (9.4)
For example, if we use polar coordinates ¢1 = r, ¢: = 6, then the generalized
forces are Q, = —aV/ar; Qs = —0V/90. If V is a function of r alone
(central force), then Q¢ = 0.

9.3. Lagrange’s Equations

In order to find the differential equations of motion in terms of the gen-
eralized coordinates, we could start with the equation

F; = m&;

and try to write it directly in terms of the ¢’s. It turns out, however, to be
simpler to use a different approach based on energy considerations. We shall
first calculate the kinetic energy T in terms of Cartesian coordinates and shall
then express it as a function of the generalized coordinates and their time
derivatives. Thus, the kinetic energy 7T’ of a system of N particles, which we
have previously expressed as

N

T = ) Bma? + g2 + a9
i=1
will now be written simply
3N
T = %mﬂ'}.'? (95)

The Cartesian coordinates z; are functions of the generalized coordinates g.
For generality, we shall also include the possibility that the functional relation-
ship between the 2's and the ¢’s may also involve the time ¢ explicitly. This
would be the case if there were moving constraints, such as a particle con-
strained to move on a surface which itself is moving in some prescribed man-
ner. We can write

Z; = xi(quq% R )qﬂyt)
Thus
. ax; 0x;

k

In the above equation and in all that follows, unless stated to the contrary,
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we shall assume that the range of 1is 1, 2, . . . , 3N, where N is the number
of particles in the system, and the range of kis 1, 2, . . . , n, where n is the
number of generalized coordinates (degrees of freedom) of the system. In
view of the above equation, we see that we can regard T as a function of the
generalized coordinates, their time derivatives, and possibly the time.
From the expression for ., it is clear that
aa'cz _ aac1

3~ 9.7

Now let us multiply by #; and differentiate with respect to . We then have
{5)-165)
dt aq T odt 3qx

P ax,, 6x,
=g +a

" g

d(a x)_%+i(90_12)
dt\dg, 2/ i O Oqr \ 2

The last step follows from the fact that the order of differentiation with respeet
to ¢ and g or gi can be reversed. If we next multiply by m; and set m; = F,,

we can write
d 9 777,-2‘3.,'2 _ ax,' 0 7?’1,‘1'3,;2
Jca_q'k( 2 )‘ F’aqk+6qk< 2 )

Hence, by summing over ¢, we find

or

d aT dz; aT
4 - 9.8
dt aqk z (F aqk) - oqx ©.8)
Finally from the definition of the generalized force @i, we obtain the result
d aT aT
a 5@ = Qx + a—qk (9.9)

These are the differential equations of motion in the generalized coordinates.
They are known as Lagrange’s equations of motion.

In case the motion is conservative so that the @’s are given by Equation
(9.4), then Lagrange’s equations can be written

daT _oT oV (9.10)

Et aqk 6Qk OQk
The equations can be written even more compactly by defining a function L,
known as the Lagrangian function, such that
L=T-V

where it is understood that T and V are expressed in terms of the generalized
coordinates. Thus, since V = V(g) and 8V /3¢ = 0, we have
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G 9w 9 9 Oq
Lagrange’s equations can then be written
d L 3L
3 9g: — 9gs (9.11)

Thus the differential equations of motion for a conservative system are readily
obtained if we know the Lagrangian function in terms of an appropriate set
of coordinates.

If part of the generalized forces are not conservative, say Q.’, and part
are derivable from a potential function V, we can write

Q= Q) — 30 (9.12)

We can then also define a Lagrangian function L = T — V, and write the
differential equations of motion in the form

d 3L , , OL

q%3q Q' + EPN (9.13)
The above form is a convenient one to use, for example, when frictional forces
are present.

9.4. Some Applications of Lagrange’s Equations

In this section we shall illustrate the remarkable versatility of Lagrange’s
equations by applying them to a number of specific cases. The general pro-
cedure for finding the differential equations of motion for a system is as follows:

(1) Select a suitable set of coordinates to represent the configuration of
the system.

(2) Obtain the kinetic energy T as a function of these coordinates and
their time derivatives.

(3) If the system is conservative, find the potential energ? V as a function
of the coordinates, or, if the system is not conservative, find the generalized
forces Q.

(4) The differential equations of motion are then given by Equations
(9.9), (9.11), or. (9.13).

Harmonic Oscillator

Consider the case of a one-dimensional harmonic oscillator, and suppose
that there is a damping force which is proportional to the velocity. The
system is thus nonconservative. If z is the displacement coordinate, then the
Lagrangian function is
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L=T-V =imi? — ka?
in which m is the mass and k is the usual stiffness parameter. Hence

oL _ mi oL _ —k

o oz = T
Now since there is a nonconservative force present, Lagrange’s equations in
the form of Equation (9.13) can be used. Thus Q" = —cz, and the equation
of motion reads

% (mi) = —ci + (—kz)

or
mé+ct+kxr=0

This is the familiar equation of the damped harmonic oscillator that we studied
earlier.

Single Particle in a Central Field

Let us find Lagrange’s equations of motion for a particle moving in a
plane under a central force. We shall choose polar coordinates g1 = r, ¢ = 6.
Then

T = tm? = im(i2 4 r26?)
V=V
L = im@# + 2% — V(r)

The relevant partial derivatives are as follows:

oL | oL w9V "
Fri mr ar = mré o mré* + F,
aL aL ..

80_0 ao—mrﬂ

The equations of motion Equation (9.11), are therefore
mi = mré? + F, (% (mr?§) = 0

These are identical to the equations found in Section 5.7 for the motion of a
particle in a central field.

Atwood’s Machine

A mechanical system known as Atwood’s machine consists of two weights
of mass m; and m., respectively, connected by a light inextensible cord of
length ! which passes over a pulley (Figure 9.1). The system has one degree
of freedom. We shall let the variable x represent the configuration of the
system, where z is the vertical distance from the pulley to m;, as shown. The
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o

FIGURE 9.1 Atwood’s machine.
angular speed of the pulley is clearly £/a, where a is the radius. The kinetic
energy of the system is therefore given by
D SRPOITE SRS § 2
T = 5 M +2m2x +21a2
where I is the moment of inertia of the pulley. The potential energy is

given by
V = —mugx — myg(l — x)

Assuming that there is no friction, we have the Lagrangian function
1 I\,
=g \m+me+ 5 )&+ gl — mo)z + magl

and Lagrange’s equation

4oL _ oL
dtdz ~ 9z
then reads
I\ .
<m1 + me + (—1-2):6 = g(m — my)
or

_ my — Mo
B g’m1+m2+1/a2

giving the acceleration of the system. We see that if m; > ms, then my
descends with constant acceleration, whereas if m; < m., then m; ascends
with constant acceleration. The inertial effect of the pulley shows up in the
term I/a? in the denominator.

#
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The Double Atwood Machine

Consider the system shown in Figure 9.2. Here we have replaced one
of the weights in the simple Atwood machine by another pulley supporting
two weights connected by another cord. The system now has two degrees of
freedom. We shall specify its configuration by the two coordinates z and «’,

I'=x’

FIGURE 9.2 A compound Atwood machine.

as shown. For simplicity, let us neglect the masses of the pulleys in this case.
We have
T = Imi® + Jmo(—2& + ') + dma(—2 — &')?
V=-—mgr—mgll—z+2')—mygll—z+1—~12)

where m;, m,, and m; are the three masses, and [ and I’ are the lengths of the
two connecting cords. Then
L = %mlx{" + %WLg(—x + Ci?’)2 + %ma(x + i?’)z

+ g(my — my — my)x + g(me — ms)x’ + constant

The equations of motion
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doL 4L d oL 9L

dtdt  ox di 3’ ~ ox'

read
miE + ma(E — &) + my(E + £) = gl — me — my)
mo(—& + &) + ms(& + &) = g(me — my)

from which the accelerations & and &’ are found by simple algebra.

Particle Sliding on a Movable Inclined Plane

Let us consider the case of a particle sliding on a smooth inclined plane
which, itself, is free to slide on a smooth horizontal surface, as shown in Figure
9.3. In this problem there are two degrees of freedom, so we need two coor-
dinates to specify the configuration. We shall choose the coordinates xz and
z’, the horizontal displacement of the plane from some reference point and the

X
x’
7]
\b' v
m
M
g‘x_*

FIGURE 9.3  Block sliding down a movable inclined plane.

displacement of the particle from some reference point on the plane, respec-

tively, as shown.
From a study of the velocity diagram, shown to the right of the figure,

we see that the square of the speed of the particle is given by the law of cosines
v? = 4% 4 2% 4 244’ cos 8
Hence the kinetic energy T of the system is given by
T = 3m® + 3M32 = Im(a? + 2 + 242’ cos 6) + 3 Mz?

where M is the mass of the inclined plane, 6 is the wedge angle as shown, and
m is the mass of the particle. The potential energy of the system does not
involve z, since the plane is on a horizontal surface. Hence we can write

V = —mgzx’ sin 8 - constant

and
L = im(i® 4+ 3" + 242’ cos §) + 1 M2 + mgx’ sin § 4+ constant

The equations of motion
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doL _ 3L  doL _ oL
dtoz ~ oz dtoi’ — oz’
then become
m(E + & cos ) + M& =0 m(& + & cos §) = mg sin ¢

Solving for & and &’ we find

4= —g¢ sin @ cos 6 # = g sin 6
m+M_ e -1_mcosz(9
m+ M

The above result can be obtained by analyzing the forces and reactions in-
volved, but that method is much more tedious than the above method of
using Lagrange’s equations.

Derivation of Euler’s Equations for the Free Rotation of a Rigid Body

Lagrange’s method can be used to derive Euler’s equations for the motion
of a rigid body. In this section we shall consider the case of a rigid body
rotating under no torques.

We have seen that the kinetic energy of a rigid body is given by

T = %(Izzw:} + Iyywy2 + Izzwz2)

where the «’s are referred to principal axes of the body. Let us refer to
Figure 8.13 which shows the Eulerian angles ¢, ¢, and . From a study of the
figure we see that the relations between the «’s and the Eulerian angles and
their time derivatives are as follows:

w; = #cosy + ¢sin fsin Y
wy, = —0siny + ¢sin fcosy (9.14)
w, =y + ¢cos o
Regarding the Eulerian angles as the generalized coordinates, the equations o
motion are ’

doT T
dt a6~ a0
daoT oT
dt o 9o
doT _ aT
oy oy
because the @’s (the generalized forces) are all zero. Now, by the chain rule,
g _ 07 dw,
3 9w, 00 = I..0,

SO
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Ei_ iz = .4 9.15
dtoy 9.18)
Similarly
aT Aw, d
"3“17 = Izzwxja—‘l; + Iyywy ﬁl
= I w(—8siny + ¢sin 8 cosy) + Iw,(—0cosy — ¢sin dsiny)
= Iwy — e, (9.16)

From Equations (9.15) and (9.16), the y equation becomes
Izzd’z + wzwy(Iyy - Izz) = 0

which, as we have previously shown (Section 8.6), is one of Euler’s equations
for the motion of a rigid body under no torques. The other two equations
can be obtained by eyclic permutation of z, y, and z. This is valid, because
we have not designated any special Cartesian coordinate as preferred.

9.5. Generalized Momenta. Ignorable Coordinates

Consider the motion of a single particle moving in a straight line (recti-
linear motion). The kinetic energy is

T = imi?

where m is the mass of the particle, and z is its positional coordinate. Now
rather than define the momentum p of the particle as the product mz, we
could define p as the quantity 87 /d%, namely,

= QZ = mg
P=% =
In the case of a system described by generalized coordinates ¢, g2, . . . Gx,
. . - gn, the quantities p; defined by
oL
Pr = a—qk 9.17)

are called the generalized momenta.! Lagrange’s equations for a conservative
system can then be written

. aL

Dr = EP (9.18)

Suppose, in particular, that one of the coordinates, say ¢, is not explicitly
contained in L. Then

11f the potential energy function V does not explicitly involve the ¢’s, then pr =
AL/3qx = 3T /d¢s.
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oL
= — = 9.19
yON EPy 0 ( )

and
pr = constant = ¢, (9.20)

The coordinate ¢ is said to be ignorable in this case. The generalized momen-
tum associated with an ignorable coordinate is therefore a constant of the mo-
tion of the system.

For example, in the problem of the particle sliding on the smooth inclined
plane (treated in the previous section), we found that the coordinate z, the
position of the plane, was not contained in the Lagrangian function L. Thus
z is an ignorable coordinate in this case, and

aL

Pa = o= = (M + m)x + mi’ cos § = constant

We can see, as a matter of fact, that p, is the total horizontal component of
the linear momentum of the system, and, since there is no external horizontal
force acting on the system, the horizontal component of the linear momentum
must be constant.

Another example of an ignorable coordinate is found in the case of the
motion of a particle in a central field. In polar coordinates

L = im(® 4+ r2%) — V(r)

as shown in the example in Section 9.4. In this case 6 is an ignorable coor-
dinate, and
oL

= — = mr2 = constant
Pe= 5

Here ps is just the magnitude of the angular momentum.

9.6. Lagrange’s Equations for Impulsive Forces

Suppose we have a dynamic system, described by generalized coordinates
gx, in which all the acting generalized forces Qi are zero except for a short
interval of time 7. We can integrate Lagrange’s equations as follows:

doT 9T
qtod ~ oge + Qx

oT
/d<6qk> j)aq dt+/ Qw dt

Now if Q; tends to infinity in such way that the generalized impulse

lim 0’ Q. dt = P, (9.21)

7—0
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exists and is finite, then the integral [) ! (8T /dq:) dt tends to zero, because the
quantity 87/dg. remains finite. We can therefore write

A (g%) = P, (9.22)
for the changes in the .quantities 97/d¢: following the application of a gener-
alized impulse Py to the system. For systems in which the potential function
V does not involve the ¢’s explicitly, so that d7'/d¢. = dL/d¢x = px, we can
write Equation (9.22) as

ape = Py (9.23)

where py is the generalized momentum associated with the generalized coor-
dinate gx.

The generalized impulses P; are most easily found by calculating the
impulsive work 8W which is given by

W =P, 8.+ - =P+ P+ - - - = Zﬁkaqk (9.24)
k

where P, - - - are the applied impulses, and 8s, - - - are arbitrary small
displacements through which the applied impulsive forces act (subject to the
constraints of the system).

EXAMPLE

Two rods AB and BC, each of length 2a and mass m, are smoothly joined
at B and lie at rest on a smooth horizontal table, the points A, B, and C being
colinear. Find the motion immediately after an impulse P is applied at point
A, as shown in Figure 9.4.

Let us choose generalized coordinates x, y, 6, and 6, where z and y are
the positional coordinates of the joint B, and 6; and 6; are the respective angles
which the two rods make with the initial line ABC. The kinetic energy T,
for the initial motion, is given by

T = im(E + af)® + $lm02 + sm(E + ab)? + LI ombst + my?
where I, is the moment of inertia of either rod about its center of mass.
Now the impulsive work is equal to Pds where

s = éx + 2a66,
Thus R
oW = Pss = P(6z + 2a86:)

But for a general displacement of the system we have
W = P.ox + P,oy + P66, + P66,
Therefore, in our case,
P.=P P,=0 Py=2aP Pp=0
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FIGURE 9.4 Impulse applied to one end of a rod that is joined to another rod.

The initial motion of the system is given by Equations (9.22):
aT . . . ;
A (67) = P.: m(& + ab) + m(@ + aby) = P
oT . . .
A 35) = Py: ma(@ + aby) + Imbs = 2aP
1

36,

aT A .
A(G_yz) =P,:my=0

Putting I.. = ima? and solving for the velocities, we finally obtain

A (6_@) = Po,: ma(® + aby) + I, =0

I

T

|
| e©
RIS

It

b1

The reader should verify that the above result gives Vem = P/m, where Von
is the velocity of the center of mass of the system.

9.7. Hamilton’s Variational Principle

Thus far, our study of mechanics has been based largely on the Newtonian
laws of motion. In fact, in the first part of this chapter when we derived
Lagrange’s equations we used Newton’s second law in one of the steps:
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Equation (9.8). In this section we shall investigate an alternative way of
deriving Lagrange’s equations. This method is based on a postulate that has
proved to be most far-reaching in its consequences—Hamilton’s variational
principle.

This principle, first announced in 1834 by the Scottish mathematician
Sir William R. Hamilton, states that the motion of any system takes place in
such a way that the integral

"L dt
13

always assumes an extreme value, where L = T — V is the Lagrangian func-
tion of the system. Stated in other words, Hamilton’s principle declares that
out of all possible ways a system can change in a given finite time interval
ts — t;, that particular motion which will occur is the one for which the above
integral is either a maximum or a minimum. The statement can be expressed
in mathematical form as

17
aLLﬁ=0 (9.25)

in which 8 denotes a small variation. This variation results from taking dif-
ferent paths of integration by varying the generalized coordinates and gen-
eralized velocities as functions of ¢, Figure 9.5.

gy lor gy}

I
[l
T
t

t
1 t

FIGURE 9.5 Illustrating the variation of ¢z or gx.
To show that the above equation leads directly to Lagrange’s equations of

motion, let us compute the variation explicitly, assuming that L is a known
function of the generalized coordinates ¢ and their time derivatives g.. We

have
t2
5/ Ldt=/ 5Ldt /Z( 6qk+ 'k)dt=0
] t
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Now &8¢ is equal to the difference between two slightly different functions of
the time t. Therefore,

d
6qk dt 5qk

Hence, upon integrating the last term in the integrand by parts, we find

oL “'FZdM
/ 2 qu t [kz B(Ik 6q,c:|h - 133 dt 3q BQk dt

But, for fixed values of the limits & and ¢, the variation 8¢, = 0 at ¢ and ¢,
hence the integrated term vanishes. It follows that

d oL
e D[22 mace o

Now if the generalized coordinates g, are all independent, then their variations
dq: are also independent. Therefore each term in brackets in the integrand
must vanish in order that the integral itself vanish. Thus

92 L% (k=12 ...,n)

These are precisely Lagrange’s equations of motion that we found earlier.

In the above derivation it has been assumed that a potential function
exists, that is, that the system under consideration is a conservative one. The
method of variations can be made to include nonconservative systems by
replacing L in the variational integral by the quantity 7 + W in which W is
the work done by all forces, whether conservative or nonconservative. The
generalized force @y is then introduced as defined earlier, Equation (9.2), and
the same procedure as above leads to the general form of Lagrange’s equations,
Equation (9.9).

9.8. The Hamiltonian Function.
Hamilton’s Equations

Consider the following function of the generalized coordinates:
H = Eq'kpk - L
%

For simple dynamie systems the kinetic energy 7T is a homogeneous quadratic
function of the ¢’s, and the potential energy V is a function of the ¢’s alone, so
that

L = T(q,gx) — Vigr)
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Now, from Euler’s theorem for homogeneous functions,? we have

oT
_ i 2L _ o
z ¢pe = z % 3, zk % 3G,

H=2q'kpk—L=2T—(T—V)=T+V (9.27)

Therefore

That is, the function H is equal to the total energy for the type of systems
we are considering.
Suppose we regard the n equations

L
pk—&j«; k=12 ...,n)
as solved for the ¢’s in terms of the p’s and the ¢’s:
Gr = Ge(Pi,q)

With these equations we can then express H as a function of the p’s and the ¢’s:

H(prgw) = ), pude(prgs) — L (9.28)
k

Let us calculate the variation of the function H corresponding to a variation
8px, 6gr. We have

. . oL _. oL
0H = 2 [pk 5Qk + qk 51’1: - 5{‘1; dgx — 5Qk]
k

The first and third terms in the brackets cancel, because pr = dL/dg. by
definition. Also, since Lagrange’s equations can be written as p» = dL/dqx,
we can write

6H = z {gx 6P — D 0qi]
k

Now the variation of H must be given by the equation

o 3 [

2 Euler’s theorem states that for a homogeneous function f of degree n in the variables

21,22 .« Tr
of of of
Tt T+t = nf
2. dz

It follows that
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oH _
apk
o (9.29)
Eria

These are known as Hamilton’s canonical equations of motion. They consist
of 2n first-order differential equations, whereas Lagrange’s equations con-
sist of n second-order equations. We have derived Hamilton's equations for
simple conservative systems. It can be shown that Equations (9.29) also
hold for more general systems, for example, nonconservative systems, systems
in which the potential-energy function involves the ¢’s, and for systems in
which L involves the time explicitly, but in these cases the total energy is no
longer necessarily equal to H.

Hamilton’s equations will be encountered by the student when he studies
quantum mechanics (the fundamental theory of atomic phenomena). Ham-
ilton’s equations also find application in celestial mechanics.

EXAMPLES

1. Obtain Hamilton’s equations of motion for a one-dimensional har-
monic oscillator. We have

T = ymi? V = ikx?
oT . . P
Hence
H=T+V=Ltpthn
N TP T3
The equations of motion
oH _ . oH _
ap oz P
then read
Po_ . _
m=Z kx ]

The first equation merely amounts to a restatement of the momentum-
velocity relationship in this ease. Using the first equation, the second can
be written

d

kr = — a (m)

or, upon rearranging terms,
mé 4+ kxr =0

which is the familiar equation of the harmonic oscillator.
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2. Find the Hamiltonian equations of motion for a particle in a central
field. Here we have

_ %ﬂ (* + 1262

V=V
in polar coordinates. Hence
oT . . _ P
pr = =mi ==
_ aT _ 24 5 o po
p,,..ag—mrﬂ o_mr2

Consequently

2m

2
H = i(;ﬁ + ”—) + V()

The Hamiltonian equations

oH . 8H . oH _, oH

Ak TR e A

then read

P _

m

aV(r) pé
ar mrd
bs _ ¢

mr?

0= —ps

= -——ﬁr

The last two equations yield the constancy of angular momentum:
pe = constant = mr26 = h

from which the first two give

" . h? P
mr = pr = 771_7"3 + r
for the radial equation of motion, where F, = —aV(r)/ar.

9.9. Lagrange's Equations of
Motion with Constraints

It is sometimes convenient to express the differential equations of motion
of a constrained system in terms of more coordinates than are actually needed.
The differential equations must then also be compatible with the equation,
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or equations, of the constraint which may be in the form of conditional equa-
tions of the type

g,g2 - - - qa) =0 (9.30)
By differentiating, we have the differential form of the condition of constraint
99
=3 =0
}’; 3q G (9.31)

There are also certain types of constraints for which a differential relation
of the type

2 hydgr = 0 (9.32)

k

can be found but these equations cannot be integrated to give a conditional
equation of the type f(g,@, . . . ,ga) = 0. Such constraints are said to be
nonholonomic, whereas if the constraint is of the form of Equation (9.30), it
is called holonomic.

In any case, whether the constraints are holonomic or nonholonomie, it
is possible to obtain the differential equations of motion in Lagrangian form
by employing the method of undetermined multipliers. In this application
it is convenient to use the Hamiltonian variational principle.

Let us multiply the differential equation of the constraint, Equation
(9.32), by a parameter A. This is the undetermined multiplier whose value
is, as yet, unspecified. If the resulting expression is added to the integrand
of the variational integral of Equation (9.26), there is clearly no change in
the result that the integral vanishes:

t
! dL.  d AL
;2 Gh - 5+ wman )=
k

Because of the constraint, only n — 1 of the n quantities 8¢, can be regarded
as independent. We now choose A to have a value such that one of the
bracketed terms in the summation vanishes, say the first. Then the remaining
n — 1 can be regarded as independent. Consequently, the remaining terms
in brackets must also vanish. Thus we can write

oL d oL
— T\ = =12 ... .
b diag TV =12 ) (9.33)

z hage = (9.34)

k

The last equation is obtained by dividing the differential equation of the

constraint, Equation (9.32), by 6. There are now n + 1 differential equa-

tions in all. Hence the n + 1 quantities g1, g2, . . . , g., A can be found.
The method can be extended to include more than just one equation of
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constraint by adding on more undetermined multipliers with their corre-
sponding A’s to the Lagrangian equations. It can be shown that the equations
of motion as given above also apply when there are moving constraints. For
a more complete treatment of this method the reader should consult an ad-
vanced treatise.?

DRILL EXERCISES

Lagrange’s method should be used in all of the following, unless stated
otherwise.

9.1 Find the differential equations of motion of a projectile in a
uniform gravitational field without air resistance.

9.2 Find the acceleration of a solid uniform sphere rolling down a
perfectly rough fixed inclined plane. Compare with the result derived earlier
in Section 7.8.

9.3 Two blocks of equal mass m are connected by a flexible cord.
One block is placed on a smooth horizontal table, the other block hangs over
the edge. Find the acceleration of the system assuming (a) the mass of the
cord is negligible, and (b) the cord is heavy, of mass m’.

9.4 Find the general differential equations of motion for a particle in
cylindrical coordinates: R, ¢, 2. Use the relation

12 = vg? 4 0,2 + v?
= R? 4 R%p? 4 32
9.5 Tind the general differential equations of motion for a particle in
spherical coordinates: r, 6, ¢. Use the relation
v = v’ + v + 0]
= 72 4+ 7262 4 r? sin? f?
[Note: Compare your results with the result derived in Chapter 1, Section
1.25]

PROBLEMS

9.6 Set up the equations of motion of a ‘“double-double” Atwood
machine consisting of one Atwood machine (with masses m, and m,) connected
by means of a light cord passing over a pulley to a second Atwood machine
with masses ms and ms. Neglect the masses of all pulleys. Find the actual
accelerations for the case my = m, my = 4m, my = 2m, and m, = 3m.

9.7 A ball of mass m rolls down a movable wedge of mass M. The
angle of the wedge is 6, and it is free to slide on a smooth horizontal surface.
The contact between the ball and the wedge is perfectly rough. Find the
acceleration of the wedge.

9.8 A particle slides on a smooth inclined plane whose inclination 6 is
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increasing at a constant rate w. If § = 0 at time ¢ = 0, at which time the
particle starts from rest, find the subsequent motion of the particle.

9.9 Show that Lagrange’s method automatically yields the correct
equations of motion for a particle moving in a plane in a rotating coordinate
system Ozy. [Hint: T = imv-v, where v = i(z — wy) + j(g + «z), and
F,= —93V/ox, F, = —9V/dy.]

9.10 Repeat the above problem for motion in three dimensions.

9.11 Find the differential equations of motion for an “elastic pendu-
lum”’: a particle of mass m attached to an elastic string of stiffness k and un-
stretched length l,. Assume that the motion takes place in a vertical plane.

9.12 The point of support of a simple pendulum is being elevated at a
constant acceleration a, so that the height of the support is a#?, and its vertical
velocity is at. Find the differential equation of motion for small oscillations
of the pendulum by Lagrange’s method. Show that the period of the pen-
dulum is 2x{l/(¢ + a)]*? where [ is the length of the pendulum.

9.13 The point of support of a simple pendulum is moved in a hori-
zontal direction with constant acceleration a. Find the equation of motion
and the period for small oscillations.

9.14 Use Lagrange’s method to find the differential equations of mo-
tion for the spherical pendulum in spherical coordinates.

9.15 Find the differential equations of motion for an elastic spherical
pendulum, as in Problem 9.11.

9.16 Find the differential equations of motion for a particle constrained
to move on a smooth right-circular cone, the axis of the cone being vertical.

9.17 In the above problem, show that the particle, given an initial
motion, will oscillate between two horizontal circles on the cone. [Hint: Use
spherical coordinates with 8 = constant.] Show that 7 = f(r) where f(r) = 0
has two roots that define the limits between which the particle must remain.

9.18 Two identical rods AB and BC, each of mass m and length 2a, are
joined smoothly at B. The rods lie at rest on a smooth horizontal table and
are initially at right angles to each other. An impulse P is applied at A
lengthwise to the rod AB. Find the motion of the system immediately after
the application of the impulse.

9.19 Write down the Hamiltonian function and Hamilton’s canonical
equations for the following:
(a) A simple Atwood machine
(b) A simple pendulum
(e) A projectile in a uniform gravitational field
(d) A spherical pendulum
9.20 Show that the Lagrangian function

L =3im® — qp + ¢gv-A
yields the correct equation of motion for a particle in an electromagnetic field,
namely, mi = g(E + v X B)
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where

E=—-Vp and B=VXA
(The vector quantity A is called the vector potential, and the scalar quantity ¢
is called the scalar potential.)

9.21 Find (a) the generalized momenta, and (b) the Hamiltonian func-
tion H for the Lagrangian function given in Problem 9.20.



10. Dynamics of
Oscillating Systems

Simple cases of systems that can undergo oscillations
about a configuration of equilibrium include a simple pendulum, a particle
suspended on an elastic spring, a physical pendulum, and so on, all being cases
of one degree of freedom characterized by a single frequency of oscillation.
When we consider more complicated systems—systems with several degrees
of freedom—we shall find that not one but several different frequencies of
oscillation are possible. - In our analysis of oscillating systems, we shall find it
very convenient to use generalized coordinates and to employ Lagrange’s
method for finding the equations of motion in terms of those coordinates.

10.1. Potential Energy and Equilibrium. Stability

Before we take up the study of the motion of a system about an equilib-
rium configuration, let us examine briefly the equilibrium itself. Consider a
svstem with n degrees of freedom, and let the generalized coordinates ¢,
@2, - . . , g. specify the configuration. We shall assume that the system is
conservative and that the potential energy V is a function of the ¢’s alone:

V="V ...,
Now we have shown that the generalized forces Q; are given by

1%
Qr =

—Z k=12, ...,m (10.1)
aqk

276
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An equilibrium configuration is defined as a configuration for which all of
the generalized forces vanish,
14

%=—5"=0 (10.2)
These equations constitute a necessary condition for the system to remain
at rest if, initially, it is at rest. If the system is given a small displacement,
however, it may or may not return to equilibrium. If a system always tends
to return to equilibrium, given a sufficiently small displacement, the equilib-
rium is stable; otherwise, the equilibrium is unstable. (If the system has no
tendency to move either toward or away from equilibrium, the equilibrium
is said to be neutral.)

A ball placed (1) at the bottom of a spherical bowl, (2) on top of a spheri-
cal cap, and (3) on a plane horizontal surface are examples of stable, unstable,
and neutral equilibrium, respectively.

Let us see how the potential-energy function V enters the picture. Con-
sider the motion of a system subsequent to the application of a small impulse
that leaves the system in motion while it is at an equilibrium configuration.
Since the total energy is constant, we can write

T+V=T0+V0

or
T—Toy=—(V =7V (10.3)

where T is the kinetic energy the system has at the equilibrium configura-
tion (as a result of the impulse), and V, is the potential energy at the equilib-
rium configuration. Now if the potential energy is maximum at equilibrium,
then V — V, is negative, and, consequently 7 — T, is positive; that is, T
increases as the system moves away from equilibrium. This is clearly an
unstable situation. On the other hand, if the equilibrium configuration is one
of minimum potential energy, then V' — Vis positive, and T — T, is negative;
that is, T decreases. But T can never be negative, consequently T decreases
to zero at some limiting configuration close to equilibrium, provided, of course,
that T, is small enough. The equilibrium is stable in this case. Thus the
criterion for stable equilibrium is that the potential energy is a minimum.
For a system with one degree of freedom, we have

V = V(g (10.4)
and, at equilibrium
av .
d—q = (100)
The stability is then expressed as follows:
v
Ti-(;‘; > 0 (stable) (10.6)
2
&V < 0 (unstable) (10.7)

dg*



278 DYNAMICS OF OSCILLATING SYSTEMS

If d*V/dg* = 0, we must examine the higher-order derivatives. (This is dis-
cussed in the next section.) In Figure 10.1 is shown a graph of a hypothetical
potential function. The point A corresponds to a position of stable equilib-
rium, and points B and C correspond to positions of unstable equilibrium.

Vix)

(e} X

FIGURE 10.1 Potential energy function V(z). The point A is one of stable
equilibrium. Points B and C are unstable.

EXAMPLE

Let us examine the equilibrium of a body having a rounded (spherical or
cylindrical) base which is balanced on a plane horizontal surface. Let a be
the radius of curvature of the base, and let the center of mass CM be a dis-
tance b from the initial point of contact, as shown in Figure 10.2(a). In Fig-

(a) (b)

FIGURE 10.2 Coordinates for analyzing the stability of equilibrium of a
round-bottomed object.

ure 10.2(b) the body is shown in a displaced position, where 6 is the angle
between the vertical and the line OCM (O being the center of curvature), as
shown. Let A denote the distance from the plane to the center of mass.
Then the potential energy is given by

V = mgh = mgla — (a — b) cos 6}

where m is the mass of the body. We have
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% = mg(a — b) sin
S0
(Z—Z =0 for 6=20
Thus 6 = 0 is a position of equilibrium. Furthermore
% = mg(a — b) cos 6
and
%=mg(a—b) for 6=0

Hence the equilibrium is stable if a > b, that is, if the center of mass lies below
the center of curvature.

10.2. Expansion of the Potential-Energy Function
in a Power Series

Let us consider first a system having one degree of freedom. Suppose we
expand the potential-energy function V(g) as a power series about the point
g = a. We have

1 1
Vi) = x+mlg =) + gm0 — 0+ - -+ e =0t

&)
" dq™ / ¢=a

Now if the point ¢ = @ is a position of equilibrium, then x; = (dV/dg)e—e = 0.
This eliminates the linear term in the expansion, so that

where

Vig) = w0 + Ql-, kelg —a) 4+ - - - (10.8)

The stability of the equilibrium at the point ¢ = a depends on the first
nonvanishing term, after the first one o, in the above expansion. If this is
a term of even power n, then the equilibrium is stable if the derivatived»V /dg»
is positive. If the derivative is negative, or if n is odd, the equilibrium is
unstable. To see why this is so, let n denote the order of the first nonvanishing
term. Then for small departures from the equilibrium point we have

Fe-Srm == o™
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Now for stable equilibrium the direction of F must be toward a, that is, nega-
tive if ¢ > a and positive if ¢ < @. This can be the case only if «, is positive
and 7 is even.

In most cases of physical importance n = 2, that is, the potential energy
is a quadratic function of the displacement and the force is a linear function.
Thus if we transform the origin to the point ¢ = a, and arbitrarily set V (0) = 0,
then we can write

C V(g = i (10.9)

if we neglect higher powers of ¢.

Similarly, for the case of a system with several degrees of freedom, we
can effect a linear transformation so that ¢y = g = - - - = ¢, = 0 is a con-
figuration of equilibrium, if an equilibrium configuration exists. The poten-
tial-energy function can then be expanded in the form

Viguge, - - - ,@n) = 3(kugi® + 260q1q + reeg® + « - +) (10.10)

o = (6_2‘1)
" 0¢1*/ grmqrm - —gn=0

)
kg = | ——
. GQI692 qr=qz="+"=gn=0

and so on. We have arbitrarily set V(0,0,...,0) = 0. The linear terms in
the expansion are absent because the expansion is about an equilibrium
configuration.

The expression in parentheses in Equation (10.10) is known as a quadratic
form. 1f this quadratic form is positive definite,! that is, either zero or positive

for all values of the ¢’s then the equilibrium configuration ¢ = g2 = - - - =
g = 0 is stable.

where

10.3. Oscillations of a System with One
Degree of Freedom

If a system has one degree of freedom, the kinetic energy 7' may be

expressed as
T = 3ug? (10.11)

! The necessary and sufficient conditions that the quadratic form in Equation (10.10)
be positive definite are

K1l K12 K3
K11 K12

K > 0 >0 Kz K2 Kag | > 0 and so on

K21 K22
Kzl K3z K33
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Here the coefficient 4 may be a constant, or it may be a function of the gener-
alized coordinate ¢. In any case we can expand  as a power series in ¢ and
write

du)

= 0 (-— . . -

#(0) + dg). 9T (10.12)
If ¢ = 01is a position of equilibrium, we shall consider g as small enough so that

u = u(0) = constant (10.13)

is a valid approximation. From Equation (10.9) we see that the Lagrangian
function L can be expressed as follows:

L=T-V = 1ug® — ixg? (10.14)
where k = k» = (@®V/dg?) 0. Lagrange’s equation of motion
doL _ oL
dtog ~ 9q
is then
pg + kg =10 (10.15)

Thus if ¢ = 0 is a position of stable equilibrium, that is, if « > 0, then ¢
oscillates harmonically about the equilibrium position with angular frequency

w = \/E (10.16)

g = qocos (wt + € (10.17)

where ¢, is the amplitude of the oscillation, and ¢ is a phase angle. The values
of these constants of integration are determined, of course, from the initial
conditions.

and

EXAMPLE

Consider the motion of the round-bottomed object discussed in the exam-
ple of the preceding section (Figure 10.2). If the contact is perfectly rough,
we have pure rolling, and the speed of the center of mass is approximately
bé for small 8. The kinetic energy T is accordingly given by

= im(bé)? + iI..6°
where .. is the moment of inertia about the center of mass. Also, we can
express the potential-energy function V as follows:

V(6) = mgla — (a — b) cos 6]

e 6
I PR I
= 1 mg(a — b)6* + constant + higher terms
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We can then write
L = $(mb® 4+ I.n)6> — img(a — b)6*

neglecting constants and higher terms. Comparing with Equations (10.14)
and (10.15), we see that

mb? + Iom
mg(a — b)

Il

K

The motion about the equilibrium position 8 = 0 is therefore approximately
simple harmonic with angular frequency

mg(a — b)

. (10.18)

w =

10.4. Coupled Harmonic Oscillators

Prior to developing the general theory of oscillating systems with any
number of degrees of freedom, we shall study a simple specific example,
namely, a system consisting of two harmonic oscillators that are coupled
together.

For definiteness we use a model comprised of particles attached to elastic
springs, although any type of oscillator could be used. For simplicity we
assume that the oscillators are identical and are restricted to move in a
straight line, Figure 10.3. The coupling is represented by a spring of stiffness
k' as shown. The system has two degrees of freedom. We shall choose

/Equilibrium positions\
l X

FIGURE 10.3 Model of two coupled harmonic oscillators.

coordinates x; and x., the displacements of the particles from their respective
cquilibrium positions, to represent the configuration of the system.

The kinetic energy of the system is
T = $mi? + tmis? (10.19)
and the potential eneggy is
V = $kxs® + 3k (xe — 21)% + 3kas? (10.20)
Hence the Lagrangian function L is given by

L = %ma‘clz + %maic;ﬁ —_ %kxf* -_— %k,(xz - .’.131)2 — %kxzz (1021)
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The differential equations of motion

doL _ L  doL _ oL
dtdi,  on dt 8@y, Oz
then read

m:iil = ——kxl + k'(.’l)z — xl)

mEs = —kxe — k'(xs — 1) (10.22)

Now if there were no coupling (%" = 0), the two equations would be
separated and would represent the differential equations of two independent
harmonic oscillators of frequency \/k/m. In the actual system under study
it is reasonable to use a trial solution which is also harmonic but of a differ-
ent and, as yet, unknown frequency w. Thus our trial solution is of the
form e®!, Taking the second time derivative, we have

ii'1 = —w2x1
By = —wim (10.23)

The equations of motion (10.22) then become

k+E K

T1 — — g = w1
m

% k4K (10.24)

1

T2 = wre

after substitution and rearrangement of terms.

At this point it would be possible simply to eliminate x1 and z; alge-
braically between the two equations and thereby obtain an equation giving
the unknown frequency w in terms of the given parameters k, k’, and m.
However, it is more instructive to introduce here the use of matrices to
handle problems in coupled harmonic motion. Thus Equations (10.24) are
written in matrix notation as

a —bi|lx , [ -
|:—'b a:l I:xg] e [mz] (1020)

in which we have introduced the abbreviations ¢ = (¢ + k')/mand b = k’/m.
This is the standard form of what is known in mathematics as the eigenvalue
problem: The product of a square matrix by a column vector is equal to a
constant times that vector. (We have previously met a similar situation in
Chapter 8 when we discussed the problem of finding the principal axes of a
rigid body.)

To find the eigenvalues of the constant »? we rewrite the matrix equation
(10.25) in the following equivalent form

a — w? —b 1l
[ —_p o — wz] [xg] =0 (10.26)
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In order that a nontrivial solution exists, namely, one in which z; and z, are
not both zero, the determinant of the matrix must vanish. That is

a — w? —b
—b a— w?

=0 (10.27)

This is known as the secular equation. It is an algebraic equation of the
nth degree in the unknown «?, n being the order of the matrix. In our
problem it is a quadratic (a — w?)? — b% = 0 whose roots are easily seen to

be w? = a + b, or
k k + 2K
@ = \/; @ =4 tn (10.28)

These are called the eigenfrequencies or normal frequencies of the system.
Clearly there are two fundamental solutions:

(a) 21 = Arcos (it + o) zs = Az cos (wil + ¢3)
(b) 21 = Bjcos (wet + ¢1) T2 = By cos (wit + ¢2')

Here the A’s, B’s, and ¢’s are constants of integration to be determined from
the initial conditions. Actually, the amplitudes are not independent, for if
we insert the eigenvalues of w back into the equations of motion (10.24) we
find the following results:
(a) If @ = w1 = (k/m)¥%, then we find that
k+E K k

X1 — — X2 = — 01
m m

m
which reduces to
21 = Za
(b) If o = we = (k + 2k’'/m)Y2, we obtain

b+ K Ii, _k + 2k’
m T mT  m

Z1

which gives
I = —X2

The two types of motion represented by the above cases are called the
normal modes of the system. The first case x; = z» is known as the symmetric
mode, and the second z; = —ux. is called the antisymmetric mode. See Figure
10.4. In the language of matrices, the modes correspond to the eigenvectors
of the matrix in Equation (10.25), In our example they can be expressed as

(a) [2] _ [2] - m A cos (wnt + )
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(b) [2] _ [_2] - [_}] B cos (et + ¢)

The Complete Solution

Since the original differential equations of motion of the system are
linear, we know that any two solutions may be added together to yield an-
other solution. This fact allows us to combine the normal-mode solutions
to obtain the most general form of the solution. This is conveniently written

in terms of the eigenvectors as follows:

[701] - [1] A cos (wit + ¢) + [_}] B cos (wat + ¢') (10.29)

X 1

The amplitudes A and B and the phases ¢ and ¢’ are determined from the
initial conditions of the system. If the initial condition is such that one of
the amplitudes, say B, is zero, then it will remain zero, and the system will
oscillate permanently in the symmetric mode. Likewise, if A is initially
zero, the system remains in the antisymmetric mode. In the general case,
the system oscillates as a combination of the two modes.

X1

O\ /~ \ /
/~\ /

Symmetric mode: x; = x,

M~ N\

T
~_ N\

NS4 A e

Antisymmetric mode: x; = - x,

FIGURE 10.4 Displacement-time graphs of the normal modes of two coupled
harmonic oscillators.
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10.5. General Theory of Vibrating Systems

Turning now to a general system with n degrees of freedom, we have
shown in the last chapter (Section 9.3) that the kinetic energy 7' is a homoge-
neous quadratic function of the generalized velocities, namely,

T = bungi + wdde + bmge? + - - = ) ) buadige  (10.30)
ik

provided there are no moving constraints. Since we are concerned with mo-
tion about an equilibrium configuration, we shall assume, as in Section 10.3,
Equation (10.13), that the u’s are constant and equal to their values at the
equilibrium configuration. We shall further assume that a linear transforma-
tion has been introduced so that the equilibrium configuration is given by

q1:q2= . e -:qn::O
Accordingly, the potential energy V, from Equation (10.10), is given by

V = $xng® + xeqige + xeg? + - - - = EE%xjkquk (10.31)
7 E

The Lagrangian function then assumes the form

L= E E 3 (winGiGe — KiQsqe) (10.32)
7k
and the equations of motion
d oL _ oL
dt dgn g
then read
Younii=— Y kng; (k=12 ...,n) (10.33)
7 i

The above set of n differential equations is expressed in matrix notation as

Mi = —Kq (10.34)
in which 5
Mt M2
M= un e - | =k (10.35)
[k k2 - -
K= |t 2 ---|=I[kn (10.36)
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The generalized displacement vector is

q1
/}]

q=| (10.37)

qn

We note that both M and K are symmetric matrices, according to the energy
equations (10.30) and (10.31).
If a harmonic solution of the form

qr = Ax cos (wf + o)

exists, then ¢, = —w?q, that is
= —uq
Consequently, the matrix equation (10.34) becomes
(K — Muo2)q = 0 (10.38)

A nontrivial solution requires the secular determinant to vanish

det (K — Ma?) =0 (10.39)
or
|xi; — pie? = 0 (10.40)

The roots give the normal frequencies and the associated eigenvectors define
the normal modes.

It is possible to express the problem in different ways by means of
matrix algebra. For example, we can multiply both sides of Equation (10.34)
by the inverse M1 of the matrix M, assuming of course, that the inverse
exists. We then have

(MK — lo?)q = 0 (10.41)

in which I is the identity matrix. This is the standard form of the eigenvalue
problem. See Appendix V. The associated secular equation is

det (M—K — l?) = 0 (10.42)

Now it is easy to prove that the eigenvalues in both Equations (10.39) and
(10.42) are the same. This follows from the mathematical theorem that the
determinant of the product of two matrices is equal to the product of the
respective determinants. Thus

det (M-1) det (K — Mw?) = det (MK — lo?)

so that if det (M~1) does not vanish, the roots of the two secular equations in
question are identical. The importance of the above result is that we can
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find the normal frequencies and normal modes without reducing the matrix
equation (10.38) to the standard form (10.41).

EXAMPLE

Let us consider the motion of the so-called ‘‘double pendulum’’ consisting
of a light inextensible cord of length 21 with one end fixed, the other supporting
a particle of mass m, and with a second particle of mass m at the center,
Figure 10.5. Assuming that the system stays in a single plane, we can specify
the configuration by two angles, § and ¢ as shown. For small oscillations
about the equilibrium position, the speeds of the two particles are approxi-
mately 1§ and I(6 + ¢), and their potential energies are —mgl cos 8 and
—mgl(cos 8 + cos ¢). The Lagrangian function for the system is then

L= %ZW + g—tl?(ﬂ + ¢)? + 2mgl cos 8 + mgl cos ¢

Lagrange’s equations of motion
doL _oL  d3L_ 3L
dtad — 96  dtde de
then read
mitd + ml*(§ + ) = —2mgl sin 6
mi(f + ¢) = —mglsin ¢

Assuming that sin § = 6, sin ¢ = ¢, and rearranging terms, we find

L,

FIGURE 10.5 The double pendulum.
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26‘+27‘70+¢=0

(10.43)
i+¢+7e=0
The secular determinant for the system is then
—2? + ? —w?
=0
—? —wt 4 g
l
or
2
wt — 4w2<g)+2<g) =0
l l
The two normal frequencies are thus
g 1/2
w1 — [l— (2 - '\/Q):I
(10.44)

m=[%2+v®rz

If the system is oscillating at either one of its normal frequencies, then the
first of Equations (10.43) yields

(—20)2 + 2§—’) 6 = wio

Upon substituting the two values of » from Equations (10.44) into the above
equation, we find the following relations between ¢ and 6 for the normal
modes:

e=+120, ©=uw (symmetric mode)
0= =120, w=w (antisymmetric mode)

The corresponding eigenvectors are

o] =[]

and the general solution may be written

o= }2 A cos (it + o1) + _112 B cos (wst + a)
¢ 2 21

10.6. Normal Coordinates

In the language of matrices, the kinetie and potential energy functions
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defined by Equations (10.30) and (10.31) take the compact forms
T = £q”Mq V = 1q"Kq (10.45)

Now a considerable simplification results if these quantities are expressed in
terms of coordinates in which the matrices M and K are both diagonal. In
this casc the cxpressions reduce to sums of squares, and consequently the
secular determinant is also diagonal. Hence the roots giving the normal
frequencies are obtained simply by equating to zero each diagonal term.

It turns out that it is indeed generally possible to find coordinates such
that the matrices in question are diagonal. These are known as normal
coordinates. In order to find the normal coordinates, we consider a trans-
formation defined by a certain matrix A which transforms between the original
displacement vector q and a new vector @ according to the usual rule

a=Aqd q =A"q
The corresponding transformed expressions for 7' and V are
TI = %(']’TATMAQ' VI = %q,TATKAq,

In order for these to be sums of squares the transformed matrices must be
diagonal, namely,

Ml' 0
ATMA = M’ = [0 '

k0 (10.46)
ATKA = K’ =

0 ]\’2’

There are several ways of arriving at the required transformation. One
method consists of finding a set of vectors that are simultaneously eigen-
vectors of both the matrices M and K. Such eigenvectors, denoted by a,
must then satisfy the two equations

Ma, = uk'ak 5

=1,2,...,n 10.47
KorT M =12, 0w (10.47)
Let us multiply the first equation by «'/w’ and subtract it from the second.
The result is

(K — M\ya; =0 (10.48)

in which we have set \x = «’/us’. The above matrix equation is formally
identical to Equation (10.38) found ecarlier. It must therefore have the same
eigenvalues, namely, Ay = wi?

Returning now to Equations (10.46), suppose we multiply by (A7)~
This gives MA = (A")"'M’ and KA = (AT)-'K’. By the usual rules of
matrix algebra, these will reduce to
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MA = M'A

provided AT = A, This means that A must be what is known as an
orthogonal matrix.

At this point a little reflection will show that the two sets of equations
(10.47) and (10.49) are actually equivalent to one another. This equivalence
may be stated in the following way. The columns of the matrix A are equal
to the vectors a;, to within a constant multiplicative factor. Thus, if we
write

ay
Aoy
a; = : (10.50)

then (A); « a;. Hence, to construct the matrix A, we solve for the
roots_of the secular equation det (K — Mw?) = 0. For each root wx we
construct the corresponding eigenvector a; by solving the system of equa-
tions (K — Mw?)a, = 0. Each equation is equivalent to the = algebraic
equations

Z(k,-,j —pedax =0 (=12 ...,n) (10.51)
F

Since there are n different values of wi, except in the case of repeated roots,
there are »? equations to be solved. For large n this can lead to a consider-
able amount of computational labor. In practical problems, the use of
high-speed electronic computers is clearly advantageous.

EXAMPLE

For the problem of the two coupled harmonic oscillators treated in Sec-

tion 10.4, we showed that the eigenvectors were proportional to [;] and

[ 1] . Thus the transformation matrix for normal coordinates is

—1
1 1
= 912
A=2 [1 —1]

The factor 2-V2 is inserted in order that |det Al= 1 and thus AT = A-! = A.
Hence, in this problem, A is its own inverse. Denoting the normal coordinates
by z’ and z.’, we have @' = A-lq, or

'] e | 1 1|z
[.’L‘zl] =2 1 —1 T2
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That is
xl' = 2_”2(121 + xz)
T = 2_1/2(271 — .’232)

and since A = A~ the primes can be interchanged.
Let us express the Lagrangian function in terms of the normal coordi-
nates. We then find

T = 5‘5(901 +x2’)2+——(x1 — &)= (x1'2+x2 %)
k1 ) k k k+ 2k’
V=55 +xz)2+——(x1 — @)k omt = sut ot
and so
m | ko, m k4 2K
L= 2—161'2—5112-}'512'2——2—:&'2

Thus L consists entirely of squares, that is, there are no product terms like
z1'zy’, and the equations of motion (d/dt)(dL/d+.") = 3L/dz, then read simply

m:il' = —kl'll mdle = —(k + 2]6,).”02/
The equations are thus in separated form, and the solutions are

z = 22(zy + x5) = A cos (wif + o)
xo' = 2712(z; — 23) = B cos (wit + &)

where «; and ws are the same as those found previously. For any motion of
the system the coordinate x’ always oscillates at the frequency cw,, and z.’
always oscillates at the frequency w.. If the initial conditions are such that
one of the two constants A or B is zero, but not both, then the system oscil-
lates in one of its normal modes.

Orthogonality of Eigenvectors. Repeated Roots

It is a well-known theorem, discussed in Appendix V, that the eigenvectors
of a symmectric matrix are orthogonal to one another if they belong to different
eigenvalues. Hence the eigenvectors defining the normal modes of an oscil-
lating system are, as a rule, mutually orthogonal. Exceptions to this rule
occur for mechanical systems in which there exist solutions of the matrix
equation (K — Mw?)q = 0 but for which the cigenvectors are not simulta-
neous cigenvectors of the matrices K and M, as was assumed in the previous
discussion. An example of such a case is given below.

Another type of exception to the orthogonality rule arises when the
secular equation det (K — Mw?) = 0 has repeated roots, so that two or more
eigenvectors can belong to the same eigenvalue. However, in this case it is
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possible to construct a set of mutually orthogonal eigenvectors. The proce-
dure is as follows. Supposc the multiplicity of a given root is two. Then
there will be two different cigenvectors associated with the same eigenvalue
or normal frequency. Let q. and qs denote these two eigenvectors, assumed
to be linearly independent. Clearly any linear combination is also a solution
of the given matrix equation and belongs to the same eigenvalue, that is,
¢q. + g5 has the same eigenvalue as q. and qg where ¢ is a constant. Now
consider the expression

q."(cqe + ds) = cqQa"qa+ 4."Qs

Hence if we choose ¢ such that the expression vanishes, that is,

T
e= — Jle (10.52)

A" qa
then the eigenvector q, is orthogonal to ¢cq., + qg. A similar procedure can
be used if the multiplicity is higher than two.
It may happen that an eigenvalue of w is zero. In this case there is no
oscillation, rather, there is merely uniform motion of the normal coordinate
in question.

EXAMPLES

1. In the problem of the double pendulum discussed earlier the two
eiggnvectors were found to be [ ;1 /2] and [_;1 /2] . These are not orthog-

onal, but they are eigenvectors of the system, and they have different eigen-
values as shown above. They satisfy the matrix equation (K — Mw?q = 0

in which
g2 o [2 1
K'l[o 1] M_[l 1]

However, the two eigenvectors in question are not eigenvectors of the matrices
K and M. The nonorthogonality here is related to the fact that K and M
do not commute. To show this, we refer to Eq. (10.41) and to Appendix V
in which it is shown that different eigenvectors of a symmetric matrix are
orthogonal. Now if K and M commute, then the product M—K is symmetric.
(The student should verify this.) Hence different eigenvectors must be
orthogonal. On the other hand, if the product in question is not symmetric,
the eigenvectors are not necessarily orthogonal.

2. Three particles of the same mass m are constrained to move in a
common circular path. They are connected by three identical springs of
stiffness k, as shown in Figure 10.6. Find the normal frequencies and normal
modes.
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We choose 1, &3, and z; to specify the configuration of the system. The
2’s are measured from the equilibrium positions, as shown. Then

= Im(i? + &2 + 23d) V = 3k[(z1 — 22)® + (22 — 29)% + (22 — 21)7]

The energy matrices are then

1 00 2 -1 -1
M=1]0 1 0fm K=|-1 2 —1\k
0 01 -1 -1 2

The secular determinant is
2~ A -1 —1
—1 2 — A —1 =0
—1 —1 2— A
or
N—60+0M=20
where A = w?m/k. The three roots are A = 0, A = 3, A = 3. Thus we have

two repeated roots.
The associated matrix equations for determining the eigenvectors are

2 -1 —1l]|a —1 -1 —1]]|x]
A=0):]—1 2 =1z =0 AZ=3:]—-1 —1 —1]|]z!l=0
-1 -1 2] s —1 —1 —1]]|=s

The first matrix equation gives 221 = 23 + 2 together with two more obtained

by eyclic permutation of the subscripts. Solving them, we find 21 = »: = 2.
1

Thus the eigenvector for this mode (w = 0) is [1]. The second matrix
1

cquation gives x1 + 22 + z3 = O for all three component equations. This
type of degeneracy occurs when there are repeated roots. In this case we
are free to choose the value of one component of the associated eigenvector

(two if it is a triple root, and so on). Let us then set z; = 0, so that 2, = —u;,
and the corresponding eigenvector can be expressed | — } . Clearly, a similar
10
procedure with z; = 0 gives another eigenvector 0 A third would be
. —1

—1| with z; = 0. However, these are not linearly independent, for the
1
last is the difference of the first two. There are only two linearly independent
eigenvectors associated with the root N = 3 Inspection shows that the
above eigenvectors are not orthogonal, however. Using the theory leading
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1 1
to Equation (10.52), we know that the vectorc¢ | —1 | 4 0 | is orthogonal
0 -1
1 1
to the vector | —1 | if we choose ¢ =—3[1,—1,0} 0| = —% This gives a
0 —1
1] 1
vector % 1| which is orthogonal to | —1|. Finally, we can write the
—2 ] 0
general solution as
1 1] 1 1
ze| ={1]{a+bt) +|—1]A4cos (ot + a) + 1| B cos (wt + 8)
X3 1 i 0 —2

The first mode (« = 0) is pure rotation, and the other two modes are oscilla-
tion of the system at the frequency w = +/3k/m.

FIGURE 10.6 Three particles constrained to move in a common circular path
and connected by elastic springs. The model is an approximation to a sym-
metrical planar triatomic molecule.

Motion of a General System When Damping Forces
and Ezxternal Driving Forces Are Present

In the foregoing analysis of the oscillation of a general system, we ne-
glected the presence of any frictional forces. If the system is subject to
viscous damping forces proportional to the first powers of the velocities of the
particles, we can write Lagrange’s equations in the form
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4 9L _ L, g
dtdge  dg |

where the generalized damping force R; is given by
R = —cwly — cwGs — -+ - — Caur(n

The resulting differential equations of motion are similar to the undamped
case, cxcept that terms involving the ¢’s are present. It is often (but not
always) possible in this case to find a normal coordinate transformation such
that the resulting differential equations are of the form

.t CI~I II=0
so that B Qk -+ k Qr +Kka

g’ = A'ke™*t cos (wit + &)

The amplitudes of the normal modes thus die out exponentially with time.
There is also the possibility of a nonoscillatory situation analogous to the
critically damped or overdamped one-dimensional case.

Finally, for the motion of a system which, in addition to linear restoring
forces and dissipative forces, is subject to external driving forces that vary
harmonically with time, we can express the situation analytically by including
terms of the form Quext cos wi (Or Qrexte™?) in each equation of motion. The
resulting equations of motion in the normalized coordinates assume the form

pe' @ + e + k'@ = Qre®t

Thus, for example, if the system is subject to a single driving force varying
harmonically at a frequency equal to one of the normal frequencies of the sys-
tem, then the corresponding normal mode is the one that assumes the largest
amplitude in the steady-state condition. In fact, if the damping constants are
vanishingly small, then the normal mode whose frequency is equal to the
driving frequency is the only one that is excited.

10.7. Vibration of a Loaded String

In this section we consider the motion of a simple mechanical system
censisting of a light elastic string that is clamped at both ends and loaded with
a given number n of particles equally spaced along the length of the string,
each being of equal mass m. The problem illustrates the general theory of
vibrations and also leads naturally into the theory of wave motion, briefly
treated in the next section.

Let us label the displacements of the various particles from their equi-
librium positions by the coordinates ¢1,q2, . . . ,¢.. Actually, there are two
types of displacement that can occur, namely a longitudinal displacement in
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which the particle moves along the direction of the string, and a transverse
displacement in which the particle moves at right angles to the length of the
string. These are illustrated in Figure 10.7. For simplicity we shall assume
that the motion is either purely longitudinal or purely transverse, although
in the actual physical situation a combination of the two could occur. The
kinetic energy of the system is then given by

T=;£(q'12+922+ s 4 dad)

P 3
3
\

|

I

3

qpn-
a, a, o q,

2 {b)
FIGURE 10.7 Linear array of particles or the loaded string. (a) Longitudinal
motion. (b) Transverse motion.

If we use the letter v to denote any given particle, then, in the case of
longitudinal motion, the stretch of the section of string between particle
v and particle v +1 is

vyl — q,

Hence the potential energy of this section of the string is
1K (g1 — @)

in which K is the elastic stiffness coefficient of the section of string connecting
the two adjacent particles.

For the case of transverse motion, the distance between particle » and
v+ 1lis

1
[ + (@ = @) = b+ 5 (@ = @)+ - -
in which & is the equilibrium distance between two adjacent particles. The

stretch of the section of string connecting the two particles is then
approximately
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1
Al = 571‘ ((IV+1 e qu

Thus, if S is the tension in the string, the potential energy of the section under
consideration is given by

S
SAl = o (@oir — @.)?

It follows that the total potential energy of the system in either the longitu-
dinal or the transverse type of motion is expressible as a quadratic function
of the form

k
V=slo*+@—-a)’+ - +(@—-¢)*+e] (1166
in which

k= (transverse motion)

=1

or
k=K (longitudinal motion)

The Lagrangian function of the loaded string is thus given by

L= %z [mg,? — k(gsr — ¢)"] (10.53)
The Lagrangian equations of motion
9L _ oL
dtdg, 9dq,
then become
m§, = —k(g, — ¢»1) + k(@or — @) (10.54)

where» = 1,2, . . ., n.

To solve the above system of n equations, we use a trial solution in which
the ¢’s are assumed to vary harmonically with time. It is convenient to use
the exponential form

g = e’

where a, is the amplitude of vibration of the »th particle. Substitution of the
above trial solution into the differential equations (10.54) yields the following
recursion formula for the amplitudes:

—meta, = k(a,_1 — 2a, + a,41) (10.55)
This formula will include the end points of the string if we set
Ay = a,.+1 = O

The secular determinant is thus
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—me? + 2k —k 0 N 0
—k —ma? + 2k —k Ce 0
0 —k —me? + 2k 0 =0
0 0 0 —met + 2k

The determinant is of the nth order and there are thus n values of » that
satisfy the equation. However, rather than find these n roots by algebra, it
turns out that we can find them by working directly with the recursion rela-
tion, Equation (10.55).

To this end, we define a quantity ¢ related to the amplitudes a, by the
following equation

a, = A sin (v) (10.56)
Direct substitution into the recursion formula then yields
—mw?d sin (vg) = kAlsin (v¢ — ¢) — 2sin (v¢) + sin (ve + ¢)]

which easily reduces to

mw? = k(2 — 2 cos ¢) = 4k sinzg

or

- @ = 2wpsin ¥ (10.57)

2

E\2
wp = (;"L) (10.58)

Equation (10.57) gives the normal frequencies in terms of the quantity ¢
which we have not, as yet determined. Now, as a matter of fact, the same
relation would have been obtained by any of the following substitutions for
the amplitude a,: A cos (vp), Aei’?, Ae~#%, or any linear combination of these.
However, only the substitution a, = A sin (vp) satisfies the end condition
ao = 0. In order to determine the actual value of the parameter ¢, and thus
find the normal frequencies of the vibrating string, we use the other end con-
dition, namely an,y; = 0. This condition will be met if we set

(n+ D¢ = Nn (10.59)

in which

in which N is an integer, because we then have
any1 = A sin (Nx) =0

ITaving found ¢, we can now calculate the normal frequencies. They are
given by

. N
wy = 2w SIN (mﬂ-—z) (1060)
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Furthermore, from Equations (10.56) and (10.59) we see that the amplitudes
for the normal modes are given by

. Nzv
a, = A sin <n T 1) (10.61)
Here the value of » = 1,2, . . . , n denotes a particular particle in the linear
array, and the valueof N = 1,2, . . . , n refers to the normal mode in which

the system is oscillating.

The different normal modes are illustrated graphically by plotting the
amplitudes as given by Equation (10.61). These fall on a sine curve as shown
in Figure 10.8 which shows the case of three particlesn = 3. The actual mo-
tion of the system, when it is vibrating in a single pure mode is given by the
equation

a;
/’ —5\
a3~ 4 S
-1 ~
// LT . 37 \\
/ Asin 2 Asin N\ First mode
Ve AN N=1
z N a,= A sin (%
2,
// ‘,.\\
\
/ \a,=0
/ A \
/ \
/ \ Second mode
i \ . N=2
\\ ,/ ay = A sin (2:—”)
\ A g
\ /
N /
~ //
a3
POERNY 33,77\
\
/ \ \
! A sin 3Z \\ / Asin%r \
/ \ / V' Third mode
! / Vo ow-3
— ]
\ II - ay = A sin (§4£1_I')
\\ A/
\ /
\ /
~ ~//
22

FIGURE 10.8 The normal modes of a three-particle system.
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T

¢, = a, cos (oxt) = A sin (n 1"1) cos {wnl)

The general type of motion is a linear combination of all the normal modes.
This can be expressed as

. N
gr = 2 An sin (;—_:—Vl) cos (wnt + ¢n) (10.62)

N=1

in which the values of Ay and ¢n are determined from the initial conditions.
In the event that the number n of particles is large compared to the mode

number N, so that the ratio Nx/(2n + 2) is small, we can replace the sine

term in Equation (10.60) by the argument. Thus we have approximately

TWwo
oN = N(n+ 1)

This means that the normal frequencies are approximately integral multiples
of the lowest frequency mwo/(n + 1). In other words, we can regard the
different normal frequencies as the fundamental, the second harmonie, the
third harmonic, and so on. The accuracy of this integral harmonic relation-
ship is improved as the number of particles is made larger.

10.8. Vibration of a Continvous System.
The Wave Equation

Let us consider the motion of a linear array of connected particles in
which the number of particles is made indefinitely large and the distance
between adjacent particles indefinitely small. In other words, we have a
continuous heavy cord or rod. To analyze this type of system it is convenient
to rewrite the differential equations of motion of a finite system, Equation
(10.54), in the following form:

ma = w (22) - (2522)]

in which & is the distance between the equilibrium positions of any two adja-
cent particles. Now if the variable z represents general distances in the
longitudinal direction, and if the number n of particles is very large so that &
is small compared to the total length, then we can write

Qy+1 - QV ~ (gg)
h 0/ s rhihs2

@ = G _ (@)
h 0T/ revh—hs2
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Consequently the difference between the above two expressions is equal to
the second derivative multiplied by h, namely,

Qvy1 — @Gy _ gy — Gy ~ h (3_2(1>
h h 022/ o

The equation of motion can therefore be written

P _ ke g
3~ m ax?
or
d%q d%q
v i ? Fye (10.63)
in which we have introduced the abbreviation
kh?
2 — v
v - (10.64)

Equation (10.62) is a well-known differential equation of mathematical phys-
ies. Itis called the one-dvmensional wave equation. It is encountered in many
different places. Solutions of the wave equation represent traveling disturb-
ances of some sort. It is easy to verify that a very general type of solution
of the wave equation is given by

¢ = fl@ + vp)
or
g = flz — )

where f is any differentiable function of the argument x 4= vt. The first solu-
tion represents a disturbance that is propagating in the negative x direction
with speed v, and the second equation represents a disturbance moving with
speed v in the positive x direction. In our particular problem, the disturbance
q is a displacement of a small portion of the system from its equilibrium con-
figuration, Figure 10.9. For the cord, this displacement could be a kink that
travels along the cord; and for a solid rod, it could be a region of compression
or of rarefaction moving along the length of the rod.

t=t, t=t,

I it
-— — \~ —————

FIGURE 10.9 A running wave.

Evaluation of the Wave Speed

In the preceding section we found that the constant k, for transverse
motion of a loaded string, is equal to the ratio S/h where S is the tension in the
string. For the continuous string this ratio would, of course, become infinite
as h approaches zero. However, if we introduce the linear density or mass
per unit length p, we have
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m

p=7

Consequently, the expression for +?, Equation (10.64), can be written
g = S/Me 8
ph P

so that h cancels out. The speed of propagation for transverse waves in a

continuous string is then
1/2
v = (*_Z) (10.65)

For the case of longitudinal vibrations, we introduce the elastic modulus
Y which is defined as the ratio of the force to the elongation per unit length.
Thus £, the stiffness of a small section of length &, is given by

k=

Consequently, Equation (10.64) can be written as
w2 = YRR ¥
ph e

and again we see that & cancels out. Hence the speed of propagation of longi-
tudinal waves in an elastic rod is

v = (X)m (10.66)

p

10.9. Sinusoidal Waves

In the study of wave motion, those particular solutions of the wave
equation
g _ .
a2 dz?

in which ¢ is a sinusoidal function of x and ¢, namely

sin | 27
=A cos [—)\— (x + Lt):' (10.67)
g=A iloz [2% (x — vt)} (10.68)

are of fundamental importance. These solutions represent traveling dis-
turbances in which the displacement, at a given point z, varies harmonically
in time. The amplitude of this motion is the constant A, and the frequency f
is given by
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w v
I=2.=x

Furthermore, at a given value of the time ¢, say t = 0, the displacement varies
sinusoidally with the distance z. The distance between two successive max-
ima, or minima, of the displacement is the constant A, called the wavelength.
The waves represented by Equation (10.67) propagate in the negative z
direction, and those represented by Equation (10.68) propagate in the posi-
tive z direction, as shown in Figure 10.10. They are special cases of the
general type of solution mentioned earlier.

FIGURE 10.10 A sinusoidal wave.

Standing Waves

Since the wave equation, Equation (10.63), is linear, we can build up any
number of solutions by making linear combinations of known solutions. One
possible linear combination which is of particular significance is obtained by
adding together two waves of equal amplitude that are traveling in opposite
directions. In our notation, such a solution is given by

1 . | 2x 1 . | 2r
g = QA sm[—)\— (x + vt)] +§A sm[T (x — vl)]

By using the appropriate trigonometric identity and collecting terms, we find
that the equation reduces to

g = 4 sin (%\I x) cos (wl) (10.69)
in which w = 2m/A. The above equation represents what are known as
standing waves. Here we see that the amplitude of the displacement is no
longer constant, but varies with the value of xz. Thus, for z = 0, A/2, A,
3)\/2, . . ., the displacement is always zero since the sine term vanishes
at these points. The points of zero displacement are called nodes. On the
other hand, at those values of z for which the absolute value of the sine term
is unity, namely, z = \/4, 3\/4, 5\/4, . . . , the amplitude of the harmonic
oscillation has its maximum value of A. These points are called antinodes.
The distance between two successive nodes, or two suceessive antinodes, is just
one half of the wavelength. The above facts are illustrated in Figure 10.11.
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Node Antinode

FIGURE 10.11 Standing waves.

Interpretation of the Motion of a Loaded String
in Terms of Standing Waves

If we compare the equation for a standing wave, Equation (10.69), with
our previous solution for the motion of a loaded string, Equation (10.62),
we observe that the two expressions are very similar. The similarity can be
brought out even more by noting that the standing wave solution will satisfy
the boundary conditions of our original problem, namely

g=0:2=0 and =1

provided that the end points of the string correspond to nodes of the standing
wave. This condition is met if the length [ of the string is an integral number
N of half wavclengths, that is

l=(n+1)h=N$

Solving for A and substituting in Equation (10.69) yields

. TN
q = A sin [m] cos (w!)
This agrees with our previous solution, Equation (10.62), since at the positions
of the various particles we have
x, = vh v=12...mn)

Thus the vibration of a loaded string can be regarded as a standing wave.
Each normal mode contains a certain integral number of nodes in the standing-

wave pattern.

DRILL EXERCISES

10.1 Determine the equilibrium positions and the conditions for sta-
bility for a particle of mass m moving in the following potentials:

A
@ V@ =5 -

x2
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(b) V(z) = —kxe®=
(e) V() = k(xt — 2a2z?)

10.2 Find the cquilibrium configuration and stability of a system
whose potential encrgy function is of the form
Vg - - - ) = ) k(g — bo?
i=1
10.3 TFind the frequencies of oscillation of the particle in Exercise 10.1
for small oscillations about the respective equilibrium positions.

PROBLEMS

10.4 A light spring of length 2! and stiffness k is held with the ends
fixed a distance 2 apart in a horizontal position. A block of mass m is then
fastened to the midpoint of the spring. Show that the potential encrgy of
the system is given by the expression

V(y) = 2kly* — 20(y* + I)'7] — mgy

where y is the vertical sag of the center of the spring. IFrom this show that
the equilibrium position is given by a root of the equation

ut — 2aud + a®u? — 2au + a2 =0

where u = y/l and a = mg/4kl.

10.5 A uniform cubical block of mass m and sides 2a is balanced on
top of a rough sphere of radius b. Show that the potential energy function
can be expressed as

V = mg[(a + b) cos 6 + b8 sin 6]

where 6 is the angle between the line of contact and the vertical, measured
from the center of the sphere. From this, show that the equilibrium is stable,
or unstable, depending on whether a is less than or greater than b, respectively.
Investigate the stability for the case a = b.

10.6 A solid homogeneous hemisphere of radius a rests on top of a rough
hemispherical cap of radius b, the curved faces being in contact. Show that
the equilibrium is stable if a is less than 3b/5.

10.7 Determine the frequency of vertical oscillations about the equilib-
rium position in Problem 10.4.

10.8 Determine the period of oscillation of the block in Problem 10.5.

10.9 Determine the period of oscillation of the hemisphere in Problem
10.6.

10.10 A small steel ball rolls back and forth about its equilibrium
position in a rough spherical bowl. Show that the period of oscillation is
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2n[7a%/5g(b — @)]¥2 where a is the radius of the ball and b is the radius of
the bowl.

10.11 A heavy elastic spring of uniform stiffness and density supports
a particle of mass m. If m’ is the mass of the spring and # its stiffness, show
that the period of vertical oscillations of the particle is

m + (m’/3)
i (D

This problem shows the effect of the mass of the spring on the period of
oscillation. [Hint: To set up the Lagrangian function for the system,
assume that velocity of any part of the spring is proportional to its distance
from the point of suspension.]

10.12 Find the normal frequencies of the coupled harmonic oscillator
system, Figure 10.3, for the general case in which the two particles have
unequal mass, and the springs have different stiffness. In particular, find
the frequencies for the case my = m, ma = 2m, ky =k, ko = 2k, k' = k/2:
Express the result in terms of the quantity wy = (k/m)!2.

10.13 Write down the complete solution of the symmetric coupled
harmonic oscillator system, Equation (10.29), for the following initial condi-
tions: £ = 0, &1 = Ao, 2 = 0, &3 = &, = 0. Show that the amplitude A of
the symmetric component is equal to the amplitude B of the antisymmetric
component in this case.

11.14 A light elastic spring of stiffness k is clamped at its upper end and
supports a particle of mass m at its lower end. A second spring of stiffness
k is fastened to the particle and, in turn, supports a particle of mass 2m at its
lower end. Find the normal frequencies of the system for vertical oscillations
about the equilibrium configuration. Find also the normal coordinates.

10.15 Find the eigenveetors and normal coordinates for (a) Problem
10.12, second part, and (b) Problem 10.14. (c) Are the eigenvectors orthog-
onal in both cases?

10.16 Consider the case of a double pendulum, Figure 10.5, in which
the two sections are of different length, the upper one being of length {;, and
the lower of length I, Both particles are of equal mass m. Find the normal
frequencies of the system, the corresponding eigenvectors, and the normal
coordinates.

10.17 Set up the secular equation for the case of three coupled particles
in a linear array and show that the normal frequencies are the same as those
given by Equation (10.61).

10.18 Two identical simple pendulums are coupled together by a very
weak force of attraction that varies as the inverse square of the distance
between the two particles. (This force might be the gravitational attraction
between the two particles, for instance.) Show that, for small departures
from the equilibrium configuration, the Lagrangian can be reduced to the
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same form as that of the two coupled harmonic oscillators. Show further
that if one pendulum is started oscillating with the other at rest, then even-
tually the second pendulum will be moving and the first one will be at rest,
and so on.

10.19 A linear triatomic molecule (CQ;, for example) consists of 4 central
atom of mass m and two other atoms, each of mass m’, the three atoms being
in a straight line. Set up the Lagrangian function for such a molecule,
assuming that the motion takes place along a single straight line (the z axis)
and find the normal modes and normal frequencies. Assume that the forces
between adjacent atoms can be represented by a spring of stiffness k.

10.20 Illustrate the normal modes for the case of four particles in a
linear array. Find the numerical values of the ratios of the 2nd, 3rd, and
4th normal frequencies to the lowest or first normal frequency.

10.21 A light elastic cord of natural length ! and stiffness k is stretched
out to a length I 4+ Al and loaded with a number n of particles evenly spaced
along its length. If m is the total mass of all n particles, find the speed of
transverse and of longitudinal waves in the cord.

10.22 Work the above problem for the case in which, instead of being
loaded, the cord is heavy with linear density p.
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Appendixes

Appendix |

Complex Numbers

The quantity
2=+ 1y

is said to be a complex number if z and y arereal and z = v/ —1. The complex
conjugate is defined as

=0 —1y
The absolute value |2| is given by
[2]2 = z2* = 22 + 2
The following are true

z2+2=2x=2Rez
2—2*=2y=2Imz

Ml

Ezponential Notation

2=z + 1y = |z[e® = |2|(cos § + % sin 6)
¥ =2 — 1y = |2le® = |z|(cos @ — 7sin 6)
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where

tan ¢ = Y
T

Circular and Hyperbolic Functions

The following relations are often useful

eie + e—:’o
= ———
cos 5
eiﬂ — 6—-1'9
sin @ = —————
25
] —
cosh § = g _; ¢ (hyperbolie cosine)
) e — ¢! ..
sinh § = 2 (hyperbolic sine)
sinh 8 S — e .
tanh § = Smag _ 2 ¢ (hyperbolic tangent)

cosh6 & + e

Relations Between Circular and Hyperbolic Functions
sin t0 = ¢sinh
cos 0 = cosh 6
sinh 710 = 7sin 6
cosh 10 = cos 8

Derivatives
d% sinh 6 =cosh ¢
% cosh 6 = sinh 6
Identities

cosh?8 — sinh?d =1
sinh (8 + ¢) = sinh 0 cosh ¢ 4 cosh 6 sinh ¢
cosh (6 + ¢) = cosh 0 cosh ¢ 4 sinh 6 sinh ¢

311
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Series Expansions

Taylor’s Series

L.?

J@+ @) = @) + 2 @ + 5@+ )

J@) = SO + O + SO0 + -+ D0+

where

@) = 1@

Often-Used Expansions

2 n
ez=l+z+1+...+x_+...
2! n!

23 xS
smx=x—a—|—5—
zZ .1:4

cosx=1—a+4—!—

. ¥ 1
s1nhz=x+§+5+---
¥zt
In (1 2,z
nl+o=s—S+T - <1
x8 2 T
t = — — b PO —_
an x+3+15:c+ l::;l<2

Binomial Series

(n — 1)

n
(a+z)"=a“+na"—lx+nT“"—2xz+'"+(>a"""x”‘+---

312
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where the binomial coeflicient is

n n!

T — ) ml
m (n — m)'m!

The series converges for {z/a] < 1.

Useful Approzimations
For small z, the following approximations are often used

eex~1+4+x
sinrx =~ 2
cosz 1 — g

VIl + b

—— -

1 1+
—_— - z
1 —x

The last threc are basced on the binomial series, and the list can be extended
for other values of the exponent.

Appendix Il

Special Functions

Elliptic Integrals
The clliptic integral of the first kind is given by the expresstons
14 d(,’/'
F(k,p) = ——
(kye) o (1 — K*sin® )!?
_ f’ o dr
o (1 — 12)1;’2(1 — I\.'ZJ.E)XIZ
and the elliptic integral of the second kind by

14
H(k,p) = / (1 — k*sin? ¢)'"2 dy
0

= By
o (=2
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Both converge for [k] < 1. They are called incomplete if x = sin ¢ < 1, and

complete if z = sin ¢ = 1. The complete integrals have the following series
expansions

T ™ k® 9
Fo) = F(r Ty =T LI VR
(k) (;2> 2<1+4+64 + )

T T k2 9
Ek)y=Elk -})=-{1 — —— —Fkt — - ..
&) <’2) 2( 4 64 >

Gamma Function

The gamma function is defined as

I'(n) = /w zle 2 dx
0
[
0 ;

nl'(n) = T'(n + 1)

For any value of n

If n is a positive integer

r'(n) = (n — 1)!
Special values
'} = Vr
ra) =1
@) =3Vr
r2) =1

Integrals expressible in terms of gamma functions

f‘ dr VT r(1/n)
o V1I—2a" n T[(1/2) + (1/n)]

[ = ayomaz = T2 £ DI04 /)
0 2T[(2n + m + 3)/2]

Appendix IV

Curvilinear Coordinates

We consider a general orthogonal system of coordinates u, v, and w with
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unit vectors e, e,;, and €;. The volume element is
AV = hhohs du dv dw
and the line element is
ds = e du + esh, dv + e3h; dw
The gradient, divergence, and curl are as follows

€ 6f € af €; af

grad S = e T o T hdu
. 1 e
divQ = [ (hahs@Qy) + (h3h1Qz) + — (h1h2Q3)]
hlhghs Ju
hlel hzez haes
d ] a
curl Q = 1

hlhghe gl/ 5 %
thl thz ths

The h functions for some common coordinate systems are listed below.

Leectangular Coordinates: i, y, 2
he =1 hy = h, =1
Cylindrical Coordinates: r, 8, z

X =rcosé Yy =rsiné
he =1 hg = r h, = 1

Spherical Coordinates: r, 6,

Zz = rsinfcos ¢ Y = rsin@sin ¢ 2=rcoséf
h. =1 hg = r h, = rsing

Parabolic Coordinates: u, v, 6

Z = uvcos @ Yy = uvsin @ 2= 2(u? — %)

hi=h, = AN+ 0* b
Example: The curl in spherical coordinates is

e, rey rsinfe,

a3 aJ ad 1
curl Q = |—
r

a6 5 r2 sin 6
@ Qe rsin 6Q,
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Matrices

A matriz A is an array of elements a;; arranged thus

fan Qe - -+ Qi c c c Qum |
Qo1 Qo2 = * - Qg; =+ Oam
A = an (2273 al] Aim
L1 An2 T Apj ot Apm-

If n = m, it is called a square matrix. Unless stated otherwise, we shall
consider only square matrices in this Appendix. A symmetric matrix is one
such that a;; = a;;. If a;; = —aj;, 1t 1s antisymmetric.

The sum of two matrices is defined as

(A + B)i; = ai, + by
The product of two matrices is defined as

(AB)ij = ailblj + ai2b2]’ + - =AZ aikbkj
k

The product AB is not, in general, equal to BA. If AB = BA, the two
matrices are said to commute. A diagonal matrir is one whose nondiagonal
elements are zero, a;; = 0 for ¢ £ j. The 7dentity matrix! is a diagonal matrix
with all diagonal elements equal to unity,

100 0
010 0
I=|0 0 1 0
000 --- 1

From the definition of the product, it is easily shown that

Al = lA
The inverse A= of a matrix A is defined by

AA— =1 =A"A

! This should not be confused with the inertia tensor defined in Chapter 8.
316
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The transpose AT of a matrix A is defined as
(AT).; = (A)i
For two matrices A and B, (AB)” = BTA”.
The determinant of a matrix is the determinant of its elements,

any e
(l()tA = | Qg

The determinant of the product of two matrices is equal to the product of
the respective determinants,

det AB = det Adet B

It can be shown that the inverse of a matrix A is.given by the formula

rdetv.An det Az]
detA detA

—1 —

- |det Ay det Ax
det A detA

Lo» s . voe DR

where the matrix A;; is'the matrix left after the 7th row and jth column have
been removed.

Maitrix Representation of Vectors

A matrix with one row, or one column, defines a row veclor, or column
vector, respectively. If a1s a column vector, then a7 is the corresponding row
vector,

a = * al = [alxaﬂy' . 'yan]

an
¥or two column vectors 2 and b with the same number of elements, the
product a”b is a scalar, analogous to the dot product,

by
bg
a’b = [al,a«z, .. .] . = (llbl + a21)2 + .o

Two vectors a and b arc orthogonal if a”b = 0.
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Matrix Transformations

A matrix Q is said to transform a vector a into another vector a’ according
to the rule

gn qu - || . Qo + quas + - - -
gn Q2 - - - || @ 9nar + Qe + - - -

a':Qa:

The transpose of a’ is then

qu Q12
a’T =a’Q" = [ay0;,. . ]| G
= [guor + quaz + . . .,gus + guoz + . . .]
A matrix Q is said to be orthegonal if Q7 = QL. It defines an orthogonal
transformation. It leaves aTh unchanged, since a’T’b’ = a’Q7’Qb =

a’Q-'Qb = a’b.

The transformation defined by the matrix product Q—AQ is called a
stmilarity transformation. The transformation defined by the product QTAQ
1s called a congruent transformation.

If the elements of Q are complex, then Q is called Hermitian if g;* = g;s,
that is, Q™* = Q. If Q7™ = Q~, then Q is called a wnitary matrix, and the
transformation Q—'AQ is called a unitary transformation.

Eigenvectors of a Matrix
An eigenvector a of a matrix Q is a vector such that

Qa = \a
or

Q@—-Ia=0

where A is a scalar, called the eigenvalue. The eigenvalues are found by
solving the secular equation

qu — A G co
det (Q— I)\) = g2 Qo2 — A R = 0

which is an algebraic equation of degree n (the number of rows or columns or
order of the matrix.)
If the matrix Q is diagonal, then the eigenvalues are its elements.
Consider two different eigenvectors a, and a, of a symmetric matrix Q.
Then
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Qa, = \a,
Qa, = \a;

where A, and A; are the eigenvalues. Multiply the first by a,T and the second,
transposed, by a,. Then

2,Q2a, = \.a, 2,
a,7Q™a, = Na Ta,

But if Q is symmetric, then Q7 = Q, so the two expressions on the left are
equal. Hence

(As — Aa)as @, = 0

If the eigenvalues are different, then the two eigenvectors must be orthogonal.

Reduction to Diagonal Form
Given a matrix Q, we seek a matrix A such that
AQA =D
where D is diagonal. Now

D — N = A1QA — Al = A(Q —- \DA,

Hence the eigenvalues of Q are the same as those of D, namely, the elements
of D. Let A\ be a particular eigenvalue, found by solving the secular equation
det (Q — Al) = 0. Then the corresponding eigenvector a, satisfies the
equation

Qak = )\kak
which is equivalent to n linear homogeneous algebraic equations

Zq,',-ajk = )\kaik (l = 1, 2, .. .,n)

j
These may be solved for the ratios of the a’s to yield the components of the
eigenvector a;. The same procedure is repeated for each eigenvalue in turn.
We then form the matrix A whose columns are the eigenvectors a,, that is,
[Alix = as. Thus the matrix A must satisfy

N0 - -
QA=A[0 X --- |=AD
0 0 -\

so that A-1QA = D as required. The above method can always be done if A
is symmetric and the eigenvalues are all different. In the case of repeated
roots, orthogonal eigevectors are constructed by the method of Section 10.6.
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Values of k? of Various Bodies

(Moment of Inertia = Mass X k?)

Body Auxis k2
2
Thin rod, length a Normal to rod at its center ;l—2
2
Normal to rod at one end %
2
Thin rectangular Through the center, parallel to side b f—2
lamina, sides Through the center, normal to the a? + b
a and b .
lamina 12
Through the center, in the plane of a?
Thin circular dise, the disc 4
radius a Through the center, normal to the a
dise 2
Through the center, in the plane of a
Thin hoop (or ring) the loop 2
radius a Through the center, normal to the a2
plane of the hoop
Thin eylindrical shell, o . R
radivs a, length b Central longitudinal axis a
2
Uniform solid right Central longitudinal axis %
cu;;:.ular thn(:irb Through center, perpendicular to @ v
radius g, leng longitudinal axis 1712
Thin spherical shell, Any diameter 2 a2
radius a 3
Uniform solid sphere,  Any diameter 2 o
radius a 5
Umlf:l);n 2(;2(111;20?221 Through center, normal to face ab, a® + b?
g p piped, parallel to edge ¢ 12

sides a, b, and ¢
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Answers to Selected
Odd-Numbered Problems

Chapter 1

1.1 (a)i+2j—k6"
()i +k, 2"
(©)1
(d) =i +j+k, 3"
1.3 cos™'(2/3)" = 385°15'
1.5 (-1xV17)/4
1.15 wb (1 + 3cos?wt)”
1.19  (b%w? + 4c2D) " | (B2 + 4¢?)”
1.21 4c2t(h2? + 4c2) % |, [BPw* + 4c? — 8c2e2(b2w? + 4c2?)']"
1.25 (av — vi)/|a X v|

Chapter 2

2.1 8F,ty/m 1
2.3 (a)v = [(2Fwx + kx®m~1]"

(©)x = [kv — Foln(1l + kv/Fylk 2
2.7 v =(A + Bt)*whered =v,"' ", B =(c/m)(n—1),a = (1-n)"!

x = C(w? — vB) where C = (mfc) @—n)'andn # 1,2
29 (@)x = —@m/f) [v + (mgl) In (1 = cv/mg)]

(b)x = —(m/2)In (1 — cv?mg)
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2.11

ANSWERS TO SELECTED ODD-NUMBERED PROBLEMS

F(x) = —mb%x™3

2.13 x =a tan(bt) where a = (2mvo/k)” , b = (kvo/2m)”

2.15 (4,/4y) (ml/mz)l/2
Chapter 3

3.1 (a), (b), and (e) are conservative.

3.3 (@F =iy +jrz + kxy
(©) F = kx"y%27 (ix™' + kz7Y)

3.5 (i-16m™Y)"

3.7 F = —mg + mgz/2r,

3.11 mx = —cxs,my = —¢y5, mz = —mg — ci$

3.13 x =6"% cos(2" t),y =24% cos(8" t),z = 547" cos(18" 1)
3.17 v =(2h)"* ,R = 3mg

3.19 T = 4(/g)* K(15°
Chapter 4

41 A=i—-yj+2k |[A] =0*+9)"

4.3 about 41 nt (west)

4.5 Apax = ag + (a2 + v4/b%)"* where b is the wheel radius and v is the
instantaneous forward speed. The maximum occurs at the point
defined by tan® = a¢b/v* where © is measured upward from the
rear of the wheel.

49 BRAP=FT+30Xr+30XT+dXr+2w X (wXr)+oX(0Xr)
+3w X {(wXt)+ o X[wX((wXr)]+dA/dt
Hint: Expand the operator expression [(*) + wx ( )P.

4.11 For small 8, sin%§ , =~ w, sinA (4/3) (I/g)"* which gives 6, = 0.5°.
Chapter 5
5.1 9.4 x 1078 dynes
= ‘/3_77 = ‘/L ~

55 T Gp 2 7 1.4 hr

5.7 F = —-GMmr~2 — (4/3) wpmGr

5.9 I:r = aet® + be™*® k2 =1 —cmh®>0
1: r = acosk© + bsink©O k2= —1+¢mh2>0

IIl: 7 = (@© + b)! ¢ =mh?
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5.11
5.13

5.17
5.21
5.25

No. O varies as t”
Period =(—]'—,——) =756 yr

Tmax = 35.16 a.u.

Use rovg = 10y

7w (1 —ab)™"

a > (e/k)*

Approximately 0.7° for orbits near the earth

Chapter 6

6.1

6.3

6.5
6.13

6.15
6.19
6.21

(a) (2i +j + 3k)/3

©3+k

(d) =i + 3k

Fraction lost = (1 + )71, s viy*
T = , y = ——
Y 2gp(1 + y)?

Uo, 21’0’ 4.UO

Proton: vy = v, =0.6v
Helium: v; = 0.09v, v, =~ 0.15v
~55°

i=g-32°%

mv +Vm +hkv =0

Chapter 7

7.1

7.3

(a) ‘ha from bottom center

(b) 3 b from vertex

(c) *k b from vertex

(d) 3% h from vertex

(a) 738 ma® where m = total mass

(d) %10 ma? where a = radius of base

8l + )

sin® = 350 4 1)

2w (2a/g)” , 2 (3a/2g)"
5g/7
When line of centers makes an angle of cos™ (4/7) with the vertical
(a) Horizontal: (3/4)mg sin 6(3 cos 6 — 2)
Vertical: (1/4)mg(3 cos § — 1)?



324 ANSWERS TO SELECTED ODD-NUMBERED PROBLEMS

(b) Slipping begins when ‘3 sin #(3 cos 6 — 2)‘ = uB@ cos 6 — 1)2
Rod slips backwards if above equation is satisfied for § < cos™
(2/3), otherwise rod slips forward.
7.21 s = vt — Yogti(sin © + ucos O)
Pure rolling begins when
s = (2vg/g) (sin® + 6 cosO) (2sinO + 7ucosO)~?
7.25 Uy = —P/dm, @ = —3P/2ml
Vema2 = 5P/4m, wy = 9P/ml
vg = —P/m

1

Chapter 8

31]/]100 i
010 19
002
8.3 b? + ¢? 0 0
0 a’+c? 0 m
0 0 a? + b?

8.5 The inertia tensor is the same expression as in Problem 8.3 withm/3
instead of m, and where 2a, 2b, and 2c are the dimensions of the
block.

8.7 Ax*> + By? + Cz* = 1 where

2
B=A=m (2%."’1’_2),(;: ma:

4 12
ab=1V3
8.9 maw?/12 about z axis
8.11 (a) 2m/w)2* , (27/w) (2/5)"
8.13 (a)45° — tan"2 (1/2) = 18.5°
8.19 ©, =10°
8.21 S§?> (64ga/b) @*/3 + b*/16)
Approximately 1,230,000 rpm
The pencil would be torn apart by centrifugal force.

Chapter 9

m
9.1 UseL =5 (&% + 3% + 2%) — mgz
9.3 g/2,g(m +m'z/b) m +m'[2)"* where z is the length of the cord hang-
ing over the table, and b is the total length of the cord.
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9.7 mg sin O cos © [(7/5) (m + M) — mcos*©] !
9.11 d%/dt? =10 + gcos© — (kim) (r — 1)
d(r*©)/adt = —grsin©
where r is the instantaneous length of the pendulum
9.13 T =2wl" (g2 +a®» %

9.15 UselL = 12"— 2 + o2 + r2¢? sin?0) + mgrcos® — k? o — 1o)?
pZ

9.19 H = 2_(7lh_+_771_2) — Mgz
921 p.=mx —qA,, p, =my —qd,,p. =mi —qA,
Chapter 10

10.1 (a)x = 34/2B, stable only if 4 and B are of opposite sign
(b)x = b7, stable fork > 0
(c) x = *a, stable fork > 0
10.3 (a) (B/34)? (2/m)"
(b) (k/m)*
(¢) 2a(2k/m)*
10.7 (1.93k/m)*
10.9 27 (26ab?/5¢)" [(a+b) (3b—5a)l

10.13 X1 1 1
= Aqcoswgt + A coswyt
X2 | 1 -1

10.15 (a) w, = 1 (symmetric), w, = (7/4)12 (antisymmetric)
m _}

1

(symmetric eigenvector)

G

-1

- -

(antisymmetric eigenvector)

g1 =x; + 2x;
(normal coordinates)
g2 = X1 — X2

10.19 o, = kim')"* , w, = [(kim') + (2kIm)]"
10.21 vyppg = Bfm)”* (I + Al
Vgrans = (kim)*% [ + ADAL]™®
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Index

Acceleration, 23
centripetal, 30, 122
Coriolis, 122
in cylindrical coordinates, 33-34
of gravity, 46, 55-56
normal, 28-29
in polar coordinates, 31-32
in spherical coordinates, 33-36
tangential, 28-29
transverse, 28-29, 122
Acceleration vector, 23
Advance of perihelion of Mercury, 164
Angles, Eulerian, 239
Angular frequency, 59
Angular momentum, 78, 145-146,
170 ff., 193, 221 ff.
conservation of, 146
Angular velocity, 36-37
Antisymmetric mode, 284
Aphelion, 151
Apogee, 151
Apse, 162

Apsidal advance, 162 ff.
Apsidal angle, 162

Areal velocity, 147
Assoclative law for vectors, 6
Astronomical unit, 157
Atwood’s machine, 258 ff.
Axis, principal, 220 ff.

B

Basis vector, 7
Body cone, 239
Brane, Tycho, 147

C

Canonical equations, Hamilton’s, 270
Cartesian coordinate system, 1
Center of mass, 168,

Center-of-mass coordinates, 187 ff.
Center of oscillation, 201

Center of percussion, 211

Central field, 144 ff.

Central force, 137

329
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Centrifugal force, 125 E
Centripetal acceleration, 30, 122
Circular orbits, stability of, 161 ff. Eccentricity, 151
Coefhcient of friction, 47 Eigenfrequency, 284, 287
Coefhcient of restitution, 176,181 Eigenvalue problem, 283, 287
Collistons, 175 ff. Ellipsoid, momental, 230-232
endoergic, 176 Poinsot, 237
exoergic, 176 Elliptic integral, 104
direct, 176177 Energy, kinetic, 48-49, 79
oblique, 177 ff- potential, 48-49, 80
Components of a vector, 4 Equation, secular, 284
Compound pendulum, 199 Equations, Euler’s, 232 ff.
Conical pendulum, 110 Hamilton’s, 269-270
Conservation of angular momentum, Lagrange’s, 255 ff.

146, 172 Equilibrium, static 10, 190-191
Conservation of linear momentum 45, stability of, 276 ff.

170 Eulerian angles, 239-240
Conservative force, 49, 79-81 Euler’s equations, 232 ff.
Constrained motion, 97-100
Coordinate systems, F

inertial, 42, 118
noninertial, 117 ff. Field, central, 144 ff.
Coordinates, Cartesian, 1 conservative, 79
cylindrical, 33-34 gravitational, 138 ff.
generalized, 251 ff. Field intensity, gravitational, 142
ignorable, 263-264 Force, 42--44
normal, 290-292 central, 137
polar, 31-32 centrifugal, 125
spherical, 34--36 conservative, 49, 79-81
Coriolis acceleration, 122 Coriolis, 124 ff.
Coriolis force, 124 ff. gravitational, 55, 138
Coupled harmonic oscillator, 282 ff. magnetic, 94-95
Cross product, 11-12 moment of, 14-15
Curl, 83-84 transverse, 125
Cylindrical coordinates, 33-34 Force field, 79-80
Forced harmonic oscillator, 66 ff.
D Forces, generalized, 253-254
inertial, 118-119
Damped harmonic oscillator, 62 ff. Foucault pendulum, 132-134
Del operator, 81 Fourier series, 72
Derivative of a vector, 20-21 Frequency, angular, 60
Distributive law for vectors, 6 linear, 60
Divergence, 83 natural, 65
Double pendulum, 288-289 resonance, 69-71

Dyne, 43 Friction, coefficient of, 47



Index

Function, Hamiltonian, 268—269
Lagrangian, 256

G

Generalized coordinates, 251 ff.
Generalized forces, 253-254
Generalized momenta, 263-264
Gradient, 80
Gravitational constant, 138
Gravitational field, 138 ff.
Gravitational potential, 142
Gravity, acceleration of, 246
Newton’s law of, 137-138
variation with height, 55-56
Gyration, radius of, 199
Gyroscope, 244
Gyroscopic precession, 243 ff.

H

Hamilton, Sir William R., 267
Hamiltonian function, 268-269
Hamilton’s equations, 270-271
Hamilton’s principle, 267-268
Harmonic motion, 57 ff.
Harmonic oscillator, 57 ff.
coupled, 282
damped, 62
forced, 66
three-dimensional, 92
two-dimensional, 91-92
Holonomic constraints, 272
Holonomic system, 252
Hooke’s law, 57
Huygens, Christiaan, 107

1

Ignorable coordinates, 264

Impulse, 51, 181-182

Inertia, moment of, 192 ff.
tensor, 219 ff.

Inertial forces, 118-119

Integral, elliptic, 104

331

Inverse-square law of force, 55, 84, 138
Isochronous pendulum, 107-108

K

Kepler, Johannes, 147

Kepler’slaws of planetary motions, 147
Kilogram, 2

Kinematics of a particle, 21 f.

Kinetic energy, 48, 79, 192

L

Lagrange, Joseph Louis, 251

Lagrange’s equations, 255 ff.

Lagrangian function, 256

Laminar motion, 203

Larmor’s theorem, 136

Law of areas, Kepler’s 147

Law of conservation of linear momen-
tum, 45, 170

Law of cosines, 11

Law of gravity, Newton’s 137-138

Laws of motion, Newton’s, 41-44

Laws of planetary motion, Kepler's,
147

Length, unit of, 2

Line integral, 79

Linear frequency, 60

Linear momentum, 44-45, 168

M

Magnetic force, 94-95
Magnitude of a vector, 6
Mass, 42-43
center of, 168
gravitational, 43
inertial, 43
reduced, 174
unit of, 2
Matrices, 316 ff.
Matrix, transformation, 18
Mercury, advance of perihelion of, 164
Meter, 2
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Mode, antisymmetric, 284
normal, 284, 300
symmetric, 284
Moment of force, 14-15
Moment of inertia, 191 ff.
Momenta, generalized, 263-264
Momental ellipsoid, 230-232
Moments of inertia, principal, 220
Momentum, angular, 176-177, 209-
210
linear, 44-45, 168 ff.
Motion, constrained, 97-100
harmonic, 57 ff.
laminar, 203
rectilinear, 46-48

N

Natural frequency, 64

Newton, Isaac, 41, 137

Newton (unit of force), 43
Newton’s law of gravity, 137-138
Newton’s laws of motion, 41-44
Nonlinear oscillator, 102-103
Nonsinusoidal driving force, 72-73
Normal component of acceleration, 28
Normal coordinates 290

Normal frequency, 284, 287
Normal mode, 284, 287

Null vector, 6

Nutation, 245-246

O

Orbit, energy equation of, 149-150
Orbit of particle in central field, 147 ff.

inverse-square field, 150 ff.
Orbital motion, period of, 156 ff.
Oscillation, center of, 201
Oscillator, damped, 62-65

forced, 66-70

harmonic, 57 ff.

isotropic, 92

nonisotropic, 93

nonlinear, 101-102

INDEX

three-dimensional harmonic, 89 ff.
two-dimensional harmonic, 90-91
Overdamping, 63

P

Parallel-axis theorem, 197-198
Particle, 1
equilibrium of, 10
Pendulum, compound, 199
conical, 110
double, 288-290
Foucault, 132-134
isochronous, 105-106
physical, 199
simple, 100 ff.
spherical, 107 ff.
Percussion, center of, 211
Perigee, 151
Perihelion, 151
Period of orbital motion, 156 ff.
Perpendicular-axis theorem, 196-197
Phase angle, 67
Physical pendulum, 199
Physical quantity, 2
Plumb line, effect of earth’s rotation
on, 128-130
Poinsot ellipsoid, 237
Polar coordinates, 31-32
Position vector, 21
Potential, gravitational, 142—143
scalar, 275
vector, 275
Potential energy, 48—49, 80
function, 48-49, 80
gravitational, 140-143
Potential function, existence of, 82—-83
Pound, 3, 43,
Precession, free, 239 ff.
gyroscopic, 243 ff.
Principal axis, 220 ff.
Principal moments of inertia, 220
Product, cross, 11-12
-derivative of, 30
scalar, 9
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vector, 11-12
Products of inertia, 219

Q

Quality factor, 69
R

Radius of gyration, 199
Rectilinear motion, 46-48
Reciprocal sets of vectors, 39
Reduced mass, 174
Relative velocity, 26-27
Resonance, 66 ff.

frequency, 68
Restitution, coefficient of, 176, 181
Rocket motion, 185-187
Rotation of coordinate system, 119 ff.
Rotation of the earth, effect on motion

of projectile, 130—132
static effects of, 128—130

S

Satellite motion, 151-154

Scalar, 3

Scalar potential, 275

Scalar product, 9
triple, 16

Scattering, 177 ff.

Scattering of atomic particles, 158

Second, 2

Secular equation, 284

Separable forces, 84-85

Simple pendulum, 100 ff.

Sinusoidal vaves, 303-304

Sleeping top, 247

Slug, 43

Space, 1

Space cone, 240

Speed, terminal, 53-54

Spherical coordinates, 33 ff.
pendulum, 107 ff.

Stability of circular orbits, 161-163

333

Static equilibrium, 190-191
Symmetric mode, 284

T

Tangential acceleration, 28-30
Tensor, inertia, 219-220
Terminal speed, 53-54
Time, 1

unit of, 2
Torque, 14-15
Translation of coordinate system,

117 ff.

Transverse acceleration, 28, 122
Transverse force, 125-126
Triple scalar product, 16-17
Triple vector product, 16-17
Turning point, 50

U

Underdamping, 63-64
Undetermined multipliers, 272
Uniform gravitational field, motion in,
46, 86 ff.
Unit vector, 7
normal, 29
radial, 31
tangential, 29
transverse, 31
Universal constant of gravitation,
Newton’s 138

A%

Variation of gravity with height, 55--57
Vector, 3-7
acceleration, 23
components of, 4
derivative of, 20-21
integration of, 25
magnitude of, 6
null, 6
position, 21
unit (see Unit vector).
velocity, 21-23
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Vector potential, 275 W
Vector product, 11-12

triple, 16-17 Wave equation, 302
Vectors, addition of, 5, 8 Wavelength, 302

equality of, 5 Waves, sinusoidal, 303-304
Velocity, areal, 147 standing, 304-305

relative, 2627 Weight, 46

terminal, 53-54 Work, 10, 79

Velocity vector, 21-23
in cylinderical coordinates, 33-34
in polar coordinates, 31-32
in spherical coordinates, 33—-35



