
Chapter 3: Loops

Presentation of the concept of loop

 Sometimes, we repeat a specific code instruction multiple times to solve a

problem until a specific condition is met. This is known as iterations, which

allows us to write code once and execute it multiple times.

 Loops provide code reusability and simplifie the steps of problem-solving.

We can execute the same code a finite number of times

 There are mainly three types of loops :repeat, ForAnd While.

Presentation of the concept of loop

 Usually, Loops have three main elements which are:

 Initialization: we assign an initial value to a variable used when evaluating the

loop condition.

 The loop condition: is a Boolean expression often evaluated before the

execution of the loop body as in the case of while and for loops, and after the

execution of the loop body as in the case of repeat and do - while. In any case,

the body of the loop is running until the condition will be evaluated as false.

 Variation of the loop condition: this is usually done at the end of the loop body as
an increment or decrement of a counter used to evaluate the loop condition as

in the case of while, repeat and do- while. Forgetting or incorrectly performing

this step causes the loop body to execute infinitely, or give unexpected results.

The loop while

 While loop is used to execute the body of the loop until a specific condition

is false. We apply this loop when we don't know how many times it will run.

The loop while consists of a loop condition, a code block as loop body and

a loop update expression. First, the loop condition is evaluated, and if true,

the code in the body of the loop will be executed. This process repeats until

the loop condition becomes false.

The loop while

Initialization of the loop

While (condition of the loop) do

begin

Loop’s body

Condition update

end;

Initialization of the loop

while(condition of the loop)

{

Loop’s body

Condition update

}

Syntax of while loop in C
Syntax of while loop in algorithmics

The flowchart of the While loop

Condition

Statements

Start

Exit

false

true

Example of using the While loop

 Count from 10 to 20

algorithm count;

var i:integer;

begin

i10; //initialization

While(i<=20) DO//the number 20 is included

begin

write(i);

ii+1; //we increment the counter i (variation of the
//condition and preparation of the next //iteration)

END;

END.

The do-while loop

 The do-while loop is a control flow instruction that executes a block of code

at least once, then repeatedly executes the block, or not, based on a

Boolean condition given at the end of the block.

 In the control structure do-while, there are three main elements which are:

 Action

 Updating loop condition

 Loop Condition Assessment

The do-while loop

Initialization of the loop

DO

begin

Loop’s body

Condition update

END;

While(condition)

Initialization of the loop

do

{

Loop’s body

Condition update

}

while(condition loop);

Syntax of the do-while loop in CSyntax of the do – while loop in

algorithmics

The flowchart of do – While loop

Condition

Statements

Start

Exit

false

true

Example of using the While-do loop

 Count from 20 to 10

algorithm countv2;

var i:integer;

begin

i20;//initialization

do

begin

write(i);

ii-1;// variation of the condition

end;

While (i>=10) //the number 10 is included

end.

In C language In Algorithmics

The loop for

 The FOR loop is preferable to previous loops when the number of times a

block of instructions is to be executed is known in advance. The main use of

the loop FOR is to manage a counter (integer type)

The for loop is preferred when:

• The variation interval is known

• The increment step is fixed

• Loop exit is related to the loop index

 On the other hand, we use the 'while' loop when the condition of the loop

is:

• Composed of complex logical expression,

• Evaluates additional variables other than the loop counter,

Loop syntax for

for i x to y do

begin

Loop’s body

end;

for (i=initial value; condition; variation of i)

{

Loop’s body

}

Syntax of the for loop in CSyntax of the for loop in algorithmics

Example of The flowchart of 'for' loop

Condition

(i<10)

Statements

Start

Exit

false

true

i=i+1

i=0

for(int i = 0;i<10;i++)

{

statements;

}

Example of using the loop for

 Count from 10 to 20

algorithm countv2;

var i:integer;

begin

for i 10 to 20 do

begin

write(i);

end;

end.

In C language In Algorithmics

Initial counter value

Condition

The main instruction and

automatic increment of i

The 'repeat' loop

 The loop repeat-until executes a block of instructions repeatedly, until a

given condition becomes true. The condition will be re-evaluated at the

end of each iteration of the loop.

Because the condition is evaluated at the end of each iteration, a

repeat/until loop will always execute at least once.

 The 'repeat' loop is similar in structure to the 'do-while' loop.

 In C language, we use the 'do-while' loop.

Repeat loop syntax

Initialization of the loop

repeat

begin

Loop’s body

Condition update

end;

Until(condition)

Syntax of the repeat loop in

algorithmic

Example of using the loop repeat

 Count from 20 to 10

In Algorithmics

Initial counter value

Stop Condition

The main instruction and

decrement of i

algorithm countv3;

var i:integer;

begin

i20;//initialization

repeat

begin

write(i);

ii-1;// variation of the condition

end;

until (i<10)//the number 10 is included

end.

Operations with loops

 Navigate a range in ascending order

 Initial value of the counter = the start of the rank;

 The stopping condition: the counter must be less than or equal to the upper limit

of the rank;

 The step (the variation of the condition): it is carried out with an increment of 1 in

the loop counter.

Navigate a range in ascending order

algorithm count;

var i:integer;

begin

for i 10 to 20 do

begin

write(i);

end;

end.

algorithm count;

var i:integer;

begin

i 10;

while (i<=20) do begin

write(i);

ii+1;

end;

end.

algorithm count;

var i:integer;

begin

i 10;

do

begin

write(i);

ii+1;

end;

while(i <=20)

end.

The loop for The loop while The do-while loop

Step = 1

Initial counter
value = 10 (lower
limit)

Final counter value
= 20 (upper limit)

Navigate a range in descending order

 Initial value of the counter = upper limit of the rank;

 The stopping condition: the counter must be greater than or equal to the lower

limit of the rank;

 The step (the variation of the condition): it is carried out with a decrement of 1 in

the loop counter.

Navigate a range in descending order

algorithm count;

var i:integer;

begin

for i 20 to 10 do

begin

write(i);

end;

end.

algorithm count;

var i:integer;

begin

i20;

while(i>=10) do begin

write(i);

ii-1;

end;

end.

algorithm count;

var i:integer;

begin

i20;

do

begin

write(i);

ii-1;

end;

while(i>=10)

end.

The loop for The loop while The do-while loop

Loop application examples

 Sum of first 10 numbers

algorithm count;

var i,sum:integer;

begin

sum0;

i 1;

while (i<=10) do

begin

sumsum+i;

ii+1;

end;

write(sum);

end.

Need to traverse the
rank [1,10]

Initial value =0; the 0
does not disturb the
addition operation

The table detailing the execution flow

of loops

 The loop execution flow table is necessary to see the evolution of the

variables manipulated inside the loops as well as the correct checking of

the condition and the initialization of the value of the loop counter. This

table is composed of n lines for n iterations executed by the loop, plus the

initial state of the variables before launching the loop. In columns, we find

the iteration number, the variables manipulated inside the loop, and the

output if applicable.

Examples of using the loop execution

table

algorithm count;

var i,sum:integer;

begin

sum0;

i 1;

while(i<=5)do

begin

sumsum+i;

write(sum+ " ");

ii+1;

end;

end.

 Sum of the first 5 numbers

iteration i sum output

initialization 0 0 -

1 1 1 1

2 2 3 1 3

3 3 6 1 3 6

4 4 10 1 3 6 10

5 5 15 1 3 6 10 15

Infinite loops

 The problem of infinite loops occurs when there is an error in the condition

of the loop, or in the variation of the condition, below are the possible

causes of an infinite loop:

 The counter is not varied (incremented or decremented), this is not the case of

the loop for because the variation of the counter is done automatically.

 Vary the loop counter so as to never check the stopping condition, in this case, it

is necessary to clearly specify the range of the counter, its limits, and the

movement of the counter (increment or decrement).

 Vary the loop counter inside a conditional statement.

 Wrong condition.

Infinite loops

 To avoid the infinite loop problem, you must take the following precautions:

 Carefully study the range of variation of the counter.

 Specify the loop condition carefully by taking into account the extreme values of

the counter.

 Involve the counter in the loop condition and don't forget to vary it.

Examples of infinite loops

sum algorithm;

vari,sum:integer;

Begin

sum0;

i 1;

while (i<=10) do

begin

sumsum+i;

end;

write(sum);

end.

sum algorithm;

vari,sum:integer;

Begin

sum0;

i 1;

while(i<=10) do

begin

sumsum+i;

i i - 1 ;

end;

write(sum);

end.

sum algorithm;

vari,sum:integer;

Begin

sum0;

i 1;

while(i>=1) do

begin

sumsum+i;

i i + 1 ;

end;

write(sum);

end.

algorithmsumNumPairs;

vari,sum:integer;

Begin

sum0;

i 1;

while(i<=10) do

begin

if(i mode2 = 0) then

begin

sumsum+i;

i i + 1 ;

end;

end;

write(sum);

end.

Example of mathematical applications

of loops

fact=1;

for (inti=2;i<=x;i++)

fact=fact*i;

The factorial of a

number

The power function

(x to the power n)

power=1;

for (int i=n;i>=1;i--)

power = power *x;

Series offibonacci

int a=0,b=1,c,

i=3,n=8;

printf("%d %d ",a,b);

while (i<=n)

{

c=a+b;

a=b;

b=c;

printf("%d ",c);

i++;

}

Nested loops

 A nested loop means a loop inside another loop. We can have any

number of loops inside another loop.

Example:

For i0 to 10 do

for j 0 to 5 do

statements;

References

 Introduction to algorithms:135 corrected exercises.Authors: Chantal

Richard, Patrice Richard.

 “For” loops. (nd). Accessed November 1, 2022,

athttps://www.irit.fr/~Julien.Pinquier/Docs/MABS/co/09%20-

%20Boucle%20Pour.html?mode=html

 Fundamentals of Loop andIterationinProgramming. (nd). Accessed

October 22, 2022, athttps://www.enjoyalgorithms.com/blog/fundamentals-

of-loop-in-programming-and-algorithms

 Nested Loopsin Cwith Examples. (2019, November

25).GeeksforGeeks.https://www.geeksforgeeks.org/nested-loops-in-c-with-

examples/

https://www.irit.fr/~Julien.Pinquier/Docs/MABS/co/09%20-%20Boucle%20Pour.html?mode=html
https://www.enjoyalgorithms.com/blog/fundamentals-of-loop-in-programming-and-algorithms
https://www.geeksforgeeks.org/nested-loops-in-c-with-examples/

