3. Limits of sequences

Proposition 3.2 If the sequence (u,) is bounded and the sequence (v,) converges

to 0 then the sequence (u,v,) converges to 0.

Proposition 3.3 Let (u,) and (v,) two sequence of real number. Suppose that lim v, =

n—-+oo
“+00.

> we have lim L =

n—+4o0 Vn

> If (u,) is below bound so lim (u, + v,) = +o0

n—-+

> If (u,,) is lower bound with a positive number so liril (upvy) = 400

3.2 Passage to the limit in inequalities

Let (u,) and (v,) be convergent sequences of real numbers. if u,, < v,, Vn € N, then
lim u, < lim v,.
n—-+o00 n—-+o00

Important : The strict inequality is not preserved by passage to the limit, i.e. if

Up < Uy, Vn € N, then lim u, < lim v,.

n—-4o0o n—-+oo
-1 1 )
Exemple : Let v, = — and v, = —,Vn € N*, we have u,, < v, but lim u, =
. n n n—-+oo
lim v, =0
n—-+oo

Corollary 3.1 Let (u,) be a convergent sequence of real numbers. If u, > 0,Vn € N,
then lim u, > 0.

n—-—+o00
Theorem 3.2 (Squeeze theorem or ”Sandwich theorem”) :Let (uy,), (v,) and

(wy,) be convergent sequences of real numbers.

> Suppose u,, < v, < w,,Vn € N. if the sequences (u,,) and (w,) are convergent and
if

lim u, = lim w,, the sequence (v,) is convergent and lim v, = lim w, =
n—-+oo n—-+4oo n—-+oo n—-+oo
lim u,.
n—-+oo
> If u, <w, forall n and if lim w, = +oco, then lim v, = +oc.
n—-+oo n—-+4oo
E (na)

Example Study the nature of (u,), .. defined by it’s general term u, =
n



4. Adjacent sequences

Theorem 3.3 Let f : I — R be the function and (u,,) be convergent sequences whose

terms all belong to I. If liril u, =1 and if f is continuous at [, then lirf f(un) =
S

proofet ¢ > 0. Since f is continuous at [, we can find a number o > 0 such
that |f(x) — f(l)] < e,Vz € I and |z —1| < «. Since the sequence (u,) has li-
mit [,3IN such that |u, — | < a if n > N. For all these integers n, we then have
|f (un) — f(1)] <e. This show that we have nl_igloof (un) = f(1). 1.
The following proposition, which completes the theorem, is proved by simply adap-

ting the previous proof.

Proposition 3.4 Let (u,) be a sequence of real numbers , let f be a function , and

let | a real numbers.

If liril (uy) = 400 and if lim f(z) =1 ( or +c0 ), then ligl f(u,) =1 (or

+00 ).
Indeterminate forms : : (—co + 00), (0 x 00), (2),(3), (1), (x°) et (0>).

4 Adjacent sequences

Definition 4.1 Let (u,) and (v,) be two sequences of real numbers. We say that (u,)
and (v,) are adjacent if
>(uy) is tncreasing and (v,)’ is decreasing

> (lim (u, — v,) — 0).

Theorem 4.1 two adjacent sequences (u,) and (v,) converge to the same limit L
and u, < L < v, for alln € N.

proofy assumption, the sequence (u,) is increasing and bounded from above by
vo(or vy or any vy). Therefore it is convergent to some limit L such that u, < L.
Similarly,(v,,) is decreasing and bounded from below by ug(or any wu; ). Therefore it
is convergent to some limit L' < v,. Since both sequences are convergent, we can

write lim (u, —v,) =limv, —limu, = L' — L =0. 1.

n—oo



4. Adjacent sequences

1 1
Example Vn € N*, u, =1 — — and v,, = 1 + — are adjacent sequences
n n

Example 4.1 Let (u,) and (v,) Two sequences

1 1 1 1
vneN u,=1+—=+—=+..+—, and v,=u,+ —.
1 2! n! n!
We have
AR I NI
Uppl — Uy = —t =ttt =+ — ] = —+ =+ ..+ —
i 12l n! ' (n41)! 1 2l n!
1
= >0
(n+1)! =7

then (u,) is increasing. Similarly

1 1
Un41 — Unp = (Un+1 + m) — (Un + m)

1 1
= () o
! 11
B n—l—l!_l_n—l—l!_m
21
T o+l onl
2 1
" (n+Dnl
 2—-n-1
 (n+1)n!
1—n
" Grnm =Y
Then (v,,) is decreasing. We can write ,
: 1
() = iy =0

Then, (u,) and (v,) are adjacent.
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5. Subsequences

................. e adjacentes

----------------

b 3 1n 1 E o i ) 15

3 1 15 ]

5.0pg
Un Vn adjacent sequences

Exercise : prove that the two sequences defined by

Up4+1 = /UnUn .
U, +v, ,withuy=a<vy=>b
Upn41 = 9

5 Subsequences

Definition 5.1 given a sequence (uy), oy, we say that (vy,), .y 5 an extracted se-
quence or subsequence, if there exist an application :

¢ : N — N strictly increasing, such that for all n € N, v, = uy ().

5.1 Property of ¢ :

If p : N — N is strictly increasing application, so for all n € N, we have ¢ (n) > n.

In particular, the sequence (wy), .y = ¥ (n) has a limit +oo.

Proposition 5.1 Let (u,)nen a sequence. If lim, . u, = [, then any subsequence
(Up(n) )nen also 1imy, oo Up(n) = L.

Corollary 5.1 Let (uy)nen be a sequence. If (uy,)nenhas two subsequences conver-

ging to distinct limits then (u,)nenis divergent, or if (u,),enhas a subsequence that

11



5. Subsequences

diverges then (u,)n,en diverges.

5.2 The Bolzano-Weierstrass Theorem

Theorem 5.1 Fvery bounded sequence contains a convergent subsequence.

5.3 Limsup and Liminf

Definition 5.2 a € R is called an accumulation value of (u,),en if there is

subsequence (v,)nen Of (Up)nen ; with limv,, = a for n — oo

Definition 5.3 Let (u,),en be a sequence of real numbers Let Ad(uy,)nen be the set
of accumulation values in R. We called limit superior (resp.inferior) of (un)nen

is the largest accumulation value (resp. the smallest ) of u, . we note

limu, = supAd(un)nen

limu, = inf Ad(up)nen-

The sequence ((—1)"),cy is divergent because it has two extracted subsequences

(tok) ey and (Ugpi1),ey converging to different limits (—1) and 1. in fact, we have

limuy, = lim (=1)* = lim1 =1,
k—oo k—oo k—oo
. R o
e = g (CDT = iy~ 1=
Moreover,
Ad (u,) = {-1,1}
therefor

limu, = supAd(u,) =1
limu, = inf Ad(u,)=—1.
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6. Cauchy sequences

6 Cauchy sequences

We may need to show that a sequence is convergent without necessarily explicity
calculate its limit. This is the case for example when this limit is difficult to find.
There is then a criterion that works well for real sequences. This is the Cauchy

criterion before defining it let’s start by introducing the cauchy sequences.

Definition 6.1 (Cauchy sequences) A sequence (u,)nen of Ris called a Cauchy

sequence if
Ve > 0,3N € N sach that Vp,q e N,,:p>q > N = |u, —u,| < €.

Proposition 6.1 (bounded Cauchy sequence) A Cauchy sequence of real

numbers is bounded.

Proposition 6.2 (Cauchy Convergence Criterion) A sequence of real numbers

converges if and only if it is a Cauchy sequence.

Example 6.1 The geometric sequence (u,)nen defined by its general term w, =

K™ 0 < K <1 is cauchy sequence .Indeed

Let Ve > 0,3N € N sach that Vp,q e N:p> g > N = |u, —uy| < e?
We have |u, —u,| = |K? — K (p>q=p=q+n,n€N)then|u, —u,| = KI|K" — 1| <
K1 (0< K<1)
Since AN € N, K? < KY¥ < ¢ = NInK < Ine = N >
Ine
N=F|(—— 1
(mK)+’

so for all ¢ > 0;3N € N sach that Vp,q e N:p > ¢ > N = |u, — u,| < . which

Ine

In K

, we can take

means that (u,),en is Cauchy.
Example 6.2 Let (u,) be a sequence defined by u,, = >, _, k—lz, k € N/{0,1} .Show

that (uy,) is Cauchy sequence.
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6. Cauchy sequences

‘We have
1 1 1
un_ﬁ—i—?—i-@—l- +—
Let ¢ >0 and p,q € N.
B 1 1 1 1
up = §+§+E+...+—2
+1+ +1+ L + +1
Uy = —+—=4+..4+— T
q 22 32 p2 (p—|—1)2 qz
If p > q. Then
| | 1+1+ +1 1+1++ + ! ++1
Uy — U, = |=+ = — | =4+ = — —
P q 22 ' 32 P2 22 ' 32 2 (p+ 1)2 q?
- ForrtrE)
(p+1)2 7
B 1 1
(p+1)° ¢
Since

p+1 > p=(p+1)°>pp+1)
o1 11

e < = - —,
p+1?2 " plp+l) p p+l

p+2 > p+l= (p+2°>@p+1)(p+2)
1 1 1

< = — ,
(p+2° " (p+1(+2) p+1 p+2

—_

—
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6. Cauchy sequences

then,
| Lo
Uy — Uy| = P
S (p+1)° 7
< 1 1 n 1 1 T 1 1
~— p p+l p+1 p+2 T qg—-1 ¢
1
p q
1
< —.
D

Note that lim% =0, i.e Ve > 0,dpy € N such that Vp > py € N : ]13 < e. S0, fore >0

p—0co
which we will fix in advance, there exists a rank ng = pg € N such that :

1
P> ng, g >ng = |u, —uy < - <e.
p
which means that (u,) is Cauchy.

Graphic representation of Cauchy sequence

“X”\
-8
e ™
a ® h'ﬁ‘
" S
. " +: n"-.
LI - ] = - s
- g @ - s =
.I "‘: = -
. -
.. W
LL
L

We say that the sequence does not cauchy if it verify

Je>0,YN € Ntel que Ip,q e N;:p> g >N A |u, —uy| > e.
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7. Recurring sequence :
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Example : show that (u,), .y defined by general term u, = \/n does not a cauchy
sequence
lup — ug| = |/p — /4| staking p =4 (N +1) and ¢ = N + 1, we find that
luy — ty| = ‘\/4(N+1) ~VN+1|=VN+1>1VNeN,

so 3¢ = 1 > 0 such that VN ¢ N3 p =4(N+1),3g=N+1:p>q> N
Aluy —ugl >1

7 Recurring sequence :

Definition 7.1 Let f: D C R — R be an application. We assume that f(D) C D.

The sequence (up)nen defined by the initial term uy € D and the recurrent rela-
tion :¥n € N : up1 = f (uy)

is called recurring sequence. This sequence is well defined because, for any integer n,
we have u, € D and f(D) C D.

e For the study of recurring sequences we need some elementary properties of conti-
nuous and differentiable maps.

7.1 General method for studying a recurring sequence

The study of the monotony of the sequence returns to that of the function f.

16



7. Recurring sequence :

1) f is increasing

Proposition : Let (uy),.y be a recurring sequence, we will assume that f is in-

creasing. Then the sequence (uy), .y is monotonic.
Furthermore, if f(ug) = uy > up. So the sequence (uy), .y is increasing. If

[ (uo) = uy < up.Then the sequence (uy,), . is decreasing.

2) [ is decreasing

If f is decreasing, u,1 — u, is alternately positive and negative. In this case we will
consider the function g = fo f :

Let (uy) be a recurring sequence, we will assume that f is decreasing. Then

neN

1) The function g = f o f is increasing.

2) The seqences (un), oy and (Ugn41),cy defined by
uy = f(f(uo)) = g(uo), Usnio = glusn) = f(f(uzn)), n=1,2,...

w = f(uo), uoni1 = glusn_1) = f(f(ugn_1)), n=1,2,...; ug given.

are monotonic and vary in opposite directions.

7.2 Fixed point theorem

U()GD

Theorem 7.1 Let (u,)n,eny be a sequence defined b
(Un )nen q fi y{VnGN:unH:f(un)

If (u,) converges to a real [ € D and if f is continuous in [, then we have necessarily

f)=1
The real [ is called a fixed point of f.

Example 7.1 We consider the sequence (u,)nen defined by the recurrent relation as

follows

17



7. Recurring sequence :

Up = %7
{ Vn e N: g = (uy —1)° + 1.

Let us show that (u,)nen s bounded and strictly monotone. Furthermore, deduce that
(Un)nen 18 convergent and determine its limit.

proofove that (P,):1<wu, <2, forallnéeN

Let us show by induction that (P,) is true Vn € N.For n = 0, by hypothesis we
know that 1 < ug = % < 2. So F, is true.

Suppose that the proposition (P,) is true Vn € N, and prove that (P,1) is also
true (1 < up41 <2). As 1 < u, <2 ( recurrence hypothesis).

S0 0 <, —1<1, hence 0 < (u, —1)* < 1.

then l<u?—2u2+1<2.

i.e (P,y1) is also true.

2) Let’s calculate wu, 1 — u,, we have

Upy1 — Uy = (un—1)2+1—un
= ul—2u,+1+1—u,
= u2 — 3u, +2

According to the first question 0 < (u, — 1) and (u,, — 2) < 0so (u,, — 1) (u, —2) <
0.

then wu,,1 — u, < 0, since the sequence (u,,)nen is strictly decreasing,.

3) As the sequence (u,)nen is decreasing et bounded below by 1, therefore it is
convergent to [. such that [ verified

I=(1-1°41=1=01P-214+2=12-3142=0. So [ =0or = 1. Since
the first term ug = % and (u,)nen is decreasing, then [ = 1. 1.

Exercise :Discus the nature of the following recurring sequence

Upt1 = V2Up + 3
{ ug € R
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