Proposition 3.2 If the sequence (u_n) is bounded and the sequence (v_n) converges to 0 then the sequence (u_nv_n) converges to 0.

Proposition 3.3 Let (u_n) and (v_n) two sequence of real number. Suppose that $\lim_{n\to+\infty} v_n = +\infty$.

- \Rightarrow we have $\lim_{n\to+\infty}\frac{1}{v_n}=0$
- > If (u_n) is below bound so $\lim_{n\to+\infty}(u_n+v_n)=+\infty$
- > If (u_n) is lower bound with a positive number so $\lim_{n\to+\infty}(u_nv_n)=+\infty$

3.2 Passage to the limit in inequalities

Let (u_n) and (v_n) be convergent sequences of real numbers. if $u_n \leq v_n$, $\forall n \in \mathbb{N}$, then $\lim_{n \to +\infty} u_n \leq \lim_{n \to +\infty} v_n$. **Important :** The strict inequality is not preserved by passage to the limit, i.e. if

Important: The strict inequality is not preserved by passage to the limit, i.e. if $u_n < v_n, \forall n \in \mathbb{N}$, then $\lim_{n \to +\infty} u_n \leq \lim_{n \to +\infty} v_n$.

Exemple: Let $u_n = \frac{-1}{n}$ and $v_n = \frac{1}{n}$, $\forall n \in \mathbb{N}^*$, we have $u_n < v_n$ but $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} v_n = 0$

Corollary 3.1 Let (u_n) be a convergent sequence of real numbers. If $u_n \geq 0, \forall n \in \mathbb{N}$, then $\lim_{n \to +\infty} u_n \geq 0$.

Theorem 3.2 (Squeeze theorem or "Sandwich theorem") :Let (u_n) , (v_n) and (w_n) be convergent sequences of real numbers.

> Suppose $u_n \leq v_n \leq w_n, \forall n \in \mathbb{N}$. if the sequences (u_n) and (w_n) are convergent and if

 $\lim_{\substack{n \to +\infty \\ n \to +\infty}} u_n = \lim_{\substack{n \to +\infty \\ n \to +\infty}} w_n, \text{ the sequence } (v_n) \text{ is convergent and } \lim_{\substack{n \to +\infty \\ n \to +\infty}} v_n = \lim_{\substack{n \to +\infty \\ n \to +\infty}} w_n$

 \rightarrow If $u_n \leq v_n$ for all n and if $\lim_{n \to +\infty} u_n = +\infty$, then $\lim_{n \to +\infty} v_n = +\infty$.

Example Study the nature of $(u_n)_{n\in\mathbb{N}^*}$ defined by it's general term $u_n = \frac{E(na)}{n}$

Theorem 3.3 Let $f: I \to \mathbb{R}$ be the function and (u_n) be convergent sequences whose terms all belong to I. If $\lim_{n \to +\infty} u_n = l$ and if f is continuous at l, then $\lim_{n \to +\infty} f(u_n) = f(l)$.

proofet $\varepsilon > 0$. Since f is continuous at l, we can find a number $\alpha > 0$ such that $|f(x) - f(l)| < \varepsilon, \forall x \in I$ and $|x - l| < \alpha$. Since the sequence (u_n) has limit $l, \exists N$ such that $|u_n - l| < \alpha$ if $n \geq N$. For all these integers n, we then have $|f(u_n) - f(l)| < \varepsilon$. This show that we have $\lim_{n \to +\infty} f(u_n) = f(l)$. 1.

The following proposition, which completes the theorem, is proved by simply adapting the previous proof.

Proposition 3.4 Let (u_n) be a sequence of real numbers, let f be a function, and let l a real numbers.

If
$$\lim_{n\to+\infty} (u_n) = +\infty$$
 and if $\lim_{n\to\infty} f(x) = l$ (or $+\infty$), then $\lim_{n\to+\infty} f(u_n) = l$ (or $+\infty$).

Indeterminate forms: $: (-\infty + \infty), (0 \times \infty), (\frac{\infty}{\infty}), (\frac{0}{0}), (1^{\infty}), (\infty^{0}) \text{ et } (0^{\infty}).$

4 Adjacent sequences

Definition 4.1 Let (u_n) and (v_n) be two sequences of real numbers. We say that (u_n) and (v_n) are adjacent if

```
(u_n) is increasing and (v_n)' is decreasing (\lim (u_n - v_n) \to 0).
```

Theorem 4.1 two adjacent sequences (u_n) and (v_n) converge to the same limit L and $u_n \leq L \leq v_n$ for all $n \in \mathbb{N}$.

proofy assumption, the sequence (u_n) is increasing and bounded from above by v_0 (or v_1 or any v_k). Therefore it is convergent to some limit L such that $u_n \leq L$. Similarly, (v_n) is decreasing and bounded from below by u_0 (or any u_k). Therefore it is convergent to some limit $L' \leq v_n$. Since both sequences are convergent, we can write $\lim_{n\to\infty} (u_n - v_n) = \lim v_n - \lim u_n = L' - L = 0$. 1.

Example $\forall n \in \mathbb{N}^*, u_n = 1 - \frac{1}{n}$ and $v_n = 1 + \frac{1}{n}$ are adjacent sequences

Example 4.1 Let (u_n) and (v_n) Two sequences

$$\forall n \in \mathbb{N}^*, u_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}, \quad and \quad v_n = u_n + \frac{1}{n!}.$$

We have

$$u_{n+1} - u_n = \left(1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} + \frac{1}{(n+1)!}\right) - \left(1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}\right)$$
$$= \frac{1}{(n+1)!} \ge 0,$$

then (u_n) is increasing. Similarly

$$v_{n+1} - v_n = \left(u_{n+1} + \frac{1}{n+1!}\right) - \left(u_n + \frac{1}{n!}\right)$$

$$= \left(u_{n+1} - u_n\right) + \frac{1}{n+1!} - \frac{1}{n!}$$

$$= \frac{1}{n+1!} + \frac{1}{n+1!} - \frac{1}{n!}$$

$$= \frac{2}{n+1!} - \frac{1}{n!}$$

$$= \frac{2}{(n+1) n!} - \frac{1}{n!}$$

$$= \frac{2 - n - 1}{(n+1) n!}$$

$$= \frac{1 - n}{(n+1) n!} \le 0.$$

Then (v_n) is decreasing. We can write,

$$\lim_{n \to \infty} (v_n - u_n) = \lim_{n \to \infty} \frac{1}{n!} = 0.$$

Then, (u_n) and (v_n) are adjacent.

Exercise: prove that the two sequences defined by

$$\begin{cases} u_{n+1} = \sqrt{u_n v_n} \\ v_{n+1} = \frac{u_n + v_n}{2} \end{cases}, \text{ with } u_0 = a < v_0 = b$$

5 Subsequences

Definition 5.1 given a sequence $(u_n)_{n\in\mathbb{N}}$, we say that $(v_n)_{n\in\mathbb{N}}$ is an extracted sequence or subsequence, if there exist an application:

 $\varphi: \mathbb{N} \to \mathbb{N}$ strictly increasing, such that for all $n \in \mathbb{N}$, $v_n = u_{\varphi(n)}$.

5.1 Property of φ :

If $\varphi : \mathbb{N} \to \mathbb{N}$ is strictly increasing application, so for all $n \in \mathbb{N}$, we have $\varphi(n) \geq n$. In particular, the sequence $(w_n)_{n \in \mathbb{N}} = \varphi(n)$ has a limit $+\infty$.

Proposition 5.1 Let $(u_n)_{n\in\mathbb{N}}$ a sequence. If $\lim_{n\to\infty} u_n = l$, then any subsequence $(u_{\varphi(n)})_{n\in\mathbb{N}}$ also $\lim_{n\to\infty} u_{\varphi(n)} = l$.

Corollary 5.1 Let $(u_n)_{n\in\mathbb{N}}$ be a sequence. If $(u_n)_{n\in\mathbb{N}}$ has two subsequences converging to distinct limits then $(u_n)_{n\in\mathbb{N}}$ is **divergent**, or if $(u_n)_{n\in\mathbb{N}}$ has a subsequence that

diverges then $(u_n)_{n\in\mathbb{N}}$ diverges.

5.2 The Bolzano-Weierstrass Theorem

Theorem 5.1 Every bounded sequence contains a convergent subsequence.

5.3 Limsup and Liminf

Definition 5.2 $a \in \mathbb{R}$ is called an **accumulation value of** $(u_n)_{n \in \mathbb{N}}$ if there is **subsequence** $(v_n)_{n \in \mathbb{N}}$ of $(u_n)_{n \in \mathbb{N}}$; with $\lim v_n = a$ for $n \to \infty$

Definition 5.3 Let $(u_n)_{n\in\mathbb{N}}$ be a sequence of real numbers Let $Ad(u_n)_{n\in\mathbb{N}}$ be the set of accumulation values in \mathbb{R} . We called **limit superior** (resp.inferior) of $(u_n)_{n\in\mathbb{N}}$ is the largest accumulation value (resp. the smallest) of u_n , we note

$$\overline{\lim} u_n = \sup Ad(u_n)_{n \in \mathbb{N}}$$

$$\underline{\lim} u_n = \inf Ad(u_n)_{n \in \mathbb{N}}.$$

The sequence $((-1)^n)_{n\in\mathbb{N}}$ is divergent because it has two extracted subsequences $(u_{2k})_{k\in\mathbb{N}}$ and $(u_{2k+1})_{k\in\mathbb{N}}$ converging to different limits (-1) and 1. in fact, we have

$$\lim_{k \to \infty} u_{2k} = \lim_{k \to \infty} (-1)^{2k} = \lim_{k \to \infty} 1 = 1,
\lim_{k \to \infty} u_{2k+1} = \lim_{k \to \infty} (-1)^{2k+1} = \lim_{k \to \infty} -1 = -1.$$

Moreover,

$$Ad(u_n) = \{-1, 1\}$$

therefor

$$\overline{\lim} u_n = \sup Ad(u_n) = 1$$

$$\underline{\lim} u_n = \inf Ad(u_n) = -1.$$

6 Cauchy sequences

We may need to show that a sequence is convergent without necessarily explicity calculate its limit. This is the case for example when this limit is difficult to find. There is then a criterion that works well for real sequences. This is the Cauchy criterion before defining it let's start by introducing the cauchy sequences.

Definition 6.1 (Cauchy sequences) A sequence $(u_n)_{n\in\mathbb{N}}$ of \mathbb{R} is called a Cauchy sequence if

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ sach that } \forall p, q \in \mathbb{N}, : p \geq q \geq N \Rightarrow |u_p - u_q| < \varepsilon.$$

Proposition 6.1 (bounded Cauchy sequence) A Cauchy sequence of real numbers is bounded.

Proposition 6.2 (Cauchy Convergence Criterion) A sequence of real numbers converges if and only if it is a Cauchy sequence.

Example 6.1 The geometric sequence $(u_n)_{n\in\mathbb{N}}$ defined by its general term $u_n = K^n$; 0 < K < 1 is cauchy sequence .Indeed

Let $\forall \varepsilon > 0, \exists N \in \mathbb{N}$ such that $\forall p, q \in \mathbb{N} : p \geq q \geq N \Rightarrow |u_p - u_q| < \varepsilon$?

We have $|u_p - u_q| = |K^p - K^q|$ ($p \ge q \Rightarrow p = q + n, n \in \mathbb{N}$) then $|u_p - u_q| = K^q |K^n - 1| \le K^q$ (0 < K < 1)

Since $\exists N \in \mathbb{N}, K^q \leq K^N < \varepsilon \Rightarrow N \ln K < \ln \varepsilon \Rightarrow N > \frac{\ln \varepsilon}{\ln K}$, we can take $N = E\left(\frac{\ln \varepsilon}{\ln K}\right) + 1$,

so for all $\varepsilon > 0$; $\exists N \in \mathbb{N}$ such that $\forall p, q \in \mathbb{N} : p \geq q \geq N \Rightarrow |u_p - u_q| < \varepsilon$. which means that $(u_n)_{n \in \mathbb{N}}$ is Cauchy.

Example 6.2 Let (u_n) be a sequence defined by $u_n = \sum_{k=2}^n \frac{1}{k^2}$, $k \in \mathbb{N}/\{0,1\}$. Show

that (u_n) is Cauchy sequence.

We have

$$u_n = \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots + \frac{1}{n^2}.$$

Let $\varepsilon > 0$ and $p, q \in \mathbb{N}$.

$$u_p = \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots + \frac{1}{p^2}$$

$$u_q = \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{p^2} + \frac{1}{(p+1)^2} + \dots + \frac{1}{q^2}.$$

If p > q. Then

$$|u_p - u_q| = \left| \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{p^2} - \left(\frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{p^2} + \frac{1}{(p+1)^2} + \dots + \frac{1}{q^2} \right) \right|$$

$$= \left| -\left(\frac{1}{(p+1)^2} + \dots + \frac{1}{q^2} \right) \right|$$

$$= \frac{1}{(p+1)^2} + \dots + \frac{1}{q^2}.$$

Since

$$p+1 \geq p \Longrightarrow (p+1)^2 \geq p(p+1)$$

 $\Longrightarrow \frac{1}{(p+1)^2} \leq \frac{1}{p(p+1)} = \frac{1}{p} - \frac{1}{p+1},$

$$p+2 \ge p+1 \Longrightarrow (p+2)^2 \ge (p+1)(p+2)$$

 $\Longrightarrow \frac{1}{(p+2)^2} \le \frac{1}{(p+1)(p+2)} = \frac{1}{p+1} - \frac{1}{p+2},$

$$q \geq q-1 \Longrightarrow (q)^2 \geq (q-1) q$$

 $\Longrightarrow \frac{1}{(q)^2} \leq \frac{1}{(q-1) q} = \frac{1}{q-1} - \frac{1}{q}.$

then,

$$|u_{p} - u_{q}| = \frac{1}{(p+1)^{2}} + \dots + \frac{1}{q^{2}}$$

$$\leq \frac{1}{p} - \frac{1}{p+1} + \frac{1}{p+1} - \frac{1}{p+2} + \dots + \frac{1}{q-1} - \frac{1}{q}$$

$$= \frac{1}{p} - \frac{1}{q}$$

$$< \frac{1}{p}.$$

Note that $\lim_{p\to\infty}\frac{1}{p}=0$, i.e $\forall \varepsilon>0, \exists p_0\in\mathbb{N} \text{ such that } \forall p\geq p_0\in\mathbb{N}:\frac{1}{p}<\varepsilon$. So, for $\varepsilon>0$ which we will fix in advance, there exists a rank $n_0=p_0\in\mathbb{N}$ such that :

$$p \ge n_0, q \ge n_0 \Longrightarrow |u_p - u_q| < \frac{1}{p} < \varepsilon.$$

which means that (u_n) is Cauchy.

Graphic representation of Cauchy sequence

We say that the sequence does not cauchy if it verify

$$\exists \varepsilon > 0, \forall N \in \mathbb{N} \text{ tel que } \exists p,q \in \mathbb{N}, : p \geq q \geq N \ \land \ |u_p - u_q| \geq \varepsilon.$$

Example : show that $(u_n)_{n\in\mathbb{N}}$ defined by general term $u_n=\sqrt{n}$ does not a cauchy sequence

$$|u_p-u_q|=\left|\sqrt{p}-\sqrt{q}\right|; \text{taking} \ \ p=4\left(N+1\right) \text{ and } q=N+1, \text{ we find that} \\ |u_p-u_q|=\left|\sqrt{4\left(N+1\right)}-\sqrt{N+1}\right|=\sqrt{N+1}\geq 1, \forall N\in\mathbb{N}, \\ \text{so } \exists \varepsilon=1>0 \text{ such that } \forall N\in\mathbb{N}, \exists \ p=4\left(N+1\right), \exists q=N+1: p\geq q\geq N \\ \wedge |u_p-u_q|\geq 1$$

7 Recurring sequence:

Definition 7.1 Let $f: D \subset \mathbb{R} \to \mathbb{R}$ be an application. We assume that $f(D) \subset D$.

The sequence $(u_n)_{n\in\mathbb{N}}$ defined by the initial term $u_0\in D$ and the recurrent relation $: \forall n\in\mathbb{N}: u_{n+1}=f(u_n)$

is called recurring sequence. This sequence is well defined because, for any integer n, we have $u_n \in D$ and $f(D) \subset D$.

• For the study of recurring sequences we need some elementary properties of continuous and differentiable maps.

7.1 General method for studying a recurring sequence

The study of the monotony of the sequence returns to that of the function f.

1) f is increasing

<u>Proposition</u>: Let $(u_n)_{n\in\mathbb{N}}$ be a recurring sequence, we will assume that f is increasing. Then the sequence $(u_n)_{n\in\mathbb{N}}$ is monotonic.

Furthermore, if $f(u_0) = u_1 > u_0$. So the sequence $(u_n)_{n \in \mathbb{N}}$ is increasing. If $f(u_0) = u_1 < u_0$. Then the sequence $(u_n)_{n \in \mathbb{N}}$ is decreasing.

2) f is decreasing

If f is decreasing, $u_{n+1} - u_n$ is alternately positive and negative. In this case we will consider the function $g = f \circ f$:

Let $(u_n)_{n\in\mathbb{N}}$ be a recurring sequence, we will assume that f is decreasing. Then

1) The function $g = f \circ f$ is increasing.

2) The sequences
$$(u_n)_{n\in\mathbb{N}}$$
 and $(u_{2n+1})_{n\in\mathbb{N}}$ defined by $u_2 = f(f(u_0)) = g(u_0), \quad u_{2n+2} = g(u_{2n}) = f(f(u_{2n})), \quad n = 1, 2, ...$ $u_1 = f(u_0), \quad u_{2n+1} = g(u_{2n-1}) = f(f(u_{2n-1})), \quad n = 1, 2, ..., \quad u_0 \text{ given.}$

are monotonic and vary in opposite directions.

7.2 Fixed point theorem

Theorem 7.1 Let
$$(u_n)_{n\in\mathbb{N}}$$
 be a sequence defined by
$$\begin{cases} u_0 \in D \\ \forall n \in \mathbb{N} : u_{n+1} = f(u_n) \end{cases}$$

If (u_n) converges to a real $l \in D$ and if f is continuous in l, then we have necessarily f(l) = l

The real l is called a fixed point of f.

Example 7.1 We consider the sequence $(u_n)_{n\in\mathbb{N}}$ defined by the recurrent relation as follows

$$\begin{cases} u_0 = \frac{3}{2}, \\ \forall n \in \mathbb{N} : u_{n+1} = (u_n - 1)^2 + 1. \end{cases}$$

Let us show that $(u_n)_{n\in\mathbb{N}}$ is bounded and strictly monotone. Furthermore, deduce that $(u_n)_{n\in\mathbb{N}}$ is convergent and determine its limit.

proofove that
$$(P_n): 1 < u_n < 2$$
, for all $n \in \mathbb{N}$

Let us show by induction that (P_n) is true $\forall n \in \mathbb{N}$. For n = 0, by hypothesis we know that $1 < u_0 = \frac{3}{2} < 2$. So P_0 is true.

Suppose that the proposition (P_n) is true $\forall n \in \mathbb{N}$, and prove that (P_{n+1}) is also true $(1 < u_{n+1} < 2)$. As $1 < u_n < 2$ (recurrence hypothesis).

So
$$0 < u_n - 1 < 1$$
, hence $0 < (u_n - 1)^2 < 1$.

then
$$1 < u_n^2 - 2u_n^2 + 1 < 2$$
.

i.e (P_{n+1}) is also true.

2) Let's calculate $u_{n+1} - u_n$, we have

$$u_{n+1} - u_n = (u_n - 1)^2 + 1 - u_n$$

$$= u_n^2 - 2u_n + 1 + 1 - u_n$$

$$= u_n^2 - 3u_n + 2$$

$$= (u_n - 1)(u_n - 2).$$

According to the first question $0 < (u_n - 1)$ and $(u_n - 2) < 0$ so $(u_n - 1)(u_n - 2) < 0$.

then $u_{n+1} - u_n < 0$, since the sequence $(u_n)_{n \in \mathbb{N}}$ is strictly decreasing.

3) As the sequence $(u_n)_{n\in\mathbb{N}}$ is decreasing et bounded below by 1, therefore it is convergent to l. such that l verified

$$l=(l-1)^2+1\Longrightarrow l=l^2-2l+2\Longrightarrow l^2-3l+2=0$$
. So $l=0$ or $l=1$. Since the first term $u_0=\frac{3}{2}$ and $(u_n)_{n\in\mathbb{N}}$ is decreasing, then $l=1$. 1.

Exercise: Discus the nature of the following recurring sequence

$$\begin{cases} u_{n+1} = \sqrt{2u_n + 3} \\ u_0 \in \mathbb{R}^+ \end{cases}$$