Level 3: Telecommunication

Module: Telecommunication systems and networks

Digital Transmission and data coding, Lecture 4

Contact: seifallah.nasri@univ-annaba.org

Outline

- Introduction
- Digital data, digital signals
- Digital data, analog signals
- Analog data, analog signals

Transmission numérique : Dans ce cas les données transmises sont discrètes et se présentent sous forme de deux états (haut et bas) ou bien encore à plusieurs états. Cette technique consiste à modifier légèrement le signal, elle est essentiellement destinée à réduire la composante continue.

Cependant, les composantes hautes fréquences étant fortement atténuées, la transmission sera limitée en distance : c'est la transmission en bande de base. (Baseband)

Transmission analogique : les données transmises sont sous forme analogique. Autrement dit, elles évoluent d'une manière continue par rapport au temps. Cette technique translate le spectre du signal à émettre dans une bande de fréquences mieux admise par le système de transmission, c'est la **transmission large bande**. (**Broadband**)

Signal Encoding Techniques

- Signals transmitted chosen to optimize use of transmission medium
 - E.g. conserve bandwidth, minimize errors
- Digital signaling: digital or analog data encoded into digital signal
- Analog signaling: digital or analog data transmitted by analog carrier signal using modulation
 - Baseband signal is the input data signal
 - Carrier signal has frequency f_{carrier}
 - Modulated signal is output

Encoding and Modulation Techniques

- Digital Signaling: Digital or analog data, g(t), encoded into digital signal, x(t).
- Analog signaling: digital or analog data transmtted by analog carrier signal (signal porteur) using modulation.

(a) Encoding onto a digital signal

(b) Modulation onto an analog signal

- Digital signal: sequence of discrete voltage pulses
- Each pulse is a signal element
- Binary data transmitted by encoding each bit (data element) into signal elements
 - E.g. binary 1 represented by lower voltage level, binary 0 for higher level.
- Data rate (débit binaire) = data elements or bits per second; signaling or modulation rate (rapidité de modulation) = signal elements per second (baud).

Baud Rate

- ...is the rate at which signals can <u>change</u> (pulses / second)
- The unit is the baud (<u>Bd</u>), and it is a measurement of speed

 This has a baud rate of 1 Bd, as the signal only changes once a second (taken to be the end)

- This has a baud rate of 3 Bd
- 3 pulses in 1 second

Bit Rate

- ...is the rate at which <u>data</u> is sent (bits / second)
- The unit is bits per second (bps), and it is also a measurement of speed

 This has a baud rate of 1 Bd, and a bit rate of 1 bps – only 2 voltage levels so only 1 bit per signal

 Baud rate still <u>1 Bd</u>, but the bit rate is <u>2 bps</u> – now each signal represents 2 bits

Digital data, digital signals

Nonreturn to Zero-Level (NRZ-L)

0 = high level

1 = low level

Nonreturn to Zero Inverted (NRZI)

0 = no transition at beginning of interval (one bit time)

I = transition at beginning of interval

Bipolar-AMI

0 = no line signal

1 = positive or negative level, alternating for successive ones

Pseudoternary

0 = positive or negative level, alternating for successive zeros

1 = no line signal

Manchester

0 = transition from high to low in middle of interval

1 = transition from low to high in middle of interval

Differential Manchester

Always a transition in middle of interval

0 = transition at beginning of interval

1 = no transition at beginning of interval

B8ZS

Same as bipolar AMI, except that any string of eight zeros is replaced by a string with two code violations

HDB3

Same as bipolar AMI, except that any string of four zeros is replaced by a string with one code violation

Examples of technologies that use encoding schemes

- NRZ/NRZI: RS-232, HDLC, USB,.....
- Manchester: Ethernet, Token Ring,.....
- Multilevel Binary: US T-carrier and European E-carrier telecommunication systems.
- Binary data transmitted by encoding each bit (data element) into signal elements.

✓ Find the bits sequence of the following digital signal:

Comparing different encoding schemes

Signal spectrum

- High frequency components are not desired to preserve a narrow bandwidth
- DC component (Composante continue) is not desired so ac coupling can be used (reduces bit error rate)
- Concentrate transmitted power in middle of bandwidth

Clocking and Synchronisation

Transmitted signal can be used by receiver to synchronise bit timing

Spectral density of various signal encoding schemes

Comparing different encoding schemes

Error Detection

Receiver can detect some bit errors from the received signal

Signal Interference

Provide good performance (few bit errors) in presence of noise

Cost and complexity

Desire smaller signaling rate to achieve a given data rate

Encoding rules for B8ZS and HDB3

Improving Synchronization

- In Bipolar AMI a long sequence of 0's makes it difficult for the receiver to synchronize
- Solution: if long sequence of same bit, replace with special sequence of bits
- B8ZS (Bipolar with 8-zeros substitution)
 - ▶ If 8 0's and last pulse was positive, replace 8 0's with 000 + -0 +
 - ▶ If 8 0's and last pulse was negative, replace 8 0's with 000 +0 + -
- HDB3 (High density bipolar 3-zeros)

Polarity of Preceding Pulse	Number of Bipolar Pulses (ones) since Last Substitution	
	Odd	Even
-	000-	+00+
+	000+	-00-

Digital Data, Analog Signals

- Transmit digital data over media that only support analog signals, e.g. telephone network, microwave systems.
 - Telephone network designed to transmit signals in voice-frequency (300 to 34000 Hz)
 - Modems (modulator-demodulator) convert digital data to signals in this frequency range
- > 3 basic modulation techniques:
 - 1. Amplitude Shift Keying (ASK)
 - 2. Phase Shift Keying (PSK)
 - 3. Frequency Shift Keying (FSK)
- > Resulting a signal which occupies a bandwidth centred on carrier frequency.

FSK scheme:

f 00 2f 01 3f 10 4f 11

Comparing the Shift Keying Schemes

Amplitude Shift Keying

- Inefficient modulation technique
- Used on voice lines < 1200 bps and optical fibre

Frequency Shift Keying

- Used on voice lines, coaxial cable, HF radio systems
- Extended with M frequencies: improve efficiency, higher error rate

Phase Shift Keying

- Used in wireless transmission systems
- Extended M phases, e.g. QPSK (M=4)
- Combined with ASK: Quadrature Amplitude Modulation (QAM); used in ADSL and wireless systems

Example of technologies using Shift Keying

- ASK: optical fibre, RFID
- FSK: HF / shortwave radia, UHF/VHF radio comms, RFID
- PSK and QAM: mobile phones, Wi-Fi, calbe modems, xDSL, DVB,.....

Constellation diagram

A constellation diagram is a representation of a signal modulated by a digital modulation scheme such as quadrature amplitude modulation or phase-shift keying.

It displays the signal as a two-dimensional xy-plane scatter diagram in the complex plane at symbol sampling instants.

The angle of a point, measured counterclockwise from the horizontal axis, represents the phase shift of the carrier wave from a reference phase. The distance of a point from the origin represents a measure of the amplitude or power of the signal. Q

An 8-PSK. Information transmitted according to the scheme described in the above diagram is encoded as one of 8 "symbols", each representing 3 bits of data. Each symbol is encoded as a different phase shift of the carrier sine wave: 0°, 45°, 90°, 135°, 180°, 225°, 270°, 315

Constellation diagram

Decision Boundaries

Modulating Signals

- Combine input signal, m(t), and carrier at frequency f_c to produce signal s(t) whose bandwidth is centered on f_c
- Why? If analog transmission systems . . .
 - Digital data must be convereted to analog form (e.g. PSK, FSK)
 - Analog signals may need to be transmitted at higher frequency than analog data
 - Changing frequency of analog data allows for frequency division multiplexing (sending different analog data in one analog signal)
- Principal techniques: amplitude modulation (AM), frequency modulation (FM), phase modulation (PM)

Amplitude Modulation of a Sine-Wave Carrier by a Sine-Wave Signal

Frequency Modulation of a Sine-Wave Carrier by a Sine-Wave Signal

Thank you for your attention