Chapter 4	
1	
	Real-valued functions

Generalities on functions 1

Definition 1.1 Any application from D to \mathbb{R} is called a real function. If $D \subset \mathbb{R}$, we say that f is a real function of a real variable,.

We write;
$$f: D_f \to \mathbb{R}$$

 $x \longmapsto f(x) = y$
 D_f is called the domain of definition of . f , and $f(D_f) = \{y \in \mathbb{R}, \exists x \in D_f; f(x) = y\}$

Operations on Functions 1.1

Let f and g two real funtions; $D \to \mathbb{R}$

1.
$$f = g \Leftrightarrow f(x) = g(x)$$
 $\forall x \in D$

2.
$$f \le g \Leftrightarrow f(x) \le g(x)$$
 $\forall x \in D$

If $D_f \cap D_g \neq \emptyset$ then

3.
$$(f+g)(x) = f(x) + g(x) \quad \forall x \in D$$

4.
$$(f.g)(x) = f(x).g(x)$$
 $\forall x \in D$

4.
$$(f.g)(x) = f(x) . g(x) \quad \forall x \in D$$

5. $\frac{f}{g}(x) = \frac{f(x)}{g(x)} \quad \forall x \in D_f \cap D_g \text{ and } g(x) \neq 0$

6.Let $f: D_f \to \mathbb{R}$ and $g: D_g \to \mathbb{R}$ with $f(D_f) \subset D_g$. We define the composite function $(g \circ f)$ in $D_f: (g \circ f)(x) = g(f(x))$

Example
$$g(x) = \cos x, f(x) = \frac{1}{x} \Rightarrow (g \circ f)(x) = g\left(\frac{1}{x}\right) = \cos\left(\frac{1}{x}\right)$$

1.2 Properties of functions:

Even and odd functions

A set $D \subset \mathbb{R}$ is said to be symmetric with respect to the origin if for all $x \in D \Rightarrow -x \in D$

Definition 1.2 A function f defined on the symmetric set D is said to be

i)Even if $\forall x \in D, f(x) = f(-x)$

ii) Odd if $\forall x \in D, f(-x) == -f(x)$

Examples: i) $f(x) = x^2$; $f(x) = \cos x$; f(x) = |x|

ii) $f(x) = x^3$; $f(x) = \sin x$;

When f is even, the graph of the function f is symmetric with respect to the y-axis. If f is odd, the graph of f is symmetric with respect to the origin.

Periodic function

Let $f: D \to \mathbb{R}$ is said periodic if $\exists \alpha \in \mathbb{R}$ such that

i)
$$x + \alpha \in D$$

ii)
$$f(x + \alpha) = f(x) \quad \forall x \in D$$

It is obvious that $f(x + k\alpha) = f(x) \quad \forall k \in \mathbb{N}^*$

Definition 1.3 We call the period of f the smallest positive number T such that $f(x+T) = f(x) \ \forall x \in D$

Example: $f(x) = \sin x$; $f(x) = \cos x$; $f(x) = \tan x$

X

cos

 $\frac{1}{3.png}$ $\tan x$

 $_4.png$

Monotonic Function

Let $f: D \to \mathbb{R}$, be a real function

- a) f is increasing on D .if $\forall x_1, x_2 \in D, x_1 \leq x_2 \Rightarrow f(x_1) \leq f(x_2)$
- b) Strictly increasing si $\forall x_1, x_2 \in D, x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$
- c) f is decreasing if $\forall x_1, x_2 \in D, x_1 \leq x_2 \Rightarrow f(x_1) \geq f(x_2)$
- d) Strictly decreasing $\forall x_1, x_2 \in D, x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$

Example:

> The exp : $\mathbb{R} \to \mathbb{R}$ and $\ln :]0, +\infty[\to \mathbb{R}$ are Strictly increasing.

 $|x|:\mathbb{R}\to\mathbb{R}$ not increasing and not decreasing. On other hand , the function $|x|:[0,+\infty[\to\mathbb{R}$ is strictly increasing..

Bounded Functions

The function f is called:

- I) If there exists $M \in \mathbb{R}$ such that : $f(x) \leq M, \forall x \in D_f$, then the function f is said to be bounded above by M.
- II) If there exists $m \in \mathbb{R}$ such that $: f(x) \ge m, \forall x \in D_f$, then the function f is said to be bounded below by m

III) f is bound on D_f if $\begin{cases} \exists m, M \in \mathbb{R} : m \leq f(x) \leq M, \forall x \in D \\ \exists c \in \mathbb{R}_+ : |f(x)| \leq c, \forall x \in D \end{cases}$ or born

We will call, if it exists, the upper bound (respectively lower bound) of the function f on the domain D_f

Example 1.1 > The function $f: [0,1] \to \mathbb{R}$ is bounded on [0,1] with $-3 \le f(x) \le -2$ >the function $\cos x$ is bounded on \mathbb{R} because, we have $\forall x \in \mathbb{R}: |\cos x| \le 1$

Remark 1.1 as we saw in chapter 1, it is possible to write

$$M = \sup_{D} f \Leftrightarrow \begin{cases} \forall x \in D : f(x) \leq M \\ \forall \varepsilon > 0, \exists x \in D : f(x) > M - \varepsilon \end{cases}$$

Injective, surjective, and bijective functions

Let $f: D \to \mathbb{R}$ be a real function

• f is injective if the only if $\forall x, x' \in D; f(x) = f(x') \Rightarrow x = x'$

- f is surjective if, $\forall y \in \mathbb{R}, \exists x \in D \text{ such that } f(x) = y$
- \bullet f is bijective if f is injective and surjective

2 Limits

The essence of the concept of limit for real-valued functions of a real variable is this: If L is a real number, then $\lim_{x\to x_0} f(x) = L$ means that the value f(x) can be made as close to L as we wish by taking x sufficiently close to x_0 . This is made precise in the following definition.

Definition 2.1 We say that f(x) approaches the limit L as x approaches x_0 , and write $\lim_{x\to x_0} f(x) = L$

if f is defined on some deleted neighborhood of x_0 and, for every $\varepsilon > 0$, there is $\delta > 0$ such that $|f(x) - L| < \varepsilon$, if $|x - x_0| < \delta$ So

 $\lim_{x\to x_0} f(x) = L \Leftrightarrow \forall \varepsilon > 0, \exists \delta > 0, \forall x \in D_f : |x-x_0| < \delta \Rightarrow |f(x)-L| < \varepsilon$ A function can have a limit when x tends to x_0 without it being defined at this point.

Example 2.1 For the function f defined by f(x) = 2x + 3, we have $\lim_{x \to 1} f(x) = 5$. Indeed, noting that for any $x \in \mathbb{R}$:

$$|f(x) - l| = |2x + 3 - 5| = 2|x - 1| < \varepsilon$$

it suffices then to take $\delta = \frac{\varepsilon}{2}$ to have $\forall \varepsilon > 0, |x-1| < \delta = \frac{\varepsilon}{2} \Rightarrow 2|x-1| < \varepsilon \Rightarrow |f(x) - 5| < \varepsilon$

Example 2.2 \triangleright For the function f defined by $f(x) = x^3$, we have $\lim_{x\to 0} f(x) = 0$. Indeed, noting that for any $x \in \mathbb{R}$: $|f(x) - l| = |x^3| < \varepsilon$.

it suffices then to take $\delta = \sqrt[3]{\varepsilon}$ to have $\forall \varepsilon > 0, |x - 0| < \delta \Rightarrow |x| < \sqrt[3]{\varepsilon} \Rightarrow |f(x) - l| < \varepsilon$

Example 2.3 $\triangleright Show \ that \lim_{x \to -2} \frac{x}{1-x} = \frac{-2}{3}$

by definition:
$$\lim_{x \to -2} \frac{x}{1-x} = \frac{-2}{3} \Leftrightarrow \forall \varepsilon > 0, \exists \delta > 0, \forall x \in D_f : |x+2| < \delta \Rightarrow \left|\frac{x}{1-x} + \frac{2}{3}\right| < \varepsilon$$
We have $\left|\frac{x}{1-x} + \frac{2}{3}\right| = \left|\frac{x+2}{3(1-x)}\right| = \frac{|x+2|}{3|1-x|}$
let's choose a neighborhood of $x_0 = -2$; $|x+2| < 1$ $(*) \Leftrightarrow -1 < x+2 < 1$

$$\Rightarrow -3 < x < -1 \Leftrightarrow 1 < -x < 3 \Rightarrow 2 < 1 - x < 4 \Leftrightarrow \frac{1}{4} < \frac{1}{1-x} < \frac{1}{2} \Leftrightarrow \frac{1}{|1-x|} < \frac{1}{2}$$
so $\frac{|x+2|}{3|1-x|} < \frac{|x+2|}{3\cdot2} = \frac{|x+2|}{6} < \varepsilon$ then, we obtain $|x+2| < 6\varepsilon$... $(**)$

Theorem 2.1 If $\lim_{x\to x_0} f(x)$ exists; then it is unique I that is; if $\lim_{x\to x_0} f(x) = L_1$ and $\lim_{x \to x_0} f(x) = L_2 \ then \ L_1 = L_2$

Theorem 2.2 Let $f:D\to\mathbb{R}$ be a real function; Therefore, we have the equivalence of the following propositions

▲ i) $\lim_{x \to x_0} f(x) = l$. ▲ ii) For all sequence $(x_n)_{n \in \mathbb{N}}$ on D which converge to x_0 ($x_n \neq x_0$) then the sequence $f(x_n)$ converge to $f(x_0)$ on f(D)

Example 2.4 $f : \mathbb{R}^* \to \mathbb{R}$ such that $f(x) = \sin \frac{1}{x}$ we show that f not admit the limit for $x \to 0$

for (*) and (**), we take $\delta = \min(1, 6\varepsilon)$

Let a sequence $u_n = \frac{1}{\pi (n + \frac{1}{2})}$. it is clair that $\lim_{n \to +\infty} u_n = 0$ and $\forall n \in \mathbb{N}; u_n \neq 0$

$$f(u_n) = \sin \pi \left(n + \frac{1}{2}\right) = (-1)^n = \begin{cases} 1 \text{ if } n \text{ is even} \\ -1 \text{ if } n \text{ os odd} \end{cases}$$
.

Then $\lim_{n\to +\infty} f(u_n) = \pm 1$ so $f(u_n)$ is a divergente sequence, therefore f not admit a limit at x_0

Definition 2.2 Given a function $f: D \to \mathbb{R}$. We say that f, has a right-hand limit at the point x_0 if and only if: $\lim_{\varepsilon \to 0} f(x) = l \Leftrightarrow \forall \varepsilon > 0, \exists \delta_{\varepsilon} > 0, \forall x \in D : 0 < x - x_0 < x$

$$\delta_{\varepsilon} \Rightarrow |f(x) - l| < \varepsilon.$$

Definition 2.3 We say that f ,has a left-hand limit at the point x_0 if and only if $\lim_{x \leq x_0} f(x) = l \Leftrightarrow \forall \varepsilon > 0, \exists \delta_{\varepsilon} > 0, \forall x \in D : 0 < x_0 - x < \delta_{\varepsilon} \Rightarrow |f(x) - l| < \varepsilon.$

<u>Notation</u>: We note that $0 < x - x_0 < \delta_{\varepsilon} \Leftrightarrow x \in]x_0, x_0 + \delta_{\varepsilon}[$ and $0 < x_0 - x < \delta_{\varepsilon} \Leftrightarrow x \in]x_0 - \delta_{\varepsilon}, x_0[$.

Theorem 2.3 We have the following equivalence $\lim_{x\to x_0} f(x) = l \Leftrightarrow \lim_{x\to x_0} f(x) = l = \lim_{x\to x_0} f(x)$

Consequence : if $\lim_{x \to x_0} f(x) \neq \lim_{x \to x_0} f(x)$ then $\lim_{x \to x_0} f(x)$ does not exist

Example 2.5 we consider the function
$$f(x) = \frac{|x(x+1)|}{x+1} = \begin{cases} \frac{x(x+1)}{x+1} & \text{if } x \in]-\infty, -1[\cup [0, +\infty) \\ -\frac{x(x+1)}{x+1} & \text{if } x \in]-1, 0[\end{cases}$$

$$, we have \begin{cases} \lim_{x \to -1} f(x) = \lim_{x \to -1} x = -1 \\ \lim_{x \to -1} f(x) = \lim_{x \to -1} -x = 1 \end{cases} \Rightarrow \lim_{x \to -1} f(x) \neq \lim_{x \to -1} f(x) \text{ then } \lim_{x \to -1} f(x) \text{ does }$$

$$not \text{ exist}$$

2.1 Infinite limits

Definition 2.4 Let f be a function defined on a domain $D \subset \mathbb{R}$. We say that f tends to $+\infty$ $(resp -\infty)$ as x tends to x_0 if and only if ::

$$\lim_{x \to x_0} f(x) = +\infty \Leftrightarrow \forall A > 0, \exists \delta > 0, \forall x \in D : |x - x_0| < \delta \Rightarrow f(x) > A$$

respectively

$$\lim_{x \to x_0} f(x) = -\infty \Leftrightarrow \forall A > 0, \exists \delta > 0, \forall x \in D : |x - x_0| < \delta \Rightarrow f(x) < -A.$$

Example 2.6 Using the definition of the limit, show that : $\lim_{x \to \infty} \ln x = -\infty$

By definition, we have $\lim_{\stackrel{>}{x\to 0}} \ln x = -\infty \Leftrightarrow \forall A > 0, \exists ?\delta > 0, \forall x > 0 : |x| < \delta \Rightarrow \ln x < -A$

 $\ln x < -A \Leftrightarrow x < e^{-A}$, so for any A > 0, we can choose $\delta = e^{-A}$ to ensure that the inequality $|x| < \delta \Rightarrow \ln x < -A$

2.2 Finite limits of functions as x tends to $\pm \infty$

Definition 2.5 Let f be a function defined on a domain $D \subseteq \mathbb{R}$. We say that f tends to L as x tends to $+\infty$ if and only if ::

$$\lim_{x \to +\infty} f(x) = L \Leftrightarrow \forall \varepsilon > 0, \exists A > 0, \forall x \in D : x \ge A \Rightarrow |f(x) - L| < \varepsilon$$

respectively

$$\lim_{x \to -\infty} f(x) = l \Leftrightarrow \forall \varepsilon > 0, \exists B > 0, \forall x \in D : x \le -B \Rightarrow |f(x) - l| < \varepsilon$$

2.3 Infinite limits of functions as x tens to $\pm \infty$

Definition 2.6 Let f be a function defined on an interval of type $[a, +\infty[\subset D_f]]$.

• We say that f tends to $+\infty$ as x tends to $+\infty$ iff:

$$\lim_{x \to +-\infty} f(x) = +\infty \Leftrightarrow \forall A > 0, \exists B > 0, \forall x \in D : x \ge B \Rightarrow f(x) \ge A$$

• We say f tends to $+\infty$ as x tend to $-\infty$ iff:

$$\lim_{x \to +\infty} f(x) = -\infty \Leftrightarrow \forall A > 0, \exists B > 0, \forall x \in D : x \ge B \Rightarrow f(x) \le -A$$

Definition 2.7 Let f be a function defined on an interval of type $]-\infty,a] \subset D_f$.

• f tends to $+\infty$ as x tends to $-\infty$ iff:

$$\lim_{x \to -\infty} f(x) = +\infty \Leftrightarrow \forall A > 0, \exists B > 0, \forall x \in D : x \le -B \Rightarrow f(x) \ge A$$

• f tends to $-\infty$ as x tends to $-\infty$ iff:

$$\lim_{x \to -\infty} f(x) = -\infty \Leftrightarrow \forall A > 0, \exists B > 0, \forall x \in D : x \le -B \Rightarrow f(x) \le -A$$

2.4 Algebraic operations on limits and some properties

Let f and g be two functions definied, on the same set $D \subseteq \mathbb{R}$, such that $\lim f(x) = l$ and $\lim g(x) = l'$

then we have :

- $\bullet \lim_{x \to x_0} (f \pm g)(x) = l \pm l'$ $\bullet \lim_{x \to x_0} (f.g)(x) = l.l'$
- $\bullet \lim_{x \to x_0} f^n(x) = l^n$

- $\begin{aligned}
 \bullet & \lim_{x \to x_0} |f(x)| = |l| \\
 \bullet & \lim_{x \to x_0} (\lambda f + \mu g)(x) = \lambda l + \mu l' \\
 \bullet & \lim_{x \to x_0} \frac{f}{g}(x) = \frac{l}{l'} \quad l' \neq 0
 \end{aligned}$

Theorem 2.4 d'encadrement: Let f, g, h be three functions verify f(x) < g(x) < g(x)h(x) in the neighborhood of x_0

If
$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = l \text{ then } \lim_{x \to x_0} g(x) = l$$

Proposition 2.1 1• Let f, g be two functions verify f(x) < g(x) in the neighbo-

If
$$\begin{cases} \lim_{x \to x_0} f(x) = +\infty & then \lim_{x \to x_0} g(x) = +\infty \\ \lim_{x \to x_0} g(x) = -\infty & then \lim_{x \to x_0} f(x) = -\infty \\ 2 \bullet & Let \ f \ be \ a \ function \ bounded \ in \ the \ neighborhood \ of \ x_0 \ and \ g \ a \ function \ verify \end{cases}$$

 $\lim_{x \to x_0} g(x) = 0 \text{ then } \lim_{x \to x_0} f(x) g(x) = 0.$

Definition 2.8 Important: Let $f:D \to \mathbb{R}$ be a function of real variable. We say that f is defined in the neighborhood of x_0 iff: there exists an interval I = $]x_0 - \varepsilon, x_0 + \varepsilon[$ such that $I \subset D$

2.5 Comparisons of functions in the neighborhood of point (near a point):

Let f and $g:D\to\mathbb{R}$, and let $x_0\in D$