2020-2021

Licence: ELN3

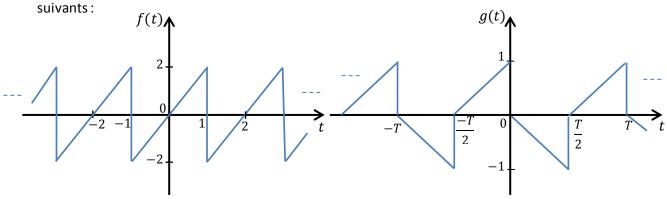
I- Séries de Fourier des Signaux Périodiques

Séries de Fourier des Signaux Périodiques		
Séries de Fourier de $x(t)$ avec période T_0	$x(t) = \frac{a_0}{2} + \sum_{n=1}^{+\infty} a_n \cos(2\pi n f_0 t) + b_n \cos(2\pi n f_0 t)$	
Calcul des coefficients	$\boldsymbol{a_n} = \frac{2}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} x(t) \cos(2\pi n f_0 t) dt$ $n = 0, 1, 2, \dots + \infty$	$\boldsymbol{b_n} = \frac{2}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} x(t) \sin(2\pi n f_0 t) dt$ $n = 1, 2, \dots + \infty$
Séries de Fourier Complexes de $x(t)$ $f_0 = \frac{1}{T_0}$ fréquence de $x(t)$	$x(t) = \sum_{n = -\infty}^{+\infty} C_n e^{j2\pi n f_0 t} \rightarrow C_n = \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} x(t) e^{-j2\pi n f_0 t} dt$	

Exercice 2.1 Développer sous forme de série de Fourier complexe (bilatérale) le signal suivant :

$$x(t) = 1 + \sin \omega_0 t + 2 \cos \omega_0 t + \cos \left(2\omega_0 t + \frac{\pi}{4}\right)$$

Exercice 2.2 Calculer les coefficients de Fourier complexes pour les deux signaux périodiques



Exercice 2.3 Soit un signal f(t) de période 2π tel que :

$$f(t) = \begin{cases} 1 & si & -\pi \leq t \leq 0 \\ & & , \quad sur \ une \ p\'eriode. \end{cases}$$

- a. Tracer le graphe de ce signal dans l'intervalle $-2\pi \le t \le 2\pi$.
- b. Montrer que la série de Fourier de f(t) dans l'intervalle $-\pi \le t \le \pi$ est égale à :

$$\frac{1}{2} - \frac{2}{\pi} \left[\sin t + \frac{1}{3} \sin 3t + \frac{1}{5} \sin 5t + \cdots \right]$$

c. Par un choix approprié de t , montrer que $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$

Module : Traitement du Signal TD : Analyse de Fourier

2020-2021

II- Intégrale de Fourier des Signaux Non-périodiques

Exercice 3.1 Sachant que le signal échelon unité u(t) peut s'écrire sous la forme $u(t) = \frac{1}{2} \left(1 + sgn(t) \right)$

où la fonction signe notée sgn, est définie par :

$$sgn(t) = \begin{cases} +1 & pour \ t > 0 \\ -1 & pour \ t < 0 \end{cases} = \lim_{a \to 0} e^{-a|t|} \, sgn(t) \, = \lim_{a \to 0} \begin{cases} e^{-at} & pour \ t > 0 \\ -e^{at} & pour \ t < 0 \end{cases} , avec \ a > 0$$

Trouver la transformée de Fourier de u(t).

Licence: ELN3

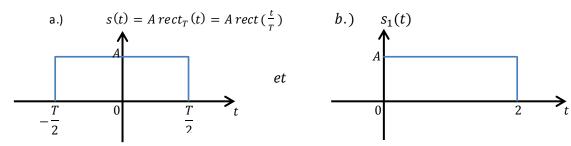
Exercice 3.2 Sachant que le signal échelon unité u(t) peut s'écrire sous la forme $u(t) = \frac{1}{2} \left(1 + sgn(t) \right)$

où la fonction signe notée sgn, est définie par:

$$sgn(t) = \begin{cases} +1 & pour \ t > 0 \\ -1 & pour \ t < 0 \end{cases} = \lim_{a \to 0} e^{-a|t|} sgn(t) = \lim_{a \to 0} \begin{cases} e^{-at} & pour \ t > 0 \\ -e^{at} & pour \ t < 0 \end{cases}, avec \ a > 0$$

Trouver la transformée de Fourier de u(t).

Exercice 3.3 Trouver la transformée de Fourier des signaux suivants :



 $s(t) = A \ rect_T(t) = A \ rect\left(\frac{t}{T}\right) = \begin{cases} A & si \ |t| \leq \frac{T}{2} \\ 0 & sinon \end{cases}; \ fenêtre \ rectangulaire \ ou \ signal \ porte$

d'ouverture (ou largeur)T et d'amplitude (ou hauteur) A

Exercice 3.4 Tracer le graphe et trouver la TF pour le signal suivant :

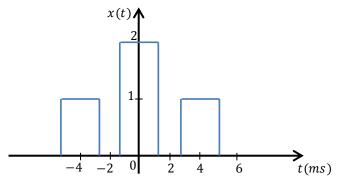
$$s(t) = \begin{cases} 1 & pour -1 \le t \le 0 \\ 2 & pour \ 0 \le t \le 1 \\ 1 & pour \ 1 \le t \le 2 \\ 0 & autrement \end{cases}$$

Exercice 3.5 Trouver la transformée de Fourier du signal complexe x(t) donné par :

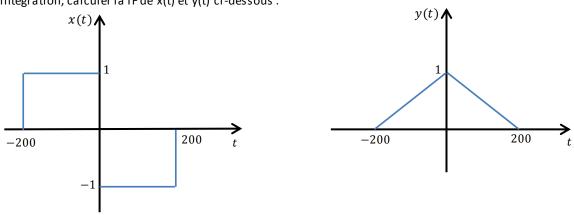
$$x(t) = \begin{cases} e^{j2\pi t} & si & |t| \le 1 \\ 0 & autrement \end{cases}$$

2020-2021

Exercice 3.6 A partir de la seule observation du signal temporel x(t) de la figure suivante, précisez ce que vaut sa densité spectrale en f=0 Hz puis calculer et tracer sa transformée de Fourier.

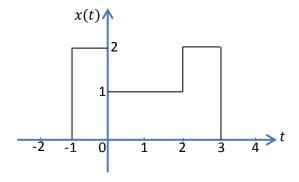


Exercice 3.7 Partant de la transformée de Fourier d'une impulsion rectangulaire et de la propriété d'intégration, calculer la TF de x(t) et y(t) ci-dessous :



Exercice 3.8 Le signal x(t) est représenté par son graphe ci-dessous. On note X(f) sa transformée de Fourier. Répondre aux questions suivantes sans faire de calcul explicite de X(f):

- a. X(f) est-elle périodique ? Si oui donner sa période.
- b. X(f) est-elle un signal continu ou discret?
- c. Donner la valeur de X(0)
- d. Donner $\int_{-\infty}^{+\infty} |X(f)|^2 df$.



Licence: ELN3

Licence : ELN3 Module : Traitement du Signal TD : Analyse de Fourier

2020-2021

Théorème de Parseval

Soient x(t) et y(t) deux signaux admettant pour TFX(f) et Y(f) respectivement.

Théorème de Parseval:
$$\int_{-\infty}^{+\infty} x(t) y(t)^* dt = \int_{-\infty}^{+\infty} X(f) Y(f)^* df$$

dans la cas particulier y(t) = x(t) on a:

$$\int_{-\infty}^{+\infty} |x(t)|^2 dt = \int_{-\infty}^{+\infty} |X(f)|^2 df$$

L'énergie est conservée dans la représentation temporelle et fréquentielle des signaux.

Exercice 3.9 utiliser le théorème de Parseval pour calculer les intégrales suivantes:

$$I_1 = \int\limits_{-\infty}^{+\infty} sinc(t) \, dt \quad et \quad I_2 = \int\limits_{-\infty}^{+\infty} sinc^2(t) \, dt \quad \text{où } sinc(t) = \frac{\sin(\pi t)}{\pi t} \text{ , le sinus cardinal .}$$

$$I_3 = \int_{-\infty}^{+\infty} \sin^2(2\pi t) \operatorname{sinc}^2(t) dt$$