SERIE 2

OUESTION

How many values can be encoded using 5 bits,7 bits or 10 bits?

How many bits are needed to code: 17, 65, 120?

EXERCISE 01: Give the 8-bit binary representations using the three representations

(Sign & absolute value, One's complement, Two's complement) of the following numbers:

EXERCISE 02: Find the relative numbers corresponding to these representations in 2's complement:

1/100101 2/001010 3/100001 4/010101 5/111111

EXERCISE 03: Perform the following operations in two's complement on 6 bits and specify the cases of overflow

$$^{+10}_{1/\pm 09}$$
 $^{-11}_{2/\pm 07}$ $^{+12}_{3/=12}$ $^{-21}_{4/=17}$ $^{-17}_{5/\pm 23}$ $^{-19}_{6/=24}$ $^{+15}_{7/\pm 18}$ $^{-26}_{8/\pm 15}$

EXERCISE 04: Perform the following operations in 5-bit, two's complement and specify the overflow cases, then convert the operation into decimal form

EXERCISE 05

- Find the IEEE 754 single-precision representation of the numbers: : $(-13.25)_{10}$ $(+37.125)_{10}$
- ➤ Find the 32-bit single-precision representation of (10.75)₁₀ (-19.25)₁₀ knowing that the exponent is represented on 7 bits instead of 8 bits.

EXERCISE 06: Find the floating-point number with the following IEEE754 representation:

- ➤ (41DC0000)_H
- ➤ (BEE00000)_H