Enumerations and structures



Enumerations

* The set type is created by defining the domain of values it contains,
i.e., the list of constant values that variables of this type can take.

 Variables of this type take a value among a set. For example, for a
traffic light, the color is: green, orange, or red.

* In Algorithmics, we declare a set as a type as indicated below.

* EX:
type color=set (blue, green, red);
var c1 : color;
Cl € green;



Enumerations

* Enums are especially useful for enhancing code readability making
the code more understandable and maintainable.

* The sets can be used to iterate in loops like

type Color=set (Blue, green, red, white);

var cl:color;
for c1< blue to white do
write (c1);



Enumerations in C

* In the C language, we declare an enumeration using the ‘'enum' keyword.
* Syntax:

* enum new_type {list of symbols/choices/values};
* Example:

* enum color {white, blue, yellow, green, black};

* We declare a variable of tY]pe 'color' by specifying the name of the enum
follloweld)by the name of the variable to be declared (for example: enum
color c1;).

* Additionally, we can assi%n numerical constants to each color as follows:
enum color {white=10, blue=11, yellow=12, green=13, black=14};

* |f numerical constants are not specified, these values start from 0 and
increment by 1 for each subsequent enumerator.



Structures

* Unlike arrays, which are data structures where all elements are of the
same type, records/structures are data structures where the
elements can be of different types and relate to the same semantic
entity.

* The elements that compose a record are called fields or attributes.

* A record is a user-defined data type that allows grouping a finite
number of elements of different types.

* A record is a complex variable that allows designating, under a single
name, a set of values that can be of different types (simple or
complex).



Structures

* Before declaring a record variable, it's necessary to have previously
defined the name and type of the fields that compose it.

* It's possible to create custom types and then declare variables or
arrays of elements of that type.



Declaration of Records/Structures

* The declaration of structure types occurs within a specific section of
algorithms called "Type,' which precedes the section for variables and
follows the section for constants.

Algorithm C language
type <id_strucr> = structure typedef struct [id_structure] {
<id_attributel>:<typel>; <typel> <id_attributel>;
<id_attribute2>:<type2>; <type2> <id_attribute2>;

<id_attributen>:<type n>; <type n> <id_attribute n>;
end; tid_type;

* Where <id _ch1>, <id ch2>, ..., <id chN> are the identifiers of the
fields, and <typel>, <type2>, ..., <typeN> are their types respectively.




Declaration of Records/Structures

* Exemple :

type car = structure
brand: string;
c: color; /* color is an enumeration type, as shown previously */
price: float;
end;
var vl : car;



Accessing the fields of a structure

* The fields of a structure are accessed by their names using the .
operator.

* To access a field of a structure, the variable ID of the structure type is
used, followed by a dot and then the name of the field you want to
access.

e Syntax: <Record_Variable>.<Field Name>

* For example, to access the 'price’ field of the variable 'v1' of type 'car’,
we write: vl.price

* Assignment: vl.price < 2000.00;
Or: floatVariable < vl.price;
e Reading: read(vl.price);



Array of structures

* In order to manage multiple entities of a given type (e.g., cars), we
use a one-dimensional array structure to store these elements.

* Another example, If there is a need to record information about 100
students and manipulate their data, we declare the 'student’
structure and create a vector of size 100 containing elements of type
'student’. This is depicted in the example below:

type student = structure;
first_name:string;
last_name:string;

end;
var student_list = array [0..n] of student;



Operations on structures

* Filling (read) data for a number of car structure :

Algorithm fill_array_car;
const n=10;
type car = structure

brand: string;

C: string;
price: float;
end;
var List_car = array[0..n] of car;
i:integer;
begin
fori<- 0to(n-1)do
begin
read(List_carli]. brand);
read (List_carli].c);
read (List_carli]. price);
end;

end.




Operations on structures

* Displaying (writing) data of a number of elements of structure type (car)

fori<- 0to(n-1)do
begin
write(List_carli]. brand);
write (List_carli].c);
write(List_carli]. price);

end;




Operations on structures

 Sort the list of cars according to their price (bubble sort)

var tmp : car; i,j:integer;

fori< (n-2) to 0 do
begin
forj€& 0to i do
if(List_car[j].price> List_car[j+1].price) then
begin
tmp < List_carlj];
List_car[j]< List_car[j+1];
List_car[j+1]<tmp;
end;

end;




