
Enumerations and structures



Enumerations

• The set type is created by defining the domain of values it contains, 
i.e., the list of constant values that variables of this type can take.

• Variables of this type take a value among a set. For example, for a 
traffic light, the color is: green, orange, or red.

• In Algorithmics, we declare a set as a type as indicated below.

• EX:
type color= set (blue, green, red);

var c1 : color;

C1  green;



Enumerations

• Enums are especially useful for enhancing code readability making 
the code more understandable and maintainable.

• The sets can be used to iterate in loops like

type Color= set (Blue, green, red, white);

var c1:color;

for c1 blue to white do

write (c1);



Enumerations in C

• In the C language, we declare an enumeration using the 'enum' keyword.
• Syntax: 
• enum new_type {list of symbols/choices/values}; 
• Example: 
• enum color {white, blue, yellow, green, black}; 
• We declare a variable of type 'color' by specifying the name of the enum

followed by the name of the variable to be declared (for example: enum
color c1;). 

• Additionally, we can assign numerical constants to each color as follows: 
enum color {white=10, blue=11, yellow=12, green=13, black=14};

• If numerical constants are not specified, these values start from 0 and 
increment by 1 for each subsequent enumerator.



Structures

• Unlike arrays, which are data structures where all elements are of the
same type, records/structures are data structures where the
elements can be of different types and relate to the same semantic
entity.

• The elements that compose a record are called fields or attributes.

• A record is a user-defined data type that allows grouping a finite
number of elements of different types.

• A record is a complex variable that allows designating, under a single
name, a set of values that can be of different types (simple or
complex).



Structures

• Before declaring a record variable, it's necessary to have previously
defined the name and type of the fields that compose it.

• It's possible to create custom types and then declare variables or
arrays of elements of that type.



Declaration of Records/Structures

• The declaration of structure types occurs within a specific section of
algorithms called 'Type,' which precedes the section for variables and
follows the section for constants.

• Where <id_ch1>, <id_ch2>, ..., <id_chN> are the identifiers of the
fields, and <type1>, <type2>, ..., <typeN> are their types respectively.



Declaration of Records/Structures

• Exemple :
type car = structure

brand: string;

c: color; /* color is an enumeration type, as shown previously */

price: float;

end;

var v1 : car;



Accessing the fields of a structure

• The fields of a structure are accessed by their names using the '.'
operator.

• To access a field of a structure, the variable ID of the structure type is
used, followed by a dot and then the name of the field you want to
access.

• Syntax: <Record_Variable>.<Field Name>

• For example, to access the 'price' field of the variable 'v1' of type 'car',
we write: v1.price

• Assignment: v1.price ← 2000.00;

Or: floatVariable ← v1.price;

• Reading: read(v1.price);



Array of structures
• In order to manage multiple entities of a given type (e.g., cars), we 

use a one-dimensional array structure to store these elements. 

• Another example, If there is a need to record information about 100 
students and manipulate their data, we declare the 'student' 
structure and create a vector of size 100 containing elements of type 
'student'. This is depicted in the example below:

type student = structure;
first_name:string;
last_name:string;
…
end;
var student_list = array [0..n] of student;



Operations on structures
• Filling (read) data for a number of car structure :

Algorithm fill_array_car;
const n=10; 
type car = structure

brand: string;
c: string;
price: float;

end;
var List_car = array[0..n] of car; 
i:integer;
begin

for i 0 to (n -1) do
begin

read(List_car[i]. brand);
read (List_car[i].c);
read (List_car[i]. price);

end;
end.



Operations on structures
• Displaying (writing) data of a number of elements of structure type (car)

for i 0 to (n -1) do
begin

write(List_car[i]. brand);
write (List_car[i].c);
write(List_car[i]. price);

end;



Operations on structures
• Sort the list of cars according to their price (bubble sort)

var tmp : car; i,j:integer;
…
for i (n-2) to 0 do
begin

for j 0 to i do 

if(List_car[j].price> List_car[j+1].price) then
begin

tmp List_car[j]; 
List_car[j] List_car[j+1];
List_car[j+1]tmp;

end;
end;


