Solution

Exercise 1

a) we will show by induction that P(n); $\forall n \in \mathbb{N}, (1+\alpha)^n \ge 1 + n\alpha$

for n=0, we have $(1+\alpha)=1\geq 1+0\alpha=1$, so $P\left(0\right)$ is true assume that $P\left(n\right)$ is true and show that $P\left(n+1\right)$ is true , we show that $(1+\alpha)^{n+1}\geq 1+(n+1)\,\alpha$ since $1+\alpha\geq 0$ then $(1+\alpha)^{n+1}=(1+\alpha)\,(1+\alpha)^n\geq (1+\alpha)\,(1+n\alpha)=0$

since $1+\alpha \ge 0$ then $(1+\alpha)^{n+1} = (1+\alpha)(1+\alpha)^n \ge (1+\alpha)(1+n\alpha) = 1+\alpha+n\alpha+n^2\alpha \ge 1+(n+1)\alpha$ / $(n^2\alpha \ge 0)$ therefore P(n+1) is true, hence

$$\forall n \in \mathbb{N}, (1+\alpha)^n \ge 1 + n\alpha$$

- If we put $\alpha = 1$ we obtain the following inequality $\forall n \in \mathbb{N}, 2^n \ge n$ $(1+1)^n \ge 1+n \ge n$
 - b) Let $(a, b) \in \mathbb{Q}^+ \times \mathbb{Q}^+$ such that $\sqrt{ab} \notin \mathbb{Q}^*$

Suppose that $\sqrt{a} + 3\sqrt{b} \in \mathbb{Q}$. So $\exists (p,q) \in \mathbb{Z} \times \mathbb{Z}^*$ such that $\sqrt{a} + 3\sqrt{b} = \frac{p}{a}$

Then, $\left(\sqrt{a}+3\sqrt{b}\right)^2=\left(\frac{p}{q}\right)^2$ which impplies that $a+9b+6\sqrt{ab}=\frac{p^2}{q^2}$

so $\sqrt{ab} = \frac{\frac{p^2}{q^2} - a - 9b}{6} \in \mathbb{Q}$ which contradicts the fact that $\sqrt{ab} \notin \mathbb{Q}$. then $\sqrt{a} + 3\sqrt{b} \notin \mathbb{Q}$

Exercise 2: integer part

 $E\left(x\right) \overset{def}{\Rightarrow}$ is the greatest integer less than or equal to $x: \forall x \in \mathbb{R}$ $E\left(x\right) \leq x < E\left(x\right) + 1$ or $x - 1 < E\left(x\right) \leq x$

- (1) $x = 0.79 \Rightarrow E(0.79) = 0, E(1.08) = 1, E(\frac{11}{3}) = 3, E(e) = 2$
- 2) Show that: $\forall x \in \mathbb{Z}, \ E(x) + E(-x) = 0$
- if $x \in \mathbb{Z}$: E(x) = x and E(-x) = -x so E(x) + E(-x) = 0
- if $x \in \mathbb{R}/\mathbb{Z}$ then $E(x) \le x < E(x) + 1 \Rightarrow -E(x) 1 < x \le -E(x) \Rightarrow$

$$-\underbrace{E\left(x\right)-1}_{K} < x \le -\underbrace{E\left(x\right)-1}_{K} + 1, \quad K \in \mathbb{Z} \text{ then } -E\left(x\right) - 1 \text{ is}$$

the integer part of -x

$$2) \ \forall x \in \mathbb{R} \ , \text{ we show that } E(\frac{x}{2}) + E(\frac{x+1}{2}) = E(x)$$
 we distinguish $2 \operatorname{cases} x \in \mathbb{R} \Rightarrow \begin{cases} E(x) \text{ is even} \Rightarrow E(x) = 2k \\ \text{ or } E(x) \text{ is odd } \Rightarrow E(x) = 2k + 1 \end{cases}$ or
$$E(x) \text{ is odd } \Rightarrow E(x) = 2k + 1$$

$$2k \leq x < 2k + 1 \ , \text{ we divide by } 2$$

$$k \leq \frac{x}{2} < \frac{2k+1}{2} \Rightarrow k \leq \frac{x}{2} < k + \frac{1}{2} < k + 1 \text{ from where }$$

$$E\left(\frac{x}{2}\right) = k$$
 and
$$E(x) + 1 \leq x + 1 < E(x) + 2 \Rightarrow \frac{E(x) + 1}{2} \leq \frac{x+1}{2} < \frac{2k+1}{2} < \frac{2k+1}{2} < \frac{2k+1}{2} < \frac{2k+1}{2}$$
 which give $k < k + \frac{1}{2} \leq \frac{x+1}{2} < k + 1$ then
$$E\left(\frac{x+1}{2}\right) = k \text{ d'ou } E\left(\frac{x}{2}\right) + E\left(\frac{x+1}{2}\right) = k + k = 2k = E(x)$$

$$\frac{2^{nd} \text{ case}}{2^{nd} \text{ case}} \bullet E(x) = 2k + 1 \text{ in the same way}$$

Exercise3

1• we prove the second triangle inequality $\forall x, y \in \mathbb{R}, \ ||x| - |y|| \le |x + y|$

let

$$|x| = |(x+y) + (-y)| \le |x+y| + |-y| = |x+y| + |y|$$

we have

$$|x| - |y| \le |x + y| \dots (1)$$

in the same way

$$|y| = |(y+x) + (-x)| \le |x+y| + |-x| = |x+y| + |x|$$

then

$$|y| - |x| \le |x + y| \implies -(|x| - |y|) \le |x + y| \implies |x| - |y| \ge -|x + y| \dots (2).$$

From (1) and (2), we have
$$-|x+y| \le |x| - |y| \le |x+y|$$
 which implies $||x| - |y|| \le |x+y|$

in the same way, we can show that $||x| - |y|| \le |x - y|$

$$2 \bullet \ \forall x,y \in \mathbb{R}, \text{we have} \qquad 2 \, |x| = |(x+y) + (x-y)| \ \Rightarrow \ 2 \, |x| \le |x+y| + |x-y|$$

$$2|y| = |(x+y) + (y-x)| \Rightarrow 2|y| \le$$

 \geq

$$|x+y|+|y-x|$$

then

$$|x| + |y| \le |x + y| + |y - x|$$
, for all $x, y \in \mathbb{R}$

 $|x|+|y|\leq|x+y|+|y-x|\,,\,\text{for all }x,y\in\mathbb{R}$ 3. Prove that $\,\forall\,(x,y)\in\mathbb{R}^2:1+|xy-1|\leq(1+|x-1|)\,(1+|y-1|)$ Let $x, y \in \mathbb{R} : (1 + |x - 1|)(1 + |y - 1|) = 1 + |x - 1| + |y - 1| +$ |(x-1)(y-1)|

and
$$1 + |x - 1| + |y - 1| + |(x - 1)(y - 1)| \ge 1 + |x + y - 2| + |xy - x - y + 1|$$

$$1 + |x + y - 2 + xy - x - y + 1| \ge 1 + |xy - 1|$$

then $\forall (x, y) \in \mathbb{R}^2 : 1 + |xy - 1| \le (1 + |x - 1|)(1 + |y - 1|)$

Exercise 5

It holds that $\inf(A) \leq x$ for all $x \in A$ and therefore, $-\inf(A) \geq -x$ for all $x \in A$,

which is equivalent to $-\inf(A) \geq y$ for all $y \in -A$.

Therefore, $-\inf(A)$ is an **upper bound** of the set -A and therefore $\sup(-A) \le -i\inf(A).$

Now, $y \leq \sup(-A)$ for all $y \in -A$, or equivalently $-x \leq \sup(-A)$ for all $x \in A$.

Hence, $x \geq \sup(-A)$ for all $x \in A$. This proves that $-\sup(-A)$ is a **lower bound** of A and therefore $-\sup(-A) < \inf(A)$, or $\sup(-A) \ge -\inf(A)$.

This proves that $\sup(-A) = -\inf(A)$.

Exercise 6:

$$\bullet A = \{x \in \mathbb{R} : |2x+1| \le 5\} = \{x \in \mathbb{R} : -5 \le 2x+1 \le 5\} = \{x \in \mathbb{R} : \frac{-6}{2} \le x \le \frac{4}{2}\}$$

$$= \{x \in \mathbb{R} : -3 \le x \le 2\} = [-3, 2]$$

A is bounded with $\sup A = \max A = 2$ and $\inf A = \min A = -3$. $\bullet B = \{x \in \mathbb{R}, e^x < \frac{1}{2}\} = \{x \in \mathbb{R}, x < \ln \frac{1}{2}\} = \{x \in \mathbb{R}, x < -\ln 2\} = \{x \in$ $]-\infty, -\ln 2[$

B is bounded above such that $\sup B = -\ln 2$, on the other hand B is not bounded below

so $\nexists \inf B$, then B is not bounded.

•
$$C = \left\{ E\left(\frac{1}{n}\right), n \in \mathbb{N}^* \right\}$$

si $n = 1, E(1) = 1 \in C \Rightarrow C \neq \emptyset \Rightarrow D$ is bounded

then $\exists \sup C, \exists \inf C$ such that $\forall c \in C$; inf $C \leq c \leq \sup C$

We have if n > 1 then $0 < \frac{1}{n} < 1$ and $E\left(\frac{1}{n}\right) = 0$ so $C = \{0, 1\} \Rightarrow$ $\sup C = \max C = 1 \text{ and inf } C = \min C = 0$

$$\frac{\textbf{Exercise7}}{\bullet A} = \{\frac{n-2}{n+1}; n \in \mathbb{N}^*\}$$

A is note empty: for $n=0, \frac{n-2}{n+1}=-2 \in A$

we have $\forall n \in \mathbb{N}$; $\frac{n-2}{n+1} = 1 - \frac{3}{n+1}$.

 $\forall n \in \mathbb{N}, \ n+1 > 1 \Rightarrow 0 < \frac{3}{n+1} < 3 \Rightarrow 1 > 1 - \frac{3}{n+1} > -2.$

Then A is bounded below by -2 and bounded above by 1 then A is bounded

 $\Rightarrow \exists \sup A \text{. inf } A \text{ such that } \forall x_n \in A; \inf A \leq x_n \leq \sup A.$

The set of upper bound of A is $[1, +\infty]$ and the set of lower bound of A is $]-\infty,-2]$

since $-2 \in A$ then $-2 = \min A = \inf A$

 $1 \notin A$, then $\nexists \max A$, show that $\sup A=1$,

using characterization of the Supremum

$$\sup A = 1 \Leftrightarrow \begin{cases} \forall x_n \in A, x_n < 1 \\ \forall \varepsilon > 0, \exists x_{n_0} \in A \text{ such that } x_{n_0} > 1 - \varepsilon \end{cases}, M =$$

1

$$x_{n_0} \in A \Rightarrow \exists n_0 \in \mathbb{N}^* \text{ such that } x_{n_0} = 1 - \frac{3}{n_0 + 1}$$

which implies $\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}^* \text{ such that } 1 - \frac{3}{n_0 + 1} > 1 - \varepsilon \Rightarrow$

$$\frac{3}{n_0+1} < \varepsilon$$

$$\forall \varepsilon > 0, (n_0 + 1) \varepsilon > 3$$

According to Archimedean property: $\exists n_0 \in \mathbb{N}^*$ such that $n_0 >$

$$\frac{3}{\varepsilon} - 1$$
, just take: $n_0 = E\left(\frac{3}{\varepsilon} - 1\right) + 1$,

2) Let
$$B = \{x^2 + 1; x \in]1, 2]\}$$
 we have $x \in]1, 2] \Rightarrow 1 < x \le 2 \Rightarrow 1 < x^2 \le 4$ (x^2 increasing function) $1+1 < x^2+1 \le 4+1$ that s to say $\forall y \in B, y = x^2+1, 2 < y \le 5$

then the set B is bounded below by 2 and bounded above by 5 hence B is bounded.

indeed there exist inf B and sup B such that $\forall y \in B$; inf B < $y \leq \sup B$

on the other hand $5 = 2^2 + 1 \in B$, therefore $\sup B = \max B =$ 5, let us show that inf B=2.

We use the characterization of infimum

inf
$$B = 2 \Leftrightarrow \begin{cases} \forall y \in B, 2 < y \\ \forall \varepsilon > 0, \exists y_0 \in B \text{ such that } 2 + \varepsilon > y_0 \end{cases}, m = 2$$

inf $B = 2 \Leftrightarrow \forall \varepsilon > 0, \exists x_0 \in]1, 2] \text{ such that } 2 + \varepsilon > x_0^2 + 1 \Rightarrow$

 $1+\varepsilon > x_0^2$

which give $|x_0| < \sqrt{1+\varepsilon} \Leftrightarrow -\sqrt{1+\varepsilon} < x_0 < \sqrt{1+\varepsilon}$ so, we search for the existence of $x_0 \in]1,2] \cap]-\sqrt{1+\varepsilon}, \sqrt{1+\varepsilon}[$, as $\varepsilon > 0 \text{ then } \sqrt{1+\varepsilon} > 1$

hence, we distinguish two cases

•If $\sqrt{1+\varepsilon} < 2$

in this case we take $x_0 \in \left]1, \sqrt{1+\varepsilon}\right[$

• If $\sqrt{1+\varepsilon} > 2$

in this case we take any value of $x_0 \in]1,2]$

then $\forall \varepsilon > 0, \exists x_0 \in]1, 2]$ such that $2 + \varepsilon > x_0^2 + 1$ hence inf B = $2, and \ 2 \notin B \ then \ \nexists \min B$