Solutions : Serie 3

Exercise 2:
By definition :
111;1_1 U, =1Ve>0,INeN,VneN: (n>N = |u, — ]| < ¢).
3v/n 3

le Fi li = -
® For n—l>r4{1004\/_+5 4

Let € > 0, we want to prove that there exists 3N, € N such that 43!:_ 5 z‘ <
g; for n > N..
12¢/n—3(4 1
We have : M—§ = vn—3(4yn +5) = > < €, there-
4/n+5 4 4(44/n+5) 164/n + 20

15 15 20 15 5\2

2
15 )
ttaken=F || — — - 1
Just take n (166 4) +
n? 1
2efor  Im 2171 2
n 1
Ve > 0,3N. e N,Vn € N: (n>N€:»‘4n2_1 71’<€
n? 1 4n? —4n? +1 1
¢ e 4’ 4(dn? — 1) ‘ ‘4(477,2—1)‘ = & o obtien
1 11 11
4n? —1) > — — + = th -
(4n )>4:n > oz T g thenn >/ 7e- + 7
We tak E ! —i—l +1
€ take n = — — .
16e 4
n
N e Vi

I
n—lill—loo 2n +1

Let € > 0 look for 3N, € N such that (=1)
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VA>0,3NeN,Yn>N=In(n) > A
We have In (n) > A & n > e
we take N =E (e?) +1
.Exercise 1 : study of convergence
a sequence (Uy,),, c;n converges if and only if lim U, = finite
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hence the sequence (C),)
Exercise 3
Study of the monotonicity of (uy,)
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<1 (bounded) then
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Upt1 — Up > 0 Upt1 > Up.
So the sequence (uy,) is increasing,.
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the sequence (u,,) is bounded above by 1 and increasing so it converges to a
finite limit [ such that 3 <l<1
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it is clear that  x,, > 0,Vn € N*, then the sequence (z,,) is bounded above
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for the study of the monotony (z,), just compare the quotient by 1
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so the sequence (z,) is decreasing and bounded below so it converges
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Study of monotony
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we have u,11 = 1;::1@ = Uy, + m > Uy, S0 (uy,) is strictly increasing,.
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therefore (u,) is bounded above;
As (uy,) is an increasing and bounded above ,it is therefore convergent
Exercise 5
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2- Let us show by induction that : Vn e N, : 0 < u,, < 2.
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We assume that it is true for n and we show that it is true for n + 1
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we use the recurrent sequence with
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6) From question 5, we can deduce that the sequence (uy,), oy converges to
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Exercise7
we show that (u,) and (v,) are two adjacent sequences
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By induction
for n=0 ug < vg 1is true
We assume that it is true for (n) and show that it is true for (n + 1)
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estudy of monotony



2U, Uy, 22U, vy, — ui — UpUp,

a) Un+1 — Un = — Un =
Uy, + vnQ Uy, + Upn
UpUp — U Uy (U, — U . . . .
e (i n (Un = Un) > 0 < (uy,) is strictly increasing
Uy, + Up Up + Up
Up + Un Up — Up

b) vpt1 — v, = <0 (up <wvy) < (vy) is strictly
decreasing

As (uy,) is strictly increasing and bounded above by vy thereforeonc (u,,) is
convergent, it admits a finite limit . The same for the sequence (v,,) is strictly
decreasing and bounded below by ug then (v,) is convergent , it has a finite
limit

e We set that lim u, =land lim v, = then
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So (uy) and (v,) are adjacent
Exercise 8
(un) is not a cauchy sequence < Ve > 0,3IN € N* such that Vp,q € N,p,q >: N = |u, —uy| < ¢
& de > 0,VN € N* such that

2 T T2

Ip,g € N:p,g>: NAluy,—uy| >e.

Let us show by induction that VN > 1 we have uony — uny >
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For N = 1we have usy —uy = ug — ug = 1—|—§ —125
Assume that it is true for N and we show that it is true for N
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Which implies that the sequence (u,,) is not a cauuchy sequence.Indeed, we
set € = % >0
Let N € N*, we put p=2N, ¢ = N, such that p=2N > N
and ¢ = N > N.We obtain:|u, — uy| = |uany — un| = uany —uny > 5= €.
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