Solutions: Serie 3

Exercise 2:

By definition:

 $\lim_{n \to +\infty} u_n = l \Leftrightarrow \forall \varepsilon > 0, \exists N \in \mathbb{N}, \, \forall n \in \mathbb{N} : (n \ge N \Longrightarrow |u_n - l| < \varepsilon)$

$$1 \bullet \text{ For } \lim_{n \to +\infty} \frac{3\sqrt{n}}{4\sqrt{n}+5} = \frac{3}{4}$$

Let $\varepsilon > 0$, we want to prove that there exists $\exists N_{\varepsilon} \in \mathbb{N}$ such that $\left| \frac{3\sqrt{n}}{4\sqrt{n}+5} - \frac{3}{4} \right| < 1$

$$\varepsilon$$
; for $n \ge N_{\varepsilon}$.
We have : $\left| \frac{3\sqrt{n}}{4\sqrt{n}+5} - \frac{3}{4} \right| = \left| \frac{12\sqrt{n}-3\left(4\sqrt{n}+5\right)}{4\left(4\sqrt{n}+5\right)} \right| = \left| \frac{15}{16\sqrt{n}+20} \right| < \varepsilon$, there-

fore
$$16\sqrt{n} + 20 > \frac{15}{\varepsilon} \Rightarrow \sqrt{n} > \frac{15}{16\varepsilon} - \frac{20}{16} \Rightarrow n > \left(\frac{15}{16\varepsilon} - \frac{5}{4}\right)^2$$
.

Just take
$$n = E\left[\left(\frac{15}{16\varepsilon} - \frac{5}{4}\right)^2\right] + 1$$

2• For
$$\lim_{n \to +\infty} \frac{n^2}{4n^2 - 1} = \frac{1}{4}$$

$$\forall \varepsilon > 0, \exists N_{\varepsilon} \in \mathbb{N}, \forall n \in \mathbb{N} : (n \ge N_{\varepsilon} \Longrightarrow \left| \frac{n^2}{4n^2 - 1} - \frac{1}{4} \right| < \varepsilon.$$

We have
$$\left| \frac{n^2}{4n^2 - 1} - \frac{1}{4} \right| = \left| \frac{4n^2 - 4n^2 + 1}{4(4n^2 - 1)} \right| = \left| \frac{1}{4(4n^2 - 1)} \right| < \varepsilon$$
, on obtient

$$(4n^2 - 1) > \frac{1}{4\varepsilon} \Rightarrow n^2 > \frac{1}{16\varepsilon} + \frac{1}{4} \text{ then } n > \sqrt{\frac{1}{16\varepsilon} + \frac{1}{4}}$$

We take
$$n = E\left[\sqrt{\frac{1}{16\varepsilon} + \frac{1}{4}}\right] + 1$$
.

$$3 \bullet \lim_{n \to +\infty} \frac{\left(-1\right)^n}{2n+1} = 0$$

Let
$$\varepsilon > 0$$
 look for $\exists N_{\varepsilon} \in \mathbb{N}$ such that $\left| \frac{(-1)^n}{2n+1} \right| < \varepsilon$; for $n \geq N_{\varepsilon}$.

$$\forall \varepsilon > 0, \exists N_{\varepsilon} \in \mathbb{N}, \forall n \in \mathbb{N} : (n \ge N_{\varepsilon} \Longrightarrow \left| \frac{(-1)^{n'}}{2n+1} \right| < \varepsilon.$$

We have
$$\left| \frac{(-1)^n}{2n+1} \right| = \frac{1}{2n+1} < \varepsilon$$
 which gives $2n+1 > \frac{1}{\varepsilon}$ then $n > \frac{1}{2} \left(\frac{1}{\varepsilon} - 1 \right)$, just

take
$$n = E\left[\frac{1}{2}\left(\frac{1}{\varepsilon} - 1\right)\right] + 1.$$

$$4 \bullet \lim_{n \to +\infty} \ln(n) = +\infty.$$

$$\forall A > 0, \exists N \in \mathbb{N}, \forall n \geq N \Rightarrow \ln(n) > A$$

We have $\ln(n) > A \Leftrightarrow n > e^A$
we take $N = E(e^A) + 1$

We have
$$\ln(n) > A \Leftrightarrow n > e^A$$

we take
$$N = E(e^A) + 1$$

.Exercise 1: study of convergence

a sequence $(U_n)_{n\in IN}$ converges if and only if $\lim_{n\to +\infty} U_n = l$ finite

We find the limit of a sequence when $n \to +\infty$

1)
$$B_n = \frac{\sqrt{n-n+1}}{2\sqrt{n+n+2}}$$

 $\lim_{n \to +\infty} B_n = \lim_{n \to +\infty} \frac{\sqrt{n} - n + 1}{2\sqrt{n} + n + 2} = \lim_{n \to +\infty} \frac{-n}{n} = -1 \Rightarrow (B_n)_{n \in IN} \text{ converges}$

to -1
2)
$$D_n = \frac{1! + 2! + \dots + (n+1)!}{(n+1)!}$$
, we note that $1! + 2! + \dots + n! + (n+1)! \le (n-1)(n-1)! + n! + (n+1)!$

then
$$1 \le D_n \le \frac{(n-1)(n-1)! + n! + (n+1)!}{(n+1)!} = \frac{(n-1)(n-1)!}{(n+1)!} + \frac{n!}{(n+1)!} + 1$$

and $1 \leq \lim_{n \to +\infty} D_n \leq \lim_{n \to +\infty} \frac{(n-1)(n-1)!}{(n+1)!} + \frac{n!}{(n+1)!} + 1 = 1$ therfore $\lim_{n \to +\infty} D_n = 1$ and the sequence $(u_n)_n$ converges to 1

3) Let
$$C_n = t_n \frac{1}{2 + \sin\sqrt{n}}$$
 such that $t_n = \sqrt{n+1} - \sqrt{n}$
we have $t_n = \frac{\left(\sqrt{n+1} - \sqrt{n}\right)\left(\sqrt{n+1} + \sqrt{n}\right)}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}}$ and $T_n = 0$

on the other hand $(-1 \le \sin \sqrt{n} \le 1)$ which gives $\frac{1}{3} \le \frac{1}{2 + \sin \sqrt{n}} \le 1$ (bounded) then $C_n = 0$

hence the sequence $(C_n)_n$ converges to 0

Exercise 3

Study of the monotonicity of (u_n)

$$\begin{aligned} u_{n+1} - u_n &= \left(\frac{1}{n+2} + \frac{1}{n+3} + \frac{1}{n+4} + \dots + \frac{1}{2n+1} + \frac{1}{2n+2}\right) - \left(\frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{2n+1} + \frac{1}{2n+2} - \frac{1}{n+1}\right) \\ &= \frac{1}{2n+1} + \frac{1}{2n+2} - \frac{1}{n+1} \\ &= \frac{(2n+2) + (2n+1) - 2(2n+1)}{(2n+1)(2n+2)} = \frac{1}{(2n+1)(2n+2)} > 0 \Rightarrow \end{aligned}$$

 $u_{n+1} - u_n > 0 \Leftrightarrow u_{n+1} > u_n.$

So the sequence (u_n) is increasing.

2- We have : $\forall k \in \{1, 2.3, ..., n\}$

$$\frac{1}{2n} \le \frac{1}{n+k} < \frac{1}{n+1}$$

We obtain

$$\underbrace{\frac{1}{2n} + \frac{1}{2n} + \frac{1}{2n} \dots + \frac{1}{2n}}_{n \text{ fois}} \leq \underbrace{\frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{2n}}_{n \text{ fois}} < \underbrace{\frac{1}{n+1} + \frac{1}{n+1} + \frac{1}{n+1} + \frac{1}{n+1} + \dots + \frac{1}{n+1}}_{n \text{ fois}}$$

Which give

$$\frac{n}{2n} \le u_n < \frac{n}{n+1}$$

this leads to

$$\frac{1}{2} \le u_n < 1$$

the sequence (u_n) is bounded above by 1 and increasing so it converges to a finite limit l such that $\frac{1}{2} \le l < 1$

Exercise 4:- •Let $x_n = \frac{1 \times 3 \times 5 \times ... (2n-1)}{2 \times 4 \times 6 \times ... 2n}$, it is clear that $x_n > 0, \forall n \in \mathbb{N}^*$, then the sequence (x_n) is bounded above by 0,

R

for the study of the monotony
$$(x_n)$$
, just compare the quotient $\frac{x_{n+1}}{x_n}$ by 1

$$\frac{x_{n+1}}{x_n} = \frac{1 \times 3 \times 5 \times \dots (2n+1)}{2 \times 4 \times 6 \times \dots 2n \times (2n+2)} \times \frac{2 \times 4 \times 6 \times \dots 2n}{1 \times 3 \times 5 \times \dots (2n-1)} = \frac{(2n+1)}{(2n+2)} < \frac{2n+1}{2n+2}$$

so the sequence (x_n) is decreasing and bounded below so it converges

•Let
$$y_n = \sum_{k=1}^n \frac{1}{k^p} \ (p \ge 2)$$

we have $u_{n+1} = \sum_{k=1}^{n+1} \frac{1}{k^p} = u_n + \frac{1}{(n+1)^p} > u_n$, so (u_n) is strictly increasing.

we have
$$u_{n+1} = \sum_{k=1}^{n} \frac{1}{k^p} = u_n + \frac{1}{(n+1)^p} > u_n$$
, so (u_n) is strictly increasing. On the other hand, we have $u_n = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p} < 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} < 1 + \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \dots + \frac{1}{(n-1) \times n} < 1 + \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \frac{1}{n-1} < 2 - \frac{1}{n} < 2$

therefore (u_n) is bounded above;

As (u_n) is an increasing and bounded above it is therefore convergent

Exercise 5

let
$$(u_n)$$
 defined by
$$\begin{cases} u_0 = 1 \\ u_{n+1} = \frac{3u_n + 2}{u_n + 2} \end{cases}$$

1-We write (u_{n+1}) in the form $u_{n+1}=a+\frac{b}{u_n+2}$. $\Rightarrow u_{n+1}=\frac{au_n+2a+b}{u_n+2}$ by identification we find that $\begin{cases} a=3\\ 2a+b=2\Rightarrow b=-4 \end{cases}$

hence
$$u_{n+1} = 3 - \frac{4}{u_n + 2}$$

2- Let us show by induction that : $\forall n \in \mathbb{N}$, : $0 < u_n < 2$.

For
$$n = 0$$
 $0 < u_0 < 2$

We assume that it is true for n and we show that it is true for n+1

$$0 < u_n < 2. \Rightarrow 2 < u_n + 2 < 4 \Rightarrow -2 < -\frac{4}{u_n + 2} < -1 \Rightarrow 0 < 1 < 3 - \frac{4}{u_n + 2} < 2$$

3-Study of monotony \Rightarrow

we use the recurrent sequence with

$$f(x) = 3 - \frac{4}{x+2} \Rightarrow f' > 0 \Rightarrow (u_n)_{n \in \mathbb{N}}$$
 is monotonic and $sig(u_{n+1} - u_n) = 0$

$$sig (u_1 - u_0) > 0$$

$$u_{n+1} - u_n = \frac{3u_n + 2}{u_n + 2} - u_n = \frac{-u_n^2 + u_n + 2}{u_n + 2} = \frac{(2 - u_n)(1 + u_n)}{u_n + 2} > 0 \text{ in }]0, 2[\text{ then } (u_n)_{n \in \mathbb{N}} \text{ es}$$
4-Let us show that for all $n \in \mathbb{N}$, : $|u_{n+1} - 2| < \frac{1}{2} |u_n - 2|$.

4-Let us show that for all $n \in \mathbb{N}$, : $|u_{n+1} - 2| < \frac{1}{2} |u_n|$

we have
$$|u_{n+1} - 2| = \left| 3 - \frac{4}{u_n + 2} - 2 \right| = \left| 1 - \frac{4}{u_n + 2} \right| = \left| \frac{u_n - 2}{u_n + 2} \right|$$
 but $\frac{1}{u_n + 2} < \frac{1}{2}$,

we therefore obtain $|u_{n+1}-2|=\left|\frac{u_n-2}{u_n+2}\right|<\frac{1}{2}|u_n-2|$,

5) Deduce that $\forall n \in \mathbb{N}$, we have : $|u_n - 2| < \left(\frac{1}{2}\right)^n |u_0 - 2|$.

according to question 4 we have $|u_{n+1}-2| < \frac{1}{2} |u_n-2| \Rightarrow$

$$|u_n - 2| < \frac{1}{2} |u_{n-1} - 2| < \left(\frac{1}{2}\right) \left(\frac{1}{2}\right) |u_{n-2} - 2| \dots < \left(\frac{1}{2}\right)^n |u_0 - 2|$$
 (we can prove by induction)

6) From question 5, we can deduce that the sequence $(u_n)_{n\in\mathbb{N}}$ converges to l=2

Exercise7

we show that (u_n) and (v_n) are two adjacent sequences

such that
$$\begin{cases} u_{n+1} = \frac{2u_n v_n}{u_n + v_n} \\ v_{n+1} = \frac{u_n + v_n}{2} \end{cases}$$

• We first show that $\forall n \in \mathbb{N} , u_n < v_n$

By induction

for
$$n = 0$$
 $u_0 < v_0$ is true

We assume that it is true for (n) and show that it is true for (n+1)

We have
$$u_n < v_n$$

then $v_{n+1} - u_{n+1} = \frac{u_n + v_n}{2} - \frac{2u_n v_n}{u_n + v_n}$

$$= \frac{(u_n + v_n)^2 - 4u_n v_n}{2(u_n + v_n)} = \frac{(u_n - v_n)^2}{2(u_n + v_n)} > 0 \text{ hence}$$

 $v_{n+1} > u_{n+1}$

•study of monotony

a)
$$u_{n+1} - u_n = \frac{2u_nv_n}{u_n + v_n} - u_n = \frac{2u_nv_n - u_n^2 - u_nv_n}{u_n + v_n}$$

$$= \frac{u_nv_n - u_n^2}{u_n + v_n} = \frac{u_n\left(v_n - u_n\right)}{u_n + v_n} > 0 \Leftrightarrow (u_n) \text{ is strictly increasing}$$
b) $v_{n+1} - v_n = \frac{u_n + v_n}{2} - v_n = \frac{u_n - v_n}{2} < 0 \quad (u_n < v_n) \Leftrightarrow (v_n) \text{ is strictly decreasing}$

As (u_n) is strictly increasing and bounded above by v_0 therefore (u_n) is convergent, it admits a finite limit. The same for the sequence (v_n) is strictly decreasing and bounded below by u_0 then (v_n) is convergent, it has a finite

• We set that
$$\lim_{n \to +\infty} u_n = l$$
 and $\lim_{n \to +\infty} v_n = l'$ then $l = \frac{2ll'}{l+l'}$ and $l' = \frac{l+l'}{2} \Rightarrow 2l' = l+l' \Leftrightarrow l = l'$ and $\lim_{n \to +\infty} (u_n - v_n) = l' - l' = 0$

So (u_n) and (v_n) are adjacent

Exercise 8

 $\overline{(u_n) \text{ is not a cauchy sequence}} \Leftrightarrow \overline{\forall \varepsilon > 0, \exists N \in \mathbb{N}^* \text{ such that } \forall p, q \in \mathbb{N}, p, q \geq : N \Rightarrow |u_p - u_q| < \varepsilon}$ $\Leftrightarrow \exists \varepsilon > 0, \forall N \in \mathbb{N}^* \text{ such that}$

 $\exists p, q \in \mathbb{N} : p, q \geq : N \wedge |u_p - u_q| \geq \varepsilon.$

Let us show by induction that $\forall N \geq 1$ we have $u_{2N} - u_N \geq \frac{1}{2}$.

For
$$N = 1$$
 we have $u_{2N} - u_N = u_2 - u_1 = \left(1 + \frac{1}{2}\right) - 1 = \frac{1}{2} \ge \frac{1}{2}$

Assume that it is true for N and we show that it is true for N we have

$$u_{2(N+1)} - u_{N+1} = \left(1 + \frac{1}{2} + \dots + \frac{1}{N+1} + \dots + \frac{1}{2N} + \frac{1}{2N+1} + \frac{1}{2(N+1)}\right) - \left(1 + \frac{1}{2} + \dots + \frac{1}{N} + \frac{1}{N+1}\right)$$

$$= (u_{2N} - u_N) + \frac{1}{2N+1} + \frac{1}{2(N+1)} - \frac{1}{N+1} \ge u_{2N} - u_N$$

$$\Rightarrow u_{2(N+1)} - u_{N+1} \ge \frac{1}{2}$$

hence $\forall N \in \mathbb{N}^* : u_{2N} - u_N \ge \frac{1}{2}$.

Which implies that the sequence (u_n) is not a cauuchy sequence. Indeed, we set $\varepsilon = \frac{1}{2} > 0$

Let $N \in \mathbb{N}^*$, we put p = 2N, q = N, such that $p = 2N \ge N$

and
$$q = N \ge N$$
. We obtain: $|u_p - u_q| = |u_{2N} - u_N| = u_{2N} - u_N \ge \frac{1}{2} = \varepsilon$.

and $q = N \ge N$. We obtain: $|u_p - u_q| = |u_{2N} - u_N| = u_{2N} - u_N \ge \frac{1}{2} = \varepsilon$. Then $\exists \varepsilon > 0, \forall N \in \mathbb{N}^*$ such that $\exists p = 2N, q = N \in \mathbb{N}^* : p, q \ge N \land |u_p - u_q| \ge 1$. $\varepsilon = \frac{1}{2}$.