Solutions

Exercise 1: using the definition of the limit

1)
$$\lim_{x \to 1} 3x + 3 = 6$$
. iff

$$\forall \varepsilon > 0, \quad \exists \delta > 0, \quad \forall x \in D_f : |x - x_0| < \delta \Longrightarrow |f(x) - l| < \varepsilon$$
 so,
$$\forall \varepsilon > 0, \quad \exists \delta > 0, \quad \forall x \in \mathbb{R} : |x - 1| < \delta \Longrightarrow |3x + 3 - 6| < \varepsilon$$
 then
$$|3x - 3| < \varepsilon \Longleftrightarrow 3|x - 1| < \varepsilon \Longleftrightarrow |x - 1| < \frac{\varepsilon}{3}.$$

So, just take: $\delta = \frac{\varepsilon}{2}$.

2)
$$\lim_{x\to 0} \frac{2x-3}{3x+1} = -3$$
. iff $\forall \varepsilon > 0$, $\exists \delta > 0$, $\forall x \in D_f : |x-x_0| < \delta \Longrightarrow |f(x)-l| < \varepsilon$

$$\forall \varepsilon > 0, \ \exists \delta > 0, \ \forall x \in \mathbb{R} \setminus \left\{ \frac{1}{3} \right\} : |x| < \delta \Longrightarrow \left| \frac{2x-3}{3x-1} + 3 \right| < \varepsilon$$

we obtain
$$\left| \frac{2x-3+9x+3}{3x+1} \right| < \varepsilon \Longrightarrow \left| \frac{11x}{3x+1} \right| < \varepsilon$$

We have the neighborhood of 0 (v_0) , $0 - \frac{1}{4}$, $0 + \frac{1}{4} = -\frac{1}{4}$.

$$-\frac{1}{4} < x < \frac{1}{4} \Longrightarrow -\frac{3}{4} < 3x < \frac{3}{4} \Longrightarrow \frac{1}{4} < 3x + 1 < \frac{7}{4} \Longrightarrow \frac{4}{7} < \frac{1}{3x+1} < 4$$

then $\left| \frac{1}{3x-1} \right| < 4...(1)$,

on the other hand, we have $|11x| < \varepsilon \Longrightarrow |x| < \frac{\varepsilon}{11}...(2)$

according to (1) and (2):
$$\left| \frac{11x}{3x+1} \right| = \left| \frac{1}{3x+1} \right| \cdot |11x| < 4 \cdot \frac{\varepsilon}{11} = \frac{4\varepsilon}{11}$$
 so just take $\delta = \frac{4\varepsilon}{11}$

3)
$$\lim_{x\to 0} \frac{1}{x^2} = +\infty$$
. iff $\forall A > 0$, $\exists \delta > 0$, $\forall x \in D_f : |x - x_0| < \delta \Longrightarrow f(x) > A$

so
$$\forall A > 0, \ \exists \delta > 0, \ \forall x \in \mathbb{R}^* : |x| < \delta \Longrightarrow \frac{1}{x^2} > A$$

we have
$$\frac{1}{x^2} > A \Longrightarrow x^2 < \frac{1}{A} \Longrightarrow x < \sqrt{\frac{1}{A}}$$
 then , just take $\delta = \sqrt{\frac{1}{A}}$.

4)
$$\lim_{x \to +\infty} x^2 + x + 1 = +\infty$$
. iff $\forall A > 0$, $\exists B > 0$, $\forall x \in D_f : x > B \Longrightarrow f(x) > A$

4)
$$\lim_{x \to +\infty} x^2 + x + 1 = +\infty$$
. iff $\forall A > 0$, $\exists B > 0$, $\forall x \in D_f : x > B \Longrightarrow f(x) > A$
So $\forall A > 0$, $\exists B > 0$, $\forall x \in \mathbb{R} : x > B \Longrightarrow x^2 + x + 1 > A$ we have $x^2 + x + 1 > x > A$. so , just take $B = A$.

b) We show that

 $\lim_{x\to 0}\cos\left(\frac{1}{x}\right)$ does not exist, it is enough to consider the two sequences:

$$u_n = \frac{1}{2n\pi}$$
 and $v_n = \frac{1}{(2n+1)\pi}$

we obtain

t
$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \frac{1}{2n\pi} = 0$$
 and $\lim_{x \to 0} v_n = \lim_{n \to +\infty} \frac{1}{(2n+1)\pi} = 0$
t $\lim_{n \to +\infty} \cos \frac{1}{u_n} = 1$ et $\lim_{n \to +\infty} \cos \frac{1}{v_n} = -1$.

So $\lim_{x\to 0} \cos\left(\frac{1}{x}\right)$ does not exist

Exercise 2:Calculate the limits

$$\begin{array}{c} 1) \bullet \lim_{x \to a_{x} \to a_{y} \to a_{y} \to a_{y} \to a_{y} \to a_{y} = 0 \\ \text{We have } (x^{2} - a^{2}) = (x - a)(x + a) \text{ and } (x^{3} - a^{3}) = (x - a)(x^{2} + ax + a^{2}) \text{ then } \\ \lim_{x \to a_{y} \to$$

we know that $\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$, then we obtain $-1 < \lim_{x \to +\infty} E\left(\frac{\ln(x)}{x}\right) \le 0$ hence

$$\lim_{x \to +\infty} E\left(\frac{\ln(x)}{x}\right) = 0.$$
5) $\bullet \lim_{x \to 3} \frac{|x-3|}{x-3} = \frac{0}{0}$ I.F

We have $|x-3| = \begin{cases} -x+3 & \text{si } x < 3\\ x-3 & \text{si } x \geq 3 \end{cases}$

Which give $\lim_{x \to 3} \frac{|x-3|}{x-3} = \lim_{x \to 3} \frac{-x+3}{x-3} = \lim_{x \to 3} \frac{-(x-3)}{x-3} = -1$

$$\lim_{x \to 3} \frac{|x-3|}{|x-3|} = \lim_{x \to 3} \frac{x-3}{x-3} = 1$$

Consequently $\lim_{x \leq 3} \frac{|x-3|}{x-3} \neq \lim_{x \geq 3} \frac{|x-3|}{x-3}$ then the function $\frac{|x-3|}{x-3}$ does not admit a limit at the point $x_0 = 3$. 6) $\bullet \lim_{x \to +\infty} \left(\frac{x-1}{x+1}\right)^x = 1^{+\infty}$ FI

6)
$$\bullet \lim_{x \to +\infty} \left(\frac{x-1}{x+1}\right)^x = 1^{+\infty} \text{ F}$$

Let us remember that $\lim_{X \to +\infty} \left(1 + \frac{1}{X}\right)^X = \lim_{X \to 0} (1 + X)^{\frac{1}{X}} = e$ then , we writte $\left(\frac{x-1}{x+1}\right)^x$ at the form $\left(1 + \frac{1}{X}\right)^X$.

Let
$$\frac{x-1}{x+1} = 1 - \frac{2}{x+1} = 1 + \frac{1}{\frac{-(x+1)}{2}}$$
, then $\lim_{x \to +\infty} \left(\frac{x-1}{x+1}\right)^x = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{-(x+1)}{2}}\right)^x$

we use a change of variable or we put $X = \frac{-(x+1)}{2}$ then x = -2X - 1. we obtaint

$$\lim_{x \to +\infty} \left(\frac{x-1}{x+1}\right)^x = \lim_{X \to -\infty} \left(1 + \frac{1}{X}\right)^{-2X-1} = \lim_{X \to -\infty} \left[\left(1 + \frac{1}{X}\right)^X\right]^{-2} \times \left(1 + \frac{1}{X}\right)^{-1} = e^2$$

then
$$\lim_{x \to +\infty} \left(\frac{x-1}{x+1}\right)^x = e^2$$

$$7) \lim_{x \to +\infty} \frac{x}{2} \ln \left(\sqrt{1+\frac{1}{x}}\right) = +\infty \times 0 \text{ I.F}$$

$$\lim_{x \to +\infty} \frac{x}{2} \ln \left(\sqrt{1 + \frac{1}{x}} \right) = \lim_{x \to +\infty} \frac{x}{2} \ln \left(1 + \frac{1}{x} \right)^{\frac{1}{2}} = \lim_{x \to +\infty} \frac{x}{4} \ln \left(1 + \frac{1}{x} \right)$$

we put $X = \frac{1}{x}$ as $x \to +\infty \Rightarrow X \to 0$ we obtain

$$\lim_{X \to 0} \frac{1}{4X} \ln (1+X) = \begin{cases} \text{ method1: } \lim_{X \to 0} \frac{1}{4X} \ln (1+X) = \lim_{X \to 0} \frac{1}{4} \ln (1+X)^{\frac{1}{X}} = \frac{1}{4} \ln e = \frac{1}{4} \\ \text{ method 2:we use the equivalence functions } \ln (1+X) \sim X \\ \text{ which give } \lim_{X \to 0} \frac{1}{4X} \ln (1+X) = \lim_{X \to 0} \frac{1}{4X} X = \frac{1}{4} \end{cases}$$

Exercise 3:

We study the continuity of the following functions

the function $f_1(x) = \frac{5x^2 - 2}{2}$ is continuous on \mathbb{R} so it is continuous sur $[1, +\infty[$.

et $f_2(x) = \cos(x-1)$ is continuous on \mathbb{R} so it is continuous on $]-\infty,1]$.

We study the continuity of function f at point $x_0 = 1$ that's to find $\lim_{x \to \infty} f(x) \stackrel{?}{=}$

$$\lim_{x \to 1} f\left(x\right) \stackrel{?}{=} f\left(x_0\right),$$

we have $\lim_{x \to 0} f(x) = \lim_{x \to 0} \cos(x - 1) = \cos 0 = 1$

and
$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{5x^2 - 2}{2} = \frac{3}{2}$$

and $\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{5x^2 - 2}{2} = \frac{3}{2}$ But $\lim_{x \to 1} f(x) \neq \lim_{x \to 1} f(x)$ then the function f does not continuous at $x_0 = 1$ (f est

$$\frac{1}{x} \stackrel{\text{discontinuous}}{\underset{x \to 1}{\Rightarrow_1}} \xrightarrow{x \to 1} \text{ discontinuous on } \mathbb{R}/\{1\}.$$

$$\bullet g(x) = \begin{cases} x^n \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \quad n \in \mathbb{N}$$

we have $x^n \sin\left(\frac{1}{x}\right)$ is continuous on \mathbb{R}^* and g(0) = 0we seek for the continuity of g(x) at point $x_0 = 0$

• If
$$n = 0 \Rightarrow$$

$$g(x) = \begin{cases} \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

 $\lim_{x\to 0} g(x) = \lim_{x\to 0} \sin\left(\frac{1}{x}\right)$ this limit does not exist then the function g(x) does not continuous at point $x_0 = 0$

• If
$$n \neq 0 \Rightarrow$$

$$g(x) = \begin{cases} x^n \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases},$$

and $\lim_{x\to 0} g(x) = \lim_{x\to 0} x^n \sin\left(\frac{1}{x}\right) = 0$ $\left(x_{x\to 0}^n \to 0 \text{ and } \left|\sin\left(\frac{1}{x}\right)\right| \le 1\right)$ we have $\lim_{x\to 0} g(x) = g(0) = 0$ then the function g(x) is continuous at point 0,as it is

continuous on \mathbb{R}^* so g(x) is continuous on \mathbb{R} .

Exercise 4:

We find the values of
$$\alpha$$
 and β so that the functions f , g , and h are continuous on \mathbb{R} \bullet $f(x) = \begin{cases} x+1 & x \leq 1 \\ 3-\alpha x^2 & x \geq 1 \end{cases}$; for f to be continuous on \mathbb{R} , it must be continuous at the point $x_0 = 1$

f(x) is continuous at x_0 iff

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} f(x) = f(1) = 2 \Rightarrow \lim_{x \to 1} x + 1 = \lim_{x \to 1} \left(3 - \alpha x^2\right) \Rightarrow 2 = 3 - \alpha$$
we get $\boxed{\alpha = 1}$

f(x) is continuous on \mathbb{R} for $\alpha = 1$

•
$$g(x) = \begin{cases} \alpha x + \beta & x \le 0 \\ \frac{1}{x+1} & x \ge 0, \end{cases}$$
 ; for g to be continuous on \mathbb{R} , it must be

continuous at the point $x_0 = 0$

g(x) is continuous at x_0 iff

$$\lim_{x \to 0} g(x) = \lim_{x \to 0} g(x) = g(0) = 1 \Rightarrow \boxed{\beta = 1} et \forall \alpha \in \mathbb{R}.$$

 $g\left(x\right)$ is continuous on \mathbb{R} for $\beta = 1$ and $\forall \alpha \in \mathbb{R}$.

$$\bullet h(x) = \begin{cases} \frac{\sqrt{1+x}-1}{x} & \text{si } x \in [-1,0[\,\cup\,]0,+\infty[\\ \alpha & \text{si } x=0; \end{cases} ; h(x) \text{ is continuous on } [-1,0[\,\cup\,]0,+\infty[\,,$$

we study the continuity of h(x) at point $x_0 =$

h(x) is continuous at point x_0 iff

$$\lim_{x \to 0} h(x) = \lim_{x \to 0} h(x) = h(0) = \alpha \Rightarrow \lim_{x \to 0} \frac{\sqrt{1+x}-1}{x} = \frac{0}{0} I.F$$

$$\lim_{x \to 0} \frac{\sqrt{1+x}-1}{x} = \lim_{x \to 0} \frac{\left(\sqrt{1+x}-1\right)\left(\sqrt{1+x}+1\right)}{x\left(\sqrt{1+x}+1\right)} = \lim_{x \to 0} \frac{1+x-1}{x\left(\sqrt{1+x}+1\right)} = \lim_{x \to 0} \frac{x}{x\left(\sqrt{1+x}+1\right)}$$

$$= \lim_{x \to 0} \frac{1}{\left(\sqrt{1+x}+1\right)} = \frac{1}{2} = h(0) = \alpha \Rightarrow \boxed{\alpha = \frac{1}{2}}$$

As a result, h(x) is continuous on $[1, +\infty[$ for $\alpha = \frac{1}{2}]$

Exercise 5:

Study of the continuity extension of the following functions:

$$1) \quad f(x) = \frac{|x|}{x}.$$

f(x) does not defined in 0;

In addition $\lim_{x \to 0} f(x) = 1$ and $\lim_{x \to 0} f(x) = -1$ therefore $\lim_{x \to 0} f(x)$ does not exist, then f(x) is not extendable by continuity in 0.

2)
$$g(x) = \frac{1 - \cos\sqrt{|x|}}{|x|}$$
.

g(x) is not defined in 0; In addition

$$\lim_{x \to 0} g(x) = \lim_{x \to 0} \frac{1 - \cos\sqrt{|x|}}{|x|} = \lim_{x \to 0} \frac{1 - \cos\sqrt{|x|}}{|x|} \cdot \frac{1 + \cos\sqrt{|x|}}{1 + \cos\sqrt{|x|}} = \lim_{x \to 0} \frac{1 - \cos^2\sqrt{|x|}}{|x| \cdot \left(1 + \cos\sqrt{|x|}\right)}$$

$$= \lim_{x \to 0} \frac{\sin^2\sqrt{|x|}}{\left(\sqrt{|x|}\right)^2 \cdot \left(1 + \cos\sqrt{|x|}\right)} = \lim_{x \to 0} \left(\frac{\sin\sqrt{|x|}}{\left(\sqrt{|x|}\right) \cdot \right)^2 \cdot \frac{1}{\left(1 + \cos\sqrt{|x|}\right)} = \frac{1}{2}.$$

So $\lim_{x\to 0} g(x) = \frac{1}{2}$, then g(x) is extendable by continuity to 0. Its extension function is:

$$G(x) = \widetilde{g}(x) \begin{cases} \frac{1 - \cos\sqrt{|x|}}{|x|} & \text{if } x \neq 0. \\ \frac{1}{2} & \text{if } x = 0. \end{cases}$$

3)
$$h(x) = \frac{(x-1)\sin x}{2x^2 - 2}$$
.

• h(x) does not defined in +1 and in -1,

in addition

$$\lim_{x \to 1} h(x) = \lim_{x \to 1} \frac{(x-1)\sin x}{2x^2 - 2} = \lim_{x \to 1} \frac{(x-1)\sin x}{2(x-1)(x+1)} = \lim_{x \to 1} \frac{\sin x}{2(x+1)} = \frac{\sin(1)}{4}$$

$$= \lim_{x \to -1} h(x) = \lim_{x \to -1} \frac{(x-1)\sin x}{2x^2 - 2} = \pm \infty.$$
In conclusion, $h(x)$ can be extended by continuity in $x_0 = 1$, but is not extendable in

 $x_1 = 1$ and its extension is written:

$$H(x) = \stackrel{\sim}{h}(x) = \begin{cases} \frac{(x-1)\sin x}{2x^2 - 2} & \text{if } x \neq 1, \\ \frac{\sin(1)}{4} & \text{if } x = 1. \end{cases}$$

Exercise 6:

I-1) we have $f(x) = 1 + \sin x - x^2$ a definite and continuous function on $[0, \pi]$. In addition, we have

$$f(0) = 1$$
 and $f(\pi) = 1 - \pi^2 < 0$. then $f(0).f(\pi) < 0$

Then, according to the intermediate value theorem: the equation f(x) = 0 admits at least one solution in $[0, \pi]$.

2) $f(x) = x^3 - 3x - 3$ a definite and continuous function on [2, 3].

In addition, we have f(2) = -1 and f(3) = 15, then $f(2) \cdot f(3) < 0$

Then, according to the intermediate value theorem: the equation f(x) = 0 admits at least one solution in [2, 3]

II- For
$$y \ge x \ge 0$$
, $(\sqrt{y} - \sqrt{x})^2 = y + x - 2\sqrt{xy} \le y - x$ so $\sqrt{y} - \sqrt{x} \le \sqrt{y - x}$

By symetric $\forall x, y \geq 0$, $\left| \sqrt{y} - \sqrt{x} \right| \leq \sqrt{|y - x|}$ Let $\varepsilon > 0$. Consideration is given to $\eta = \varepsilon^2 > 0$.

for all
$$x, y \ge 0$$
, $|y - x| \le \eta \Longrightarrow |\sqrt{y} - \sqrt{x}| \le \sqrt{|y - x|} \le \sqrt{\eta} = \varepsilon$.

the function of square root is therefore uniformly continuous.