

Exercise 1 Let the following instructions of a Turing machine be :

 $\begin{array}{c} q_0 \ s_0 \ D \ q_1 \\ q_0 \ s_1 \ s_2 \ q_2 \\ q_1 \ s_0 \ D \ q_1 \\ q_1 \ s_2 \ D \ q_1 \\ q_1 \ s_2 \ D \ q_1 \\ q_1 \ s_1 \ D \ q_2 \\ q_1 \# \\ q_2 \ s_2 \ G \ q_3 \\ q_3 \ (s_0/s_1/s_2) \ G \ q_3 \\ q_3 \# \end{array}$

Execute this Turing machine on the following sequence : $\#s_0s_0s_2s_1s_2s_1s_2s_0s_2\#$ considering that # represents the blank symbol.

Exercise 2 Write the Turing machine that, given a word on the tape composed of symbols a and b, determines if the word ends with a "b" or not. It writes a "T" at the end of the word if true and an "F" otherwise. Blank symbol =

Exercise 3 Modify the previous Turing machine to check if the input word ends with the same starting symbol (whether it is "a" or "b").

Exercise 4 The decimal values corresponding to the ASCII codes of the letters are :

- A: 65; B: 66; C: 67; etc,

- a : 97; b : 98; c : 99; etc.

To convert the ASCII code of a lowercase letter to the corresponding uppercase letter, you just need to change the 3rd bit from the left, from 1 to 0. Furthermore, the first two bits are always equal to "01" and the last 5 bits remain unchanged.

A: 65 = 01000001 and a: 97 = 01100001C: 67 = 01000011 and c: 99 = 01100011Write the Turing machine that transforms a lowercase letter into an uppercase one.

Exercise 5 Write the Turing machine that recognizes the sequence 0001 in a given word, considering that the tape contains multiple words and the alphabet $\Sigma = \{0, 1, \#\}$. There are multiple words on the tape separated by a single #. Two consecutive # symbols indicate the end of the sequence.

Exercise 6 Write the Turing machine that checks if a given word on the tape contains the following character sequence : « aab ». The blank symbol = # and there are multiple words on the tape separated by a single #. Two consecutive # indicate the end of the sequence. A = $\{a, b, \#\}$. We write a "T" or a "F".

Exercise 7 Write the Turing machine that replaces the "0" that comes after two "1" with a "1". A = $\{0, 1, \#\}$, q₀ is the initial stat and the tape contains one word.

Exercise 8 Write the Turing machine that transforms the word on the tape written in alphabet $\{a, b, \#\}$ so that all "a"s are at the beginning. Example : aabbaba becomes aaaabbb.

Exercise 9 Write the Turing Machine that recognizes palindromes (A palindrome is a word that reads the same backwards as forwards example : 0010100), knowing that the alphabet is $\Sigma = \{0, 1, \#\}$ and the tape contains one word.

Exercise 10 Write the Turing Machine which adds "1" to a binary number n given as input knowing that the alphabet is $\Sigma = \{0, 1, \#\}$, the tape contains multiple words separated by two consecutive # and three consecutive # indicate the end of the tape.

Exercise 11 Show that the following functions are primitive recursive :

- 1. The Plus function, plus = x + y,
- 2. The Sigma function, Sigma = $\sum_{i=0}^{x} i_i$,
- 3. The predecessor function (pred(x)),
- 4. The subtraction function (sub(x,y)) such that $sub(x,y) = \begin{cases} x-y & si \\ 0 & si \\ x < y \end{cases}$
- 5. The absolute difference function $|x y| = \begin{cases} x y \sin x \ge y \\ y x \sin x < y \end{cases}$
- 6. The Alpha function such that $\alpha(x) = \begin{cases} 1 & \text{si } x=0\\ 0 & \text{si } x\neq 0 \end{cases}$,
- 7. The multiplication function, mult = x * y,
- 8. The factorial function, Fact(x) = x!.