

SCIENCE AND TECHNIQUES DEPARTMENT 1st year ST

# **Course 2:** Information coding systems

by

Dr. Samira LAGRINI

lagrini.samira83@gmail.com

Course link : https://elearning-facsci.univ-annaba.dz/course/view.php?id=469



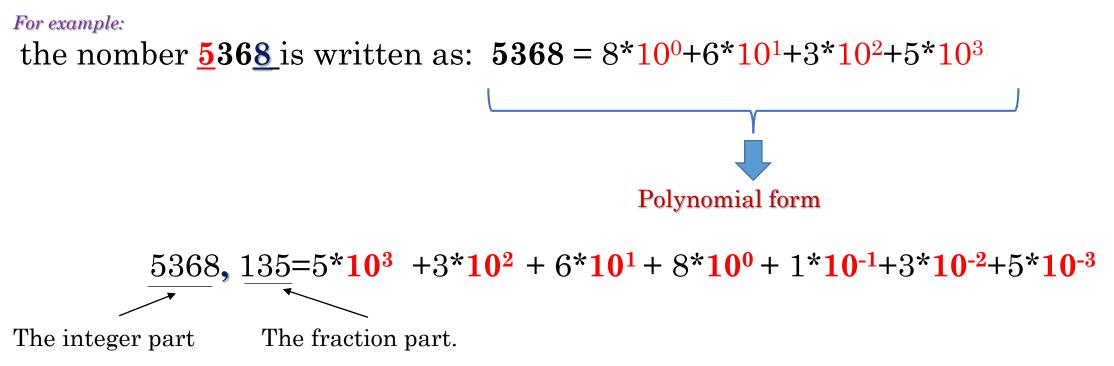
Academic year:2024/2025

### Introduction

Computers process various types of information, such as numbers, text, images, and videos.

- □ This information is always represented in binary form (a sequence of 0s and 1s) such as: 01001011, 11000011, and so on.
- □ The process that allows converting the original representation of information (numbers, text, etc.) into a binary form is called **information encoding**.
- □ To make this transformation possible, **number systems** are essential.

# Number systems




### 1. What is Number System?

- A number system is a system of writing to express numbers.
   It is defined by:
  - A set of symbols
  - Some rules for writing numbers (Juxtaposition of symbols)
- The total number of symbols that are used in a number system is called the base of the number system,
- There are four number systems :
  - Binary
  - Octal
  - Decimal
  - Hexadecimal

### a. Decimal number system

- The decimal number system contains ten unique symbols  $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \rightarrow base 10$
- It is a positional weighted system, The value attached to the symbol depends on its location with respect to the decimal point.



### **b.** Binary number system

- The binary number system is a positional weighted system.
- The symbols used are  $\{0,1\} \rightarrow base=2$
- The binary point separates the integer and fraction parts.

```
Example:

(11011101)<sub>2</sub>

Most significant bit (MSB) Less significant bit(LSB)

Example:

(11011101)<sub>2</sub> = 2^{0*}1+2^{1*}0+2^{2*}1+2^{3*}1+2^{4*}1+2^{5*}0+2^{6*}1+2^{7*}1

= (221)<sub>10</sub>
```

(1110010.01)2

### c. Octal number system

- It is also a positional weighted system.
- It has 8 independent symbols {0,1,2,3,4,5,6,7} => Its base=8

Example:

 $(175)_8 = 80*5 + 81*7 + 82*1$ =(125)10

### d. Hexadecimal number system

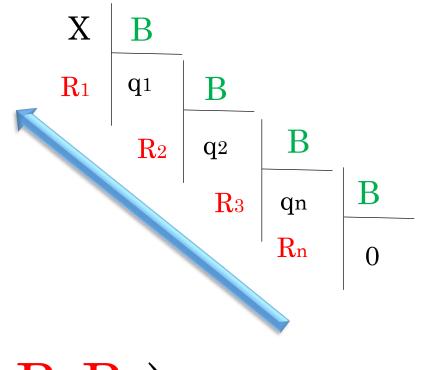
The symbols used are : {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}
→ The base or radix of this number system is 16,

Example:

- (AB01)16
- (150F)16

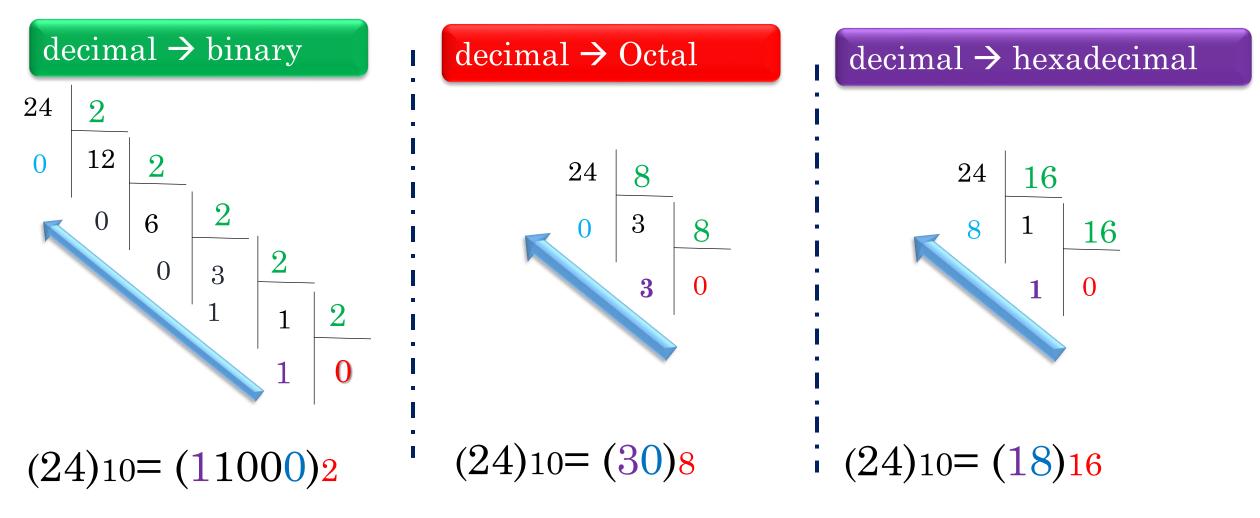
#### CONVERSION FROM ONE NUMBER SYSTEM TO ANOTHER

#### **Conversion from base 'B' to base 10**


- Use polynomial representation
- $X = (a_{n..}a_2a_1a_0)_{\mathbf{b}} = b^0a_0 + b^1a_{1+...}b^na_n = (\sum a_ib^i)_{10}$

#### **Examples:**

- $(11011101,1)_2 = 2^{-1} + 2^{0} + 1 + 2^{0} + 2^{1} + 2^{1} + 2^{3} + 1 + 2^{3} + 1 + 2^{5} + 0 + 2^{6} + 1 + 2^{7} + 1 = (221,5)_{10}$
- $\bigstar (175,26) = 8^{-1} + 2 + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^{-2} + 8^$
- $(14)_{16} = \frac{160 \times 4}{161 \times 1} = (20)_{10}$


### Conversion from base 10 to another base B

- The number is converted to the desired base 'B' using successive division by the Base 'B'.
- Take the remainders of successive divisions on the base X in the opposite direction.



 $(X)_{10} = (R_n ... R_3 R_2 R_1) B$ 

#### Conversion: decimal to base (2,8,16)Soit X= $(24)_{10}$



### Trick: decimal to binary

Use the table below to represent the number written in decimal as a sum of powers of 2.

#### Example

80=64+16=  $2^{6}$  + $2^{4}$   $\rightarrow$  the bits of weight 0,1,2,3,5,7 are set to 0

 $19=16+2+1=2^{4}+2^{1}+2^{0} \rightarrow the bits of weight 2,3,5,6,7 are set to 1$ 

|    | 2 <sup>8</sup> | 2 <sup>7</sup> | 2 <sup>6</sup> | 2 <sup>5</sup> | 2 <sup>4</sup> | 2 <sup>3</sup> | 2 <sup>2</sup> | <b>2</b> <sup>1</sup> | 2 <sup>0</sup> |  |
|----|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------------|----------------|--|
|    | 256            | 128            | 64             | 32             | 16             | 8              | 4              | 2                     | 1              |  |
| 80 | 0              | 0              | 1              | 0              | 1              | 0              | 0              | 0                     | 0              |  |
| 19 | 0              | 0              | 0              | 0              | 1              | 0              | 0              | 1                     | 1              |  |

 $(80)_{10} = (1010000)_2$ 

 $(19)_{10} = (10011)_2$ 





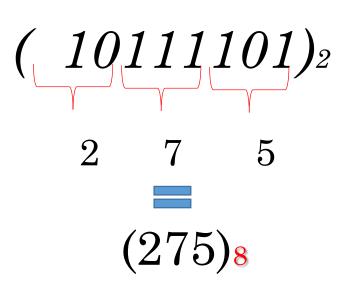
# Conversion: decimal to binary

• Convert (80.15)10 into binary.

**Integer part:** 

 $(80)_{10} = (1010000)_2$ 

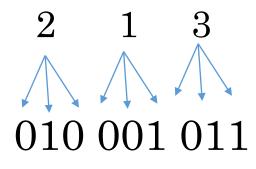
Fraction part: 0.15 x 2 = 0.30 0.30 x 2 = 0.60 0.60 x 2 = 1.20 0.20 x 2 = 0.40 0.40 x 2 = 0.80 0.80 x 2 = 1.60




Result of (80.15)<sup>10</sup> is (1010000.001001)<sup>2</sup>



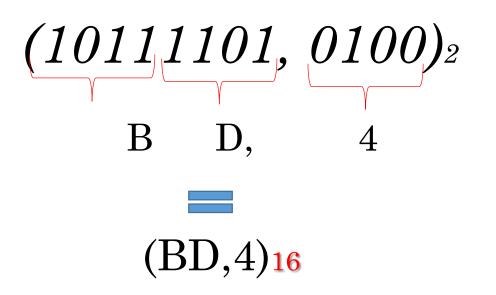
#### Binary $\rightarrow$ Octal


- ➤ Make 3-bit groupings starting from the least significant bit (LSB).
- Replace each grouping with the corresponding value.



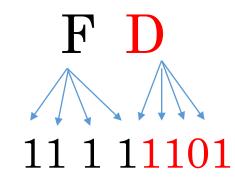
#### $Octal \rightarrow Binary$

Replace each symbol in the octal base with its 3-bit binary value

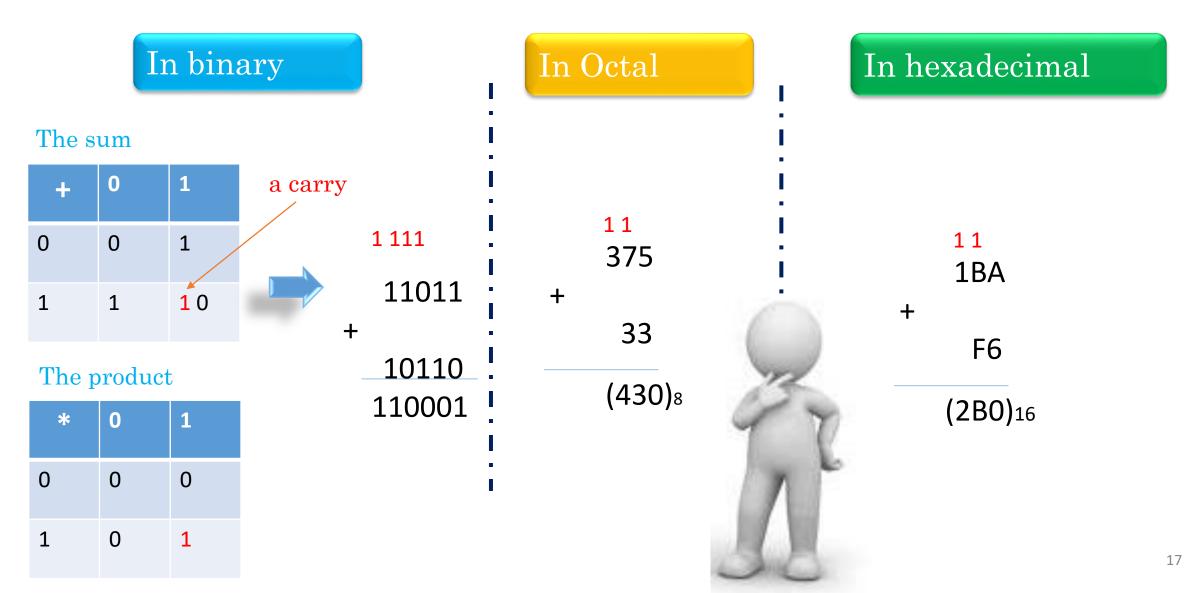

(213)8



### Conversion: binary 🚍 hexadecimal


#### Binary $\rightarrow$ hexadecimal

- ➤ Make 4-bit groupings starting from the least significant
- Replace each grouping with the corresponding value.



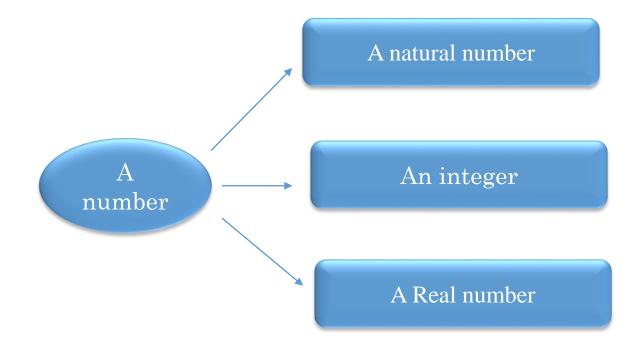

#### Hexadecimal→binary

Replace each symbol in the hexadecimal base with its value in 4-bit binary



### Arithmetic operations (the sum)




# Exercise

- Perform the following operations and transform the result to decimal
- $(1101,111)_2+(11,1)_2=(?)_2$
- (43)8+(76)8=(?)8
- (AB1)<sub>16</sub>+(237)<sub>8</sub>=(?)<sub>16</sub>

# **Information Encoding**



### **1.Coding of digital data**



### 1.Coding of natural number – 'The pure binary code'

- A natural number is a positive integer or zero.
- To encode natural integers we use <u>the pure binary code (PBC)</u>:
- according to (PBC), the natural number is represented in <u>base 2 on N bits</u>.
- The choice of how many bits to use depends on the range of numbers to be used.
   *Exemple:*
- on one byte (8 bits), (17)<sub>10</sub> is encoded in pure binary as follows: 00010001
- On 1 byte (8 bits): we can code 2<sup>8</sup> values : [0; 255]
- On 2 bytes(16 bits): we can code 2<sup>16</sup> values : [0; 2<sup>16</sup>-1]
- On n bytes : we can code 2<sup>n</sup> values : [0 ; 2<sup>n</sup>-1]

# 2.Coding of signed integers

### **Two's Complement**

An integer is a whole number which may be negative.
'The two's complement' is one of the techniques used to represent integers.

The representation of a number 'X' in 2's complement on 'n' bits is done as follow:

- $\succ$  if (X>=0) then X is encoded in the same way as in pure binary.
- $\succ$  if (X<0) then :
- 1. Code |X| in binary by completing on the left with 0 to obtain an n-bit code
- 2. Invert all bits of the binary representation (one's complement);
- 3. Add 1 to the result (two's complement or C2)

### Two's Complement-(2nd Method)-

if X <0 then its 2's complement is equal to  $(2^n + X)$  coded in binary on n-bit

• *Example*: code -24 en 2's complement on 8 bit First method

-24 = 24 = 00011000

```
Reverse the bits (1's complement)= 11100111
```

Then add 1 to the result: 11100111+1

-24 = 11101000 (c a 2)

#### $2^{nd}$ method

 $2^{8}-24=256-24=232$ 

 $232 = (11101000)_2$ 

(-24)=11101000 ( 2's complement)

### The 2's Complement -(Tip)-

Transforming a binary number into its 2's complement can be done as follows: Look at the number from right to left, leaving the bits before the first '1' unchanged, then invert all subsequent bits.

**Example:** code the number -24 in 2's complement on 8 bits  $24 = (00011000)_2$ 

Invert the left part after the first 1 (written in red): 11101000
 → -24: 11101000



# Comments

- The highest-weighted bit is  $1 \rightarrow$  it is a negative number.
- If you add 5 and -5 (00000101 + 11111011) the sum is 0 (with remainder 1).

### 3.Real Numbers Encoding

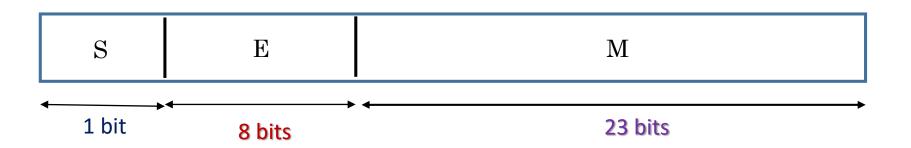
How to represent a number with a decimal point in binary? In other words, how to encode real numbers???



IEEE standard 754 defines how to encode real numbers.

### **IEEE standard 754**

- This standard offers a way to code a real number using 32 bits (simple precision).
- IEEE 754 defines three components:


#### (S; E ;M)

**S**: represents the sign (0: positive/1: negative).

It is represented by one bit, the highest-weighted bit

E: the exponent is encoded using 8 bits immediately after the sign

M: the mantissa (the bits after the decimal point) on the remaining 23 bits



Steps for representation under IEE standard 754

1. Encode X in binary in the form :

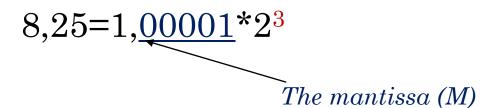
 $X = \pm 1, M \cdot 2^{dec}$ 

2.Compute the exponent E

E = dec + 127

3. Represent the 3 components (S, E, M) on 32 bits

### IEEE standard 754-(examples)-

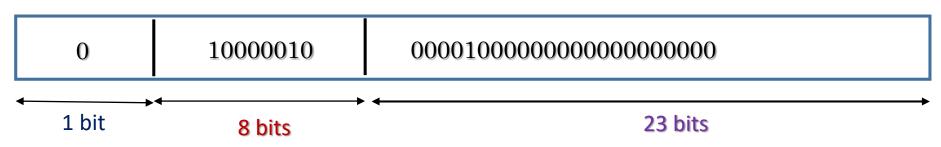

• *Example1*: compute the binary representation of (8,25)10 under IEEE standard 754

Solution

8,25 is positive, so the first bit will be 0 (S=0)  $\,$ 

- Its representation in base 2 is:
- (8,25)10=(1000, 01)2

 $=1,00001*2^{3}$  dec




### IEEE standard 754 -(examples)-

 $E = dec + 127 = 3 + 127 = (130)_{10}$ 

 $=(10000010)_2$ 

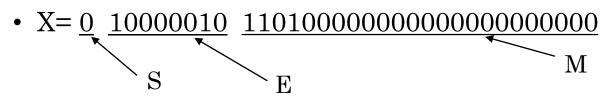
As the mantissa must take up 23 bits, zeroes must be added to complete it:



 $= (41040000)_{16}$ 

### **IEEE standard 754**

Example 2:


The value (20,5)10 is to be encoded under IEEE standard 754

(20,5)10=(10100,1)2 = + 1,01001 \*2<sup>4</sup>
> S =0
> E= 127+4 =131=10000011
> M= 01001

### C. Conversion from IEEE Standard 754 to Decimal

To convert a number 'X' coded according to the IEEE standard 754 to decimal, you simply need to decompose this number into its elements: S,E,M, then estimate its representation in floating point format (X=  $\pm$  1,M . 2dec)

*Example* 



 $\begin{array}{l} S=\!0 \Rightarrow a \mbox{ positive number} \\ E=(10000010)_2=\!130 \ ; \ E=\ dec+\ 127 \Rightarrow dec=\!3 \\ X=+\ 1, M\ *\ 2^3 \ =\ 1, 110100000000000000000 \ *\ 2^3 \ (dec=\!3) \end{array}$ 

 $X = +1110, 10 = (14,5)_{10}$ 

### 2. Character encoding



Characters encoding is the process of converting characters(letters, numbers, punctuation, and symbols) into unique format for transmission or storage in computers.

# **Character encoding**

Data is represented in computers using:

- ≻ ASCII
- ≻ UTF8
- ≻ UTF32
- ≻ ISCII
- ≻Unicode .

### ASCII

- □ASCII standard known as American Standard Code for Information Interchange was first published in 1963.
- □ASCII is an 8-bit code standard that divides the 256 slots as follows:
- Codes from 48 to 57 : numbers in order (0,1,...,9)
- codes from 65 to 90: capital letters (A....Z)
- Codes from 97 to 122: lowercase letters (a....z).



| 3 |    | ı           | <b></b> | •        |    | ~ 1 |    |       | 1100  | 1.4.1.1.     | Élass          | مما              |                       | مسما             | -1  |
|---|----|-------------|---------|----------|----|-----|----|-------|-------|--------------|----------------|------------------|-----------------------|------------------|-----|
|   | Θ  |             | 24      | <u>†</u> | 48 | 0   | 72 | H 96  | 120   | x 144        | É 168          | 192 خ            | L 216                 | <u> </u> + 240   | =   |
|   | 1  | ତ∣          | 25      | ۰t۱      | 49 | 1   | 73 | I 97  | a 121 | y 145        | æ 169          | r 193            | <sup>⊥</sup>  217     | J 241            | ±   |
|   | 2  | 0           | 26      | ) →      | 50 | 2   | 74 | J 98  | b 122 | z 146        | Æ 170          | ¬ 194            | T 218                 | 242 <sub>1</sub> | ≥   |
|   | 3  | · •         | 27      | +        | 51 | 3   | 75 | K 99  | c 123 | { 147        | ô 171          | 太 195            | 219                   | 243              | ≤   |
|   | 4  | •           | 28      | 니        | 52 | - 4 | 76 | L 100 | d 124 | 148          | ö 172          | <b>な</b> 196     | - 220                 | 244              | rl  |
|   | 5  | +           | 29      | +        | 53 | 5   | 77 | M 101 | e 125 | } 149        | ò 173          | i 197            | +221                  | 245              | J   |
|   | 6  | •           | 30      | •        | 54 | 6   | 78 | N 102 | f 126 | ~ 150        | û 174          | « 198            | = 222                 | 246              | ÷   |
|   | 7  |             | 31      | -        | 55 | 7   | 79 | 0 103 | g 127 | <b>a</b> 151 | ù 175          | » 199            | ₿ 223                 | 247              | 2   |
|   | 8  |             | 32      |          | 56 | 8   | 80 | P 104 | ñ 128 | Ç 152        | ÿ 176          | 8 200            | U 224                 | α 248            | •   |
|   | 9  |             | 33      | •        | 57 | 9   | 81 | Q 105 | i 129 | ů 153        | ÿ 176<br>Ö 177 | 201              | F 225                 | B 249            | •   |
|   | 10 |             | 34      |          | 58 | :   | 82 | R 106 | j 130 | é 154        | Ü 178          | 202              | <u>[</u> ] 225<br>226 | Г 250            | •   |
|   | 11 | 8           | 35      | #        | 59 | ;   | 83 | S 107 | k 131 | â 155        | ¢ 179          | 1203             | <b>1</b> 227          | π 251            | 4   |
|   | 12 | Q           | 36      | \$       | 60 | - Ś | 84 | T 108 | 1 132 | ä 156        | £ 180          | 204              | r 228                 | Σ 252            | n   |
|   | 13 | Ĭ           | 37      | %        | 61 | =   | 85 | U 109 | m 133 | à 157        | ¥ 181          | 1 205            | = 229                 | σ 253            | 2   |
|   | 14 | Л           | 38      | 8        | 62 | >   | 86 | V 110 | n 134 | å 158        | Ŗ 182          | 1 206            | <b># 230</b>          | μ 254            |     |
|   | 15 | x           | 39      | •        | 63 | ?   | 87 | W 111 | o 135 | ç 159        | Ĵ 183          | n 207            | Ë 231                 | ้ 255            | a   |
|   | 16 | ►           | 40      | d        | 64 | e   | 88 | X 112 | p 136 | ê 160        | á 184          | <b>7</b> 208     | ш 232                 | ₽<br>₽           | - 1 |
|   | 17 | Ĩ           | 41      | )        | 65 | Ā   | 89 | Y 113 | q 137 | ë 161        | í 185          | <b>  </b> 209    | <b>=</b> 233          | e                |     |
|   | 18 | t           | 42      | ×        | 66 | в   | 90 | Z 114 | r 138 | è 162        | ó 186          | 210              | '   a a u             | Ω                |     |
|   | 19 | - <u>ii</u> | 43      | +        | 67 | c   | 91 | [ 115 | s 139 | ï 163        | ú 187          | a 211            | $[]_{235}^{234}$      | δ                |     |
|   | 20 | Ĩ           | 44      | ,        | 68 | D   | 92 | 1116  | t 140 | î 164        | ñ 188          | J <sub>212</sub> | Ł 236                 | ŵ                |     |
|   | 21 | §           | 45      |          | 69 | Ē   | 93 | 1 117 | u 141 | ì 165        | Ñ 189          | <b>U</b> 213     | F 237                 | ø                |     |
|   | 22 | _           | 46      |          | 70 | F   | 94 | 118   | v 142 | Ä 166        | ₫ 190          | 3 214            | π 238                 | έ                |     |
|   | 23 | Ì           | 47      | _;       | 71 | Ġ   | 95 | 119   | w 143 | Å 167        | ₽ 191          | 1 215            | 239                   | ň                |     |
|   | 23 | ±١          | וד      | 1        |    | al  | 55 | _1113 | פרון  |              | -1131          | 11213            | 11233                 |                  |     |

# THANK YOU