Part II

3 Order in \mathbb{R}

3.1 upper and lower bounds

Definition 17 Let A be non-empty set of \mathbb{R} , we say that

- > The A is bounded from above if there exists $M \in R$ such that $x \leq M$ for all $x \in A$. We then say M is an **upper bound** of A
- > The A is bounded from below if there exists $m \in R$ such that $m \le x$ for all $x \in A$. We then say that m is alow bound of A.
- A is bounded if it is both **bounded above and bounded below**, that is $\exists (m, M) \in \mathbb{R}^2, \forall x \in A; m \leq x \leq M.$

 $\triangleright We \ say \ that \ A \ is \ unbounded \ if \ it \ is \ not \ bounded$

Example• $E = \{-2, -3, 0, 1, 5, 12\}$

-3 is a lower bound of E, because for all $x \in E$, $-3 \le x$.

12 is an upper bound of E, because for all $x \in E$, x < 12.

$$\bullet E = [-1, 3]$$

-2, -1 are two lower bounds of E', for all $x \in E, -2 < x$ and $-1 \le x$.

3 and 4 are two upper bounds of $E', \forall x \in E$ such that $x \leq 3$ and x < 4

Remark 18 The upper bound and lower bound of the set E are not unique. Indeed, \mathbb{R} the set E =]-1,3] has infinite number of low bounds and upper bounds

ullet $E=\mathbb{N}$ is bounded from below (each number $0\leq x$ is lower bound) but not from above

3.2 Maximum and Minimum

Let A be non-empty subset of \mathbb{R} ,

Definition 19 • The upper bound of A that belongs to A (necessarily unique) is called the maximum of the set A. It is denoted by $\max(A)$. In other words,

$$M = \max{(A)} \Leftrightarrow \left\{ \begin{array}{l} M \text{ is a upper bound of } A \\ M \text{ belonging to } A \end{array} \right.$$

If a set has a maximum, which is an upper bound for set and is actually the smallest of all possible upper bounds

The opposite is not true : a set can be bounded from above not admit a maximum

Definition 20 • The lower bound of A that belongs to A (necessarily unique) is called the minimum of the set A. It is denoted by $\min(A)$. In other words,

$$m = \min\left(A\right) \Leftrightarrow \left\{ \begin{array}{l} m \text{ is a lower bound of } A \\ m \text{ belonging to } A \end{array} \right.$$

Additional notes

A bounded subset of \mathbb{R} always has a maximum and a minimum.

Examples

The set [0,1] has a maximum of 1 and a minimum of 0.

The set $(-\infty, 0]$ has a maximum of 0, but no minimum.

The set \mathbb{R} has no maximum or minimum.

3.3 Supremum and Infimum

Let A be a non-empty set of \mathbb{R} .

Definition 21 Let $A \subset \mathbb{R}$ be bounded from above. The **supremum** or **least** upper bound of A is smallest of all upper bounds of A, which denoted by $M = \sup(A)$

$$M = \sup\left(A\right) \Leftrightarrow \left\{ \begin{array}{l} M \text{ is a upper bound of } A \\ M \text{ is the smallest of all upper bounds of } A \end{array} \right.$$

Definition 22 Let $A \subset \mathbb{R}$ be bounded from above. The **infimum** or **greatest lower bound** of A is largest of all lower bounds of A, which denoted by $m = \inf(A)$

$$m = \inf(A) \Leftrightarrow \begin{cases} m \text{ is a lower bound of } A \\ m \text{ is the largest of all lower bounds of } A \end{cases}$$

Additional notes

A bounded subset of \mathbb{R} always has a maximum and a minimum.

An unbounded subset of \mathbb{R} may or not may have a maximum or a minimum.

Example 23 Let A =]0,1[the interval]0,1[is bounded and upper bound by 1 and low bound by 0 $(\forall x \in A, \in 0 < x < 1)$.

- > The set of upper bound is $[1, +\infty[$, which has the smallest of all upper bound is 1. Therefore, $\exists sup(A) = 1$, but $\max(A)$ does not exist $1 \notin A$.
 - >]- ∞ , 0] is the set of lower bounds, which has the greatest lower bounds is $0 \notin A$. Therefore, $\exists \inf(A) = 0$, but $\min(A)$ does not exist..

Remark 24 the subset $]-\infty,1]$ of \mathbb{R} is not bouned from below.

Remark 25 • The supremum of a set is a more general concept than the maximum of a set. It is easy to show that if a set has a maximum, then this maximum is also the supremum of the set.

For sake of simplicity:

- If A has a maximum then $\sup(A) = \max(A)$. In the same way if $\sup(A) \in A$ then $\sup(A) = \max(A)$
- If A has a minimum then $\inf(A) = \min(A)$. In the same way if $\inf(A) \in A$ then $\inf(A) = \min(A)$.

The following propositions are true:

Proposition 26 :I) Any non-empty subset upper bounded (or lower bounded) of \mathbb{R} has a **supremum** (less upper bound) (or **infimum** (greatest lower bound).

II) The supremum and infinimum of a subset of \mathbb{R} , if they exist, are unique

Remark 27: 1) Property I, called the supremum property, is not true in the set of rational numbers \mathbb{Q} .

2) Let A be a non-empty subset of \mathbb{R} . We have A is bounded. $\Rightarrow \forall x \in A : \inf(A) \leq x \leq \sup(A)$.

Proposition 28 Let A and B be two non-empty and bounded subsets of \mathbb{R} and $\blacksquare \in \mathbb{R}$. We have the following properties:

- 1. $A \subset B \implies \sup A \leq \sup B \text{ and inf } B \leq \inf A$.
- 2. $A \cup B$ admits a finite upper bound and a finite lower bound, then:

$$\sup (A \cup B) = \max \{\sup (A), \sup (B)\} \text{ and } \inf (A \cup B) = \min \{\inf (A), \inf (B)\}$$

Proposition 29 3. if $A \cap B \neq \emptyset$ then $\sup (A \cap B) \leq \min \{\sup (A), \sup (B)\}$

and
$$\inf (A \cap B) \ge \max \{\inf (A), \inf (B)\}\$$

Proposition 30 4. $\sup (A+B) = \sup (A) + \sup (B)$

and
$$\inf (A + B) = \inf (A) + \inf (B)$$
......

Proof. 1.a) $A \subset B \Leftrightarrow \forall x \in A \Rightarrow x \in B$ and in addition ,we have B is bounded $\Rightarrow \exists \sup(B), \exists \inf(B) \text{ so } \forall x \in A; \inf(B) \leq x \leq \sup(B)$: This prove that A is bounded above by $\sup(B)$ ($\sup(B)$ is an upper bound of A) and therefore $\sup(A)$ exists for all $x \in A$. then $x \leq \sup(A)$. Since $\sup(A)$ is the least upper bound of A we must have $\sup(A) \leq \sup(B)$

b) Similarly, we have $\forall x \in A \Rightarrow x \in B$ (B is bounded)

so $\forall x \in A$; inf $(B) \leq x \Rightarrow \inf(B)$ is an lower bound of A but inf A is the greatest of all lower bounds of A

Therefore $\inf B \leq \inf A$.

4 Characterization of Supremum and infimum

Proposition 31 let $A \neq \emptyset$; $A \subset \mathbb{R}$, if A has a **least upper bound**. $M \in \mathbb{R}$ so :

$$M = \sup(A) = \left\{ \begin{array}{c} \forall x \in A; x \leq M \\ \forall \varepsilon > 0; \exists \ x_0 \in A: M - \varepsilon < x_0 \leq M \end{array} \right.$$

if A has an greatest lower bound $m \in \mathbb{R}$ then :

$$m = \inf(A) = \begin{cases} \forall x \in A; m \le x \\ \forall \varepsilon > 0; \exists x_0 \in A : m \le x_0 < m + \varepsilon \end{cases}$$

4.1 Examples of training exercise

Example 32 Let $A = \left\{1 - \frac{1}{n}, n \in \mathbb{N}^*\right\}$ Determine: $\sup(A), \inf(A), \max(A), \min(A)$. if they exist.

Proof. for $n = 1: 1 - \frac{1}{1} = 0 \in C \implies C$ is not empty. therefore

$$A = \left\{1 - \frac{1}{1}, 1 - \frac{1}{2}, 1 - \frac{1}{3}, \dots\right\} = \left\{0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots\right\}.$$

SO

$$\forall n \in \mathbb{N}^*, \quad 0 \le 1 - \frac{1}{n} < 1 \iff \forall x \in A, \quad 0 \le x < 1.$$

We have : $x \ge 0$ and $0 \in A$ so 0 is a lower bound for the set A, therefore $\min A = 0$ and so 0 is the smallest element in C

$$\Leftrightarrow \inf A = \min A = 0.$$

We show that $\sup A = 1$, using the characterization of the supremum

$$\sup C = 1 \Leftrightarrow \left\{ \begin{array}{c} \forall x \in A, x < 1 \\ \forall \varepsilon > 0, \exists x_0 \in A \text{ such that } 1 - \varepsilon < x_0 \end{array} \right.$$

therefore

$$\forall x_0 \in A \Rightarrow \exists n_0 \in \mathbb{N}^* \text{ such that } x_0 = 1 - \frac{1}{n_0}$$

this implies that

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}^* \text{ such that } 1 - \varepsilon < 1 - \frac{1}{n_0} \Rightarrow -\varepsilon < -\frac{1}{n_0}$$

this gives

$$\varepsilon > \frac{1}{n_0} \Longrightarrow \forall \varepsilon > 0, n_0 \varepsilon > 1.$$

by Archimedean property: $\exists n_0 \in \mathbb{N}^*$ such that $n_0 > \frac{1}{\varepsilon}$,

just take
$$n_0 = \left[\frac{1}{\varepsilon}\right] + 1$$
, thus $1 - \varepsilon < 1 - \frac{1}{n_0}$ then $\sup A = 1$.

Example 33 Let $B = \left\{ \frac{1}{n^2} - 2, n \in \mathbb{N}^* \right\}$ Determine $\sup(B)$ and $\inf(B)$, if they exist.

Proof. We have $\forall n \in \mathbb{N}^*$, $0 < \frac{1}{n^2} \le 1$ then $\forall x \in D, -2 < x \le -1 \Rightarrow B$ is bounded.

therefore $\exists \sup B, \exists \inf B$ such that $\forall x \in B, \inf B < x \leq \sup B \Longrightarrow \inf B = -2$ and $\sup B = -1$

We have $-1 \in B$ so $\sup B = \max B = -1$,

We show that $\inf B = -2$, using the characterization of the infimum

$$\inf B = -2 \Leftrightarrow \left\{ \begin{array}{l} \forall x \in B, x > -2 \\ \forall \varepsilon > 0, \exists x_0 \in B \text{ such that } x_0 < -2 + \varepsilon \end{array} \right., m = -2$$

therefore

$$x_0 \in B \Rightarrow \exists n_0 \in \mathbb{N}^* \text{ such that } x_0 = \frac{1}{n_0^2} - 2,$$

this implies that que

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}^* \text{ such that } \frac{1}{n_0^2} - 2 < -2 + \varepsilon \Rightarrow \varepsilon > \frac{1}{n_0^2}$$

this gives

$$\forall \varepsilon > 0, n_0^2 \varepsilon > 1.$$

By Archimedean property: $\exists n_0 \in \mathbb{N}^* \text{ such that } n_0 > \sqrt{\frac{1}{\varepsilon}}$,

just take :
$$n_0 = \left[\sqrt{\frac{1}{\varepsilon}}\right] + 1$$
, so $\frac{1}{n_0^2} < 0 + \varepsilon$ then inf $B = 0$

Completed real number line \mathbb{R} : 5

The completed real number line \mathbb{R} is the set of all real numbers, together with two additional elements, $-\infty$ and $+\infty$.

The internal laws
$$(+, -)$$
 and the order relation \leq are defined as follows :

• $\forall x \in \mathbb{R}$ $\begin{cases} x + (+\infty) = x + \infty = +\infty \\ x + (-\infty) = x - \infty = -\infty \end{cases}$

• $+\infty + (+\infty) = +\infty$, $(-\infty) + (-\infty) = -\infty$

• $\forall x \in \mathbb{R}^*_+$ $\begin{cases} x \times (+\infty) = (+\infty) \times x = +\infty \\ x \times (-\infty) = (-\infty) \times x = -\infty \end{cases}$

• $\forall x \in \mathbb{R}, -\infty < x < +\infty$

• $\begin{cases} (+\infty) \times (+\infty) = (-\infty) \times (-\infty) = +\infty \\ (+\infty) \times (-\infty) = (-\infty) \times (+\infty) = -\infty \end{cases}$

• $\begin{cases} +\infty \leq +\infty \\ -\infty \leq -\infty \end{cases}$

$$\bullet \forall x \in \mathbb{R}_{+}^{*} \begin{cases} x \times (+\infty) = (+\infty) \times x = +\infty \\ x \times (-\infty) = (-\infty) \times x = -\infty \end{cases},$$

$$\begin{array}{l}
\bullet \\
(+\infty) \times (+\infty) = (-\infty) \times (+\infty) = -\infty \\
(+\infty) \times (-\infty) = (-\infty) \times (+\infty) = -\infty \\
\end{array}$$

 $\overline{\mathbb{R}}$ is called a completed real numbers line

Remark 34 The operations of addition (+) and multiplication (\times) are not defined for all pairs of elements in R.F. $(-\infty), (-\infty) + (\infty), (\infty) \times 0$, and $0 \times (\infty)$ are undefined.

Elements of topology in \mathbb{R} : 6

Open and closed sets in \mathbb{R} 6.1

Definition 35 :1) An open set $O \subset \mathbb{R}$ is a set such that $\forall x \in O, \exists I$ an open $interval \subset \mathbb{R} \ such \ that \ I \subset \mathbb{R} \ and \ I \ contains \ x.$

2) A closed set $F \subset \mathbb{R}$ is a set such that its complement $\mathbb{R} \backslash F$ is open.

Examples :1) the intervals : $]a,b[\,,]-\infty,a[\,,]a,+\infty[\,,]-\infty,+\infty[$ are all open sets.

2) the intervals : $[a,b]\,,[a,+\infty[\,,]-\infty,a]\,,]-\infty,+\infty[$ are all closed sets.

6.2 The neighborhood's notion of a point:

After the notion of an open set, the notion of neighborhood is very important in the study of convergence or limit.

Definition 36 A subset V of \mathbb{R} is a neighborhood of a point $x_0: x_0 \in \mathbb{R} \Leftrightarrow \exists \alpha > 0; |x_0 - \alpha, x_0 + \alpha| \subset V$

We write $V \in \upsilon(x_0)$.

 \triangleright]0,1[is a neighborhood of all of its elements., indeed : $\exists \alpha > 0$;] $x_0 - \alpha, x_0 + \alpha$ [with $x_0 \in$]0,1[, $\alpha = \min(x_0 - 0, 1 - x_0)$.

In the same way as the previous example we have : $]x_0 - \alpha, x_0 + \alpha[\subset]0, 1[$. \triangleright The set \mathbb{R}/\mathbb{Q} is not a neighborhood of any of its elements.; $\forall x_0 \in \mathbb{R}/\mathbb{Q}; \forall \alpha > 0$, the interval $]x_0 - \alpha, x_0 + \alpha[$ contains a rational number.

Conclusion:

The completed real number line \mathbb{R} is a useful extension of the real number line that allows us to study concepts such as convergence and limit.