Part 1
chapl:The field of real numbers

1 Subsets of R

We recall the usual notations for the set of numbers :
N=1{0,1,2,.....n} is the set of natural numbers.
Z={...,—2,-1,0,1,2,3,...} is the set of relative integers.

Q is the set of rational numbers, or the set of fractions defined by

2 _
Q:{g,p € Z and q € N*} [for example : 3,—,%&)’,% = %7

)
D={r= 10% € Q such that p € Z and k € N} is set of decimal numbers,
3135
provide other examples: 3,135 is written as 3135 x 1073 = 105

The set of real numbers is denoted R and we have the inclusions
NCcZcDcQcCR.

Proposition 1 A real number is rational if and only if it has a decimal or
periodic expansion starting at a certain rank.
For example : 2 =0,6, £ =0,3333..., 4,531531531.....

o ——<——
Definition 2 A real number is irrational if and only if it is not rational. Thus,
the set of irrational numbers is denoted R/Q

Example : 2, m and exp, In2,..are those that are not rational, i.e., they
cannot be written in the form 7 a € Z and b € Z*, or their decimal expansions

are infinite and non-periodic
Proposition 3 V2 is an irrational number (\/§ ¢ Q)

Proof. Indeed let’s reason by contradiction that /2 € Q, i.e ,there exsit a € Z
and b € Z* (a and b are relatively prime) , then a? = 2b%. Thus a? is even, which
implies @ is even. There then exists k € Z such that a = 2k, which gives b? = 4k?
and also even . It follows that 2 divides a and b which contradicts the fact that
a and b are relatively prime. Therefore v/2 is an irrational number.

rational + irrational = irrational

) ) ) ) ) exercise
rational X irrational = irrational. ( )

Remark 4 {

Remark 5 On the other hand, the sum or product of two irrational numbers
can be rational, for example: 1+ /2 and 1 — /2.



2 Properties of R

A field is a set R with two binary operations (+) :R x R — R and x : R x R
— R,satisfying the following properties:
Nzx+y=y+x (commutative addition )
Q)z+(y+2)=(r+y)+2z (assosiative addition)
3) there exist an element 0 € R such that 0 + 2 = x for all x € R (identity
element for +)
4)For every z € R, there exist an element —x € R such that z + (—z) = 0
(additive inverse),
5)x-(y-z)=(r-y) 2 ( associative multiplication)
6)x-y=y-x (- commutative )
7) There exists an element 1 # 0 such that 1-x = z for all x € R (identity
element for multiplication)
8) For every element = # 0 in R, there exists an element =1 such that x-27! =1
(multiplicative inverse)
Nr-(y+z2)=z-y+x- -2z ( distributive property).
Example It is not hard to see that N and Z are not fields. In each case, what
property of a field fails to hold?
but Both Q and R are fields.
Besides being fields, both Q and R are totally ordered sets. By totally ordered
we mean that for any z, y € R either x =y, z <y, or x >y
We now present some very important rules of inequalities that we will use fre-
quently in this course.
x<yandy<z =zx=y (antisymmetry)

)z <y andy<z =z<z ( transitivity)

) VeeR; o<z (reflexivity )

<y = x+z<y+z 2R

5)(0<zand 0<y)=0<uzy

Consequences
1- From the relation "less than or equal" defined previously, we can define its
symmetric relation "greater than or equal" in the same way, i.e.:

For all real numbers z,y € R, x > y if and only if y < x.
2-We define the relation "strictly less than" < by : For all x,y € R, z < y if
and only if (x < y) and (z # y). the relation "strictly greater than" > by: :
For all z,y € R, x > y if and only if (x > y) and (z # y).

Exercise
show that Va,b e R,a < b= —a > —-band ab=0<a=00rb=0
Solution
Since (R, +, ) is a field, then Ya € R,a + (—a) =0 and a + 0 = a.
We can write this as follows:
a+0<b+0sa+ (b+(-b) < b+ (a+(—a)) (+ is associative ) <
(@a+b)+(=b) <(a+0b)+ (—a)



< (a+b)+(—(a+b)+(-b) <(a+b)+ (—(a+10b)+ (—a) there fore, we

" J N J/
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0 0
have —b < —a which implies —a > —b .

Proof of the second statement
If ab=0a=00rb=0

We have a.a”'! =1landVa € R:;a0=0andl.a=aso a.b=0= (a_l.a).b =

N——
1

a” . 0=0=b=0
and the same for a = a.b =0 = a.(b.b_l) =0b1t=0=a=0

——
1

Proposition 6 :Archimedean property.

Vr,y € R, and y > 0; dn € N*such that = < ny.
R is said to be Archimedean.
As a consequence of the Archimedean axiom, n<zr<n+l1l

2.1 The integer part

Definition 7 Let x be a real number, there exists a unique integer € Z denote
by int (x) (or [x], E (x)),such that

z] <z <[z]+1
This is the greatest integer less than or equal to . We call [z] the integer part
of z. (or the floor function)

Example 8 [2.30] =2, [V3] =1, E[-2,14] = -3.

Graphical representation of the integer part function f (z) = int (z) = [z]

4 y=[x]
2t *—0
H —{)
T=F 71 1
*—i0
*— -2
) 3} MathBits.com



2.1.1 Properties of the interger part

1) The integer part is an increasing function.
Q)Ve eR, z=[z] =int(x) <=z €Z
)WV (xz,n) € (Rx2Z),int (x+n)=int(z)+ n.

Remark 9 In general, [x + n] # [z]+ [n] and [n - x] # n - [z]

Remark 10 eThe integer part in increasing i.e V(x,y) € R?, 2 <y = [1] <
[]

e How wever, the integer part is not strictly increasing;for example ,
0< 2 but [2] = 0.
Remark 11 if we have n € Z such that n = [z] then n = [z] <= n < z <
ntl<—n-1<z<n.

In fact, [z] is odd if n is an integer number. [z] = — [—z]

2.2 Density of Q and R/Q in R

Theorem 12 for any two real numbers x and y , there existes a rational number
r such that

Ve,ye IR, r<y=—drecQ:xz<r<uy.
Proof. Let z and y be two real numbers such that x < y,andlet z =y—x > 0,

1
Since R is Archimedean, =— dn € N* such that nz > 1 — 2z > —.
n

We have
[nx] < nz < [nx]+1

Let m = [nz] + 1,then

m 1
m—1<nr<m— <zr<< —<z+-—-—<zxz+z=y
n n

n

therefore,
m
Vr,y € R, x<yonax<g<y.

Theorem 13 between any two real numbers x and vy, there exists an irrational
number. (Fxercise)



2.3 Absolute value

Definition 14 Let x € R, The absolute value of x ( denoted by |x| ) ,is the real
number defined as follows:

) x>0
|z| = 0 si r=0 ,or |z| = max(—=x,x).
—-T St x <0

Graphical representation of f(z) = |z|

f(x) = ||

2.3.1 Properties of the absolute value :

The absolute value function satisfies the following properties :

Ve eR, |z >0and — |z| <z < |z

2) Vx € R, Va2 = |z| (|:10|2 = x2)

3Wa >0,V eR; |z|<ae —a<z<+a

5)Vz,y e R, |z +y| < |z|+|y| (first triangel inequality)

6) Vz,y € R,||z] —|y|| < |r 4+ y| (second triangel inequality) (Exercise)
Proof. a) proof of the first triangle inequality

Ve, y € R, |z +y| < |z|+ |y

we have
—|z| <z <z Ve e R........ (1)
—yl <y <y Yy € R........ (2)
(1) + (2) we have
=l =yl <z +y <|z[+yl,
or

— (2] +ly)) <z +y < (lz| + y]),



since |z +y| < |z + |y|.
|

Exercise . Let f(z) = 22 — 3z + 4 for z € [-1,1]. Find a number M > 0 such
that |f(x)] < M for all -1 <z <1.
Solution. Clearly, if —1 < z < 1 then |z| < 1. Apply the triangle inequality
and the properties of the absolute value:

(@) = |2? — 3z + 4] <[2?| +[3z] + 4] = |2]* + 3|2 + 4

<(1)?+3(1)+4=38
Therefore, if M = 8 then |f(z)| < M for x € [—1,1]

2.4 Intervals

Definition 15 Let I be a subset of R, I is an interval of R if Ya,bel:a <b
andVr e R;a<x<b=ux€l.

Remark 16 I = & is an interval.

I =R is also an interval.
Types of intervals
There are a total of 9 possible types of intervals, of which 4 are bounded and 5
are unbounded.Types of intervals
i) Bounded intervals: Let a,b € R

ea,b] = {zxeR; a<z<b} isa closed interval.
ela,bf = {r€R; a<az<b} isan open interval.
ela,b] = {re€R; a<z<b} isan open interval on b.
ela,b] = {z€R; a <z <b} isan open interval on a.

ii) Unbounded intervals :

e|—00,a[ , ]—oc,a] is an unbounded interval on the right.
o |b,+00o[; [b,40o0[ is an unbounded interval on the left.

o]—oo,—i—oo[.

Notes :

R = ]_OO>+OO[> R—i— = [0,—|—OO[) Rj— = ]07+OO[> R = ]_0070[7
R_ =]—00,0] and R* =]—o00,0[U]0, +o0].
Examples

[—1,1] is a bounded closed interval.

]1,3[ is a bounded open interval.

[—2,400) is an unbounded interval on the right.
(—o0, 1] is an unbounded interval on the left.



