Part I

chap1: The field of real numbers

1 Subsets of $\mathbb R$

We recall the usual notations for the set of numbers:

 $\mathbb{N} = \{0, 1, 2, \dots, n\}$ is the set of natural numbers.

 $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, 3, \ldots\}$ is the set of relative integers.

 $\mathbb Q$ is the set of rational numbers, or the set of fractions defined by

$$\mathbb{Q} = \left\{ \frac{p}{q}, p \in \mathbb{Z} \text{ and } q \in \mathbb{N}^* \right\}, \text{for example} : 3, \frac{2}{5}, \frac{-173}{1564}, \frac{4}{6} = \frac{2}{3}, \dots$$

 $D = \{r = \frac{p}{10^k} \in \mathbb{Q} \text{ such that } p \in \mathbb{Z} \text{ and } k \in \mathbb{N}\} \text{ is set of decimal numbers,}$

provide other examples: 3,135 is written as $3135 \times 10^{-3} = \frac{3135}{10^3}$,

The set of real numbers is denoted \mathbb{R} and we have the inclusions

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbf{D} \subset \mathbb{Q} \subset \mathbb{R}$$
.

Proposition 1 A real number is rational if and only if it has a decimal or periodic expansion starting at a certain rank.

For example : $\frac{3}{5} = 0, 6, \frac{1}{3} = 0,3333..., 4, 531531531....$

Definition 2 A real number is irrational if and only if it is not rational. Thus, the set of irrational numbers is denoted \mathbb{R}/\mathbb{Q}

Example: $\sqrt{2}$, π and exp, $\ln 2$, ...are those that are not rational, i.e., they cannot be written in the form $\frac{a}{b}$, $a \in \mathbb{Z}$ and $b \in \mathbb{Z}^*$, or their decimal expansions are infinite and non-periodic

Proposition 3 $\sqrt{2}$ is an irrational number $(\sqrt{2} \notin \mathbb{Q})$

Proof. Indeed let's reason by contradiction that $\sqrt{2} \in \mathbb{Q}$, i.e ,there exsit $a \in \mathbb{Z}$ and $b \in \mathbb{Z}^*$ (a and b are relatively prime), then $a^2 = 2b^2$. Thus a^2 is even, which implies a is even. There then exists $k \in \mathbb{Z}$ such that a = 2k, which gives $b^2 = 4k^2$ and also even. It follows that 2 divides a and b which contradicts the fact that a and b are relatively prime. Therefore $\sqrt{2}$ is an irrational number.

Remark 4
$$\left\{ \begin{array}{l} \mathit{rational} + \mathit{irrational} = \mathit{irrational} \\ \mathit{rational} \times \mathit{irrational} = \mathit{irrational}. \end{array} \right. (exercise)$$

Remark 5 On the other hand, the sum or product of two irrational numbers can be rational, for example: $1 + \sqrt{2}$ and $1 - \sqrt{2}$.

1

2 Properties of $\mathbb R$

A field is a set \mathbb{R} with two binary operations $(+) : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ and $\times : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, satisfying the following properties:

- 1) x + y = y + x (commutative addition)
- 2) x + (y + z) = (x + y) + z (assosiative addition)
- 3) there exist an element $0 \in \mathbb{R}$ such that 0 + x = x for all $x \in \mathbb{R}$ (identity element for +)
- 4) For every $x \in \mathbb{R}$, there exist an element $-x \in \mathbb{R}$ such that x + (-x) = 0 (additive inverse),
- 5) $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ (associative multiplication)
- 6) $x \cdot y = y \cdot x$ (· commutative)
- 7) There exists an element $1 \neq 0$ such that $1 \cdot x = x$ for all $x \in \mathbb{R}$ (identity element for multiplication)
- 8) For every element $x \neq 0$ in \mathbb{R} , there exists an element x^{-1} such that $x \cdot x^{-1} = 1$ (multiplicative inverse)
- $9)x \cdot (y+z) = x \cdot y + x \cdot z$ (distributive property).

Example It is not hard to see that \mathbb{N} and \mathbb{Z} are not fields. In each case, what property of a field fails to hold?

but Both Q and R are fields.

Besides being fields, both \mathbb{Q} and \mathbb{R} are totally ordered sets. By totally ordered we mean that for any $x, y \in R$ either x = y, x < y, or x > y

We now present some very important rules of inequalities that we will use frequently in this course.

- 1) $x \le y$ and $y \le x \Rightarrow x = y$ (antisymmetry)
- 2) $x \le y$ and $y \le z \implies x \le z$ (transitivity)
- 3) $\forall x \in \mathbb{R}; \ x \leq x$ (reflexivity)
- 4) $x \le y \implies x + z \le y + z, z \in \mathbb{R}$
- 5) $(0 \le x \text{ and } 0 \le y) \Rightarrow 0 \le xy$

Consequences

1- From the relation "less than or equal" defined previously, we can define its symmetric relation "greater than or equal" in the same way, i.e.:

For all real numbers $x, y \in \mathbb{R}$, $x \ge y$ if and only if $y \le x$.

2-We define the relation "strictly less than" < by : For all $x, y \in \mathbb{R}$, x < y if and only if $(x \le y)$ and $(x \ne y)$. the relation "strictly greater than" > by: : For all $x, y \in \mathbb{R}$, x > y if and only if $(x \ge y)$ and $(x \ne y)$.

Exercise

show that $\forall a, b \in \mathbb{R}, a \leq b \Rightarrow -a \geq -b$ and $a.b = 0 \Leftrightarrow a = 0$ or b = 0

Solution

Since $(\mathbb{R}, +, \cdot)$ is a field, then $\forall a \in \mathbb{R}, a + (-a) = 0$ and a + 0 = a.

We can write this as follows:

$$a+0 \le b+0 \Leftrightarrow a+(b+(-b)) \le b+(a+(-a))$$
 (+ is associative) \Leftrightarrow $(a+b)+(-b) \le (a+b)+(-a)$

$$\Leftrightarrow \underbrace{(a+b)+(-(a+b))}_{0}+(-b)\leq \underbrace{(a+b)+(-(a+b))}_{0}+(-a) \text{ there fore, we}$$

have $-b \le -a$ which implies $-a \ge$

Proof of the second statement

If
$$a.b = 0 \Leftrightarrow a = 0 \text{ or } b = 0$$

We have
$$a.a^{-1} = 1$$
 and $\forall a \in \mathbb{R}$; $a.0 = 0$ and $1.a = a$ so $a.b = 0 \Rightarrow \underbrace{(a^{-1}.a)}_{1}.b = \underbrace{(a^{-1}.a)}_{1}.b$

$$a^{-}.0 = 0 \Rightarrow b = 0$$

and the same for
$$a \Rightarrow a.b = 0 \Rightarrow a.\underbrace{(b.b^{-1})}_{1} = 0.b^{-1} = 0 \Rightarrow a = 0$$

Proposition 6 : Archimedean property.

$$\forall x, y \in \mathbb{R}$$
, and $y > 0$; $\exists n \in \mathbb{N}^*$ such that $x < ny$.

 \mathbb{R} is said to be Archimedean.

As a consequence of the Archimedean axiom,

$$n \le x < n + 1$$

2.1 The integer part

Definition 7 Let x be a real number, there exists a unique integer $\in \mathbb{Z}$ denote by int(x) (or [x], E(x)), such that

$$[x] \le x < [x] + 1$$

This is the greatest integer less than or equal to x. We call [x] the integer part of x. (or the floor function)

Example 8
$$[2.30] = 2$$
, $[\sqrt{3}] = 1$, $E[-2, 14] = -3$.

Graphical representation of the integer part function f(x) = int(x) = [x]

2.1.1 Properties of the interger part

- 1) The integer part is an increasing function.
 - 2) $\forall x \in \mathbb{R}, x = [x] = int(x) \iff x \in \mathbb{Z}$
 - $3) \forall (x, n) \in (\mathbb{R} \times \mathbb{Z}), int (x + n) = int(x) + n.$

Remark 9 In general, $[x+n] \neq [x] + [n]$ and $[n \cdot x] \neq n \cdot [x]$

Remark 10 • The integer part in increasing i.e $\forall (x,y) \in \mathbb{R}^2, x \leq y \Longrightarrow [x] \leq [y]$

• How we ver, the integer part is not strictly increasing; for example , $0<\frac{2}{3}$ but $\left[\frac{2}{3}\right]=0.$

Remark 11 if we have $n \in \mathbb{Z}$ such that n = [x] then $n = [x] \iff n \le x < n + 1 \iff n - 1 < x \le n$.

In fact, [x] is odd if n is an integer number. [x] = -[-x]

2.2 Density of \mathbb{Q} and \mathbb{R}/\mathbb{Q} in \mathbb{R}

Theorem 12 for any two real numbers x and y, there exists a rational number r such that

$$\forall x, y \in IR, \ x < y \Longrightarrow \exists r \in \mathbb{Q} : x < r < y.$$

Proof. Let x and y be two real numbers such that x < y, and let z = y - x > 0, Since \mathbb{R} is Archimedean, $\Longrightarrow \exists n \in \mathbb{N}^*$ such that $nz > 1 \Longrightarrow z > \frac{1}{n}$. We have

$$[nx] \le nx < [nx] + 1$$

Let m = [nx] + 1, then

$$m-1 \le nx < m \Longrightarrow \frac{m-1}{n} \le x < \frac{m}{n} < x + \frac{1}{n} < x + z = y$$

therefore,

$$\forall x, y \in \mathbb{R}, \ x < y \text{ on a } x < \frac{m}{n} < y.$$

Theorem 13 between any two real numbers x and y, there exists an irrational number. (Exercise)

2.3 Absolute value

Definition 14 Let $x \in \mathbb{R}$, The absolute value of x (denoted by |x|), is the real number defined as follows:

$$|x| = \begin{cases} x & si & x > 0 \\ 0 & si & x = 0 \\ -x & si & x < 0 \end{cases}, or \qquad |x| = \max(-x, x).$$

Graphical representation of f(x) = |x|

2.3.1 Properties of the absolute value:

The absolute value function satisfies the following properties:

1)
$$\forall x \in \mathbb{R}, |x| \ge 0 \text{ and } -|x| \le x \le |x|$$

2)
$$\forall x \in \mathbb{R}, \sqrt{x^2} = |x| \quad \left(|x|^2 = x^2\right)$$

3)
$$\forall a \geq 0, \forall x \in \mathbb{R}; \ |x| < a \Leftrightarrow -a \leq x \leq +a$$

4)
$$\forall x, y \in \mathbb{R}, |x \cdot y| = |x| \cdot |y|$$

5)
$$\forall x, y \in \mathbb{R}, |x+y| \le |x| + |y|$$
 (first triangel inequality)

6)
$$\forall x, y \in \mathbb{R}, ||x| - |y|| \le |x + y|$$
 (second triangel inequality) (Exercise)

Proof. a) proof of the first triangle inequality

$$\forall x, y \in \mathbb{R}, \quad |x+y| \le |x| + |y|$$

we have

$$\begin{cases} -|x| \le x \le |x| & \forall x \in \mathbb{R}.....(1) \\ -|y| \le y \le |y| & \forall y \in \mathbb{R}....(2) \end{cases}$$

(1) + (2) we have

$$-|x| - |y| \le x + y \le |x| + |y|$$
,

or

$$-(|x| + |y|) \le x + y \le (|x| + |y|),$$

since $|x+y| \le |x| + |y|$.

Exercise. Let $f(x) = x^2 - 3x + 4$ for $x \in [-1, 1]$. Find a number M > 0 such that $|f(x)| \le M$ for all $-1 \le x \le 1$.

<u>Solution</u>. Clearly, if $-1 \le x \le 1$ then $|x| \le 1$. Apply the triangle inequality and the properties of the absolute value:

$$|f(x)| = |x^2 - 3x + 4| \le |x^2| + |3x| + |4| = |x|^2 + 3|x| + 4$$

$$\le (1)^2 + 3(1) + 4 = 8$$

Therefore, if M = 8 then $|f(x)| \le M$ for $x \in [-1, 1]$

2.4 Intervals

Definition 15 Let I be a subset of \mathbb{R} , I is an interval of \mathbb{R} if $\forall a, b \in I : a < b$ and $\forall x \in \mathbb{R}$; $a \le x \le b \Rightarrow x \in I$.

Remark 16 $I = \emptyset$ is an interval.

 $I = \mathbb{R}$ is also an interval.

Types of intervals

There are a total of 9 possible types of intervals, of which 4 are bounded and 5 are unbounded. Types of intervals

- i) Bounded intervals: Let $a, b \in \mathbb{R}$
 - $[a,b] = \{x \in \mathbb{R}; a \le x \le b\}$ is a closed interval.
 - $]a, b[= \{x \in \mathbb{R}; \ a < x < b\} \text{ is an open interval.}$
 - $[a, b] = \{x \in \mathbb{R}; a \le x < b\}$ is an open interval on b.
 - $\bullet |a,b| = \{x \in \mathbb{R}; \ a \le x < b\}$ is an open interval on a.

ii) <u>Unbounded intervals</u>:

- ullet] $-\infty$, $a[\ ,\]-\infty$, a] is an unbounded interval on the right.
- $]b, +\infty[$; $[b, +\infty[$ is an unbounded interval on the left.
-] $-\infty$, $+\infty$ [.

Notes:

Examples

[-1,1] is a bounded closed interval.

]1,3[is a bounded open interval.

 $[-2, +\infty)$ is an unbounded interval on the right.

 $(-\infty, 1]$ is an unbounded interval on the left.