Chapter 1

The C++ language — introduction
(1 week)

s»*History,

s*Comparison to other langages,

s*C++ in industry,

s*Standards and versions of C++ (C++98 @ C++03 e C++11
C++14 o C++17 ¢ C++20),

‘*new language features

The C++ programming language has a rich history that dates back to
the late 1970s. Here's an overview of its development:

1. Origins (1979-1983):
1979: Bjarne Stroustrup, a Danish computer scientist, started
working at Bell Labs. He was interested in the C programming
language but found it lacking in features for large-scale software
development.

1980: Stroustrup started working on "C with Classes,” an
extension of the C language that introduced classes to support
object-oriented programming (OOP) concepts.

1983: The first edition of "The C++ Programming Language" was
published, introducing the name "C++" for the first time.

2. Standardization (1989-1998):

1985: The first commercial implementation of C++ was released by
AT&T.

1989: The first official standard for C++ was released, known as
C++98. This standardization helped in ensuring the portability of
C++ programs across different platforms.

1990s: C++ gained popularity rapidly, especially in the field of
systems programming, game development, and other
performance-critical applications.

3. Evolution and Updates (2003-2017):

2003: The C++ language underwent significant updates with the
release of C++03, addressing various issues and adding new features.

2011: A major update, C++11, was released. It introduced features
like auto keyword, lambda expressions, range-based for loops, and
smart pointers, making the language more modern and expressive.

2014: The C++14 standard brought additional improvements without
introducing major breaking changes.

2017: C++17 was released, featuring enhancements such as
filesystem library, parallel algorithms, and various language
iImprovements.

4. Current State (2018 Onwards):
2018: C++20 was released, introducing modules, concepts,
ranges, coroutines, and other features to enhance code
readability, performance, and safety.

2020s: The C++ standard continues to evolve, with ongoing
discussions about future features and improvements. Concepts
like reflection and contracts are being considered for future
standards.

C++ has become a versatile and powerful programming language,
widely used in various domains, including system programming,
game development, embedded systems, and high-performance
computing. Its continued evolution is driven by the C++ community
and the need to address new challenges in software development.

C++ is a powerful and versatile programming language, but it's not the only language
available for developers. Here's a comparison of C++ with some other similar languages:

-m i

C C++ is an extension of C, inheriting C++ supports object-oriented programming
its syntax and low-level features. (OOP) with features like classes and inheritance,
Both languages provide low-level which C lacks.

memory manipulation capabilities. C++ has a richer standard library compared to C,
offering more high-level abstractions.

Java Both languages are statically typed. Javais platform-independent and relies on a
They share a similar syntax for virtual machine (JVM), whereas C++ code is
basic control structures like loops compiled directly to machine code.
and conditionals. C++ allows manual memory management, while

Java has automatic garbage collection.

Java is more focused on OOP, while C++ supports
both procedural and object-oriented
programming.

C# (C Sharp)

Python

CH shares some syntax similarities
with C++ due to their common
ancestry (both influenced by C).
Both support OOP principles.

Both languages support high-level
abstractions, making them easier
to use than lower-level languages.
They share some syntax
similarities, like loops and
conditionals.

CH is primarily used in the context of
the .NET framework and is not as
platform-independent as C++.

C# has automatic memory
management (garbage collection) and
does not allow direct memory
manipulation like C++.

C# has language features like
properties and events that are not
present in C++.

Python is dynamically typed, while
C++ is statically typed.

Python is an interpreted language,
whereas C++ is compiled.

C++ is often chosen for performance-
critical applications, while Python is
known for its simplicity and
readability.

Choosing between these languages depends on various factors,
including the nature of the project, performance requirements, and
the developer's preferences and expertise. Each language has its
strengths and weaknesses, making them suitable for different use
cases.

C++ in industry:

C++ is widely used in various industries due to its versatility,
performance, and ability to handle low-level programming tasks.
Here are some common applications of C++ in industry:

1. System Programming:
C++ is frequently used for system-level programming, such as
developing operating systems, device drivers, and firmware.

2. Game Development:
Many video games, including both desktop and console games,
are developed using C++. Its performance and ability to access
low-level hardware features make it a preferred choice for
resource-intensive applications.

3. Embedded Systems:
C++ is commonly employed in the development of embedded
systems, where efficient use of hardware resources is crucial.
This includes applications in automotive, aerospace, and loT
devices.

4. Graphics and Multimedia:
C++ is utilized in graphics libraries and multimedia applications
due to its efficiency in handling complex graphics operations
and real-time processing.

5. Finance and High-Frequency Trading:
In the financial industry, C++ is preferred for building applications
that require high-performance computing, such as algorithmic
trading platforms and financial modeling software.

6. Telecommunications:
C++ is used in the development of telecommunications

software, including networking protocols, routers, and
communication systems.

7. Scientific Computing:
Applications in scientific research, simulations, and data analysis

often leverage C++ for its computational efficiency and ability to
handle complex algorithms.

8. Database Systems:
C++ is employed in the development of database management
systems and software that require efficient data processing.

9. Operating Systems Development:
C++is used in the development of components within operating
systems, taking advantage of its low-level capabilities.

10. Middleware and Libraries:
Many middleware components and libraries, including popular
ones like Boost, are written in C++. These libraries provide
reusable and optimized code for various applications.

11. Performance-Critical Applications:
C++ is chosen for applications where performance is critical, and
low-level control over hardware resources is necessary. This
includes applications in aerospace, defense, and high-
performance computing.

12. Cross-Platform Development:
C++ is suitable for cross-platform development, allowing
developers to write code that can be compiled and run on
different operating systems with minimal modification.

In summary, C++ is a versatile language that is well-suited for a wide
range of applications, particularly those that require high
performance, low-level control, and efficient use of system
resources. It is a reliable choice for a variety of industrial
applications.

