Chapter 3

Types, Constants, Variables
(1 week)

References and Pointers, declaration, scope,
initialisation,

array : declaration, initialisation, namespace,
dynamic allocation

Constants are variables whose values cannot be changed
after they are initialized. There are a couple of ways to
define constants in C++:

1. Using const Keyword:
const int MY_CONSTANT =42;

2. Using #define Preprocessor Directive:
#tdefine MY_CONSTANT 42

The #define directive is a preprocessor directive that
performs simple textual replacement.

It is generally recommended to use const for defining
constants in C++.

C++ supports a rich set of data types, and they can
be broadly categorized into the following:

1. Fundamental / Primitive Types:
int: Integer type.
float: Single-precision floating-point type.
double: Double-precision floating-point type.
char: Character type.
bool: Boolean type (true or false).

C++ is a statically typed language, so you need to declare
the type of a variable before using it.

Syntax:
type variableName = value;
Examples:
Int mylnteger = 42;
float myFloat = 3.14;
double myDouble = 2.71828;
char myChar ="'A’;
bool myBool = true;

2. Derived Types:
Array: A collection of elements of the same
data type.
Pointer: A variable that stores the memory
address of another variable.
Reference: An alias for a variable.
Function: A block of code that performs a
specific task.

3. User-Defined Types:

Struct: A user-defined data type that groups
related variables under a single name.

Class: Similar to a struct but with additional
features, such as encapsulation and inheritance.
Union: A special data type that allows storing
different data types in the same memory location.

4. Enumeration Types:
enum: A user-defined type consisting of
named constants.

5. Void Type:
void: Represents the absence of a type. Used
in functions that do not return a value or for
generic pointers.

6. Standard Template Library (STL) Types:
Various container classes like vectors, lists,
sets, maps, etc.

Algorithms provided by the STL.

Pointers and References

Pointers:

* In C++, a pointer is a variable that stores the
memory address of another variable.

* Pointers are used to work with memory
directly and enable dynamic memory
allocation and manipulation.

* They play a crucial role in tasks like managing
arrays, implementing data structures, and
interacting with functions that work with
memory.

1. Declaration:
To declare a pointer, you use the asterisk * symbol:

int* myPointer; // Declaration of a pointer to an integer
This declares a pointer named myPointer that can point to an integer.

2. Initialization:
Pointers should be initialized with the address of a variable:

int myVariable = 10;
int* myPointer = &myVariable; // Initialize the pointer with the address of
// myVariable

3. Dereferencing:
To access the value at the memory location a pointer is pointing to, you use the
dereference operator *:
int myValue = *myPointer; // Access the value myPointer is pointing to

Two operations allow to retrieve the address of an object
and access the pointed object (value). They are
respectively called indirection and dereference.

These operators are & and *respectively.

ptr and var = value of the variable.

ptr and &var = addresse of the variable.

Exeample:
#include<iostream>
using namespace std;

main()

{int x=10;

int *px=&x;

cout<<"x=" <<x<<"\n";

cout<<" Using the pointer x=" <<*px<<"\n";
X*=2;

cout<< " Using the pointer x=" <<*px<<"\n";
px=3;

cout<<"x=" <<x<<"\n";

return 0;}

Reference

* In C++, a reference is an alias or alternative
name for an existing variable.

* |t provides an alternative syntax for accessing
the same memory location as the original

variable.
» References are declared using the & symbol.

1. Declaration:
To declare a reference, you use the & symbol after the

data type:

int originalVariable = 42;

int &myReference = originalVariable;

// Declaration of a reference

In this example, myReference is a reference to

originalVariable.

2. Initialization: References must be initialized when they
are declared, and once initialized, they cannot be re-

assigned to refer to another variable.
They act as an alias to the variable they are referencing.

Example:

#include<iostream>

using namespace std;

main()

{int i=0; int &ri=i;

cout<< " using the variable, i= " <<i<<"\n";
cout<<" using the reference, ri= " <<ri<<"\n";
ri+=2;

cout<< " using the variable, i= " <<i<<"\n";
cout<< " using the reference ri=" <<ri<<"\n";
return 0;}

Scope of variables, pointers and references

* In C++, the scope of variables, pointers, and
references refers to the region of the program
where they can be accessed or modified.

* The scope is determined by the location of
their declaration in the code.

1. Variables:

Local Variables: Variables declared within a block of code, such as
within a function, have local scope. They are only accessible within
that block.

Example:

void myFunction()

{ intlocalvar =10; //localVar has local scope

}

Global Variables: Variables declared outside of any function, class,
or block have global scope. They can be accessed from anywhere in
the program.

Example:

int globalVar = 20; // globalVar has global scope

int main()
{ // Access globalVar here}

2. Pointers:

The scope of pointers is similar to the variables they point to. The
pointer variable itself has its own scope, but the memory it points to
might have a different scope.

void myFunction()

{ intlocalvar =10;
int* ptr = &localVar; // ptr has local scope
// Access localVar through ptr}

If a pointer points to dynamically allocated memory (using new), its
scope is often determined by the block of code in which it was
created.

int* dynamicPtr = new int; // dynamicPtr has dynamic memory with
//scope defined by the programmer

3. References:

References are similar to pointers in terms of scope. A reference
variable itself has scope, but it is an alias for another variable, and its
scope is tied to the variable it refers to.

void myFunction()
{ intlocalVar=10;
int& ref = localVar; // ref has local scope, but it refers to localVar
// Access localVar through ref}

References are commonly used as function parameters to allow
modifying the original variable directly, and their scope is limited to
the function in which they are declared.

