
Chapter 3 (part 2)

array : declaration, initialisation,

namespace,

dynamic allocation

Arrays : declaration, initialisation

• Arrays are data structures in programming
that allow you to store a collection of
elements of the same data type under a single
variable name.

1. Declaration:
To declare an array, you need to specify its data type and name.
The array's data type is the type of elements it will store, and
the name is used to refer to the array in your code.

Syntax :
data_type array_name[array_size];

data_type: The type of data the array will store
array_name: The name you choose for the array.
array_size: The number of elements the array can hold. This size is
determined when the array is created.
Example:
int myArray[5];
double prices[10];
char characters[20];.

2. Initialization: Initialization can be done in different ways:

a. Initializing at the time of declaration: You can set initial values for the array
when declaring it.

Example:
int numbers[3] = {1, 2, 3};

b. Partial initialization: You can partially initialize an array, and the remaining
elements will be set to default values (usually 0 for numeric types).

Example:
int data[5] = {1, 2}; // Initializes the first two elements to 1 and 2; the rest are

set to 0.

c. Initializing with a loop: This is useful for populating an array with values
calculated at runtime.

Example:
int squares[5];
for (int i = 0; i < 5; i++)
{ squares[i] = i * i;}

Array Name as a Pointer:
In C and C++, the name of an array is essentially a pointer to the first element of
the array. When you use the array name in an expression without an index, it
acts as a pointer to the first element.

Example:
int numbers[5] = {1, 2, 3, 4, 5};
int *ptr = numbers; // Assigns the address of the first element to the pointer.

Array Indexing:
You can access individual elements of an array using square brackets and an
index. This is equivalent to pointer arithmetic.

Example:
int secondElement = numbers[1]; // Accessing the second element using array
indexing. int thirdElement = *(numbers + 2); // Accessing the third element using
pointer arithmetic.

Pointer Arithmetic:
Pointers can be used to traverse an array by incrementing or
decrementing the pointer. This is more flexible and powerful than
array indexing.

Example:
int *ptr = numbers;
int thirdElement = *(ptr + 2); // Accessing the third element using
pointer

Passing Arrays to Functions:
When you pass an array to a function, you're actually passing a
pointer to the first element of the array. This is why changes made
to the array within the function are reflected outside the function.

Pass by pointer:

Example:

void printArray(int* arr, int size)
{ for (int i = 0; i < size; i++)

cout << arr[i] << " ";
cout << endl;

}

int main()
{ int myArray[] = {1, 2, 3, 4, 5};

int size = 5;
printArray(myArray, size);
return 0;

}

Pass by Reference:
You can also pass an array by reference. This allows the function to
work with the original array without creating a copy.

Example:
void modifyArray(int (&arr)[5])
{ for (int i = 0; i < 5; i++)

arr[i] *= 2; }

int main()
{ int myArray[] = {1, 2, 3, 4, 5};
modifyArray(myArray);
for (int i = 0; i < 5; i++)
{ cout << myArray[i] << " "; }
cout << endl;
return 0; }

Pass by std::array or std::vector: (Works on C++11)
In modern C++, it's often recommended to use std::array or std::vector from the
Standard Library instead of built-in arrays when passing arrays to functions. These
container classes offer safer and more convenient ways to work with arrays.

#include <iostream>
#include <array>
#include <vector>

void printVector(const std::vector<int>& vec)
{ for (int value : vec)
{ cout << value << " "; }
cout << endl;}

int main()
{ std::vector<int> myVector = {1, 2, 3, 4, 5};
printVector(myVector);

return 0;}

Pass by a dynamic array (using pointers):
When working with dynamically allocated arrays (created with new
in C++), you can pass them to functions as pointers. Be cautious
when using dynamic arrays to ensure proper memory management
(e.g., using delete when you're done with the array).

void processDynamicArray(int* arr, int size)
{ // Do something with the dynamic array

// Don't forget to deallocate memory when done
delete[] arr;}

int main()
{ int* dynamicArray = new int[5];
// Initialize dynamicArray
processDynamicArray(dynamicArray, 5);
return 0;}

namespace
• In C++, a namespace is a mechanism that helps prevent

naming conflicts and organizes code into logical groups.

• It allows you to define a scope or a context in which
identifiers, such as variables, functions, and classes, can exist
without conflicting with identifiers of the same name in other
namespaces.

• This is particularly useful when you are working with large
codebases or integrating multiple libraries, as it helps ensure
that the names of your identifiers do not clash with names
defined elsewhere.

// Define a namespace
namespace my_namespace
{ int my_variable = 42;
void my_function()
{ // Function code here }
}

int main()
{ // Accessing variables and functions from a namespace
int x = my_namespace::my_variable;
my_namespace::my_function();
return 0;

}

:: is the scope resolution operator.
Opérateur de résolution de portée

Dynamic allocation

• Dynamic allocation in C++ refers to the process of
allocating memory for variables or data structures at
runtime (during program execution) rather than at
compile time.

• This is in contrast to static allocation, where memory is
allocated at compile time, and the size of the allocated
memory is fixed.

• In C++, dynamic allocation is typically performed using
operators new and delete for single objects and arrays,
or using functions from the C Standard Library, such as
malloc, calloc, realloc, and free.

• The most common approach in modern C++ is to use
new and delete for managing dynamic memory.

Dynamic Memory Allocation with new:
The new operator is used to allocate memory for a single object or an array on
the heap.
It returns a pointer to the allocated memory.
Example:

int* dynamicInt = new int; // Allocate memory for an integer
int* dynamicArray = new int[10]; // Allocate memory for an integer array

Dynamic Memory Deallocation with delete:The delete operator is used to free
the memory allocated with new.
It is crucial to release memory to prevent memory leaks.
Example:

delete dynamicInt; // Deallocate memory for the integer
delete[] dynamicArray; // Deallocate memory for the integer array

N.B:Dynamic allocation is beneficial when you need to work with data
structures of varying or unknown sizes

