

BADJI MOKHTAR UNIVERSITY -ANNABA FACULTY OF TECHNOLOGY SCIENCE AND TECHNOLOGY DEPARTMENT (ST) 1st year LMD 2024/2025

Physics 1: Series 2 Vector calculus

Exercise 1

Let the vectors in space be represented in an orthonormal coordinate system R (OXYZ),

 $\overrightarrow{V_1} = 2\overrightarrow{\iota} - 3\overrightarrow{j} + \overrightarrow{K}$ and $\overrightarrow{V_2} = -\overrightarrow{\iota} + 2\overrightarrow{j} + \overrightarrow{K}$

1. Represent these vectors in the reference R(OXYZ).

- 2. Calculate $\vec{S} = \vec{V_1} + \vec{V_2}$ and the modules: $\|\vec{V_1}\|$, $\|\vec{V_2}\|$ and $\|\vec{S}\|$.
- 3. Calculate the scalar product of $\overrightarrow{V_1}$ and $\overrightarrow{V_2}$ and deduce the angle between them.
- 4. Determine the unit vector carried by the vector $\overrightarrow{V_2}$. Deduce the direction cosines of $\overrightarrow{V_2}$.
- 5. Determine the unit vector perpendicular to the plane $(\overrightarrow{V_1}, \overrightarrow{V_2})$

Exercise 2

Consider the points A(1,0,-1), B(-1,2,1), C(2,1,3) and D(0,1,0) in the frame (OXYZ).

- 1- Determine the components and magnutides of the vectors \overrightarrow{AB} , \overrightarrow{AC} and \overrightarrow{AD} .
- 2- Determine the projection and the vector projection of \overrightarrow{AB} on \overrightarrow{AC} .

3- Calculate the surface area of triangle ABC and the volume constituted by \overrightarrow{AB} , \overrightarrow{AC} and \overrightarrow{AD} . **Exercise 3**

a. Given the two vectors
$$\vec{A} = \begin{pmatrix} 1 \\ \alpha \\ \beta \end{pmatrix}$$
, $\vec{B} = \begin{pmatrix} 2 \\ -3 \\ 4 \end{pmatrix}$.

Find the values of α and β such that B^{\dagger} is parallel to A^{\dagger} .

b. Determine the value of the number *a* for which the vectors $\vec{V_1} = 2\vec{i} + a\vec{j} + \vec{k}$ and $\vec{V_2} = 4\vec{i} - 2\vec{j} - 2\vec{k}$ are perpendicular.

Exercise 4

In the frame $R(0, \vec{\iota}, \vec{j}, \vec{k})$ we give the sliding vector $\vec{V} = \vec{\iota} + 2\vec{\jmath} + 3\vec{k}$ and which passes through the point A(3, 4, 2).

1. Calculate the moment of the vector \vec{V} relative to the origin *O*, then relative to the axes OX and OY.

- 2. Calculate the moment of vector \vec{V} relative to point B (3, 6, 0)
- 3. Consider the (Δ) axis of unit vector \vec{u} (-1/ $\sqrt{2}$, 1/2, 1/2) and passing through *B*, calculate the moment of \vec{V} relative to (Δ).