Mathematical Logic Series of tutorials N°02 : Formal systems

Exercise 1

1. Define a formal system such that we can produce the theorems kst, kstst, kststst, from an axiom k.

2.Define a formal system such that can produce the theorems ca, caba, cababa, cabababa, cababababa,..., etc. The axiom is c.

3. Define a formal system such that we can produce theorems b, ba, baa, baaa, baaaa,..., etc. The axiom is b.

Exercise 2 Consider the MIU system which includes :

- The alphabet $S = \{M, I, U\}$
- The axiom $A = \{MI\}$
- the rules :
 - R₁ : if a string ends with an I we can add a U at the end,
 - R_2 : If we have a string Mx, we can form Mxx (where x is any string),
 - R₃ :we can replace III with a U in a string,
 - R₄ : we can delete any UU pair.
- 1. Prove that MUIUI is a theorem.
- 2. Is UM a theorem?
- 3. Is MU a theorem?

Exercise 3 Let the formal system p-q

 $S = \{p, /, q\} A = \{pq\} R =$

— a- $x \rightarrow /x/$

— b- $xpy \rightarrow xp/y/$ (x and y are system words)

Can we derive the following strings : //p/q///;/p//q/;/////p///q///////??

Exercise 4 Consider a formal system composed of :

An alphabet $\{A, B, C, D\},\$

Axioms : D, DD,

Deductive rules :

- a- add C to the end of any string.
- b- add an A at the beginning and end of any string.
- c- replace a C with a B in a string.

Which of the following strings are theorems? Give the proofs DC, DCCC, DCCA, AAADAAA, AAADAAAA, AAADCCCABBA.

Exercise 5 Let the formal system S (Σ, A, W, R) such that :

- Σ : it is the alphabet set such that $\Sigma = \{a, b, c\},\$
- A : it is the set of axioms which have the following form $A = \{a^{2i+1}bc^{2i-1} | i \ge 1\},\$

- $\begin{array}{l} & \mathcal{W}: \text{represents the set of wffs generated from the axioms and wffs already generated,} \\ & \mathcal{R}: \text{it is the set of rules such as } \mathcal{R} = \{r_1: (a^k b c^m, a^p b c^n) \longrightarrow a^{k+n} b c^{m+p}\} \end{array}$
- Q1 : Are the following formulas theorems $a^4bc^4, a^5bc^5, a^6bc^6$?
- Q2 : Give the different possible forms of theorems.