
Chapter 4

Loop structures

1. Introduction

Suppose we wish to print a message 5 times. This is done using the following algorithm.

algo

1 print(“I print a message”)
2 print(“I print a message”)
3 print(“I print a message”)
4 print(“I print a message”)
5 print(“I print a message”)

We can see that it is sufficient to print the statement 5 times. It is thus possible to create a program that outputs the
message as many times as desired just by copying and pasting the print statement (though this is not recommended).

Now, what if we want the program to print the message as many times as the user defines? In this situation, how
many times should we use the print statement? To deal with this issue, loops are used. A loop is a way for executing a
statement or block as many times as necessary without having to write it down each time. Each time that the block is
executed is called an iteration. Loops are an excellent way to creating powerful programs, but they introduce a serious
problem regarding execution termination. A loop has the ability to be infinite, that is, it never ends. More about that
issue will be discussed in this chapter.

Programming languages offer a variety of loops. Some are straightforward, whereas others show a looping behavior
indirectly. We distinguish two kinds of loops: condition-based loops (while) and index-based loops (for).

2. Simple while loops

A while loop executes a code as long a given condition is satisfied. In the algorithmic language its form is:

algo

1 while expression do block

In Python, we use the following syntax:

py

1 while expression:

 block

2

while expression:

 block

Introduction to programming - Textbook - prepared by Dr. T. Benouhiba - MIAGE Bachelor Degree 27

Chapter 4 Loop structures

In both languages, the execution of the while is made as follows:
1 – Evaluate expression.
2 – If the value of expression is true (or any equivalent value in Python), then the block is executed; otherwise, the

execution resumes with the statement following the while.
3 – After the execution of block, the expression is evaluated again, and steps 2 and 3 are repeated until the value of

expression becomes false.

Let us consider an example using the while loop. The factorial is defined by 𝑛! = ∏𝑖=𝑛𝑖=1 𝑖 = 𝑛 × 𝑛 − 1 × …2 × 1, with
0! = 1. The following code gives the algorithm to compute the factorial of a number:

algo

1 algorithm factorial
2 var i,n,res:integer
3 begin
4 n=integer(input(“Give the value of n=”))
5 res=1
6 i=2
7 while i<=n do
8 begin
9 res=res*i

10 i=i+1
11 end
12 print(n,"!=",res)
13 end

This is written as follows in Python:

py

1 if __name__=="__main__":

 n:int=int(input("Give the value of n="))

 i:int=2

 res:int=1

 while i<=n:

 res*=i

 i+=1

 print(n,"!=",res)

2

if __name__=="__main__":

 n:int=int(input("Give the value of n="))

 i:int=2

 res:int=1

 while i<=n:

 res*=i

 i+=1

 print(n,"!=",res)

3

if __name__=="__main__":

 n:int=int(input("Give the value of n="))

 i:int=2

 res:int=1

 while i<=n:

 res*=i

 i+=1

 print(n,"!=",res)

4

if __name__=="__main__":

 n:int=int(input("Give the value of n="))

 i:int=2

 res:int=1

 while i<=n:

 res*=i

 i+=1

 print(n,"!=",res)

5

if __name__=="__main__":

 n:int=int(input("Give the value of n="))

 i:int=2

 res:int=1

 while i<=n:

 res*=i

 i+=1

 print(n,"!=",res)

6

if __name__=="__main__":

 n:int=int(input("Give the value of n="))

 i:int=2

 res:int=1

 while i<=n:

 res*=i

 i+=1

 print(n,"!=",res)

7

if __name__=="__main__":

 n:int=int(input("Give the value of n="))

 i:int=2

 res:int=1

 while i<=n:

 res*=i

 i+=1

 print(n,"!=",res)

8

if __name__=="__main__":

 n:int=int(input("Give the value of n="))

 i:int=2

 res:int=1

 while i<=n:

 res*=i

 i+=1

 print(n,"!=",res)

To understand how while works, we will go through it step by step while keeping an eye (watching) on some ex-
pressions and/or variables (we use the Python code here). Suppose that user enters the value 5 for 𝑛. The following
table gives the values after the execution of each line.

Line n i res i<=n

3 5 2 - True
4 5 2 1 True
5 5 2 1 True
5 5 2 1 True
6 5 2 2 True
7 5 3 2 True
5 5 3 2 True
6 5 3 6 True
7 5 4 6 True
5 5 4 6 True
6 5 4 24 True
7 5 5 24 True
5 5 5 24 True
6 5 5 120 True
7 5 6 120 True

Introduction to programming - Textbook - prepared by Dr. T. Benouhiba - MIAGE Bachelor Degree 28

Chapter 4 Loop structures

5 5 6 120 False

We can see that the code terminates. There were 4 iterations. Notice that the loop terminates because it was possible
to reach a state in which the condition i<=n is no longer true. In other words, the negation of the loop condition (¬𝑖 ≤
𝑛 ⇔ 𝑖 > 𝑛) becomes true. We call this last condition the stop condition.

What if the while stop condition never becomes true? This means that the loop will run forever. We call that an
infinite loop. In most cases, this is a fatal error, and it should be avoided by fine-tuning the stop condition and/or the
block statements. For instance, in the previous code, if we omit the statement i+=1, the loop will run forever (or until
the user stops the execution). However, in some special cases (for example, in a server), infinite loops are intentionally
used.

Remark: In this code, the variable i somehow counts the number of iterations. We usually refer to such variables
as counters.

2.1. Controlling the loop

Beside the loop condition and the loop statements, it is possible to control the execution of iterations. In Python,
two special statements are used:
- The break statement: this statement ends the loop and transfers control to the statement that follows it. This state-

ment is particularly helpful when the stop condition is too complex to compute or some of the variable values are
unknown.

- The continue statement: assume that a statement has to be executed in all iterations except one. The continue state-
ment allows to skip the statement of the loop and go back to the loop condition evaluation.

Although the following program is not recommended, we use it as an illustration of the break statement:

py

1 if __name__=="__main__":

 n:int=int(input("Give the value of n="))

 i:int=2

 res:int=1

 while True:

 res*=i

 if i<6:i+=1

 else:break

 print(n,"!=",res)

2

if __name__=="__main__":

 n:int=int(input("Give the value of n="))

 i:int=2

 res:int=1

 while True:

 res*=i

 if i<6:i+=1

 else:break

 print(n,"!=",res)

3

if __name__=="__main__":

 n:int=int(input("Give the value of n="))

 i:int=2

 res:int=1

 while True:

 res*=i

 if i<6:i+=1

 else:break

 print(n,"!=",res)

4

if __name__=="__main__":

 n:int=int(input("Give the value of n="))

 i:int=2

 res:int=1

 while True:

 res*=i

 if i<6:i+=1

 else:break

 print(n,"!=",res)

5

if __name__=="__main__":

 n:int=int(input("Give the value of n="))

 i:int=2

 res:int=1

 while True:

 res*=i

 if i<6:i+=1

 else:break

 print(n,"!=",res)

6

if __name__=="__main__":

 n:int=int(input("Give the value of n="))

 i:int=2

 res:int=1

 while True:

 res*=i

 if i<6:i+=1

 else:break

 print(n,"!=",res)

7

if __name__=="__main__":

 n:int=int(input("Give the value of n="))

 i:int=2

 res:int=1

 while True:

 res*=i

 if i<6:i+=1

 else:break

 print(n,"!=",res)

8

if __name__=="__main__":

 n:int=int(input("Give the value of n="))

 i:int=2

 res:int=1

 while True:

 res*=i

 if i<6:i+=1

 else:break

 print(n,"!=",res)

9

if __name__=="__main__":

 n:int=int(input("Give the value of n="))

 i:int=2

 res:int=1

 while True:

 res*=i

 if i<6:i+=1

 else:break

 print(n,"!=",res)

2.2. Loops and flowcharts

There is no specific box to represent loops. Instead, they are represented in the flowchart as a cycle: a path that starts
from one box and returns to the same box after multiple steps. The first box is usually a test box. To illustrate this idea,
we give a flowchart of the factorial program.

Introduction to programming - Textbook - prepared by Dr. T. Benouhiba - MIAGE Bachelor Degree 29

Chapter 4 Loop structures

No
Yes

Start

input n

i=2

res=1

i<=n res=res*i

i=i+1print n,"!=",res

End

Example 4.1 : Fibonacci series

The Fibonacci series 𝑥𝑛 is defined by 𝑢0 = 𝑢1 = 1 and the recurrence relation 𝑢𝑛+1 = 𝑢𝑛 + 𝑢𝑛−1 (for 𝑛 > 0). Write
an algorithm and a Python program to compute the term 𝑢𝑛 (𝑛 is given by the user).

Example 4.2 : Let’s play a game

In a game, a player must guess a number chosen randomly by the computer (between 1 and 200). When the player
makes a guess, the computer tells him if it is greater or less than the chosen number. The game ends when the
player gives the right answer.

Give the algorithm, the Python program and the flowchart of the game.

To generate a random number, first place the line import random at the beginning of the file. Then, use the func-
tion random.randint(1,200).

3. Index-based loops

while loops are useful when the number of iterations is not known in advance. In contrast, when the iteration num-
ber is known, it is preferable to use another kind of loop called index-bases loops, also known as for loops. The first
advantage of for loops is that the programmer would not forget to increment the loop counter. In addition, counters
in for loops can be incremented by 1 (this is the default case) or by any value (positive or negative), giving the loop a
more concise form.

In the algorithmic language, for loops has the following form:

algo

1 for i=a to b [step n] do block

In this code, the part step n is optional. If omitted, the default value of the step is 1. The code executes as follows:
1 – The expression a is evaluated, then its value is assigned to i
2 – If the step is positive, the test i<=b is evaluated; otherwise, the test i>=b is evaluated
3 – If the test value is false, then stop the execution of the loop
4 – Else, execute block then assign i+n to i. The execution goes back to step 2.

The factorial algorithm cas be rewritten as:

Introduction to programming - Textbook - prepared by Dr. T. Benouhiba - MIAGE Bachelor Degree 30

Chapter 4 Loop structures

algo

1 algorithm factorial
2 var i,n,res:integer
3 begin
4 n=integer(input(“Give the value of n=”))
5 res=1
6 for i=2 to n do
7 res=res*i
8 print(n,"!=",res)
9 end

Remark: The loop counter is automatically initialized and incremented (or decremented at the end of each it-
eration). Although manually changing the value of the counter within the loop is not forbidden, this is not a
recommended practice. If doing so is necessary, the while loop will be more suitable.

Python for loops are by far more powerful than those in the algorithmic language. Some aspects of for loops are
beyond the scope of this chapter, but keep in mind that for loop is a means to iterate over iterables. An iterable is
any data structure that can be browsed sequentially. In this chapter, we will just use the case of iterating over a list of
integers through the function range which takes one, two or three arguments:
- If one argument is used, then range(n) represents integers from 0 to 𝑛 − 1 (if 𝑛 ≤ 0, then the list is empty). The step

value is 1.
- If two arguments are used, then range(n,p) represents integers from 𝑛 to 𝑝 − 1. The step value is 1.
- If three arguments are used, then range(n,p,s) represents integers from 𝑛 to 𝑝 − 1 with step 𝑠. If the step is negative,

then the function represents integers from 𝑛 down to 𝑝 + 1 with step 𝑠.

The factorial program is rewritten as:

py

1 if __name__=="__main__":

 n:int=int(input("Give the value of n="))

 res:int=1

 i:int

 for i in range(2,n+1):

 res*=i

 print(n,"!=",res)

2

if __name__=="__main__":

 n:int=int(input("Give the value of n="))

 res:int=1

 i:int

 for i in range(2,n+1):

 res*=i

 print(n,"!=",res)

3

if __name__=="__main__":

 n:int=int(input("Give the value of n="))

 res:int=1

 i:int

 for i in range(2,n+1):

 res*=i

 print(n,"!=",res)

4

if __name__=="__main__":

 n:int=int(input("Give the value of n="))

 res:int=1

 i:int

 for i in range(2,n+1):

 res*=i

 print(n,"!=",res)

5

if __name__=="__main__":

 n:int=int(input("Give the value of n="))

 res:int=1

 i:int

 for i in range(2,n+1):

 res*=i

 print(n,"!=",res)

6

if __name__=="__main__":

 n:int=int(input("Give the value of n="))

 res:int=1

 i:int

 for i in range(2,n+1):

 res*=i

 print(n,"!=",res)

7

if __name__=="__main__":

 n:int=int(input("Give the value of n="))

 res:int=1

 i:int

 for i in range(2,n+1):

 res*=i

 print(n,"!=",res)

Python for loops can involve many variables using the unpack syntax, but we won’t use that for the moment. Python
also has other means to loop over iterables, notably through comprehension or filtering. Again, these topics will not be
covered in this chapter.

3.1. Nested loops

The inner block of a loop statement may also include another loop. Hence, we talk about nested loops. In this case,
the inner loop is executed in each iteration of the outer loop. If the outer loop executes for 𝑛 iterations and the inner
iteration executes for 𝑝 iterations each time, the inner loop’s inner block will be executed 𝑛 × 𝑝 times, this is known
as the complexity of the loop. Obviously, we can nest any number of loops within one another but the complexity will
increase as many levels are introduced.

In nested loops, if counters are used, then each loop will generally have its own counter.

We will illustrate nested loops through a simple example. Let’s consider that we want to compute the factorial of
numbers from 1 to 30. In the algorithmic language, this is done by this code:

Introduction to programming - Textbook - prepared by Dr. T. Benouhiba - MIAGE Bachelor Degree 31

Chapter 4 Loop structures

algo

1 algorithm factorials
2 var i,n,res:integer
3 begin
4 for n=1 to 30
5 begin
6 res=1
7 for i=2 to n do
8 res=res*i
9 print(n,"!=",res)

10 end
11 end

The Python code for this problem is:

py

1 if __name__=="__main__":

 n:int

 for n in range(1,31):

 res:int=1

 i:int

 for i in range(2,n+1):

 res*=i

 print(n,"!=",res)

2

if __name__=="__main__":

 n:int

 for n in range(1,31):

 res:int=1

 i:int

 for i in range(2,n+1):

 res*=i

 print(n,"!=",res)

3

if __name__=="__main__":

 n:int

 for n in range(1,31):

 res:int=1

 i:int

 for i in range(2,n+1):

 res*=i

 print(n,"!=",res)

4

if __name__=="__main__":

 n:int

 for n in range(1,31):

 res:int=1

 i:int

 for i in range(2,n+1):

 res*=i

 print(n,"!=",res)

5

if __name__=="__main__":

 n:int

 for n in range(1,31):

 res:int=1

 i:int

 for i in range(2,n+1):

 res*=i

 print(n,"!=",res)

6

if __name__=="__main__":

 n:int

 for n in range(1,31):

 res:int=1

 i:int

 for i in range(2,n+1):

 res*=i

 print(n,"!=",res)

7

if __name__=="__main__":

 n:int

 for n in range(1,31):

 res:int=1

 i:int

 for i in range(2,n+1):

 res*=i

 print(n,"!=",res)

8

if __name__=="__main__":

 n:int

 for n in range(1,31):

 res:int=1

 i:int

 for i in range(2,n+1):

 res*=i

 print(n,"!=",res)

Example 4.3 : A chessboard

Write a Python program that draws a chessboard on the screen. Black squares will be noted by [#] and the white
square by [].

4. A word about efficiency

As previously stated, simple or nested loops introduces complexity to an algorithm. The complexity of a code is
roughly defined as the number of operations executed by the algorithm. In general, we’re interested in the relationship
between an algorithm’s number of inputs and the number of operations performed. Obviously, no one likes it when
a computer hangs and takes a long time to run programs, but could we avoid it? The answer is somewhat difficult
because it depends on the problem being solved.

We say that an algorithm 𝐴1 is less complex than an algorithm 𝐴2 for solving the same problem if the first executes
fewer operations. We may even go a step further by looking for the least complex algorithm for solving the problem.
It is always crucial to look for optimal algorithms, even if it is a difficult task. In some cases, we’re not even sure if
optimal algorithms exist. In this case, we can accept good algorithms: suboptimal algorithms that are easier to build
while still providing accepted runtime performance.

Introduction to programming - Textbook - prepared by Dr. T. Benouhiba - MIAGE Bachelor Degree 32

