
Chapter 5

Array-like structures

Elementary data types are the basic way for organizing data. Variables allow us to organize data processing proce-
dures based on the types of data. For a strong typed language, this could identify a large number of design errors
during compilation. Even with loosely typed languages, variable typing provides insurance against applying wrong
processing to wrong data.

However, data is not always packaged in separated containers. We frequently need to divide data into similar pieces
before applying algorithms to it. This is where compound data structures are beneficial. Programming languages
provide a wide range of complex data structures, yet arrays remain one of the most popular. Arrays are particularly
helpful in algorithms that analyze data.

In this chapter, we will explore array-like structures since they are common in programming languages. We will
also cover dictionaries and strings as special cases of arrays. It is worth noting that array-like structures in Python are far
more richer than those described in this chapter. So, the word array would not be particularly appropriate to represent
the Python structures presented in this chapter, as the most exact word would be sequences.

1. Arrays

Arrays in the algorithmic language differ significantly from those in Python. The basic type of arrays in Python is
List, which refers to structures that differ significantly from arrays in the algorithmic language. For both languages,
we will use distinct array definitions.

1.1. Arrays in the algorithmic language

An array is a collection of elements of the same type stored in a contiguous block of memory. Arrays provide
random access, which is an index-based access where an index indicates the rank of data in the array. An array is
characterized by the type of its elements and its size, which is the number of elements contained therein. The size of
an array in the algorithmic language is fixed, and it is part of its type.

Arrays are declared by this syntax:

algo

1 var arr:array[n] of type

In this code, n is a constant, and type is any type supported by the language (including arrays themselves). To access
an element in an array, either in reading or writing, we use the syntax arr[e] where e is an expression that is evalu-
ated to an integer. For instance, arr[0] is the first element, the second element is arr[1] and so on. The last element
is arr[n-1].

Introduction to programming - Textbook - prepared by Dr. T. Benouhiba - MIAGE Bachelor Degree 34

Chapter 5 Array-like structures

In the algorithmic language, never access an array element without first determining if the index is within the
accepted range. If the index is negative or exceeds the array size, this is an error.

Schematically, an array is represented as contiguous block of data. Consider the array [4,5,8,9], it is stored in mem-
ory as (the pink box indicates the element at the index 2):

4 5 8 9

Let’s consider a simple example of an algorithm that reads 𝑛 integers then prints them out in the reverse order.

algo

1 algorithm reverse_print
2 const n=15
3 var i:integer
4 var arr:array[n] of integer
5 begin
6 for i=0 to n-1 do
7 arr[i]=integer(input(“Enter a value:”))
8 for i=n-1 to 0 step −1 do
9 print(arr[i])

10 end

This example shows how to loop across arrays. A basic index-based loop is sufficient to go over all array elements.
However, in most situations, nested loops are employed to do more complex processing.

An array should always be initialized before use.

Arrays are structures that can be compared. The algorithmic language has no special syntax for that, the programmer
has to write its own code. Let’s make a code that decide if two arrays (of the same type) are equals:

algo

1 …
2 const n=…
3 var eq:boolean
4 var i:integer
5 var arx,ary:array[n] of integer
6 begin
7 …
8 eq=true
9 i=0

10 while eq and i < n do
11 begin
12 if arx[i]!=ary[i] then eq=false
13 else i=i+1
14 end
15 if eq then print(“Arrays are equal”)
16 else print(“Arrays are no equal”)
17 end

This code can be shortened a little bit with a for loop:

Introduction to programming - Textbook - prepared by Dr. T. Benouhiba - MIAGE Bachelor Degree 35

Chapter 5 Array-like structures

algo

1 …
2 const n=…
3 var eq:boolean
4 var i:integer
5 var arx,ary:array[n] of integer
6 begin
7 …
8 eq=true
9 for i=0 to n-1 do

10 if arx[i]!=ary[i] then
11 begin
12 eq=false
13 break
14 end
15 if eq then print(“Arrays are equal”)
16 else print(“Arrays are no equal”)
17 end

Let’s take another example in which we compute the number of elements above the average of the values in an
array:

algo

1 …
2 const n=…
3 var i,nb:integer
4 var arx:array[n] of integer
5 var avg:float begin
6 …
7 for i=0 to n-1 do
8 avg=avg+arx[i]
9 avg=avg/n

10 for i=0 to n-1 do
11 if arx[i]>avg then nb=nb+1
12 print(“Count of elements above the average”,nb)
13 end

2. Lists in Python

Lists in Python are more powerful than arrays in the algorithmic language. But this has a cost since for some ap-
plications lists can a little bit slow. In reality, it is possible to use arrays in Python through the module numpy, but this
will not be covered in this course. Still, numpy arrays are more efficient and more suitable for numerical calculations.

In Python, a list can contain any type of data. It is possible to mix integers, with booleans, with strings, with arrays
themselves, and so on. For sake of clarity, we will just use lists containing the same type of elements. Note that another
major difference between arrays in the algorithmic language and Python is that lists can created and manipulated in
different ways and that size is dynamic. That is, we can change their size by adding or removing elements. Finally,
loops can be done in several ways on lists. Comprehension and filtering are one of the most powerful. We will just
cover comprehension.

2.1. List constructors in Python

List can basically be built using three ways:
- Using the constructor list(iterable) which builds a new list for an iterable (an object that can be used in a loop).

For instance, we can write list(range(10)).
- Using the constructor [...]. For instance, we can write [0,1,2,3,4,5,6,7,8,9]. In particular, the syntax [] builds

an empty list.
- Using the multiplication operator [...]*nb where nb is an integer value. For example, [0]*10 builds an array the

elements of which are all zero. This syntax can be a source of error if the initial list contains arrays.

Introduction to programming - Textbook - prepared by Dr. T. Benouhiba - MIAGE Bachelor Degree 36

Chapter 5 Array-like structures

To access the elements of an array, we use the syntax l[index] (as in the algorithmic language). However, negative
indices are possible. l[-1] is the last element, l[-2] is the penultimate element of the list, and so on. The size of a list
(or any sequence) is got by the function len(l).

Let’s rewrite the previous array algorithms using Python. We begin with the reverse printing program (to declare
the type of a list, we have to use from typing import List):

py

1 ...

n:int=15

arl:List[int]=[0]*n

for i in range(n):

 arl[i]=input("Give a new value")

for i in range(n-1,-1,-1):

 print(arl[i],end="")

2

...

n:int=15

arl:List[int]=[0]*n

for i in range(n):

 arl[i]=input("Give a new value")

for i in range(n-1,-1,-1):

 print(arl[i],end="")

3

...

n:int=15

arl:List[int]=[0]*n

for i in range(n):

 arl[i]=input("Give a new value")

for i in range(n-1,-1,-1):

 print(arl[i],end="")

4

...

n:int=15

arl:List[int]=[0]*n

for i in range(n):

 arl[i]=input("Give a new value")

for i in range(n-1,-1,-1):

 print(arl[i],end="")

5

...

n:int=15

arl:List[int]=[0]*n

for i in range(n):

 arl[i]=input("Give a new value")

for i in range(n-1,-1,-1):

 print(arl[i],end="")

6

...

n:int=15

arl:List[int]=[0]*n

for i in range(n):

 arl[i]=input("Give a new value")

for i in range(n-1,-1,-1):

 print(arl[i],end="")

7

...

n:int=15

arl:List[int]=[0]*n

for i in range(n):

 arl[i]=input("Give a new value")

for i in range(n-1,-1,-1):

 print(arl[i],end="")

The comparison of two lists is made by:

py

1 ...

eq=True

for i in range(len(arx)):

 if arx[i]==ary[i]:

 eq=False

 break

if eq:print("Arrays are equal")

else:print("Arrays are no equal")

2

...

eq=True

for i in range(len(arx)):

 if arx[i]==ary[i]:

 eq=False

 break

if eq:print("Arrays are equal")

else:print("Arrays are no equal")

3

...

eq=True

for i in range(len(arx)):

 if arx[i]==ary[i]:

 eq=False

 break

if eq:print("Arrays are equal")

else:print("Arrays are no equal")

4

...

eq=True

for i in range(len(arx)):

 if arx[i]==ary[i]:

 eq=False

 break

if eq:print("Arrays are equal")

else:print("Arrays are no equal")

5

...

eq=True

for i in range(len(arx)):

 if arx[i]==ary[i]:

 eq=False

 break

if eq:print("Arrays are equal")

else:print("Arrays are no equal")

6

...

eq=True

for i in range(len(arx)):

 if arx[i]==ary[i]:

 eq=False

 break

if eq:print("Arrays are equal")

else:print("Arrays are no equal")

7

...

eq=True

for i in range(len(arx)):

 if arx[i]==ary[i]:

 eq=False

 break

if eq:print("Arrays are equal")

else:print("Arrays are no equal")

8

...

eq=True

for i in range(len(arx)):

 if arx[i]==ary[i]:

 eq=False

 break

if eq:print("Arrays are equal")

else:print("Arrays are no equal")

The count of elements above the average in a list is made by:

py

1 ...

avg=sum(arx)/len(arx)

nb=0

for e in arx:

 if e>avg:nb+=1

print("Count of elements above the average",nb)

2

...

avg=sum(arx)/len(arx)

nb=0

for e in arx:

 if e>avg:nb+=1

print("Count of elements above the average",nb)

3

...

avg=sum(arx)/len(arx)

nb=0

for e in arx:

 if e>avg:nb+=1

print("Count of elements above the average",nb)

4

...

avg=sum(arx)/len(arx)

nb=0

for e in arx:

 if e>avg:nb+=1

print("Count of elements above the average",nb)

5

...

avg=sum(arx)/len(arx)

nb=0

for e in arx:

 if e>avg:nb+=1

print("Count of elements above the average",nb)

6

...

avg=sum(arx)/len(arx)

nb=0

for e in arx:

 if e>avg:nb+=1

print("Count of elements above the average",nb)

In this example, we see many new elements:
- The function sum is predefined in Python and computes the sum of the elements of a list. We can also the functions
max and min.

- Iterating overs lists. In Python, looping over a list means that the loop variable will take consecutively the values
in the list. For instance, if we have arx=[1,2,3] then the loop will assign the value 1 to e, then the value 2, then the
value 3. This form is used if we are just interested with the elements of an array. If we are interested in both indices
and elements of an array, then we use the syntax for i,e in enumerate(i,e).

Note that we won’t cover dynamic sized lists in this course or list comprehension or filtering, as it ia an introductory
course.

2.2. Tuples

Tuples are similar to lists, but are immutable. Once a tuple has been built, neither its size nor its elements can be
changed; otherwise, a runtime error is raised. Tuples are created with parenthesis rather than brackets. For example,
the tuple (1,2,3) defines an immutable list containing elements 1, 2, and 3. All list operations are also applied to
tuples except modification.

A special intention should be paid for a one-element tuple. In fact, the notation (1) is equivalent to 1 and does not
build a tuple. We should use an extra comma to tell the compiler that we want to build a tuple (1,).

Introduction to programming - Textbook - prepared by Dr. T. Benouhiba - MIAGE Bachelor Degree 37

Chapter 5 Array-like structures

2.3. Packing and unpacking

Lists and tuples offer an elegant way to combine data into a single data unit, but also a way to to scatter it. These are
referred to as the pack and unpack operations.

Packing is just grouping data into a list or tuple. This can be done by utilizing the [...] or (...) syntax. Unpack-
ing is the reverse operation of taking a list or tuple and dividing it into single values. We have previously seen how
unpacking works for multiple assignments. In the assignment x,y=a,b, a is assigned to x and b to y. In reality, the left
and right sides of this assignment are just tuples, therefore this assignment is equivalent to (x,y)=(a,b).

Remember what we stated about the number of variables on the left and right sides of an assignment; they should
be equal. If not, we can use a dummy variable (_) on the left side, but this still counts for one variable. Assume we
have a list l=[1,2,3,4] and wish to extract the first, second, and rest of the list into three variables: a, b, and c. Because
there are three variables but four elements in the list, writing a,b,c=l will result in an error. We should use _ twice
to prevent the problem, but this is not what we want to do. Python provides a special and powerful syntax for pack-
ing elements as lists. The code a,b,*c=l assigns 1 to a, 2 to b, and the remaining list ([3,4]) to c. We may also write
*a,b,c=l, which assigns [1,2] to a, 3 to b, and 4 to c.

Remark: There can be only one starred expression in a statement.

3. Strings

String are special cases of arrays consisting only of characters. They are generally immutable in order to make them
efficient. String are usually used to represent a text.

3.1. Strings in the algorithmic language

A string variable is declared with the following syntax:

algo

1 var s:string[n]

Constant strings can be defined with the syntax "...". An empty string is denoted by "". A string of capacity 𝑛
does not necessarily contains 𝑛 characters. The meaningful characters are stored at the beginning of the string (starting
from the index 0). After the last meaningful characters, string are feed up with the character \0 (null character). We
will use the function len(s) to indicate the number of meaningful characters in a string. Many other useful functions
are used with strings:
- concat(s,t,u): concatenates the strings s and t and stores the result in the variable u (it should have enough capac-

ity to store the result). Concatenation means that the string t is written at the end of the string s. For example, the
concatenation of "abc" and "def" yields "abcdef".

- string(expression): this function converts the expression into a string representation. For example, the string rep-
resentation of a the integer 56 is the string "56".

Example 5.1 : Analyse a date

Suppose that a string represents a date (for example "06/12/2024"). We want to extract the date parts (day, month
and year). We suppose that the date is well-formed.

Introduction to programming - Textbook - prepared by Dr. T. Benouhiba - MIAGE Bachelor Degree 38

Chapter 5 Array-like structures

algo

1 …
2 const n=12 var s,t:string[n]
3 var i,j,l,day,month,year:integer
4 begin
5 …
6 l=len(s)
7 i=0
8 for j=0 to n-1 do t[i]="0″
9 j=0

10 while i < l do
11 if s[i]>=’0′ and s[i]<=9 then
12 begin
13 t[j]=s[i]
14 j=j+1
15 i=i+1
16 end
17 else break
18 day=integer(t)
19 for j=0 to n-1 do t[i]="0″
20 j=0
21 i=i+1
22 while i < l do
23 if s[i]>=’0′ and s[i]<=9 then
24 begin
25 t[j]=s[i]
26 j=j+1
27 i=i+1
28 end
29 else break
30 month=integer(t)
31 for j=0 to n-1 do t[i]="0″
32 j=0
33 i=i+1
34 while i < l do
35 if s[i]>=’0′ and s[i]<=9 then
36 begin
37 t[j]=s[i]
38 j=j+1
39 i=i+1
40 end
41 year=integer(t)
42 print(day,month,year)
43 end

3.2. Strings in Python

In Python, strings are treated as immutable list of characters. They can be indexed by integers and there is limit on
the size of a string except the memory size. It is possible to compute the length of a string by the function len and
to enumerate the characters together with their indices thanks to the function enumerate. String are also iterable just
as lists.

Remark: Strings are objects in Python. An object is a data attached to some given behaviors called methods. To
execute a method m of an object obj, we use the syntax obj.m().

Strings can be built using many possibilities:
- Constant strings: characters are places within double quotes, simple quotes (for one-line strings) or between two

occurrences of """ for multi-line strings.
- From a list: using the constructor str it is possible to build a string from a list of characters. For instance, the class

to str(["a","b","c"]) returns the string "abc".

Introduction to programming - Textbook - prepared by Dr. T. Benouhiba - MIAGE Bachelor Degree 39

Chapter 5 Array-like structures

- Using the method join. Let arr be an array of strings and sep a string. The call to sep.join(arr) returns an
new string in which the elements of arr are concatenated but separated with sep. For instance, the call to
",".join(["1","2","3"]) yields the string "1,2,3".

- The f-strings. Starting from version 3.7, Python added f-strings as a very practical way to format data. An f-string
starts with f and include braces that contain expressions. Assume a=1 and b=2, then the f-string "{a}+{b}={a+b}"
produces the string "1+2=3". It is easy to see that each expression is just replaced with its value in order to build the
final string.

Pythons strings contains lot a useful methods, but we won’t cover them in this chapter. For the moment, let’s imple-
ment the date algorithm in Python (using string methods, the program will be much shorter):

py

1 ...

s:str=...

t:str=""

i=0

l=len(s)

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

day=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

month=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

year=int(t)

print(f"{day}/{month}/{year}")

2

...

s:str=...

t:str=""

i=0

l=len(s)

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

day=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

month=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

year=int(t)

print(f"{day}/{month}/{year}")

3

...

s:str=...

t:str=""

i=0

l=len(s)

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

day=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

month=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

year=int(t)

print(f"{day}/{month}/{year}")

4

...

s:str=...

t:str=""

i=0

l=len(s)

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

day=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

month=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

year=int(t)

print(f"{day}/{month}/{year}")

5

...

s:str=...

t:str=""

i=0

l=len(s)

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

day=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

month=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

year=int(t)

print(f"{day}/{month}/{year}")

6

...

s:str=...

t:str=""

i=0

l=len(s)

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

day=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

month=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

year=int(t)

print(f"{day}/{month}/{year}")

7

...

s:str=...

t:str=""

i=0

l=len(s)

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

day=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

month=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

year=int(t)

print(f"{day}/{month}/{year}")

8

...

s:str=...

t:str=""

i=0

l=len(s)

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

day=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

month=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

year=int(t)

print(f"{day}/{month}/{year}")

9

...

s:str=...

t:str=""

i=0

l=len(s)

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

day=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

month=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

year=int(t)

print(f"{day}/{month}/{year}")

10

...

s:str=...

t:str=""

i=0

l=len(s)

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

day=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

month=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

year=int(t)

print(f"{day}/{month}/{year}")

11

...

s:str=...

t:str=""

i=0

l=len(s)

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

day=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

month=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

year=int(t)

print(f"{day}/{month}/{year}")

12

...

s:str=...

t:str=""

i=0

l=len(s)

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

day=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

month=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

year=int(t)

print(f"{day}/{month}/{year}")

13

...

s:str=...

t:str=""

i=0

l=len(s)

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

day=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

month=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

year=int(t)

print(f"{day}/{month}/{year}")

14

...

s:str=...

t:str=""

i=0

l=len(s)

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

day=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

month=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

year=int(t)

print(f"{day}/{month}/{year}")

15

...

s:str=...

t:str=""

i=0

l=len(s)

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

day=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

month=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

year=int(t)

print(f"{day}/{month}/{year}")

16

...

s:str=...

t:str=""

i=0

l=len(s)

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

day=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

month=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

year=int(t)

print(f"{day}/{month}/{year}")

17

...

s:str=...

t:str=""

i=0

l=len(s)

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

day=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

month=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

year=int(t)

print(f"{day}/{month}/{year}")

18

...

s:str=...

t:str=""

i=0

l=len(s)

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

day=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

month=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

year=int(t)

print(f"{day}/{month}/{year}")

19

...

s:str=...

t:str=""

i=0

l=len(s)

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

day=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

month=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

year=int(t)

print(f"{day}/{month}/{year}")

20

...

s:str=...

t:str=""

i=0

l=len(s)

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

day=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

month=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

year=int(t)

print(f"{day}/{month}/{year}")

21

...

s:str=...

t:str=""

i=0

l=len(s)

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

day=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

month=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

year=int(t)

print(f"{day}/{month}/{year}")

22

...

s:str=...

t:str=""

i=0

l=len(s)

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

day=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

month=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

year=int(t)

print(f"{day}/{month}/{year}")

23

...

s:str=...

t:str=""

i=0

l=len(s)

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

day=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

month=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

year=int(t)

print(f"{day}/{month}/{year}")

24

...

s:str=...

t:str=""

i=0

l=len(s)

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

day=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

month=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

year=int(t)

print(f"{day}/{month}/{year}")

25

...

s:str=...

t:str=""

i=0

l=len(s)

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

day=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

month=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

year=int(t)

print(f"{day}/{month}/{year}")

26

...

s:str=...

t:str=""

i=0

l=len(s)

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

day=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

month=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

year=int(t)

print(f"{day}/{month}/{year}")

27

...

s:str=...

t:str=""

i=0

l=len(s)

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

day=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

month=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

year=int(t)

print(f"{day}/{month}/{year}")

28

...

s:str=...

t:str=""

i=0

l=len(s)

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

day=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

month=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

year=int(t)

print(f"{day}/{month}/{year}")

29

...

s:str=...

t:str=""

i=0

l=len(s)

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

day=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

 else:break

month=int(t)

t=""

i+=1

while i<l:

 if '0'<=s[i]<='9':

 t+=s[i]

 i+=1

year=int(t)

print(f"{day}/{month}/{year}")

4. Multi-dimensional arrays

All arrays that we manipulated in this chapter are one-dimensional, that is, elements are simple objects and are
indexed using one index. In many applications, the elements could be themselves arrays. In this case, we should pro-
vide two indices to access data, one to locate a first array of elements, and and a second one to locate the element itself.
This is called a bi-dimensional array, or simple a matrix. Obviously, it is possible to define 3-dimensional arrays, 4-
dimensional arrays, or higher.

Let’s focus on matrices. A matrix is composed of rows, each of them is composed of columns. We use two indices
to access data. If mat is a matrix, then mat[i][j] is the element in the 𝑖-th row and the 𝑗-th column. Consider a square
matrix (a matrix whose as many rows as columns). It is represented schematically as (the pink box indicates the ele-
ments at row 2, column 1 or mat[2][1]):

Introduction to programming - Textbook - prepared by Dr. T. Benouhiba - MIAGE Bachelor Degree 40

Chapter 5 Array-like structures

4.1. Bi-dimensional arrays in the algorithmic language

Matrices are declared by defining the number of rows and columns. A matrix with m rows and n columns is declared
as follows:

algo

1 var mat:array[m][n] of integer

It can be initialized to 0 by:

algo

1 for i=0 to m-1 do
2 for j=0 to n-1 do
3 mat[i][j]=0

4.2. Bi-dimensional arrays in Python

Matrices are just lists of list in Python. The numpy module support matrices and offers very interesting panoply of
functions to deal with (again, this module will not be covered in this course). Assume we want to create a matrix with
3 rows and 3 columns; this is done by:

py

1 mat=[[0,0,0],[0,0,0],[0,0,0]]

In fact, there is a problem with this syntax since we need to know exactly how many rows and columns are there.
We can be tented by using the syntax [[0]*3]*3, but this does not work as expected (why?). Although comprehension
has not been introduced in this course, we will use it to define matrices. We just have to write:

py

1 mat=[[0]*3 for _ in range(3)]

Bi-dimensional arrays are often handled using nesed loops. The outer loop iterates over rows, and the inner loop
iterates over columns. Obviously, complex tasks may require more elaborate loops. Consider a program that com-
putes max𝑟min𝑐 𝐴𝑟,𝑐, where 𝐴 is a bidimensional matrix. This program calculates the largest minimum value across
columns. Let’s consider the following example:

(
1
0
7

4
7
4

5
3
8
) (Eq. 2)

The minimum values for each row are 1, 0 and 4 respectively. In this case, the program should display the value 4 (the
largest minimum value).

py

1 if __name__=="__main__":

 ... # mat is initialized to some content

 max_row=-float("inf") # float("inf") is the infinity 'value' (for all float f: f<=infinity)

 for row in mat: # iterate over rows

 min_col=float("inf") # initialize min_col to -infinity

 for elt in row: # browse a column

 if elt<min_col:

 min_col=elt

 if max_row<min_col: #update the max_row variable

 max_row=min_col

 print(max_row)

2

if __name__=="__main__":

 ... # mat is initialized to some content

 max_row=-float("inf") # float("inf") is the infinity 'value' (for all float f: f<=infinity)

 for row in mat: # iterate over rows

 min_col=float("inf") # initialize min_col to -infinity

 for elt in row: # browse a column

 if elt<min_col:

 min_col=elt

 if max_row<min_col: #update the max_row variable

 max_row=min_col

 print(max_row)

3

if __name__=="__main__":

 ... # mat is initialized to some content

 max_row=-float("inf") # float("inf") is the infinity 'value' (for all float f: f<=infinity)

 for row in mat: # iterate over rows

 min_col=float("inf") # initialize min_col to -infinity

 for elt in row: # browse a column

 if elt<min_col:

 min_col=elt

 if max_row<min_col: #update the max_row variable

 max_row=min_col

 print(max_row)

4

if __name__=="__main__":

 ... # mat is initialized to some content

 max_row=-float("inf") # float("inf") is the infinity 'value' (for all float f: f<=infinity)

 for row in mat: # iterate over rows

 min_col=float("inf") # initialize min_col to -infinity

 for elt in row: # browse a column

 if elt<min_col:

 min_col=elt

 if max_row<min_col: #update the max_row variable

 max_row=min_col

 print(max_row)

5

if __name__=="__main__":

 ... # mat is initialized to some content

 max_row=-float("inf") # float("inf") is the infinity 'value' (for all float f: f<=infinity)

 for row in mat: # iterate over rows

 min_col=float("inf") # initialize min_col to -infinity

 for elt in row: # browse a column

 if elt<min_col:

 min_col=elt

 if max_row<min_col: #update the max_row variable

 max_row=min_col

 print(max_row)

6

if __name__=="__main__":

 ... # mat is initialized to some content

 max_row=-float("inf") # float("inf") is the infinity 'value' (for all float f: f<=infinity)

 for row in mat: # iterate over rows

 min_col=float("inf") # initialize min_col to -infinity

 for elt in row: # browse a column

 if elt<min_col:

 min_col=elt

 if max_row<min_col: #update the max_row variable

 max_row=min_col

 print(max_row)

7

if __name__=="__main__":

 ... # mat is initialized to some content

 max_row=-float("inf") # float("inf") is the infinity 'value' (for all float f: f<=infinity)

 for row in mat: # iterate over rows

 min_col=float("inf") # initialize min_col to -infinity

 for elt in row: # browse a column

 if elt<min_col:

 min_col=elt

 if max_row<min_col: #update the max_row variable

 max_row=min_col

 print(max_row)

8

if __name__=="__main__":

 ... # mat is initialized to some content

 max_row=-float("inf") # float("inf") is the infinity 'value' (for all float f: f<=infinity)

 for row in mat: # iterate over rows

 min_col=float("inf") # initialize min_col to -infinity

 for elt in row: # browse a column

 if elt<min_col:

 min_col=elt

 if max_row<min_col: #update the max_row variable

 max_row=min_col

 print(max_row)

9

if __name__=="__main__":

 ... # mat is initialized to some content

 max_row=-float("inf") # float("inf") is the infinity 'value' (for all float f: f<=infinity)

 for row in mat: # iterate over rows

 min_col=float("inf") # initialize min_col to -infinity

 for elt in row: # browse a column

 if elt<min_col:

 min_col=elt

 if max_row<min_col: #update the max_row variable

 max_row=min_col

 print(max_row)

10

if __name__=="__main__":

 ... # mat is initialized to some content

 max_row=-float("inf") # float("inf") is the infinity 'value' (for all float f: f<=infinity)

 for row in mat: # iterate over rows

 min_col=float("inf") # initialize min_col to -infinity

 for elt in row: # browse a column

 if elt<min_col:

 min_col=elt

 if max_row<min_col: #update the max_row variable

 max_row=min_col

 print(max_row)

11

if __name__=="__main__":

 ... # mat is initialized to some content

 max_row=-float("inf") # float("inf") is the infinity 'value' (for all float f: f<=infinity)

 for row in mat: # iterate over rows

 min_col=float("inf") # initialize min_col to -infinity

 for elt in row: # browse a column

 if elt<min_col:

 min_col=elt

 if max_row<min_col: #update the max_row variable

 max_row=min_col

 print(max_row)

Introduction to programming - Textbook - prepared by Dr. T. Benouhiba - MIAGE Bachelor Degree 41

Chapter 5 Array-like structures

4.3. Enumerating arrays and unpacking in loops

Looping over indices and values may be useful in many situations. Consider a program that determines the index
of the greatest element in an array.

py

1 arr=[...]

max_elt=-float("inf")

ind=-1

for i in range(len(arr)):

 if max_elt>arr[i]:

 max_elt=arr[i]

 ind=i

print(f"The largest value is at index {ind}")

2

arr=[...]

max_elt=-float("inf")

ind=-1

for i in range(len(arr)):

 if max_elt>arr[i]:

 max_elt=arr[i]

 ind=i

print(f"The largest value is at index {ind}")

3

arr=[...]

max_elt=-float("inf")

ind=-1

for i in range(len(arr)):

 if max_elt>arr[i]:

 max_elt=arr[i]

 ind=i

print(f"The largest value is at index {ind}")

4

arr=[...]

max_elt=-float("inf")

ind=-1

for i in range(len(arr)):

 if max_elt>arr[i]:

 max_elt=arr[i]

 ind=i

print(f"The largest value is at index {ind}")

5

arr=[...]

max_elt=-float("inf")

ind=-1

for i in range(len(arr)):

 if max_elt>arr[i]:

 max_elt=arr[i]

 ind=i

print(f"The largest value is at index {ind}")

6

arr=[...]

max_elt=-float("inf")

ind=-1

for i in range(len(arr)):

 if max_elt>arr[i]:

 max_elt=arr[i]

 ind=i

print(f"The largest value is at index {ind}")

7

arr=[...]

max_elt=-float("inf")

ind=-1

for i in range(len(arr)):

 if max_elt>arr[i]:

 max_elt=arr[i]

 ind=i

print(f"The largest value is at index {ind}")

8

arr=[...]

max_elt=-float("inf")

ind=-1

for i in range(len(arr)):

 if max_elt>arr[i]:

 max_elt=arr[i]

 ind=i

print(f"The largest value is at index {ind}")

There is nothing wrong with this code. Nonetheless, we had to specifically use the length of the array and using
indices to loop over the array’s values. It would be more interesting if we could loop over both indices and elements.
That’s what enumerate is meant to. Both indices and values can be browsed using the enumerate(arr) function. At
each iteration, it returns a tuple containing two elements: the current iteration’s index and the corresponding value.
The previous code can be rewritten as:

py

1 arr=[...]

max_elt=-float("inf")

ind=-1

for i,v in enumerate(arr):

 if max_elt>v:

 max_elt=v

 ind=i

print(f"The largest value is at index {ind}")

2

arr=[...]

max_elt=-float("inf")

ind=-1

for i,v in enumerate(arr):

 if max_elt>v:

 max_elt=v

 ind=i

print(f"The largest value is at index {ind}")

3

arr=[...]

max_elt=-float("inf")

ind=-1

for i,v in enumerate(arr):

 if max_elt>v:

 max_elt=v

 ind=i

print(f"The largest value is at index {ind}")

4

arr=[...]

max_elt=-float("inf")

ind=-1

for i,v in enumerate(arr):

 if max_elt>v:

 max_elt=v

 ind=i

print(f"The largest value is at index {ind}")

5

arr=[...]

max_elt=-float("inf")

ind=-1

for i,v in enumerate(arr):

 if max_elt>v:

 max_elt=v

 ind=i

print(f"The largest value is at index {ind}")

6

arr=[...]

max_elt=-float("inf")

ind=-1

for i,v in enumerate(arr):

 if max_elt>v:

 max_elt=v

 ind=i

print(f"The largest value is at index {ind}")

7

arr=[...]

max_elt=-float("inf")

ind=-1

for i,v in enumerate(arr):

 if max_elt>v:

 max_elt=v

 ind=i

print(f"The largest value is at index {ind}")

8

arr=[...]

max_elt=-float("inf")

ind=-1

for i,v in enumerate(arr):

 if max_elt>v:

 max_elt=v

 ind=i

print(f"The largest value is at index {ind}")

Note the use of unpacking to get the values of the index and the value in two separate variables.

Unpacking can be further used with arrays and tuples. For instance, assume list is an array of tuples: [(2,5),
(6,7),(1,0),(5,7)]. This list can be browsed in several ways (for instance, for t in arr). However, unpacking can
yield a more readable version:

py

1 for i,j in arr:

 # do something

2

for i,j in arr:

 # do something

In this code, we are iterating over the values of arr. In each iteration, the elements of the array (actually they are
tuples) are unpacked into two variables i and j. In general, this will make programs easier to write and to understand.

Introduction to programming - Textbook - prepared by Dr. T. Benouhiba - MIAGE Bachelor Degree 42

