SERIE 2

EXERCISE 01 : Give the 8-bit binary representations using the three representations (Sign & Absolute Value, One's complement, Two's complement) of the following numbers:

```
-13, +35, -56, +82, -114.
```

EXERCISE 02 : Find the relative numbers corresponding to these representations in 2's complement:

1/1001012/0010103/1000014/0101015/111111EXERCISE 03 : Perform the following operations in two's complement on 6 bits and specify thecases of overflow

-21	+12	-11	+10
4/ -17	3/ -12	2/ ±07	1/ + 09
-26	+ 15	-19	+13
8/ <u>+15</u>	7/ <u>+18</u>	6/ <u>-24</u>	5/ <u>+23</u>

EXERCISE 04: Perform the following operations in 5-bit, two's complement and specify the overflow cases, then convert the operation into decimal form

11001	10001	11101	11101	01101	11101
1/ <u>10101</u>	2/ <u>01101</u>	<u>3/10001</u>	4/ <u>01001</u>	5/ <u>00101</u>	6/ <u>11001</u>

EXERCISE 05

- Find the IEEE 754 single-precision representation of the numbers: $(-13.25)_{10}$ $(+37.125)_{10}$
- Find the 32-bit single-precision representation of (10.75)₁₀ (-19.25)₁₀ knowing that the exponent is represented on 7 bits instead of 8 bits.

EXERCISE 06 : Find the floating-point number with the following IEEE754 representation :

- ➤ (41DC0000)_H
- ➤ (BEE00000)_H