Badji-Mokhtar University. Annaba Faculty of Technology Department of Computer Science

Chapter 3: Data representation

Dr. Khelifi Hakima

S1-2025/2026

Lessons Objectives

- ✓ Introduce the binary code (Natural, Gray, BCD)
- ✓ Understand how data is represented in a computer system
 - Integer representation (Unsigned, Signed)
 - Real numbers (Fixed-Point Representation, Floating-Point Representation)
 - Characters representation

- > Data Representation refers to the methods used to represent data stored in a computer.
- > The data stored in computer is knows as **Digital Data**.
- > Computers use **binary code** to represent numbers, characters, text, computer processor instructions, or any other data.
- There are two possible states, off and on, usually symbolized by **0 and 1** from the binary number system.

- ➤ The 0s and 1s used to represent digital data are referred to as binary digits from this term we get the word **bit** that stands for binary digit.
- A bit is a 0 or 1 used in the digital representation of data.
- > A group of eight bits is called a byte.
- The notion of **bits** and **bytes** is widely used to describe **storage capacity** and **network access speed**.
- > Kilo, mega, giga, tera, and similar terms are used to quantify digital data.

Bit	One binary digit
Byte	8 bits
Kilobit	1,024 or 2 ¹⁰ bits
Kilobyte	1,024 or 2 ¹⁰ bytes
Megabit	1,048,576 or 2 ²⁰ bits
Megabyte	1,048,576 or 2 ²⁰ bytes
Gigabit	2 ³⁰ bits
Gigabyte	2 ³⁰ bytes
Terabyte	2 ⁴⁰ bytes
Petabyte	2 ⁵⁰ bytes
Exabyte	2 ⁶⁰ bytes

- > Use bits for network access speed:
 - ✓ 50 Mbps: Megabit per second (Mb or Mbit) is used for faster data rates (Internet connection).
- > Use bytes for storage capacities:
 - ✓ 16 GB: Gigabyte (GB or GByte) is commonly used to refer to storage capacity

Binary code

Natural Binary code

DECIMAL (BASE 10)	BINARY (BASE 2)
0	0
1	1
2	10
3	11
4	100
5	101
6	110
7	111
8	1000
9	1001
10	1010
11	1011
1000	1111101000

- > Gray code or reflected binary code:
 - ✓ It is a type of binary coding system where two successive values differ in only one bit.
 - \checkmark Example: 7 = $(0111)_2$ = $(0100)_{Gray}$ and 8 = $(1000)_2$ = $(1100)_{Gray}$
 - ✓ 7 and 8 are two successive values
 - ✓ Transition from 7 to 8: 0100 to 1100 only one bit changes
 - ✓ Transition from 7 to 8 in natural binary requires to change 4 bits

- > Gray code or reflected binary code:
- ➤ It is widely used in various applications especially where errors in data transmission can occur, as it minimizes the chance of multiple bit errors.
- ✓ **Example 1**: Send the sequence $5 \rightarrow 6 \rightarrow 7$ using Gray code

Decimal	Binary	Gray Code
5	0101	0111
6	0110	0101
7	0111	0100

- ✓ The transmitter sends the sequence:
 - 0111 (Gray code for 5)
 - 0101 (Gray code for 6)
 - 0100 (Gray code for 7)

> Gray code or reflected binary code:

Example 1:

- ✓ The receiver receives: $0111 \rightarrow 0101 \rightarrow 0100$
 - 1. Compare Consecutive Gray Code Values:
 - $0111 \rightarrow 0101$: 1-bit change (Valid).
 - $0101 \rightarrow 0100$: 1-bit change (Valid).
 - 2. Convert Gray Code Back to Binary: If no errors are detected, the receiver converts the Gray code back to binary. $0101 \rightarrow 0110 \rightarrow 0111$ (5 \rightarrow 6 \rightarrow 7)

> Gray code or reflected binary code:

Example 1: Suppose noise corrupts the second value (0101) into 1101.

- ✓ The receiver receives: $0111 \rightarrow 1101 \rightarrow 0100$
 - 1. Compare Consecutive Gray Code Values:
 - $0111 \rightarrow 1101$: 2-bit change (Invalid, error detected).
 - 2. The receiver flags an error, may request retransmission or discard the data.

Decimal	Binary	Gray
0	0000	0000
1	0001	0001
2	0010	00 <mark>1</mark> 1
3	0011	0010
4	0100	0 <mark>1</mark> 10
5	0101	0111
6	0110	0101
7	0111	0100
8	1000	1 100
9	1001	110 <mark>1</mark>
10	1010	11 <mark>1</mark> 1
11	1011	111 <mark>0</mark>
12	1100	1 <mark>0</mark> 10
13	1101	10 <mark>1</mark> 1
14	1110	1001
15	1111	100 <mark>0</mark>

Two successive values differ in only one bit.

> Gray code or reflected binary code:

Example 2: Gray Code in a Digital State Machine

- ✓ Design a state machine to represent a 4-state sequential process using Gray code
 - State A: 000, State B: 001, State C: 011, D:010
- ✓ Using Gray code ensures that transitions between states involve only one bit change:
 - A \rightarrow B: Only the last bit changes (000 \rightarrow 001).
 - B \rightarrow C: Only the second bit changes (001 \rightarrow 011).
 - C \rightarrow D: Only the third bit changes (011 \rightarrow 010).
 - D \rightarrow A: Only the second bit changes (010 \rightarrow 000).
- ✓ Only One bit changes between states. This avoid errors during state transitions.

> Convert Binary code to Gray Code:

✓ Let B be a number written in pure natural binary on m bits

$$B_{(2)} = B_m \dots B_3 B_2 B_1 B_0$$
; B_m is the most significant bit (MSB)

✓ G is the Gray code equivalent of the number B also written on m bits

$$G_{(Gray)} = G_m \dots G_3 G_2 G_1 G_0$$

- > Convert Binary code to Gray Code:
- ✓ To convert a binary number to Gray code, follow these steps:
 - 1. The first bit of the Gray code is the same as the first bit of the binary number.

$$G_m = B_m$$

2. Each subsequent bit in the Gray code is found by performing an XOR (Exclusively-OR) operation between the current binary bit and the previous binary bit.

If
$$B_m = B_{m-1}$$
 then $G_{m-1} = 0$

If
$$B_m \neq B_{m-1}$$
 then $G_{m-1} = 1$

- > Convert Binary code to Gray Code:
- ✓ Example: Convert 0110 (6 in decimal) to Gray code

$$\checkmark$$
 B = 0110 = $B_3B_2B_1B_0$

1.
$$G_3 = B_3$$

2. The second step:

$$B_3 \neq B_2$$
 then $G_2 = 1$

$$B_2 = B_1$$
 then $G_1 = 0$

$$B_1 \neq B_0$$
 then $G_0 = 1$

- > Convert code Binary to Gray Code:
- ✓ **Example**: What is the equivalent of the binary number = 1101101 in Gray code?
- \checkmark G = 1011011

> Convert Gray Code to Binary Code:

✓ Let G be a number written in Gray code on m bits

$$G_{(Gray)} = G_m \dots G_3 G_2 G_1 G_0$$
, G_m is the most significant bit (MSB)

✓ B is the equivalent in pure or natural binary code of the number G, B also written on m bits.

$$B_{(2)} = B_m \dots B_3 B_2 B_1 B_0$$

- **➤** Convert Gray Code to Binary Code :
- ✓ To convert a binary number to Gray code, follow these steps:
 - 1. The first bit of the Gray code is the same as the first bit of the binary number.

$$B_m = G_m$$

2. Now we compare the pairs:

If
$$G_{m-1} = B_m$$
 then $B_{m-1} = 0$

If
$$G_{m-1} \neq B_m$$
 then $B_{m-1} = 1$

- **→** Convert Gray Code to Binary Code :
- ✓ **Example**: Convert 0100 to Binary code

$$\checkmark$$
 G = 0100 = $G_3G_2G_1G_0$

1.
$$G_3 = B_3 = 0$$

2. The second step:

$$G_2 \neq B_3$$
 then $B_2 = 1$

$$G_1 \neq B_2$$
 then $B_1 = 1$

$$G_0 \neq B_1$$
 then $B_0 = 1$

$$✓$$
 B= 0111

- > Convert Gray Code to Binary Code :
- ✓ **Example**: What is the equivalent of the Gray Code= 110010 in pure Binary code?

- > Convert Gray Code to Binary Code :
- ✓ **Example**: What is the equivalent of the Gray Code= 110010 in pure Binary code?
- ✓ B=100011

> BCD or Binary Coded Decimal code:

- ✓ It is a binary encoding for decimal numbers where each digit of a decimal number is represented by its own binary sequence.
- ✓ Instead of encoding the entire number in binary, BCD treats each decimal digit independently and encodes it in a 4-bit binary form.
- **Example**: To encode the number 856, each digit of the number will be encoded separately in binary on 4 bits. $(856)_{10} = (1000\ 0101\ 0110)_{BCD}$

➤ Decimal 0 to 9 are represented as 0000 to 1001 in BCD:

Decimal	BCD
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

> Advantages:

- ✓ Easy conversion between binary and decimal systems.
- ✓ Suitable for applications that require decimal representation such as digital clocks, calculators, and financial applications.

> Disadvantages:

- ✓ It requires more bits than pure binary to represent the same number.
- ✓ Arithmetic operations are more complex.

- > Example: Addition in BCD code
- ✓ In BCD, only 10 digits are allowed (from 0 to 9).
- ✓ Add each 4-bit block of the first number, with its equivalent of the second number.
- ✓ If the result of one of the blocks exceeds 9, (its value is between 10 and 15 1010 to 1111), the number 6 (0110) is added to this block.

Example: Addition in BCD code

	111 0111	1000	1001
+	0001	0010	0011
	1000	1011	1100
		11	12

Decimal	BCD
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

- **Example: Addition in BCD code**
- **√** 789+123=
- ✓ Add the number 6 (0110) to the block that exceeds 9

	0111	1000	1001
+	0001	0010	0011
	1001	1011	11100
		0110	0110
	1001	0001	0010
	9	1	2

Decimal	BCD
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

BCD+3

- > The BCD+3 or excess 3 code
- ➤ Where 3 is added to each BCD digit
- > Simplify the arithmetic operations like adding or subtracting decimal numbers.
- > Reduce the need for complex corrections when performing arithmetic operations.
- > Improve the speed and efficiency of arithmetic operations.

Decimal	Decimal+3	BCD+3
0	3	0011
1	4	0100
2	5	0101
3	6	0110
4	7	0111
5	8	1000
6	9	1001
7	10	1010
8	11	1011
9	12	1100

- **Example: Addition in BCD+3 code**
- ✓ If carry occurs, add 3 (0011)
- ✓ If carry does not occur, subtract 3.
- **√** 6+3=

	1001	
+	0110	
	1111	(No carry)
-	0011	
-	1100	_

Decimal	Decimal+3	BCD+3
0	3	0011
1	4	0100
2	5	0101
3	6	0110
4	7	0111
5	8	1000
6	9	1001
7	10	1010
8	11	1011
9	12	1100

- **Example: Addition in BCD+3 code**
- ✓ If carry occurs, add 3 (0011)
- ✓ If carry does not occur, subtract 3.

√ 7+3= 10	111 0011	1010	
	+ 0011	0110	
(no carry)	0111	0000	(carry)
	- 0011	+ 0011	
	0100	0011	-

Decimal	Decimal+3	BCD+3
0	3	0011
1	4	0100
2	5	0101
3	6	0110
4	7	0111
5	8	1000
6	9	1001
7	10	1010
8	11	1011
9	12	1100

Data types

Integer representation

- **➤** Unsigned Integer Representation:
- ✓ Integers are represented in binary form, either as signed or unsigned numbers.
- ✓ An unsigned integer can only represent non-negative numbers (zero and positive).
- ✓ The representation of integers depends on the range of numbers to be used.
- ✓ If an integer uses n bits, an unsigned integer can represent values from 0 to $2^n 1$.
- ✓ Example: for 8 bits
 - 0 to 255 $(2^8 1)$
 - 00000000 to 11111111

Integer representation

- > Signed Integer Representation:
- ✓ A signed integer can represent both positive and negative numbers.
- ✓ The most common methods to represent negative numbers:
- ✓ Sign and Absolute Value (S/VA)
- ✓ One's Complement
- ✓ The two-way complement

- > Signed Integer Representation:
- ✓ Sign and Absolute Value (S/VA):
- The most significant bit (MSB) is used to represent the sign of the number (1: negative sign, 0: positive sign), and the remaining bits represent the absolute value of the number.
- If an integer uses n bits, a signed integer can represent values from

$$-2^{n-1}-1$$
 to $2^{n-1}-1$

- **Example**: for 8 bits
 - -127 to +127 $(-2^7 1)$ to $2^7 1$ with two zeros

- Signed Integer Representation:
- ✓ Sign and Absolute Value (S/VA):
- **Example**: For a 4-bit representation:

+4: 0100 (MSB is 0, positive).

-4: 1100 (MSB is 1, negative).

■ **Issues**: The zero has two representations -0 (1000) and +0 (0000). This leads to complications in certain calculations.

- > Signed Integer Representation:
- ✓ One's Complement :
- One's complement represents negative numbers by inverting all the bits of the corresponding positive number (change 0 to 1 and 1 to 0).
- If an integer uses n bits, a signed integer can represent values from

$$-2^{n-1} - 1$$
 to $2^{n-1} - 1$

- **Example**: for 8 bits
 - -127 to +127 $(-2^7 1)$ to $2^7 1$ with two zeros

- > Signed Integer Representation:
- ✓ One's Complement :
- **Example**: For a 4-bit representation:

+4: 0100

-4: 1011 (flip all bits of 0100).

■ Issues: The zero in this method also has two representations -0 (1111) and +0 (0000). This leads to complications in certain calculations.

- > Signed Integer Representation:
- ✓ The two-way complement: the most widely used method
- Negative numbers are represented by inverting all the bits of the number and then adding 1 to the result.
- If an integer uses n bits, a signed integer can represent values from -2^{n-1} to $2^{n-1} 1$ (Range: -128 to 127, there is only one representation for zero)
- **Example**: For a 4-bit representation:
 - +4: 0100
 - -4: Invert the bits 1011 then add 1 = 1100

> Real numbers in computers can be represented using **fixed-point representation** or **floating-point representation**.

Fixed-Point Representation: is a way of representing real numbers where the position of the decimal point is fixed at a certain place. This means a certain number of bits are allocated to the integer part and a fixed number of bits are allocated to the fractional part.

- > Real numbers in computers can be represented using **fixed-point representation** or **floating-point representation**.
- > Fixed-Point Representation:
- **Example**: Suppose we want to represent the number 3.75 in 8 bits using a fixed-point representation with 4 bits for the integer part and 4 bits for the fractional part:
 - The number 3.75 can be written as 3 + 0.75.
 - In binary, 3 is 0011 and 0.75 is 1100 (because $0.75 \times 2^4 = 12$, which is 1100 in binary).
 - So, the 8-bit fixed-point representation would be 00111100.

- Floating-point representation: is a more flexible and widely used way. It can handle a much wider range of values compared to fixed-point representation by using an exponent to scale the value.
- ✓ The most common format used in computers for the representation of floatingpoint numbers in binary is the IEEE 754 standard.
- ✓ In the IEEE 754 standard, a floating point number is always represented by a triplet (S,E,M):
 - 1. Sign bit: Indicates whether the number is positive or negative.
 - 2. Exponent: Determines the scale (magnitude) of the number.
 - 3. Mantissa (or significand): Represents the precision or actual digits of the number.

- > Floating-point representation:
- ✓ The general formula for a floating-point number is:

$$(-1)^{S}.2^{(E-127)}.1,M$$

- ✓ Two main types:
 - IEEE 754 Single Accuracy (32 bits)

Sign (1 bit)	Exponent (8 bit)	Mantissa (23 bit)

• IEEE 754 Double Precision: (64 bits)

Sign (1 bit)	Exhibitor (11 bit)	Mantissa (52 bit)
--------------	--------------------	--------------------

- > Floating-point representation:
- ✓ **Example 1:** Find the IEEE 754 single-precision representation of the number $(27.5)_{10}$
 - The number is positive S=0
 - $(27.5)_{10} = (11011.1)_2...$ Fixed-point = $1.10111 * 2^4$ Floating point (M= 10111)
 - Exhibitor: E-127 = 4, E= $127+4=131=(10000011)_2$

0	10000011	10111000000000000000000
S	E	M

- > Floating-point representation:
- ✓ **Example 2:** Find the IEEE 754 single-precision representation of the number $(-620.25)_{10}$
 - The number is positive S=1
 - $(-620.25)_{10} = (1001101100.01)_2$ Fixed-point = 1.00110110001 * 2^9 Floating point (M= 00110110001)
 - Exhibitor: E-127 = 9, E= $127+9=136=(10001000)_2$

1	10001000	0011011000100000000000
S	E	M

- > Floating-point representation:
- ✓ **Example 3:** Find the IEEE 754 single-precision representation of the number $(-0.0625)_{10}$
 - $(-0.0625)_{10}$ The number is positive S=1
 - $(-0.0625)_{10} = (0.0001)_2.....$ Fixed-point = 1. * 2^{-4} Floating point (M= 0)
 - Exhibitor: E-127 = -4, E= 127-4= 123 = $(1111011)_2$

1	1111011	0000000000000000000000
S	E	M

- > Floating-point representation:
- ✓ **Example 4:** Find the floating number with the following IEEE754 representation

- S = 1 Number is negative
- \blacksquare E= $(10000010)_2$ =130, E-127= 3
- 1.M=1.010001
- $1.010001 * 2^3 = (1010.001)_2 = (10.125)_{10}$

- In computers, characters (such as letters, digits, punctuation marks, etc.) are represented using character encoding schemes, which map each character to a specific binary value.
- > The most common methods for character representation are:
 - ✓ ASCII
 - ✓ Unicode
 - **✓** EBCDIC.

- > ASCII (American Standard Code for Information Interchange):
- ✓ It is one of the most widely used character encoding standards.
- ✓ It represents characters using 7 bits (or 8 bits in extended versions) and maps each character to a unique binary number.
- ✓ 7 bits to represent 128 characters and 8 bits to represent 256 characters.

> Example:

- 'A' = 65 (in decimal) = 01000001 (in binary)
- 'a' = 97 (in decimal) = 01100001 (in binary)
- > Limitations: Limited to 128 or 256 characters.

> ASCII table:

DEC	HEX	CHAR	DEC	HEX	CHAR	DEC	HEX	CHAR	DEC	HEX	CHAR
0	00	NUL	32	20	SP	64	40	@	96	60	
1	01	SOH	33	21	1	65	41	Α	97	61	a
2	02	STX	34	22	п.	66	42	В	98	62	b
3	03	ETX	35	23	#	67	43	С	99	63	С
4	04	EOT	36	24	\$	68	44	D	100	64	d
5	05	ENQ	37	25	%	69	45	E	101	65	e
6	06	ACK	38	26	&	70	46	F	102	66	f
7	07	BEL	39	27		71	47	G	103	67	g
8	08	BS	40	28	(72	48	н	104	68	h
9	09	HT	41	29)	73	49		105	69	i
10	0A	LF	42	2A	*	74	4A	J	106	6A	j
11	OB	VT	43	2B	+	75	4B	к	107	6B	k
12	O.C	FF	44	2C	,	76	4C	L	108	6C	1
13	OD	CR	45	2D	-	77	4D	M	109	6 D	m
14	0E	SO	46	2E		78	4E	N	110	6E	n
15	OF	SI	47	2F	1	79	4F	0	111	6F	0
16	10	DLE	48	30	0	80	50	Р	112	70	р
17	11	DC1	49	31	1	81	51	Q	113	71	q
18	12	DC2	50	32	2	82	52	R	114	72	r
19	13	DC3	51	33	3	83	53	S	115	73	s
20	14	DC4	52	34	4	84	54	T	116	74	t
21	15	NAK	53	35	5	85	55	U	117	75	u
22	16	SYN	54	36	6	86	56	ν	118	76	V
23	17	ETB	55	37	7	87	57	W	119	77	w
24	18	CAN	56	38	8	88	58	Х	120	78	×
25	19	EM	57	39	9	89	59	Y	121	79	У
26	1A	SUB	58	ЗA		90	5A	Z	122	7A	z
27	18	ESC	59	3B	;	91	5B	1	123	7B	{
28	1C	FS	60	3C	<	92	5C	1	124	7C	
29	1D	GS	61	3D		93	5D	1	125	70	3
30	1E	RS	62	3E	>	94	5E	٨	126	7E	2
31	1F	US	63	3F	?	95	5F		127	7F	DEL

➤ Unicode: Unicode is a more comprehensive character encoding standard designed to support characters from all languages, as well as symbols, emojis, and even ancient scripts. It aims to provide a unique number for every character in the world, regardless of the platform, program, or language.

> Example:

- 'A' = U+0041
- '□' (musical symbol) = U+1D11E

> Unicode:

- > Unicode can be represented using different encoding schemes:
- ✓ UTF-8: A variable-length encoding that uses 1 to 4 bytes to represent characters. It's widely used for web pages and file formats.
- ✓ UTF-16: Uses 2 bytes for most characters, but some characters may use 4 bytes
- ✓ UTF-32: Uses 4 bytes for all characters, ensuring fixed-length encoding.
- > Limitations: More memory-intensive than ASCII, and more complex.

- **EBCDIC** (Extended Binary Coded Decimal Interchange Code):
- ✓ EBCDIC is an encoding system primarily used on IBM mainframe and midrange computer systems.
- ✓ It is different from ASCII in that it is a 8-bit encoding system (256 unique characters) with a unique character mapping.
- ✓ Example: 'A'
 - **ASCII**: 65 in decimal, 41 in Hexa, 01000001 in binary.
 - **EBCDIC**: C1 in Hexa, 11000001 in binary.
- > Limitations: Not widely used, and less standard than ASCII and Unicode.

The end