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Lessons Objectives

✓ Introduce the binary code (Natural, Gray, BCD )

✓ Understand how data is represented in a computer system 

▪ Integer representation (Unsigned, Signed)

▪ Real numbers (Fixed-Point Representation, Floating-Point Representation)

▪ Characters representation



Introduction



Introduction

➢ Data Representation refers to the methods used to represent data stored in a 

computer.

➢ The data stored in computer is knows as Digital Data. 

➢ Computers use binary code to represent numbers, characters, text, computer 

processor instructions, or any other data. 

➢ There are two possible states, off and on, usually symbolized by 0 and 1 from the 

binary number system. 



Introduction

➢ The 0s and 1s used to represent digital data are referred to as binary digits — from 

this term we get the word bit that stands for binary digit.

➢  A bit is a 0 or 1 used in the digital representation of data.

➢ A group of eight bits is called a byte.

➢ The notion of bits and bytes is widely used to describe storage capacity and 

network access speed.

➢ Kilo, mega, giga, tera, and similar terms are used to quantify digital data.



Introduction



Introduction

➢ Use bits for network access speed:

✓ 50 Mbps: Megabit per second (Mb or Mbit) is used for faster data rates 

(Internet connection).

➢ Use bytes for storage capacities:

✓ 16 GB: Gigabyte (GB or GByte) is commonly used to refer to storage capacity



Binary code 



Natural Binary code 



Gray code 

➢ Gray code or reflected binary code:  

✓ It is a type of binary coding  system where two successive values differ in only 

one bit. 

✓ Example: 7 =(0111)2= (0100)𝐺𝑟𝑎𝑦  and 8 = (1000)2 = (1100)𝐺𝑟𝑎𝑦

✓ 7 and 8 are two successive values 

✓ Transition from 7 to 8: 0100 to 1100 only one bit changes 

✓ Transition from 7 to 8 in natural binary requires to change 4 bits



Gray code 

➢ Gray code or reflected binary code:  

➢ It is widely used in various applications especially where errors in data transmission 
can occur, as it minimizes the chance of multiple bit errors.

✓ Example 1: Send the sequence 5 → 6 → 7 using Gray code 

✓ The transmitter sends the sequence:

• 0111 (Gray code for 5)

• 0101 (Gray code for 6)

• 0100 (Gray code for 7)

Decimal Binary Gray Code

5 0101 0111

6 0110 0101

7 0111 0100



Gray code 

➢ Gray code or reflected binary code:  

Example 1:

✓ The receiver receives: 0111 → 0101 → 0100

1. Compare Consecutive Gray Code Values:

• 0111 → 0101: 1-bit change (Valid).

• 0101 → 0100: 1-bit change (Valid).

2. Convert Gray Code Back to Binary: If no errors are detected, the receiver 

converts the Gray code back to binary. 0101 → 0110 → 0111 (5 →6 →7)



Gray code 

➢ Gray code or reflected binary code:  

Example 1: Suppose noise corrupts the second value (0101) into 1101.

✓ The receiver receives: 0111 → 1101 → 0100

1. Compare Consecutive Gray Code Values:

• 0111 → 1101 : 2-bit change (Invalid, error detected).

2. The receiver flags an error, may request retransmission or discard the data.



Decimal Binary Gray

0 0000 0000

1 0001 0001

2 0010 0011

3 0011 0010

4 0100 0110

5 0101 0111

6 0110 0101

7 0111 0100

8 1000 1100

9 1001 1101

10 1010 1111

11 1011 1110

12 1100 1010

13 1101 1011

14 1110 1001

15 1111 1000

Two successive values 
differ in only one bit. 



Gray code 

➢ Gray code or reflected binary code:  

Example 2: Gray Code in a Digital State Machine

✓ Design a state machine to represent a 4-state sequential process using Gray code

• State A: 000, State B: 001, State C: 011, D:010

✓ Using Gray code ensures that transitions between states involve only one bit 
change:

• A → B: Only the last bit changes (000 → 001).

• B → C: Only the second bit changes (001 → 011).

• C → D: Only the third bit changes (011 → 010).

• D → A: Only the second bit changes (010 → 000).

✓ Only One bit changes between states. This avoid errors during state transitions. 



Gray code 

➢ Convert Binary code to Gray Code:  

✓ Let B be a number written in pure natural binary on m bits

𝐵(2)= 𝐵𝑚 …… 𝐵3𝐵2𝐵1𝐵0; 𝐵𝑚 is the most significant bit (MSB)

✓ G is the Gray code equivalent of the number B also written on m bits

𝐺(𝐺𝑟𝑎𝑦) = 𝐺𝑚 …… 𝐺3𝐺2𝐺1𝐺0



Gray code 

➢ Convert Binary code to Gray Code:  

✓ To convert a binary number to Gray code, follow these steps: 

1. The first bit of the Gray code is the same as the first bit of the binary number. 

        𝐺𝑚= 𝐵𝑚 

2. Each subsequent bit in the Gray code is found by performing an XOR (Exclusively-

OR) operation between the current binary bit and the previous binary bit. 

         If 𝐵𝑚 = 𝐵𝑚−1 then 𝐺𝑚−1 = 0

         If 𝐵𝑚 ≠ 𝐵𝑚−1 then 𝐺𝑚−1 = 1



Gray code 

➢ Convert Binary code to Gray Code:  

✓ Example: Convert 0110 (6 in decimal) to Gray code 

✓  B = 0110 = 𝐵3𝐵2𝐵1𝐵0      

1. 𝐺3= 𝐵3

2. The second step : 

       𝐵3 ≠ 𝐵2 then 𝐺2 = 1 

      𝐵2 = 𝐵1 then 𝐺1 = 0

      𝐵1 ≠ 𝐵0 then 𝐺0 = 1 

✓ G= 0101



Gray code 

➢ Convert code Binary to Gray Code:  

✓ Example: What is the equivalent of the binary number = 1101101 in Gray code?

✓  G = 1011011



Gray code 

➢ Convert Gray Code to Binary Code:  

✓ Let G be a number written in Gray code on m bits

𝐺(𝐺𝑟𝑎𝑦) = 𝐺𝑚 …… 𝐺3𝐺2𝐺1𝐺0, 𝐺𝑚 is the most significant bit (MSB)

✓ B is the equivalent in pure or natural binary code of the number G, B also 

written on m bits. 

𝐵(2)= 𝐵𝑚 …… 𝐵3𝐵2𝐵1𝐵0



Gray code 

➢ Convert Gray Code to Binary Code :  

✓ To convert a binary number to Gray code, follow these steps: 

1. The first bit of the Gray code is the same as the first bit of the binary number. 

         𝐵𝑚 = 𝐺𝑚

2. Now we compare the pairs: 

         If 𝐺𝑚−1 = 𝐵𝑚 then 𝐵𝑚−1 = 0

         If 𝐺𝑚−1 ≠ 𝐵𝑚 then 𝐵𝑚−1 = 1



Gray code 

➢ Convert Gray Code to Binary Code :  

✓ Example: Convert 0100 to Binary code 

✓  G = 0100 =𝐺3𝐺2𝐺1𝐺0      

1. 𝐺3= 𝐵3 = 0

2. The second step : 

       𝐺2 ≠ 𝐵3 then 𝐵2 = 1 

      𝐺1 ≠ 𝐵2 then 𝐵1 = 1

      𝐺0 ≠ 𝐵1 then 𝐵0 = 1 

✓ B= 0111



Gray code 

➢ Convert Gray Code to Binary Code :  

✓ Example: What is the equivalent of the Gray Code= 110010 in pure Binary code?



Gray code 

➢ Convert Gray Code to Binary Code :  

✓ Example: What is the equivalent of the Gray Code= 110010 in pure Binary code?

✓ B=100011



Binary Coded Decimal

➢ BCD or Binary Coded Decimal code :  

✓ It is a binary encoding for decimal numbers where each digit of a decimal 

number is represented by its own binary sequence. 

✓ Instead of encoding the entire number in binary, BCD treats each decimal digit 

independently and encodes it in a 4-bit binary form. 

➢ Example: To encode the number 856, each digit of the number will be encoded 

separately in binary on 4 bits. (856)10= (1000 0101 0110)𝐵𝐶𝐷



Binary Coded Decimal

➢ Decimal 0 to 9 are represented as 0000 to 1001 in BCD: 

Decimal BCD

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001



Binary Coded Decimal

➢ Advantages:  

✓ Easy conversion between binary and decimal systems. 

✓ Suitable for applications that require decimal representation such as digital 

clocks, calculators, and financial applications. 

➢ Disadvantages:  

✓ It requires more bits than pure binary to represent the same number. 

✓ Arithmetic operations are more complex.  



Binary Coded Decimal

➢ Example: Addition in BCD code

✓ In BCD, only 10 digits are allowed (from 0 to 9). 

✓ Add each 4-bit block of the first number, with its equivalent of the second number.

✓ If the result of one of the blocks exceeds 9, (its value is between 10 and 15 - 1010 to 

1111), the number 6 (0110) is added to this block.

✓ 126+32=158  0001 0010 0110

+ 0000 0011 0010

0001 0101 1000

1 5 8



Binary Coded Decimal

➢ Example: Addition in BCD code

✓ 789+123=  

0111 1000 1001

+ 0001 0010 0011

1000 1011 1100

11 12

11111

Decimal BCD

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001



Binary Coded Decimal

➢ Example: Addition in BCD code

✓ 789+123=  

✓ Add the number 6 (0110) to the block that exceeds 9

0111 1000 1001

+ 0001 0010 0011

1001 1011 1100

0110 0110

1001 0001 0010

9 1 2

1111

11 1

111

Decimal BCD

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001



BCD+3

➢ The BCD+3 or excess 3 code

➢ Where 3 is added to each BCD digit

➢ Simplify the arithmetic operations like adding or 

subtracting decimal numbers. 

➢ Reduce the need for complex corrections when 

performing arithmetic operations. 

➢ Improve the speed and efficiency of arithmetic 

operations. 

Decimal Decimal+3 BCD+3

0 3 0011

1 4 0100

2 5 0101

3 6 0110

4 7 0111

5 8 1000

6 9 1001

7 10 1010

8 11 1011

9 12 1100



Binary Coded Decimal

➢ Example: Addition in BCD+3 code

✓ If carry occurs, add 3 (0011)

✓ If carry does not occur, subtract 3. 

✓ 6+3=  

1001

+ 0110

1111 (No carry)

- 0011

1100

Decimal Decimal+3 BCD+3

0 3 0011

1 4 0100

2 5 0101

3 6 0110

4 7 0111

5 8 1000

6 9 1001

7 10 1010

8 11 1011

9 12 1100



Binary Coded Decimal

➢ Example: Addition in BCD+3 code

✓ If carry occurs, add 3 (0011)

✓ If carry does not occur, subtract 3. 

✓ 7+3=  10
0011 1010

+ 0011 0110
(no carry) 0111 0000 (carry)

- 0011 + 0011

0100 0011

Decimal Decimal+3 BCD+3

0 3 0011

1 4 0100

2 5 0101

3 6 0110

4 7 0111

5 8 1000

6 9 1001

7 10 1010

8 11 1011

9 12 1100

111



Data types



Integer representation

➢ Unsigned Integer Representation: 

✓ Integers are represented in binary form, either as signed or unsigned numbers. 

✓ An unsigned integer can only represent non-negative numbers (zero and positive).

✓ The representation of integers depends on the range of numbers to be used.

✓ If an integer uses n bits, an unsigned integer can represent values from 0 to 2𝑛 − 1.

✓ Example: for 8 bits

• 0 to 255 (28 − 1)

• 00000000 to 11111111



Integer representation

➢ Signed Integer Representation: 

✓ A signed integer can represent both positive and negative numbers.

✓ The most common methods to represent negative numbers:

✓ Sign and Absolute Value ( S/VA)

✓ One’s Complement 

✓ The two-way complement



Integer representation

➢ Signed Integer Representation: 

✓ Sign and Absolute Value ( S/VA):

▪ The most significant bit (MSB) is used to represent the sign of the number (1:

negative sign, 0: positive sign) , and the remaining bits represent the absolute value 

of the number.

▪ If an integer uses n bits, a signed integer can represent values from 

 −2𝑛−1 − 1 to 2𝑛−1 − 1

▪ Example: for 8 bits

• -127 to +127 (−27 − 1 to 27 − 1) with two zeros



Integer representation

➢ Signed Integer Representation: 

✓ Sign and Absolute Value ( S/VA):

▪ Example: For a 4-bit representation:

+4: 0100 (MSB is 0, positive).

−4: 1100 (MSB is 1, negative).

▪ Issues: The zero has  two representations -0 (1000) and +0 (0000). This leads to 

complications in certain calculations.



Integer representation

➢ Signed Integer Representation: 

✓ One’s Complement :

▪ One's complement represents negative numbers by inverting all the bits of the 

corresponding positive number (change 0 to 1 and 1 to 0).

▪  If an integer uses n bits, a signed integer can represent values from 

 −2𝑛−1 − 1 to 2𝑛−1 − 1

▪ Example: for 8 bits

• -127 to +127 (−27 − 1 to 27 − 1) with two zeros



Integer representation

➢ Signed Integer Representation: 

✓ One’s Complement :

▪ Example: For a 4-bit representation:

+4: 0100 

−4: 1011 (flip all bits of 0100).

▪ Issues: The zero in this method also has two representations -0 (1111) and +0 

(0000). This leads to complications in certain calculations.



Integer representation

➢ Signed Integer Representation: 

✓ The two-way complement: the most widely used method 

▪ Negative numbers are represented by inverting all the bits of the number and then 

adding 1 to the result.

▪ If an integer uses n bits, a signed integer can represent values from −2𝑛−1 to 2𝑛−1 − 1 

(Range: -128 to 127, there is only one representation for zero) 

▪  Example: For a 4-bit representation:

+4: 0100 

−4: Invert the bits 1011 then add 1 = 1100



Real numbers 

➢ Real numbers in computers can be represented using fixed-point representation or 

floating-point representation. 

➢ Fixed-Point Representation: is a way of representing real numbers where the 

position of the decimal point is fixed at a certain place. This means a certain number 

of bits are allocated to the integer part and a fixed number of bits are allocated to 

the fractional part. 



Real numbers 

➢ Real numbers in computers can be represented using fixed-point representation or 

floating-point representation. 

➢ Fixed-Point Representation: 

▪ Example:  Suppose we want to represent the number 3.75 in 8 bits using a fixed-

point representation with 4 bits for the integer part and 4 bits for the fractional part:

• The number 3.75 can be written as 3 + 0.75.

• In binary, 3 is 0011 and 0.75 is 1100 (because 0.75×24=12, which is 1100 in 
binary).

• So, the 8-bit fixed-point representation would be 00111100.



Real numbers 

➢ Floating-point representation: is a more flexible and widely used way. It can handle 

a much wider range of values compared to fixed-point representation by using an 

exponent to scale the value.   

✓ The most common format used in computers for the representation of floating-

point numbers in binary is the IEEE 754 standard. 

✓ In the IEEE 754 standard, a floating point number is always represented by a triplet 
(S,E,M): 

1. Sign bit: Indicates whether the number is positive or negative.

2. Exponent: Determines the scale (magnitude) of the number.

3. Mantissa (or significand): Represents the precision or actual digits of the 
number.



Real numbers 

➢ Floating-point representation:

✓ The general formula for a floating-point number is:

(−1)𝑆. 2(𝐸−127). 1,𝑀

✓ Two main types: 

• IEEE 754 Single Accuracy (32 bits)

• IEEE 754 Double Precision: (64 bits)



Real numbers 

➢ Floating-point representation:

✓ Example 1: Find the IEEE 754 single-precision representation of the number (27.5)10

▪ The number is positive S=0

▪ (27.5)10 = (11011.1)2……. Fixed-point = 1.10111 * 24 Floating point ( M= 

10111)

▪ Exhibitor: E-127 = 4, E= 127+4= 131 = (10000011)2

0 10000011 10111000000000000000000

S E M



Real numbers 

➢ Floating-point representation:

✓ Example 2: Find the IEEE 754 single-precision representation of the number (−620.25)10

▪ The number is positive S=1

▪ (−620.25)10 = (1001101100.01)2 ……. Fixed-point = 1.00110110001  * 

29 Floating point ( M= 00110110001)

▪ Exhibitor: E-127 = 9, E= 127+9= 136 = (10001000)2

1 10001000 00110110001000000000000

S E M



Real numbers 

➢ Floating-point representation:

✓ Example 3: Find the IEEE 754 single-precision representation of the number (−0.0625)10 

▪ (−0.0625)10 The number is positive S=1

▪ (−0.0625)10 = (0.0001)2……. Fixed-point = 1. * 2−4 Floating point ( M= 0)

▪ Exhibitor: E-127 = -4, E= 127-4= 123 = (1111011)2

1 1111011 00000000000000000000000

S E M



Real numbers 

➢ Floating-point representation:

✓ Example 4: Find the floating number with the following IEEE754 representation

▪ S =1 Number is negative

▪ E= (10000010)2=130, E-127= 3

▪ 1.M=1.010001

▪ 1.010001 * 23 = (1010.001)2= (10.125)10

1 10000010 01000100000000000000000

S E M



Characters representation

➢ In computers, characters (such as letters, digits, punctuation marks, etc.) are 

represented using character encoding schemes, which map each character to a 

specific binary value. 

➢ The most common methods for character representation are:

✓ ASCII

✓ Unicode

✓ EBCDIC.



Characters representation

➢ ASCII (American Standard Code for Information Interchange):  

✓ It is one of the most widely used character encoding standards. 

✓ It represents characters using 7 bits (or 8 bits in extended versions) and maps each 

character to a unique binary number.

✓ 7 bits to represent 128 characters and 8 bits to represent 256 characters. 

➢ Example: 

▪ 'A' = 65 (in decimal) = 01000001 (in binary)

▪ 'a' = 97 (in decimal) = 01100001 (in binary)

➢ Limitations: Limited to 128 or 256 characters. 



Characters representation

➢ ASCII table: 



Characters representation

➢ Unicode:  Unicode is a more comprehensive character encoding standard designed 

to support characters from all languages, as well as symbols, emojis, and even 

ancient scripts. It aims to provide a unique number for every character in the world, 

regardless of the platform, program, or language.

➢ Example: 

▪ 'A' = U+0041

▪ '□' (musical symbol) = U+1D11E



Characters representation

➢ Unicode:

➢ Unicode can be represented using different encoding schemes:

✓ UTF-8: A variable-length encoding that uses 1 to 4 bytes to represent characters. It's 

widely used for web pages and file formats. 

✓ UTF-16: Uses 2 bytes for most characters, but some characters may use 4 bytes 

✓ UTF-32: Uses 4 bytes for all characters, ensuring fixed-length encoding. 

➢ Limitations: More memory-intensive than ASCII, and more complex.



Characters representation

➢ EBCDIC (Extended Binary Coded Decimal Interchange Code):

✓ EBCDIC is an encoding system primarily used on IBM mainframe and midrange 

computer systems. 

✓ It is different from ASCII in that it is a 8-bit encoding system (256 unique characters) 

with a unique character mapping.

✓ Example: ‘A’

▪ ASCII: 65 in decimal, 41 in Hexa, 01000001 in binary. 

▪ EBCDIC: C1 in Hexa, 11000001 in binary. 

➢ Limitations: Not widely used, and less standard than ASCII and Unicode.



The end
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