
Badji-Mokhtar University. Annaba
Faculty of Technology

Department of Computer Science

S1- 2025/2026

Dr. Khelifi Hakima

Chapter 3: Data representation

Lessons Objectives

✓ Introduce the binary code (Natural, Gray, BCD)

✓ Understand how data is represented in a computer system

▪ Integer representation (Unsigned, Signed)

▪ Real numbers (Fixed-Point Representation, Floating-Point Representation)

▪ Characters representation

Introduction

Introduction

➢ Data Representation refers to the methods used to represent data stored in a

computer.

➢ The data stored in computer is knows as Digital Data.

➢ Computers use binary code to represent numbers, characters, text, computer

processor instructions, or any other data.

➢ There are two possible states, off and on, usually symbolized by 0 and 1 from the

binary number system.

Introduction

➢ The 0s and 1s used to represent digital data are referred to as binary digits — from

this term we get the word bit that stands for binary digit.

➢ A bit is a 0 or 1 used in the digital representation of data.

➢ A group of eight bits is called a byte.

➢ The notion of bits and bytes is widely used to describe storage capacity and

network access speed.

➢ Kilo, mega, giga, tera, and similar terms are used to quantify digital data.

Introduction

Introduction

➢ Use bits for network access speed:

✓ 50 Mbps: Megabit per second (Mb or Mbit) is used for faster data rates

(Internet connection).

➢ Use bytes for storage capacities:

✓ 16 GB: Gigabyte (GB or GByte) is commonly used to refer to storage capacity

Binary code

Natural Binary code

Gray code

➢ Gray code or reflected binary code:

✓ It is a type of binary coding system where two successive values differ in only

one bit.

✓ Example: 7 =(0111)2= (0100)𝐺𝑟𝑎𝑦 and 8 = (1000)2 = (1100)𝐺𝑟𝑎𝑦

✓ 7 and 8 are two successive values

✓ Transition from 7 to 8: 0100 to 1100 only one bit changes

✓ Transition from 7 to 8 in natural binary requires to change 4 bits

Gray code

➢ Gray code or reflected binary code:

➢ It is widely used in various applications especially where errors in data transmission
can occur, as it minimizes the chance of multiple bit errors.

✓ Example 1: Send the sequence 5 → 6 → 7 using Gray code

✓ The transmitter sends the sequence:

• 0111 (Gray code for 5)

• 0101 (Gray code for 6)

• 0100 (Gray code for 7)

Decimal Binary Gray Code

5 0101 0111

6 0110 0101

7 0111 0100

Gray code

➢ Gray code or reflected binary code:

Example 1:

✓ The receiver receives: 0111 → 0101 → 0100

1. Compare Consecutive Gray Code Values:

• 0111 → 0101: 1-bit change (Valid).

• 0101 → 0100: 1-bit change (Valid).

2. Convert Gray Code Back to Binary: If no errors are detected, the receiver

converts the Gray code back to binary. 0101 → 0110 → 0111 (5 →6 →7)

Gray code

➢ Gray code or reflected binary code:

Example 1: Suppose noise corrupts the second value (0101) into 1101.

✓ The receiver receives: 0111 → 1101 → 0100

1. Compare Consecutive Gray Code Values:

• 0111 → 1101 : 2-bit change (Invalid, error detected).

2. The receiver flags an error, may request retransmission or discard the data.

Decimal Binary Gray

0 0000 0000

1 0001 0001

2 0010 0011

3 0011 0010

4 0100 0110

5 0101 0111

6 0110 0101

7 0111 0100

8 1000 1100

9 1001 1101

10 1010 1111

11 1011 1110

12 1100 1010

13 1101 1011

14 1110 1001

15 1111 1000

Two successive values
differ in only one bit.

Gray code

➢ Gray code or reflected binary code:

Example 2: Gray Code in a Digital State Machine

✓ Design a state machine to represent a 4-state sequential process using Gray code

• State A: 000, State B: 001, State C: 011, D:010

✓ Using Gray code ensures that transitions between states involve only one bit
change:

• A → B: Only the last bit changes (000 → 001).

• B → C: Only the second bit changes (001 → 011).

• C → D: Only the third bit changes (011 → 010).

• D → A: Only the second bit changes (010 → 000).

✓ Only One bit changes between states. This avoid errors during state transitions.

Gray code

➢ Convert Binary code to Gray Code:

✓ Let B be a number written in pure natural binary on m bits

𝐵(2)= 𝐵𝑚 …… 𝐵3𝐵2𝐵1𝐵0; 𝐵𝑚 is the most significant bit (MSB)

✓ G is the Gray code equivalent of the number B also written on m bits

𝐺(𝐺𝑟𝑎𝑦) = 𝐺𝑚 …… 𝐺3𝐺2𝐺1𝐺0

Gray code

➢ Convert Binary code to Gray Code:

✓ To convert a binary number to Gray code, follow these steps:

1. The first bit of the Gray code is the same as the first bit of the binary number.

 𝐺𝑚= 𝐵𝑚

2. Each subsequent bit in the Gray code is found by performing an XOR (Exclusively-

OR) operation between the current binary bit and the previous binary bit.

 If 𝐵𝑚 = 𝐵𝑚−1 then 𝐺𝑚−1 = 0

 If 𝐵𝑚 ≠ 𝐵𝑚−1 then 𝐺𝑚−1 = 1

Gray code

➢ Convert Binary code to Gray Code:

✓ Example: Convert 0110 (6 in decimal) to Gray code

✓ B = 0110 = 𝐵3𝐵2𝐵1𝐵0

1. 𝐺3= 𝐵3

2. The second step :

 𝐵3 ≠ 𝐵2 then 𝐺2 = 1

 𝐵2 = 𝐵1 then 𝐺1 = 0

 𝐵1 ≠ 𝐵0 then 𝐺0 = 1

✓ G= 0101

Gray code

➢ Convert code Binary to Gray Code:

✓ Example: What is the equivalent of the binary number = 1101101 in Gray code?

✓ G = 1011011

Gray code

➢ Convert Gray Code to Binary Code:

✓ Let G be a number written in Gray code on m bits

𝐺(𝐺𝑟𝑎𝑦) = 𝐺𝑚 …… 𝐺3𝐺2𝐺1𝐺0, 𝐺𝑚 is the most significant bit (MSB)

✓ B is the equivalent in pure or natural binary code of the number G, B also

written on m bits.

𝐵(2)= 𝐵𝑚 …… 𝐵3𝐵2𝐵1𝐵0

Gray code

➢ Convert Gray Code to Binary Code :

✓ To convert a binary number to Gray code, follow these steps:

1. The first bit of the Gray code is the same as the first bit of the binary number.

 𝐵𝑚 = 𝐺𝑚

2. Now we compare the pairs:

 If 𝐺𝑚−1 = 𝐵𝑚 then 𝐵𝑚−1 = 0

 If 𝐺𝑚−1 ≠ 𝐵𝑚 then 𝐵𝑚−1 = 1

Gray code

➢ Convert Gray Code to Binary Code :

✓ Example: Convert 0100 to Binary code

✓ G = 0100 =𝐺3𝐺2𝐺1𝐺0

1. 𝐺3= 𝐵3 = 0

2. The second step :

 𝐺2 ≠ 𝐵3 then 𝐵2 = 1

 𝐺1 ≠ 𝐵2 then 𝐵1 = 1

 𝐺0 ≠ 𝐵1 then 𝐵0 = 1

✓ B= 0111

Gray code

➢ Convert Gray Code to Binary Code :

✓ Example: What is the equivalent of the Gray Code= 110010 in pure Binary code?

Gray code

➢ Convert Gray Code to Binary Code :

✓ Example: What is the equivalent of the Gray Code= 110010 in pure Binary code?

✓ B=100011

Binary Coded Decimal

➢ BCD or Binary Coded Decimal code :

✓ It is a binary encoding for decimal numbers where each digit of a decimal

number is represented by its own binary sequence.

✓ Instead of encoding the entire number in binary, BCD treats each decimal digit

independently and encodes it in a 4-bit binary form.

➢ Example: To encode the number 856, each digit of the number will be encoded

separately in binary on 4 bits. (856)10= (1000 0101 0110)𝐵𝐶𝐷

Binary Coded Decimal

➢ Decimal 0 to 9 are represented as 0000 to 1001 in BCD:

Decimal BCD

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

Binary Coded Decimal

➢ Advantages:

✓ Easy conversion between binary and decimal systems.

✓ Suitable for applications that require decimal representation such as digital

clocks, calculators, and financial applications.

➢ Disadvantages:

✓ It requires more bits than pure binary to represent the same number.

✓ Arithmetic operations are more complex.

Binary Coded Decimal

➢ Example: Addition in BCD code

✓ In BCD, only 10 digits are allowed (from 0 to 9).

✓ Add each 4-bit block of the first number, with its equivalent of the second number.

✓ If the result of one of the blocks exceeds 9, (its value is between 10 and 15 - 1010 to

1111), the number 6 (0110) is added to this block.

✓ 126+32=158 0001 0010 0110

+ 0000 0011 0010

0001 0101 1000

1 5 8

Binary Coded Decimal

➢ Example: Addition in BCD code

✓ 789+123=

0111 1000 1001

+ 0001 0010 0011

1000 1011 1100

11 12

11111

Decimal BCD

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

Binary Coded Decimal

➢ Example: Addition in BCD code

✓ 789+123=

✓ Add the number 6 (0110) to the block that exceeds 9

0111 1000 1001

+ 0001 0010 0011

1001 1011 1100

0110 0110

1001 0001 0010

9 1 2

1111

11 1

111

Decimal BCD

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

BCD+3

➢ The BCD+3 or excess 3 code

➢ Where 3 is added to each BCD digit

➢ Simplify the arithmetic operations like adding or

subtracting decimal numbers.

➢ Reduce the need for complex corrections when

performing arithmetic operations.

➢ Improve the speed and efficiency of arithmetic

operations.

Decimal Decimal+3 BCD+3

0 3 0011

1 4 0100

2 5 0101

3 6 0110

4 7 0111

5 8 1000

6 9 1001

7 10 1010

8 11 1011

9 12 1100

Binary Coded Decimal

➢ Example: Addition in BCD+3 code

✓ If carry occurs, add 3 (0011)

✓ If carry does not occur, subtract 3.

✓ 6+3=

1001

+ 0110

1111 (No carry)

- 0011

1100

Decimal Decimal+3 BCD+3

0 3 0011

1 4 0100

2 5 0101

3 6 0110

4 7 0111

5 8 1000

6 9 1001

7 10 1010

8 11 1011

9 12 1100

Binary Coded Decimal

➢ Example: Addition in BCD+3 code

✓ If carry occurs, add 3 (0011)

✓ If carry does not occur, subtract 3.

✓ 7+3= 10
0011 1010

+ 0011 0110
(no carry) 0111 0000 (carry)

- 0011 + 0011

0100 0011

Decimal Decimal+3 BCD+3

0 3 0011

1 4 0100

2 5 0101

3 6 0110

4 7 0111

5 8 1000

6 9 1001

7 10 1010

8 11 1011

9 12 1100

111

Data types

Integer representation

➢ Unsigned Integer Representation:

✓ Integers are represented in binary form, either as signed or unsigned numbers.

✓ An unsigned integer can only represent non-negative numbers (zero and positive).

✓ The representation of integers depends on the range of numbers to be used.

✓ If an integer uses n bits, an unsigned integer can represent values from 0 to 2𝑛 − 1.

✓ Example: for 8 bits

• 0 to 255 (28 − 1)

• 00000000 to 11111111

Integer representation

➢ Signed Integer Representation:

✓ A signed integer can represent both positive and negative numbers.

✓ The most common methods to represent negative numbers:

✓ Sign and Absolute Value (S/VA)

✓ One’s Complement

✓ The two-way complement

Integer representation

➢ Signed Integer Representation:

✓ Sign and Absolute Value (S/VA):

▪ The most significant bit (MSB) is used to represent the sign of the number (1:

negative sign, 0: positive sign) , and the remaining bits represent the absolute value

of the number.

▪ If an integer uses n bits, a signed integer can represent values from

 −2𝑛−1 − 1 to 2𝑛−1 − 1

▪ Example: for 8 bits

• -127 to +127 (−27 − 1 to 27 − 1) with two zeros

Integer representation

➢ Signed Integer Representation:

✓ Sign and Absolute Value (S/VA):

▪ Example: For a 4-bit representation:

+4: 0100 (MSB is 0, positive).

−4: 1100 (MSB is 1, negative).

▪ Issues: The zero has two representations -0 (1000) and +0 (0000). This leads to

complications in certain calculations.

Integer representation

➢ Signed Integer Representation:

✓ One’s Complement :

▪ One's complement represents negative numbers by inverting all the bits of the

corresponding positive number (change 0 to 1 and 1 to 0).

▪ If an integer uses n bits, a signed integer can represent values from

 −2𝑛−1 − 1 to 2𝑛−1 − 1

▪ Example: for 8 bits

• -127 to +127 (−27 − 1 to 27 − 1) with two zeros

Integer representation

➢ Signed Integer Representation:

✓ One’s Complement :

▪ Example: For a 4-bit representation:

+4: 0100

−4: 1011 (flip all bits of 0100).

▪ Issues: The zero in this method also has two representations -0 (1111) and +0

(0000). This leads to complications in certain calculations.

Integer representation

➢ Signed Integer Representation:

✓ The two-way complement: the most widely used method

▪ Negative numbers are represented by inverting all the bits of the number and then

adding 1 to the result.

▪ If an integer uses n bits, a signed integer can represent values from −2𝑛−1 to 2𝑛−1 − 1

(Range: -128 to 127, there is only one representation for zero)

▪ Example: For a 4-bit representation:

+4: 0100

−4: Invert the bits 1011 then add 1 = 1100

Real numbers

➢ Real numbers in computers can be represented using fixed-point representation or

floating-point representation.

➢ Fixed-Point Representation: is a way of representing real numbers where the

position of the decimal point is fixed at a certain place. This means a certain number

of bits are allocated to the integer part and a fixed number of bits are allocated to

the fractional part.

Real numbers

➢ Real numbers in computers can be represented using fixed-point representation or

floating-point representation.

➢ Fixed-Point Representation:

▪ Example: Suppose we want to represent the number 3.75 in 8 bits using a fixed-

point representation with 4 bits for the integer part and 4 bits for the fractional part:

• The number 3.75 can be written as 3 + 0.75.

• In binary, 3 is 0011 and 0.75 is 1100 (because 0.75×24=12, which is 1100 in
binary).

• So, the 8-bit fixed-point representation would be 00111100.

Real numbers

➢ Floating-point representation: is a more flexible and widely used way. It can handle

a much wider range of values compared to fixed-point representation by using an

exponent to scale the value.

✓ The most common format used in computers for the representation of floating-

point numbers in binary is the IEEE 754 standard.

✓ In the IEEE 754 standard, a floating point number is always represented by a triplet
(S,E,M):

1. Sign bit: Indicates whether the number is positive or negative.

2. Exponent: Determines the scale (magnitude) of the number.

3. Mantissa (or significand): Represents the precision or actual digits of the
number.

Real numbers

➢ Floating-point representation:

✓ The general formula for a floating-point number is:

(−1)𝑆. 2(𝐸−127). 1,𝑀

✓ Two main types:

• IEEE 754 Single Accuracy (32 bits)

• IEEE 754 Double Precision: (64 bits)

Real numbers

➢ Floating-point representation:

✓ Example 1: Find the IEEE 754 single-precision representation of the number (27.5)10

▪ The number is positive S=0

▪ (27.5)10 = (11011.1)2……. Fixed-point = 1.10111 * 24 Floating point (M=

10111)

▪ Exhibitor: E-127 = 4, E= 127+4= 131 = (10000011)2

0 10000011 10111000000000000000000

S E M

Real numbers

➢ Floating-point representation:

✓ Example 2: Find the IEEE 754 single-precision representation of the number (−620.25)10

▪ The number is positive S=1

▪ (−620.25)10 = (1001101100.01)2 ……. Fixed-point = 1.00110110001 *

29 Floating point (M= 00110110001)

▪ Exhibitor: E-127 = 9, E= 127+9= 136 = (10001000)2

1 10001000 00110110001000000000000

S E M

Real numbers

➢ Floating-point representation:

✓ Example 3: Find the IEEE 754 single-precision representation of the number (−0.0625)10

▪ (−0.0625)10 The number is positive S=1

▪ (−0.0625)10 = (0.0001)2……. Fixed-point = 1. * 2−4 Floating point (M= 0)

▪ Exhibitor: E-127 = -4, E= 127-4= 123 = (1111011)2

1 1111011 00000000000000000000000

S E M

Real numbers

➢ Floating-point representation:

✓ Example 4: Find the floating number with the following IEEE754 representation

▪ S =1 Number is negative

▪ E= (10000010)2=130, E-127= 3

▪ 1.M=1.010001

▪ 1.010001 * 23 = (1010.001)2= (10.125)10

1 10000010 01000100000000000000000

S E M

Characters representation

➢ In computers, characters (such as letters, digits, punctuation marks, etc.) are

represented using character encoding schemes, which map each character to a

specific binary value.

➢ The most common methods for character representation are:

✓ ASCII

✓ Unicode

✓ EBCDIC.

Characters representation

➢ ASCII (American Standard Code for Information Interchange):

✓ It is one of the most widely used character encoding standards.

✓ It represents characters using 7 bits (or 8 bits in extended versions) and maps each

character to a unique binary number.

✓ 7 bits to represent 128 characters and 8 bits to represent 256 characters.

➢ Example:

▪ 'A' = 65 (in decimal) = 01000001 (in binary)

▪ 'a' = 97 (in decimal) = 01100001 (in binary)

➢ Limitations: Limited to 128 or 256 characters.

Characters representation

➢ ASCII table:

Characters representation

➢ Unicode: Unicode is a more comprehensive character encoding standard designed

to support characters from all languages, as well as symbols, emojis, and even

ancient scripts. It aims to provide a unique number for every character in the world,

regardless of the platform, program, or language.

➢ Example:

▪ 'A' = U+0041

▪ '□' (musical symbol) = U+1D11E

Characters representation

➢ Unicode:

➢ Unicode can be represented using different encoding schemes:

✓ UTF-8: A variable-length encoding that uses 1 to 4 bytes to represent characters. It's

widely used for web pages and file formats.

✓ UTF-16: Uses 2 bytes for most characters, but some characters may use 4 bytes

✓ UTF-32: Uses 4 bytes for all characters, ensuring fixed-length encoding.

➢ Limitations: More memory-intensive than ASCII, and more complex.

Characters representation

➢ EBCDIC (Extended Binary Coded Decimal Interchange Code):

✓ EBCDIC is an encoding system primarily used on IBM mainframe and midrange

computer systems.

✓ It is different from ASCII in that it is a 8-bit encoding system (256 unique characters)

with a unique character mapping.

✓ Example: ‘A’

▪ ASCII: 65 in decimal, 41 in Hexa, 01000001 in binary.

▪ EBCDIC: C1 in Hexa, 11000001 in binary.

➢ Limitations: Not widely used, and less standard than ASCII and Unicode.

The end

	Welcome
	Slide 1: Badji-Mokhtar University. Annaba Faculty of Technology Department of Computer Science
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

