- > Gray code or reflected binary code:
 - ✓ It is a type of binary coding system where two successive values differ in only one bit.
 - \checkmark Example: 7 = $(0111)_2$ = $(0100)_{Gray}$ and 8 = $(1000)_2$ = $(1100)_{Gray}$
 - ✓ 7 and 8 are two successive values
 - ✓ Transition from 7 to 8: 0100 to 1100 only one bit changes
 - ✓ Transition from 7 to 8 in natural binary requires to change 4 bits

- > Gray code or reflected binary code:
- ➤ It is widely used in various applications especially where errors in data transmission can occur, as it minimizes the chance of multiple bit errors.
- ✓ **Example 1**: Send the sequence $5 \rightarrow 6 \rightarrow 7$ using Gray code

Decimal	Binary	Gray Code
5	0101	0111
6	0110	0101
7	0111	0100

- ✓ The transmitter sends the sequence:
 - 0111 (Gray code for 5)
 - 0101 (Gray code for 6)
 - 0100 (Gray code for 7)

> Gray code or reflected binary code:

Example 1:

- ✓ The receiver receives: $0111 \rightarrow 0101 \rightarrow 0100$
 - 1. Compare Consecutive Gray Code Values:
 - $0111 \rightarrow 0101$: 1-bit change (Valid).
 - $0101 \rightarrow 0100$: 1-bit change (Valid).
 - 2. Convert Gray Code Back to Binary: If no errors are detected, the receiver converts the Gray code back to binary. $0101 \rightarrow 0110 \rightarrow 0111$ (5 \rightarrow 6 \rightarrow 7)

> Gray code or reflected binary code:

Example 1: Suppose noise corrupts the second value (0101) into 1101.

- ✓ The receiver receives: $0111 \rightarrow 1101 \rightarrow 0100$
 - 1. Compare Consecutive Gray Code Values:
 - $0111 \rightarrow 1101$: 2-bit change (Invalid, error detected).
 - 2. The receiver flags an error, may request retransmission or discard the data.

Decimal	Binary	Gray
0	0000	0000
1	0001	0001
2	0010	00 <mark>1</mark> 1
3	0011	0010
4	0100	0 <mark>1</mark> 10
5	0101	0111
6	0110	0101
7	0111	0100
8	1000	1 100
9	1001	110 <mark>1</mark>
10	1010	11 <mark>1</mark> 1
11	1011	111 <mark>0</mark>
12	1100	1 <mark>0</mark> 10
13	1101	10 <mark>1</mark> 1
14	1110	1001
15	1111	100 <mark>0</mark>

Two successive values differ in only one bit.

> Gray code or reflected binary code:

Example 2: Gray Code in a Digital State Machine

- ✓ Design a state machine to represent a 4-state sequential process using Gray code
 - State A: 000, State B: 001, State C: 011, D:010
- ✓ Using Gray code ensures that transitions between states involve only one bit change:
 - A \rightarrow B: Only the last bit changes (000 \rightarrow 001).
 - B \rightarrow C: Only the second bit changes (001 \rightarrow 011).
 - C \rightarrow D: Only the third bit changes (011 \rightarrow 010).
 - D \rightarrow A: Only the second bit changes (010 \rightarrow 000).
- ✓ Only One bit changes between states. This avoid errors during state transitions.

> Convert Binary code to Gray Code:

✓ Let B be a number written in pure natural binary on m bits

$$B_{(2)} = B_m \dots B_3 B_2 B_1 B_0$$
; B_m is the most significant bit (MSB)

✓ G is the Gray code equivalent of the number B also written on m bits

$$G_{(Gray)} = G_m \dots G_3 G_2 G_1 G_0$$

- > Convert Binary code to Gray Code:
- ✓ To convert a binary number to Gray code, follow these steps:
 - 1. The first bit of the Gray code is the same as the first bit of the binary number.

$$G_m = B_m$$

2. Each subsequent bit in the Gray code is found by performing an XOR (Exclusively-OR) operation between the current binary bit and the previous binary bit.

If
$$B_m = B_{m-1}$$
 then $G_{m-1} = 0$

If
$$B_m \neq B_{m-1}$$
 then $G_{m-1} = 1$

- > Convert Binary code to Gray Code:
- ✓ Example: Convert 0110 (6 in decimal) to Gray code

$$\checkmark$$
 B = 0110 = $B_3B_2B_1B_0$

1.
$$G_3 = B_3$$

2. The second step:

$$B_3 \neq B_2$$
 then $G_2 = 1$

$$B_2 = B_1$$
 then $G_1 = 0$

$$B_1 \neq B_0$$
 then $G_0 = 1$

> Convert Gray Code to Binary Code:

✓ Let G be a number written in Gray code on m bits

$$G_{(Gray)} = G_m \dots G_3 G_2 G_1 G_0$$
, G_m is the most significant bit (MSB)

✓ B is the equivalent in pure or natural binary code of the number G, B also written on m bits.

$$B_{(2)} = B_m \dots B_3 B_2 B_1 B_0$$

- > Convert Gray Code to Binary Code :
- ✓ To convert a binary number to Gray code, follow these steps:
 - 1. The first bit of the Gray code is the same as the first bit of the binary number.

$$B_m = G_m$$

2. Now we compare the pairs:

If
$$G_{m-1} = B_m$$
 then $B_{m-1} = 0$

If
$$G_{m-1} \neq B_m$$
 then $B_{m-1} = 1$

- **→** Convert Gray Code to Binary Code :
- ✓ **Example**: Convert 0100 to Binary code

$$\checkmark$$
 G = 0100 = $G_3G_2G_1G_0$

1.
$$G_3 = B_3 = 0$$

2. The second step:

$$G_2 \neq B_3$$
 then $B_2 = 1$

$$G_1 \neq B_2$$
 then $B_1 = 1$

$$G_0 \neq B_1$$
 then $B_0 = 1$