Badji-Mokhtar University. Annaba Faculty of Technology Department of Computer Science

Chapter 4: Boolean Algebra and Combinational circuits

Dr. Khelifi Hakima

Lessons Objectives

- ✓ Definition
- ✓ Fundamental concepts
- ✓ Laws of the Boolean Algebra
- ✓ Truth table and Logic gates
- ✓ Design steps of a combinational circuit

Definition

Definition

- ➤ Boolean algebra was introduced in 1847 by Georges Boole.
- ➤ It is a branch of mathematics that deals with operations on logical values with binary variables.
- These variables are represented as binary numbers to represent truths: 1 = true and 0 = false.
- > It forms the basis for designing digital circuits and performing logical operations.

Fundamental concepts

Fundamental concepts

- > State: Logical states are represented by 0 and 1.
- ➤ **Boolean variable**: can take one of two possible values: 0 or 1, representing false and true. These variables are used in Boolean algebra to represent logical statements or conditions.
- ➤ Boolean function: is an expression formed using Boolean variables, constants (0 or 1), and logical operations (AND, OR, NOT, etc.). There are two types of operator:
 - ✓ Basic operators: NOT, AND, OR
 - ✓ **Derived operators**: NOT-AND (NAND) , NOT OR (NOR), Exclusive OR (XOR), Not Exclusive OR (NXOR).

> Identity Law:

- ✓ AND: A.1 = A (AND with 1 leaves the variable unchanged)
- ✓ OR: A + 0 = A (OR with 0 leaves the variable unchanged)
- Commutative Law: operating Boolean variables A and B is similar to operating Boolean variables B and A
 - ✓ AND: A·B=B·A
 - **✓ OR**: A+B=B+A
- Associative Law: the order of performing Boolean operator is illogical as their result is always the same
 - \checkmark **AND**: A·(B·C)=(A·B)·C
 - ✓ **OR**: A+(B+C)=(A+B)+C

- > Distributive Law: AND distributes over OR, and OR distributes over AND
 - ✓ AND over OR: $A \cdot (B+C) = (A \cdot B) + (A \cdot C)$
 - ✓ OR over AND: $A+(B\cdot C)=(A+B)\cdot (A+C)$
- ✓ Inversion Law: the complement of the complement of any number is the number itself. Also, A variable ANDed with its complement is 0, and ORed with its complement is 1

$$\checkmark \overline{\overline{A}} = A$$

- \checkmark AND: $A \cdot \overline{A} = 0$
- \checkmark OR: A+ \overline{A} =1
- > Null Law: Multiplying by 0 always gives 0, adding 1 always gives 1
 - **✓ AND:** A·0=0
 - ✓ **OR:** A+1=1

> Absorption Law:

- \checkmark A·(A+B)=A (A ANDed with the OR of A and B is just A)
- \checkmark A+(A·B)=A (A ORed with the AND of A and B is just A)

> MORGAN'S LAW:

- 1. The complement of the product (AND) of two Boolean variables is equal to the sum (OR) of the complement of each Boolean variable: $\overline{A \cdot B} = \overline{A} + \overline{B}$
- 2. The Complement of the sum (OR) of two Boolean variables is equal to the product(AND) of the complement of each Boolean variable: $\overline{A+B} = \overline{A} \cdot \overline{B}$

- \triangleright Example 1: A·(B+C)+ A· \overline{C}
- ✓ Distributive Law: $A \cdot B + A \cdot C + A \cdot \overline{C}$
- ✓ Inversion Law: $A \cdot C + A \cdot \overline{C} = A \cdot (C + \overline{C}) = A \cdot 1$
- ✓ Identity Law: A·1=A
- ✓ Absorption Law: $A \cdot (B+A) = A$
- ✓ Final simplified expression = A

- > Logic gate is a fundamental building block of digital circuits.
- > It performs a basic logical function on one or more binary inputs to produce a single output.
- > Based on the logic operation it carries out, the output is typically a binary value (0 or 1).
- There are several common types of logic gates: NOT, AND, OR, NOT-AND (NAND), NOT OR (NOR), Exclusive OR (XOR), Not Exclusive OR (NXOR).

- ➤ Logic functions can be represented by truth tables. The truth table shows the output of a logic circuit as a function of the various combinations of input values.
- > The number of columns is the total number of inputs and outputs
- \triangleright The number of rows is 2^N , where "N" is the number of inputs
- ➤ The value of a logic function is equal to 1 or 0, depending on the values of the logic variables.

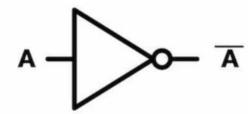
> A function with 3 inputs and 1 output is represented by a table with 4 columns and 8 rows.

Α	В	С	Result
0	0	0	$\overline{A}\overline{B}\overline{C}$
0	0	1	$\overline{A}\overline{B}C$
0	1	0	\overline{A} B \overline{C}
0	1	1	A B C
1	0	0	ABC
1	0	1	A \overline{B} C
1	1	0	A B \overline{C}
1	1	1	АВС

> The seven basic logic gates are AND, OR, NOR, XOR, NOT, NAND, and NXOR.

 \rightarrow LOGICAL FUNCTION (NOT): $F=\overline{A}$

Α	F
0	1
1	0



- > The seven basic logic gates are AND, OR, NOR, XOR, NOT, NAND, and XNOR.
- ➤ LOGICAL FUNCTION AND: F= A*B ou A · B ou AB

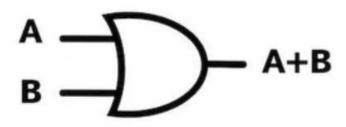
А	В	F
0	0	0
0	1	0
1	0	0
1	1	1

 \rightarrow LOGICAL FUNCTION NOT AND (NAND): F= A/B ou $\overline{A \cdot B}$

А	В	F
0	0	1
0	1	1
1	0	1
1	1	0

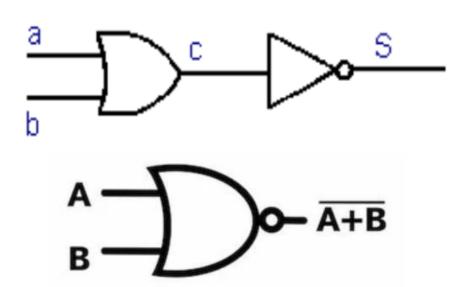
> LOGICAL FUNCTION OR: F= A+ B

А	В	F
0	0	0
0	1	1
1	0	1
1	1	1



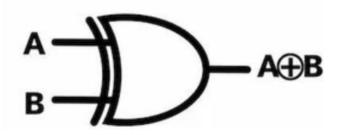
 \rightarrow LOGICAL FUNCTION NOT OR(NOR): $F = \overline{A + B}$

А	В	F
0	0	1
0	1	0
1	0	0
1	1	0



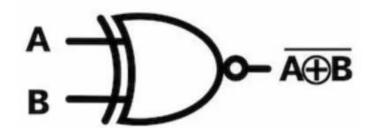
 \triangleright LOGICAL FUNCTION XOR (EXCLUSIVE OR): $F = A \oplus B$

А	В	F
0	0	0
0	1	1
1	0	1
1	1	0



 \rightarrow LOGICAL FUNCTION NXOR: $F = \overline{A \oplus B}$

А	В	F
0	0	1
0	1	0
1	0	0
1	1	1



 \triangleright Example: F(A, B) = (A · \overline{B}) + (A + B)

Α	В	\overline{B}	A·B	A + B	$F(A, B) = (A \cdot \overline{B}) + (A + B)$
0	0	1	0	0	0
0	1	0	0	1	1
1	0	1	1	1	1
1	1	0	0	1	1

- A combinational circuit is a digital circuit in which the output depends on the present input values.
- It is essentially a mapping from input values to output values based purely on Boolean algebra.
- > It is an assembly of logic gates linked together to represent an algebraic expression.
- > combinational circuits are used to create other, more complex circuits.

- > Components of a Combinational Circuit:
- 1. Logic Gates: The basic building blocks (AND, OR, NOT, NAND, NOR, XOR, NXOR).
- 2. Input: The variables fed into the circuit.
- 3. Output: The result after processing the inputs with logical operations.
- 4. Interconnections: Wires or connections that link the gates and inputs to outputs.

- > Steps to design a combinational circuit:
- ✓ **Define the Problem**: understand the requirements of the circuit, including what the inputs and outputs represent and the relationship between them.
- ✓ **Obtain Truth Table**: create a truth table that shows all possible combinations of input values and the corresponding output values.
- ✓ **Simplify the Boolean Expression**: can use Boolean algebra to simplify the expressions.
- ✓ **Select Logic Gates**: Based on the simplified Boolean expressions, choose the appropriate logic gates (AND, OR, NOT, NAND, NOR, XOR, etc.) to implement the circuit.
- ✓ **Draw the Circuit Diagram**: use standard symbols for gates and connect the inputs, gates, and outputs.

- > Steps to design a combinational circuit:
- > Example: Full Adder circuit
- ✓ **Define the Problem:** A Full Adder takes three binary inputs: **A, B** (the two data bits), and C_{in} (carry input). It produces two outputs: the **sum (S)** and the carry output (C_{out}).
- ✓ Obtain Truth Table:

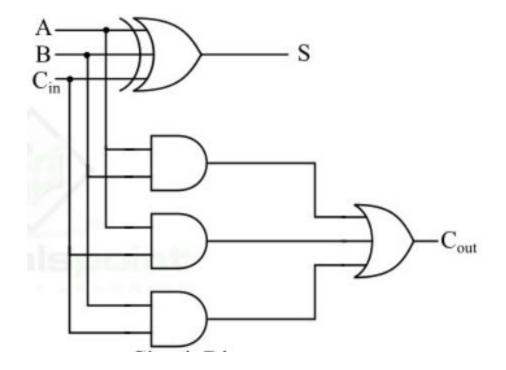
Α	В	C_{in}	sum (S)	Carry (C_{out})
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

- > Steps to design a combinational circuit:
- > Example: Full Adder circuit
- ✓ Simplify the Boolean Expression:
 - Sum (S): The sum can be represented by the XOR operation: $S = A \oplus B \oplus C_{in}$
 - Carry (C_{out}): The carry output is generated by the following OR and AND operations: $C_{out} = (A \cdot B) + (B \cdot C_{in}) + (A \cdot C_{in})$

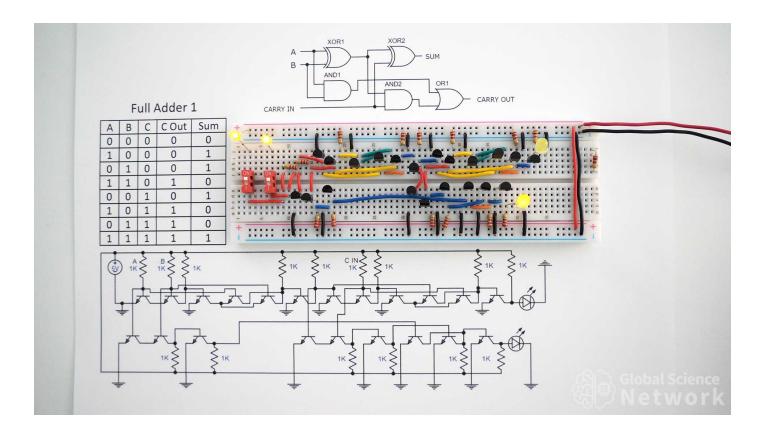
Α	В	C_{in}	sum (S)	Carry (C_{out})	А⊕В	А⊕В⊕С _{in}	A·B	B⋅ C _{in}	A· C _{in}
0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	0	1	0	0	0
0	1	0	1	0	1	1	0	0	0
0	1	1	0	1	1	0	0	1	0
1	0	0	1	0	1	1	0	0	0
1	0	1	0	1	1	0	0	0	1
1	1	0	0	1	0	0	1	0	0
1	1	1	1	1	0	1	1	1	1

- > Steps to design a combinational circuit:
- > Example: Full Adder circuit
- ✓ Select Logic Gates:
- ✓ For the sum (S), use two XOR gates: First XOR gate for A⊕B, Second XOR gate for $(A \oplus B) \oplus C_{in}$.
- \checkmark For the carry (C_{out}), use three AND gates and one OR gate:
 - ✓ Three AND gates to compute A·B, B· C_{in} , and A· C_{in} ,
 - ✓ One OR gate to combine these AND outputs.

- > Steps to design a combinational circuit:
- > Example: Full Adder circuit
- ✓ Draw the Circuit Diagram:



- > Steps to design a combinational circuit:
- > Example: Full Adder circuit
- ✓ Draw the Circuit Diagram:



The end