
Chapter 4. Concept of object 

From C to C++, Classes and Objects
Protection, Access
Instantiation, Constructor, Destructor
Overloading
Operator “This”
Object and modeling UML/SysML
Automatic code generation



Parameterized Constructors:
It is also possible to create constructors with parameters to allow 
different ways of initializing objects based on the values you pass 
during object creation.

class Person 
{public:   

Person(string name, int age)
{ this->name = name;      // operator this 

this->age = age;    
}

private:   
string name;    int age;

};



Operator this

• The this pointer is a special pointer that points
to the object for which the member function
is called.

• It is used to refer to the current object
instance within a member function.



Accessing Member Variables: When there is a local variable in a 
member function with the same name as a data member, the this 
pointer can be used to distinguish between the local variable and 
the data member. 

Example:
class MyClass
{private:  

int x;

public:  
void setX(int x)
{ this->x = x; }   // Use this pointer to access the member 

variable
};



Initialization Lists: You can use initialization lists to initialize data 
members in a more efficient way, especially for complex objects or 
objects that are not default-constructible.

EX:
class Student 
{public:   

Student(string name, int age) : 
name(name),
age(age) 

{ // Constructor code here    }

private:   
string name;  
int age;

};



Implicit Constructor Calls: Constructors are called automatically
when objects are created. You don't need to explicitly call the
constructor like a regular function.

EX:



class Car
{public:   

Car(string make, string model, int year) :
make(make), 
model(model), 
year(year) 

{cout << "Car object created." << endl;    }    
void DisplayInfo() 
{cout << "Make: " << make << ", Model: " << model << ", Year: " <<   

year << endl;}
private:   
string make;   string model;    int year;};

int main() 
{ Car myCar("Toyota", "Camry", 2022);   

myCar.DisplayInfo();      
return 0;

}

HARIZE
Highlight

HARIZE
Highlight



Multiple Constructors (Overloading): a class can have multiple 
constructors  with different parameter lists. This is known as constructor 
overloading.

class Rectangle
{public:   

Rectangle() 
{ // Default constructor }    

Rectangle(double width, double height) 
{ // Parameterized constructor       

this->width = width;      
this->height = height; }

private:   
double width;   
double height;

};

HARIZE
Highlight



Copy Constructor: A copy constructor is a special constructor
that's used to create a new object as a copy of an existing object
of the same class. It's called when an object is passed by value,
returned by value, or explicitly copied.

class MyClass
{public:   

MyClass(const MyClass& other)
{ // Copy constructor code here    }

};

HARIZE
Highlight

HARIZE
Highlight



class Rectangle {            // declare a class
private:

double length; double height;

public:
Rectangle(double len, double hgt)

{ length = len;
height = hgt;  }

// copy constructor with a Rectangle object as 
parameter

// copies data of the obj parameter
Rectangle(Rectangle &obj) {

length = obj.length;
height = obj.height;

}

double calculateArea() {
return length * height;

}
};

int main() {
// create an object of Rectangle 

class
Rectangle Rectangle1(10.5, 8.6);

// copy contents of Rectangle1 to 
Rectangle2
Rectangle Rectangle2 = Rectangle1;

// print areas of Rectangle1 and 
Rectangle2
cout << "Area of Rectangle 1: " << 

Rectangle1.calculateArea() << endl;
cout << "Area of Rectangle 2: " << 

Rectangle2.calculateArea();

return 0;
}
****************************
Output:
Area of Rectangle 1: 90.3
Area of Rectangle 2: 90.3

HARIZE
Highlight

HARIZE
Highlight

HARIZE
Highlight

HARIZE
Highlight

HARIZE
Highlight

HARIZE
Highlight

HARIZE
Highlight

HARIZE
Highlight



11

Recapitulation:
class Rectangle
{private:

double length;
double width;

public:
Rectangle (double l, double h)
{length=l;
width=h;
cout<<"I am the 2 parameters constructor"<<endl;}
Rectangle (double l)
{length=l; width=2*l;
cout<<" I am the 1 parameter constructor "<<endl;}
Rectangle();

// {length=3.5; width=6.5;                                                      
// cout<<«  I am the default constructor"<<endl;}

double area ()
{cout<<"my area is "<<length*width<<endl;
return length*width;}
void print_o()
{cout<<"length is: "<<length<<endl<<« width is: "<<width<<endl;}

};

constructeurs can be defined
outside the class

HARIZE
Highlight

HARIZE
Highlight

HARIZE
Highlight

HARIZE
Highlight

HARIZE
Highlight

HARIZE
Highlight



12

Rectangle::Rectangle()
{length=3.5; width=6.5;
cout<<« I am the dafault constructor "<<endl;}

int main()
{Rectangle R1; // instanciation and initialisation of the object R1with

// the default constructor
R1.area();          
Rectangle R2(2.8); //instanciation and initialisation of the object R2 with

// the 1 parameter constructor

R2.area ();
Rectangle R3(2.8, 5.1); //instanciation and initialisation of the object R3

// with the 2 parameters constructor

R3.area();
R1.print_o();
return 0;
}

Here, the constructor is
defined outside the 
class

HARIZE
Highlight



13

Result after execution:

I am the dafault constructor
my area is  22.75
I am the 1 parameter constructor
my area is  15.68
I am the 2 parameters constructor
my area is  14.28
length is: 3.5
width is: 6.5



Destructor

• A destructor is a special member function of a class
that is used to clean up resources or perform any
necessary actions when an object of that class goes
out of scope or is explicitly deleted.

• The destructor has the same name as the class,
preceded by a tilde (~).

• No return type (not even void).

• No parameters : no possible overloading.

• There is only one destructor for a class.

• Syntax:

HARIZE
Highlight

HARIZE
Highlight



class MyClass
{public:    

// Constructor
MyClass() 

{ // Initialization code    }   

// Destructor
~MyClass() 

{ // Cleanup code    }
};



The destructor is automatically called when the object goes out 
of scope.

Example:
int main() 
{   // Object created    

MyClass obj;    
// Do something with obj

// Object goes out of scope, and the destructor is      
//automatically called  to clean up resources allocated by the 
//object.   
return 0; // Destructor called here

}



If you allocate memory or resources in the constructor, it
is a good practice to release those resources in the
destructor to avoid memory leaks or resource leaks.

It's important to note that if you don't provide a
destructor explicitly, the compiler generates a default one
for you.

However, if your class needs specific cleanup operations,
it's often a good idea to define your own destructor.

Example of a class with a destructor that manages
dynamic memory:



#include <iostream>
Using namespace std;
class DynamicMemoryClass
{public:    

// Constructor
DynamicMemoryClass() 

{ data = new int[10];    
cout << "Constructor called\n";    }  

// Destructor
~DynamicMemoryClass() 
{ delete[] data;  // Cleanup dynamic memory

cout << "Destructor called\n";  }

private:   
int* data;};

int main() 
{    // Object created

DynamicMemoryClass obj;    
// Do something with obj
// Object goes out of scope, and the destructor is automatically called
// to clean up resources allocated by the object.   
return 0; // Destructor called here}



Let’s add a user defined destructor to the Rectangle example.
The following code will be added just befor the method print_o() and without
any changes to the main.

~Rectangle()                                                         //  destructor
{cout<< "I am the destructor"<<endl;}

Result:
I am the dafault constructor
my area is  22.75
I am the 1 parameter constructor
my area is  15.68
I am the 2 parameters constructor
my area is  14.28
length is: 3.5
width is: 6.5
I am the destructor
I am the destructor
I am the destructor

HARIZE
Highlight



Object and modeling UML/SysML

• Objects and modeling using UML (Unified
Modeling Language) and SysML (Systems
Modeling Language) are concepts commonly
used in software engineering and system
design.



Objects:
In object-oriented programming (OOP), an object is an
instance of a class, which is a blueprint for creating
objects.

Objects encapsulate data (attributes) and behaviors
(methods) that operate on the data.

Objects interact with each other through defined
interfaces, and this paradigm provides a way to model
and structure software systems.



class Car
{public:    

// Attributes  
string brand;   
int year;        

// Methods   
void startEngine() { // Code to start the engine}   
void accelerate()    {// Code to accelerate the car}
};
Int main()
{Car myCar;    // Object created
myCar.brand = "Toyota";
myCar.year = 2022;
myCar.startEngine();    // Object behavior



UML (Unified Modeling Language):
UML is a standardized general-purpose modeling
language used in software engineering for visualizing,
specifying, constructing, and documenting the artifacts
of a system.
UML diagrams provide a way to represent different
aspects of a system, such as its structure, behavior, and
interactions.

Common UML diagrams include:



Class Diagrams: Represent the structure and relationships among
classes in a system. Classes are depicted as boxes with attributes
and methods.

Use Case Diagrams: Depict the interactions between a system and
its external entities (actors) to achieve specific goals.

Sequence Diagrams: Show the chronological sequence of
interactions between objects or components in a system.

Activity Diagrams: Illustrate the flow of activities or processes
within a system.

State Machine Diagrams: Model the behavior of an individual
object or a system in response to external stimuli.



SysML (Systems Modeling Language):
SysML is an extension of UML that focuses on systems
engineering. It provides a set of diagrams and symbols to model
complex systems, including hardware, software, processes, and
their interactions.
Common SysML diagrams include:
Block Definition Diagrams: Depict the structural aspects of a
system, showing blocks (components) and their relationships.
Internal Block Diagrams: Detail the internal structure of a block,
illustrating how parts or subsystems interact.
Requirement Diagrams: Capture and trace system requirements.
Activity Diagrams (SysML): Similar to UML activity diagrams but
adapted for systems engineering.
State Machine Diagrams (SysML): Used to model the dynamic
behavior of systems.



Both UML and SysML provide standardized ways to
communicate and document the design of software
systems and complex systems, respectively.

They are valuable tools for software engineers,
system architects, and other stakeholders involved in
the development and analysis of systems.



Automatic code generation

• Automatic code generation in C++ refers to the
process of using tools or software to generate
source code or other artifacts automatically,
based on high-level specifications, models, or
templates.

• This can help improve productivity, reduce errors,
and maintain consistency in large software
projects.

• There are several ways automatic code
generation can be applied in C++ development:



Integrated Development Environments (IDEs):
Many modern IDEs include features for code generation.

For example, they may offer wizards or templates that
allow developers to create common code structures or
design patterns quickly.

IDEs often provide code snippets, boilerplate code, or
auto-completion features to speed up coding.



Code Generators:
Specialized tools and frameworks exist that can generate
C++ code based on high-level specifications.

These specifications can be in the form of models,
configurations, or domain-specific languages.

Examples include tools that generate
serialization/deserialization code, database access code,
or code for communication between different
components.



Model-Driven Development (MDD):
MDD involves creating high-level models of a system
and then automatically generating the corresponding
C++ code from these models.

Unified Modeling Language (UML) tools, combined with
code generation capabilities, can be used for MDD.



IDL (Interface Definition Language) and RPC
(Remote Procedure Call) Generators:
In distributed systems, Interface Definition Languages
like IDL are used to define the interfaces between
different components.
Code generators then create the necessary C++ code
for communication.
Tools like Protocol Buffers or Apache Thrift use IDL to
define data structures and service interfaces and
generate C++ code for serialization, deserialization,
and remote procedure calls.



Template Metaprogramming:
C++ itself supports a form of code generation through
template metaprogramming.
Templates allow you to write generic code that is
parameterized by types or values, and the compiler
generates specialized code based on how the templates
are instantiated.
This is a powerful feature used in libraries like the
Standard Template Library (STL) and can be employed in
application code for generic programming.



Protocol Buffers (protobuf):
Scenario: When you need a fast and efficient
serialization mechanism for data interchange.

Description: Protocol Buffers is a language-agnostic
serialization format developed by Google. You define
your data structures and the services you want to
expose in a .proto file, and then you use the protoc
compiler to generate C++ code for serialization and
deserialization.



Example .proto file:

syntax = "proto3";
message  Person
{ required string name = 1;
required int32 id = 2; 
optional string email = 3; }

Generated C++ code (simplified):
cpp
// Generated code
class Person
{ public: // ... Constructors, accessors, etc.
void Serialize(ostream* output) const; 
bool ParseFromIstream(istream* input); };



Apache Thrift:
Scenario: When you are building a service-oriented
architecture and need a framework for cross-language
services development.

Description: Apache Thrift uses an Interface
Definition Language (IDL) to define data types and
service interfaces. The thrift compiler generates C++
code for servers, clients, and data serialization.



Example .thrift file:
struct Person 
{ 1: required string name; 
2: required i32 id; 
3: optional string email; }

// Generated code
class Person
{public:    // ... Constructors, accessors, etc.   

void read(apache::thrift::protocol::TProtocol* iprot);  
void write(apache::thrift::protocol::TProtocol* oprot) const;};



UML Tools with Code Generation:
Scenario: When you are using UML to model your
system and want to generate C++ code from your
models.

Description: Some UML modeling tools offer code
generation capabilities. You create UML class diagrams,
activity diagrams, etc., and the tool generates
corresponding C++ code.



Example UML Class Diagram:
Sql file
+---------------------+
|   MyClass |
+---------------------+
| - data: int |
| + setData(d: int)|
| + getData(): int |
+---------------------+

class MyClass
{ private:

int data; 
public: 

void setData(int d);
int getData(); };


