
Chapter 4. Concept of object

From C to C++, Classes and Objects
Protection, Access
Instantiation, Constructor, Destructor
Overloading
Operator “This”
Object and modeling UML/SysML
Automatic code generation

Classes and Objects

• A class is a blueprint or a template for creating objects.
It defines a data structure along with the methods
(functions) that can operate on that data.

• In essence, a class is a user-defined data type that
encapsulates data (attributes or member variables)
and the operations (member functions or methods)
that can be performed on that data.

Example:

class Rectangle
{public:

double length;
double width;

double area()
{ return length * width; }

};

In this example, a class named Rectangle has two member
variables length and width, and one member function area that
calculates the area of a rectangle.

An object, on the other hand, is an instance of a class. It is a
concrete realization or instance created from the class blueprint.
You can create multiple objects from the same class, and each
object will have its own set of member variables.
Example: creating objects of the Rectangle class:

Rectangle rectangle1;
Rectangle rectangle2;

rectangle1.length = 5.0;
rectangle1.width = 3.0;

rectangle2.length = 4.0;
rectangle2.width = 2.5;

You can access the member variables and call member functions on objects:

double area1 = rectangle1.area(); // Calculates the area of rectangle1double
area2 = rectangle2.area(); // Calculates the area of rectangle2

Protection, Access

• Access and protection in classes and objects are
managed through access specifiers and member
access control.

• C++ provides three access specifiers for controlling
the visibility of class members: public, private, and
protected.

• These access specifiers determine which parts of a
class are accessible from outside the class and from
derived classes.

public: Members declared as public are accessible from any part
of the program, including code outside the class. This means that
you can access public members both from within the class and
from objects of the class.

Example:

class MyClass
{public:

int publicVar;

void publicFunction()
{ // This function is accessible from outside the class. }

};

You can access publicVar and call publicFunction from outside the
class and from objects of the class.

private: Members declared as private are only accessible from
within the class itself. They are not accessible from outside the class
or from objects of the class.

Example:
class MyClass

{private:
int privateVar;

void privateFunction()
{ // This function is only accessible from within the class. }

};

You cannot directly access privateVar or call privateFunction from
outside the class or from objects of the class.

protected: Members declared as protected are similar to private members but
have additional visibility within derived classes (classes that inherit from the
base class). They are not accessible from outside the class, but they can be
accessed by derived classes.
Example:

class BaseClass
{protected:

int protectedVar;
void protectedFunction()
{ // Accessible from derived classes but not from outside the class. }

};

class DerivedClass : public BaseClass
{ // Inherited protectedVar and protectedFunction can be accessed here.};

In addition to these access specifiers, you can control access to a class by
making it a friend of another class, which allows the friend class to access the
private and protected members of the class.

Constructor, Destructor

• A constructor is a special member function
that gets called automatically when an object
of a class is created.

• Constructors are used to initialize the state of
objects, allocate resources, and perform other
setup tasks necessary for the proper
functioning of the object.

Key points about constructors:
Constructors have the same name as the class,
Constructors do not have a return type, not even void.
They are automatically called when an object is created.

Initialization: Constructors are primarily used to initialize the data
members (class variables) of the object to appropriate initial
values. This helps ensure that the object is in a consistent state
when it is created.

Default Constructor: if there is no constructors provided for a
class, C++ will automatically generate a default constructor with
no parameters. This constructor initializes the data members with
default values (zero for numeric types, null for pointers, etc.).

EX:

class MyClass
{public:

MyClass()
{ // Constructor code here }};

