Practice Exercises N 1+ correction

Exercise 1: Convert the following numbers:

 $(32)_8 = (?)_2 = (?)_{16}$ (18)_{10=} (?)_8 = (?)_{16} (A01)_{16=} (?)_2 = (?)_8 (101101,01)_2 = (?)_8 = (?)_{10=} (?)_{16}

Exercise 2

- 1. The number (10101010) is represented in 2's complement. What is its decimal value?
- 2. Calculate in binary (2's complement on 8 bits) : 30-12.

Exercise 3

- 1. Convert π to binary (base 2) (with the approximation π = 3.125)
- 2. Code π = 3.125 according to IEEE 754 standard (single precision) and give the result in Hexadecimal form.
- 3. Deduce $-\pi$.

Exercise 4

The number $X = (C0 D4 00 00)_{16}$ is coded according to IEEE 754 Standard - single precision

What is the decimal value of X ?

Correction

Exercise 1:

 $(32)_8 = (011010)_2 = (1A)_{16}$ (18)_{10} = (22)_8 = (12)_{16} (A01)_{16} = (1010_0000_0001)_2 = (5001)_8 (101101,01)_2 = (55,2)_8 = (45,25)_{10} = (2D,4)_{16}

Exercise 2 :

1. The nomber (10101010) is represented in C à 2

To find its value in decimal, simply transform it into decimal but multiply the most significant bit by -1 (the most significant bit (in red) = 1 means that the number is negative.

 $\underline{1}0101010 = 2_0 * 0 + 2_1 * 1 + 2_2 * 0 + 2_3 * 1 + 2_4 * 0 + 2_5 * 1 + 2_6 * 0 + 2_7 * (-1)$ = 2+8+32-128 = (-86)_{10}

2. Let's calculate 30-12 in binary in C to 2 on 8 bits:

```
30-12=30 + (-12)
```

Alors :

 $30 = (00011110)_2$

Now let's represent (-12) in binary (using the C to 2) $12=(00001100)_2$ So (-12)= (11110100)_2

Therefore :

 $30-12 = 00011110 + 11110100 = (00010010)_2$

Exercice 3

- 1. $\pi = (3.125) = (11.001)_2$
- 2. Coding of π according to IEEE 754 standard

 $11.001=1.1001* 2_{1} \square décalage =1$

 $E= 127+1=(128)_{10}=(1000000)_2$

S=0

 $E{=}\ 10000000$ $M{=}1001$. We add zeros to represent $\ M\ sur\ 23\ bit$

= (40480000)16

4. Deduce $-\pi$ (just change the sign bit S)

Exercice 4:

Simply decode the number into binary to extract the components: S, E, M

 $X = (-6.625)_{10}$