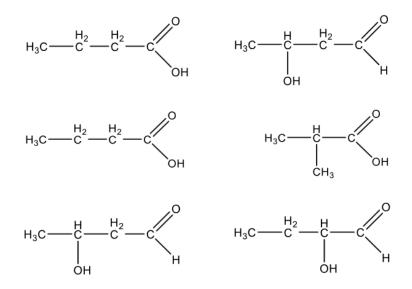


Tutorial N°3


Exercise 1 :

Consider the molecule (CxHyOzNt) with a molar mass of 117.15 g/mol. The mass percentage of each constituent element of this molecule is given as follows : C = 51.26 %, H = 9.46 %, O = 27.32 % and N = 11.96 %.

Data : C : 12 g/mol , H : 1 g/mol , O : 16 g/mol , N : 14 g/mol.

- Find the molecular formula of the molecule.

Exercise 2: What type of isomeric relationship exists between each pair of molecules ?

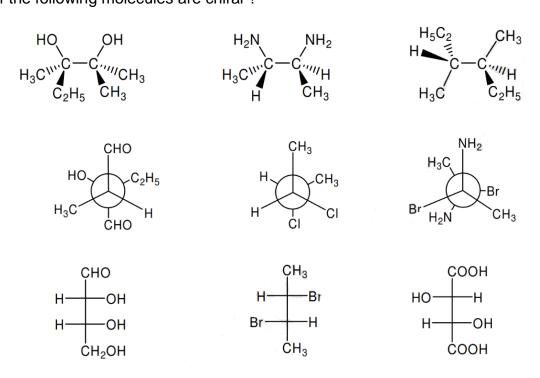
Exercise 3 :

For each molecular formula (C₄H₈O and C₄H₉ON), suggest : - 02 chain isomers – 02 positional isomers - 02 functional isomers.

Exercise 4 :

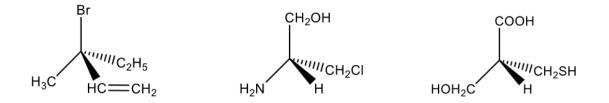
Represent the following molecules using Cram, Newman and Fischer projections:

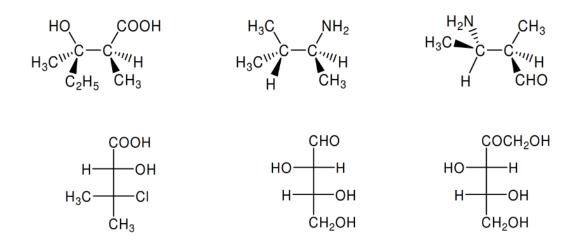
- 2,3-dichlorobutane.
- 2-hydroxypropanoic acid.


Exercise 5 :

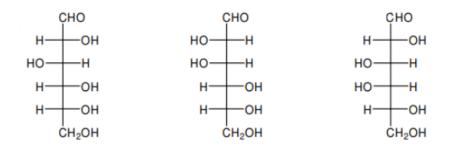
According to the Cahn-Ingold-Prelog sequential rule, what is the order of priority of the following substituents ? :

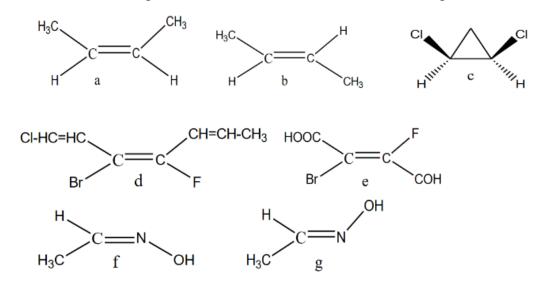
a.	–OH	-OCH ₃	-CH ₃	-CH ₂ OH
b.	-CN	-NHCH ₃	-CH ₂ NH ₂	-NH ₂
C.	-COOH	-CO	CH ₃ -CI	-CONH ₂
d.	-NH ₂	-SH	-OCOCH ₃	-CCl ₃


Exercise 6 :


Which of the following molecules are chiral?

Exercise 7 :


Determine the absolute configuration (R, S) of the asymmetric carbons in the following molecules:


Exercise 8 :

Consider the following 4C sugars. Give the absolute configuration of each asymmetric carbon. Are these three compounds enantiomers or diastereoisomers?

Exercise 9 :

Give the cis-trans and Z-E geometric stereoisomerism of the following molecules

