
Part I: Review of Basic Concepts



Introduction

•Graph theory is a powerful mathematical framework
used to model and analyze complex relationships in 
various fields, including computer science, 
telecommunications, and information networks. 

• In this course, we will explore the fundamental
concepts and algorithms of graph theory with a focus 
on their practical applications in network science.



Applications in information networks

• Topology Modeling: Graphs represent network structures, nodes are routers
or servers, and edges are connections.
➢ Ex: A data center network modeled as a Fat-tree topology ensures efficient data flow.

• Shortest Path Algorithms: Used to find the most efficient route between
nodes in a network.
➢ Ex: Dijkstra’s algorithm helps routers compute the fastest path for data packets.

• Multicast & Broadcast Routing: Ensures efficient data transmission to multiple 
recipients using spanning trees.
➢ Ex: IP multicast delivers a live video stream to multiple users without duplicate transmissions.

• Flow Algorithms: Optimize data flow through a network by modeling capacity
constraints.
➢ Ex: Ford-Fulkerson algorithm helps balance traffic across network links to avoid congestion.



Applications in information networks

• Connectivity & Vulnerability: Analyzes how network failures affect 
connectivity and identifies weak points.
➢ Ex: Finding articulation points in a network shows which nodes' failure would break connectivity.

• Influence & Information Spread: Models how information, trends, or 
viruses propagate through networks.
➢ Ex: Identifying key influencers in a social media network using centrality measures.

• Anomaly Detection: Detects unusual patterns in network activity by 
monitoring graph structure changes.
➢ Ex: A sudden change in node degree could indicate an attack on a server.



Graph vs Network

• Graph: A set of vertices V and edges E connecting them: G=(V,E).

• V={v1, v2, …, vn}, vi is a vertex
• E={e1, e2, …, em}, ej is an edge, e={u,v} is simply noted e=uv
• Adjacent nodes have a common edge
• Adjacent edges have a common node
• If e=uv, the edge e and the vertices u and v are incidents

• Networks: Real structures that can be represented by graphs
• Big size (nodes & links)
• Complex structure with attributed nodes and relations



Basic metrics

• Order: number of vertices, Order(G)=|V|
• Ex: order(G)=5

• Size: number of edges, Size(G)=|E|
• Ex:size(G)=7

• Degree: number of edges connected to a vertex, deg(v)=number
of edges connected to v, deg(G)=max degree of all vertices
• ∑ v∈V degree(v) = 2 × size(G)

• ∑ : 3+2+4+3+2=14=2x7

• Weight: A value assigned to an edge
• Ex: weight(0,4)=8, weight(1,3)=4

(G)



Important concepts

(G)

• Walk: A sequence of vertices pairwise adjacent
• Ex: 0,1,3,0,1,2,3,4
• Ex: 4,1,2,1,0 (not a walk)

• Trail: A walk with no repeated edges
• Ex: 0,3,1,0,4

• Path: A trail with no repeated vertices
• Ex: 4,3,1,2

• Cycle: A path that starts and ends at the same vertex
• Ex: 2,1,0,3,2

• Distance between 2 vertices is the shortest path length between them
• Ex: distance(1,4)=1+2+3=6



Important concepts

(G)

• Co-cycle(cutset): set of edges whose removal increases the number 
of connected components in the graph. 
It is often associated with a partition of the vertex set V into two 
disjoint subsets S and V-S. The cocycle consists of all edges that have 
one endpoint in S and the other in V-S.
• Ex: co-cycle({1,2})={10,13,23}



Types of graphs

• Indirected: Edges have no direction (G1)

• Directed(DiGraph): Edges have direction (G2)

• Multi-Graph: Allows multiple edges between two vertices (G3)

(G1) (G2) (G3)



Types of graphs

• Complete (kn): Every pair of vertices is connected (G1)

• Regular(n-rugular): All vertices have the same degree (G2)

• Bipartite: Vertices can be divided into two disjoint sets, edges link 
only vertices from one set to the other set (G3)

(G3) (G2) (G1)



Types of graphs

• Complete bipartite: A bipartite graph with all possible edges (G1)

• Planar: Can be drawn without edge crossings (G2). Delimited areas 
are named Faces, the graph of faces is named Dual graph
• ∑ degree(face) = 2 × size(G)

• Order(G) – size(G) + # of face = 2

• Simple: No loops or multiple edges (G3 is not a simple graph)

(G1)

(G2)

(G3)



Types of graphs

• Subgraph: A subset of a graph’s vertices with incident edges (G1)

• Partial: A subgraph that retains all vertices but removes some edges (G2)

• Clique: A subgraph where every pair of vertices is connected (G3)

(G1) (G2) (G3)



Connectivity

• Undirected graph: A graph is connected if there is a path between every 
pair of vertices and disconnected else (G1).

• Directed graph: A DiGraph can be disconnected, weakly or strongly 
connected.
• A digraph is strongly connected if every vertex can reach every other vertex (G2).

• A digraph is weakly connected if it will be connected after transforming their arcs 
to edges (G3).

(G1) (G2) (G3)



Trees

• Tree: A connected acyclic graph (G1)
• Size=order-1

• Forest: A collection of disjoint trees (G2)

• Arborescence/Anti-Arborescence: A directed tree 
with a single root, from which all edges point 
outward/inward (G3)

• Root/Anti-Root: A vertex that allows 
reaching/reachable by all other vertices

(G1)

(G2)

(G3)



Computer representation of graphs

• Adjacency matrix: A ∣V∣×∣V∣ matrix where A[i][j]=1 if an edge exists 
between vi and vj.

• Adjacency list: A list where each vertex has a set of adjacent vertices.

• Incidence matrix: A ∣V∣×∣E∣ matrix where rows represent vertices and 
columns represent edges.

• Adjacency matrix Power: The matrix power Ak shows the number of 
paths of length k between vertices.


	Slide 1: Part I: Review of Basic Concepts
	Slide 2: Introduction
	Slide 3: Applications in information networks
	Slide 4: Applications in information networks
	Slide 5: Graph vs Network
	Slide 6: Basic metrics
	Slide 7: Important concepts
	Slide 8: Important concepts
	Slide 9: Types of graphs
	Slide 10: Types of graphs
	Slide 11: Types of graphs
	Slide 12: Types of graphs
	Slide 13: Connectivity
	Slide 14: Trees
	Slide 15: Computer representation of graphs

