BADJI MOKHTAR UNIVERSITY -ANNABA FACULTY OF TECHNOLOGY SCIENCES AND TECHNOLOGY DEPARTMENT (ST) - 1st year LMD 2024/2025

Physics 2: Series 2

Electric dipole and continuous charge distribution

Exercise 1

Consider an electric dipole having a dipole moment \vec{p} and *a* the distance between its two charges -q and +q (Figure 1).

- 1. Calculate the electric potential V and field \vec{E} produced by the dipole at point $M(\vec{OM} = \vec{r})$ as a function of
- p, θ and r, knowing that $a \ll r$.
- 2. Find the equation of equipotential surfaces and the equation of field lines.

Exercise 2

We consider a wire *F*'*F* of length 2*d* charged with a constant linear density $\lambda > 0$.

1- Calculate the field \vec{E} and the potential V created at a point M of the axis OY located at a distance y from the wire (figure 2).

2. Deduce E and V when M is in the mediating plane of the wire F'F.

3. Deduce E when the wire F'F is of infinite length.

Exercise 3

A disk with center O and radius R carrying a constant and positive surface charge σ .

1. Calculate \vec{E} and V created at a point M of its axis OX, located at a distance x from the disk (figure 3).

- 2. Check the relationship between the field and the potential: : $\vec{E} = \vec{grad} V$.
- 3. What becomes to the field E when the radius of the disk R tends towards infinity?

Exercise 4

- We consider a uniformly charged ring with center O, radius R and positive linear charge λ (Figure 3).
- 1. Calculate the total charge Q of the ring.
- 2. Calculate the field \vec{E}_{tot} and the potential V created at point M located on its axis OY such that OM = y.
- 3. Find the potential V using the relationship between the field and the potential.

