
Part IV: Search for Optimal Flow

Transportation network

• Transportation network (TN) ? a directed and acyclic weighted graph
used to model the movement of goods, data, or resources from one
location (source) to another (sink) through intermediate nodes.

• In TN weights are positive quantity that indicates arcs capacity 𝐶
(items could be carried / unit of time).

• TN has one vertex without any predecessor named source and one
vertex without any successor named sink.

• TN may contain tow types of capacity min and max.

Flow

• Flow ? Function that assigns a quantity f(u) to each arc
u, representing quantity of items passing through u per
unit of time.

• Most flow problems deal with a conservative flow
that follow Kirchoff rule: ∑u∈𝝘-(x) f(u)= ∑v∈𝝘+(x) f(v)

• A flow is feasible if it is conservative and does not
exceed the capacity of each arc 0 ≤ 𝑓(𝑢) ≤ 𝐶(𝑢).

• For u∈E, u is said saturated if 𝑓(𝑢) = 𝐶(𝑢).

• A flow is maximum if there is at least one saturated
arc for each path from source to sink.

Flow problem

Solving the flow problem

Determining the optimal amount of items that can be
transported through the arcs from the source to the sink

Ford – Fulkerson Algorithm

1. Initialisation: Begin with a feasible flow.
2. Iterations: find a path from source to

sink in which flow could be increased.
3. End: if no increasable path.

Principle

Ford – Fulkerson Algorithm

• An augmenting path is a path (walk) from the source to the sink
where additional flow can be pushed, increasing the total flow.

• A path p is augmenting if:
• 𝑓(𝑢) < 𝐶(𝑢) , u is direct in p

• 𝑓(𝑣) > 0, v is reverse in p

• An augmenting path will increase the flow by:
• min(minu is direct 𝐶(𝑢) − 𝑓(𝑢), minu is reverse 𝑓(𝑢))

• As the flow increase with t, the arcs’ flows will be:
• For direct arcs: 𝑓(𝑢)←𝑓(𝑢)+𝑡

• For reverse arcs: 𝑓(𝑣)←𝑓(𝑣)−𝑡

Ford – Fulkerson Algorithm

for each arc u
f(u) = 0

Repeat

search an augmenting path p using marking
algorithm

if u is direct: f(u)  f(u) + min(augment)

if u is reverse: f(u)  f(u) - min(augment)

Until no p is possible

mark the source

repeat until no possible marking

for each marked vertex x of arc u (x,y)
if f(u)<C(u) mark y

for each marked vertex y of arc u (x,y)
if f(u)>0 mark x

if the sink is marked
we have at least one augmenting path

else
there is no augmenting path

Marking algorithm

Example

Ford-Fulkerson

Cut

• Cut ? partition of the vertices V in two subsets X,
Y (X∪Y=V & X∩Y=∅).
• It may also be defined by arcs with sources in X & targets in Y.

• Capacity of a cut ? Sum of the capacities of all its
arcs
• If k = {(𝑥𝑖,𝑦𝑖)}, 𝐶(K) = ∑𝑖 𝐶((𝑥𝑖, 𝑦𝑖))

• Minimum cut ? The cut with the min capacity
• Marked & un-marked vertices after the last iteration of the

marking algorithm form the min cut.

• Theorem: in a TN, max flow = capacity of min cut

Cut

Marking
+

+

K

Max flow = 3+6 = 8+1 = 9
Capacity(K) = 3+6 = 9

Applications - Load Balancing

Optimizing Traffic Distribution with ECMP and Path Selection

• ECMP: Equal-Cost Multi-Path routing splits traffic across paths with
identical metrics (e.g., hop count).

• Advanced Path Selection: Techniques like WCMP (weighted) and
dynamic load balancing for unequal paths.

• How ? ECMP splits traffic across multiple paths of equal cost to
ensure flows stay consistent. Advanced techniques like WCMP assign
traffic proportionally to link capacities. Protocols like OSPF and BGP
enable multi-path discovery.

Applications - QoS Routing & RSVP

Guaranteeing Performance with QoS Routing and RSVP

• QoS Routing: Path selection based on constraints (bandwidth,
latency).

• RSVP: Resource Reservation Protocol for end-to-end bandwidth
guarantees.

• How ? QoS routing selects paths that meet constraints like bandwidth
and latency using algorithms like Constrained Shortest Path First
(CSPF). RSVP reserves resources by exchanging Path/Resv messages
between sender and receiver, ensuring bandwidth and buffer
allocation for critical flows.

Applications - Google’s B4 SDN Backbone

Revolutionizing WAN Traffic with Google’s B4 SDN

• SDN-Driven WAN: Centralized traffic engineering (TE) for global load
balancing.

• Bandwidth Allocation: Prioritizes application classes (e.g., user data
vs. backups).

• How ? Google’s B4 uses a centralized SDN controller to optimize
traffic across its global WAN. The controller employs OpenFlow to
program switches based on real-time network views, partitioning
bandwidth for application classes (e.g., prioritizing user-facing traffic
over backups).

	Slide 1: Part IV: Search for Optimal Flow
	Slide 2: Transportation network
	Slide 3: Flow
	Slide 4: Flow problem
	Slide 5: Ford – Fulkerson Algorithm
	Slide 6: Ford – Fulkerson Algorithm
	Slide 7: Ford – Fulkerson Algorithm
	Slide 8: Example
	Slide 9: Cut
	Slide 10: Cut
	Slide 11: Applications - Load Balancing
	Slide 12: Applications - QoS Routing & RSVP
	Slide 13: Applications - Google’s B4 SDN Backbone

