
Chapter 6:AI developement tools

1. Google Colab

Table of contents

2. Jupyter

3. Numpy

4. Matplotlib, SciKits Learn et Pandas.

5. Exercices

6 .Conclusion

Introduction:
 In this chapter, we will explore some of the most widely

used tools and libraries in AI development. These tools

are essential for data manipulation, visualization, and

machine learning model development.

 Google Colab

 Jupyter

 NumPy

 Matplotlib

 SciKit-Learn

 Pandas

Introduction:
Python programming concepts for data analysis, using

popular libraries such as NumPy, Pandas, Matplotlib,

and Scikit-learn. By the end of this course, you'll be

comfortable with basic Python programming, handling

data structures like NumPy arrays and Pandas

DataFrames, and visualizing data with Matplotlib.

Additionally, you'll gain an understanding of key tools

used in AI development, including Google Colab and

Jupyter Notebooks.

Google colab

1

(AI)

Google colab :

Google Colab (short for Colaboratory) is a free, cloud-

based platform that allows you to write and execute

Python code in a Jupyter notebook environment. It is

particularly popular for AI and machine learning projects

because it provides free access to GPUs and TPUs,

making it easier to train complex models.

Key Features:

 Free access to GPUs and TPUs.

 Pre-installed libraries like TensorFlow, PyTorch, and

Keras.

Google colab :

 Easy sharing and collaboration.

 Integration with Google Drive for saving and loading notebooks.

Use Cases:

1. Prototyping machine learning models.

2. Running data analysis and visualization.

3. Collaborating on AI projects with team members

2

Jupyter

(AI)

Jupyter :

Jupyter is an open-source web application that allows

you to create and share documents that contain live

code, equations, visualizations, and narrative text. It

supports multiple programming languages, but it is

most commonly used with Python.

Jupyter :

Key Features:

 Interactive coding environment.

 Support for Markdown and LaTeX for

documentation.

 Easy integration with data science libraries.

 Ability to export notebooks in various formats

(HTML, PDF, etc.).

Jupyter :

Use Cases:

 Data cleaning and preprocessing.

 Exploratory data analysis (EDA).

 Prototyping and testing machine learning models.

NumPy

2

(AI)

NumPy:

NumPy (Numerical Python) is a fundamental library for

scientific computing in Python. It provides support for

arrays, matrices, and many mathematical functions to

operate on these data structures.

• Efficient array operations.

• Broadcasting and vectorization for performance

optimization.

• Integration with other libraries like SciPy, Pandas, and

Matplotlib

NumPy:

• import numpy as np # import the library numpy

• array = np.array([1, 2, 3, 4, 5]) # Create a 1D array

• matrix = np.array([[1, 2], [3, 4]]) # Create a 2D array

• This imports the NumPy library and gives it the alias

np. NumPy is a powerful library for numerical

computations in Python.

• Why np? Using np as an alias is a convention in the

Python community to make the code shorter and

easier to read.

NumPy:

• print(array)

• output:

• [1 2 3 4 5]

• example :

• import numpy as np

• # Create an array of random temperatures in Celsius

between -10 and 40

• temperatures = np.random.uniform(-10, 40, 5)

• print(temperatures)

NumPy:

• np.random.uniform(): Generates random values.

• np.array(): Creates an array.

• np.mean(), np.median(): Statistical operations.

MatPlotLib

4

(AI)

MatPlotLib:

 Matplotlib is a plotting library for Python that provides

a wide variety of static, animated, and interactive

visualizations. It is highly customizable and

integrates well with other data science libraries.

Support for a wide range of plot types (line, bar,

scatter, histogram, etc.).

Customizable plots with labels, legends, and

annotations.

Integration with Jupyter notebooks for online plotting

MatPlotLib :

import matplotlib.pyplot as plt

Sample data: Months and average temperatures

months = ['January', 'February', 'March', 'April']

avg_temperatures = [5, 7, 12, 16]

Line plot of temperatures over the months

plt.plot(months, avg_temperatures)

plt.xlabel('Months')

plt.ylabel('Average Temperature (°C)')

plt.title('Average Temperatures Over the Year')

plt.show()

MatPlotLib :

Key Functions:

plt.plot(): Line plot.

plt.bar(), plt.scatter(): Bar chart and scatter plot.

plt.show(): Displays the plot.

5

SciKits Learn

21

SciKits Learn :

SciKit-Learn is one of the most popular machine

learning libraries in Python, offering a wide range of

algorithms for classification, regression, clustering,

and more.

Key Features:

• Supervised and unsupervised learning algorithms.

• Tools for model evaluation and validation.

• Easy integration with Pandas and NumPy.

SciKits Learn:
• Example:

from sklearn.linear_model import LinearRegression

from sklearn.model_selection import train_test_split

Dummy data for linear regression

X = [[1], [2], [3], [4], [5]]

y = [2, 4, 6, 8, 10]

Split data into training and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.2)

SciKits Learn :

Train a linear regression model

model = LinearRegression()

model.fit(X_train, y_train)

Predict the test data

predictions = model.predict(X_test)

print(predictions)

SciKits Learn :

• Key Functions:

• train_test_split(): Splits data into training and test

sets.

• LinearRegression(): Linear regression model.

• model.fit(), model.predict(): Model training and

prediction.

SciKits Learn :

• Data Setup:

• We have the following data:

• Features (X): [[1], [2], [3], [4], [5]]

• Target (y): [2, 4, 6, 8, 10]

• This is a simple linear relationship where y is exactly

double the value of X. So, for any given value of X, the

value of y should be 2 * X.

26

SciKits Learn :

• Step 1: Splitting the Data

• Using train_test_split with test_size=0.2, we randomly

split the data into training and testing sets. Since the

dataset is very small, there is only one data point in the

test set and four in the training set. The actual split will be

random, but here is an example of how the data might be

split:

27

SciKits Learn :

Training Data (X_train, y_train):

X_train = [[3], [5], [2], [4]]

y_train = [6, 10, 4, 8]

Test Data (X_test, y_test):

X_test = [[1]]

y_test = [2]

28

SciKits Learn :

• Step 2: Training the Model

• The LinearRegression model will learn the relationship

between the independent variable X (features) and the

dependent variable y (target). It will compute the intercept

and slope of the best-fit line.

• The expected values for the slope (β1) and intercept (β0)

are:

• Slope (β1): 2 (since y = 2 * X in the dataset).

• Intercept (β0): 0 (since the line passes through the

origin in this case).
29

SciKits Learn :

• Step 3: Making Predictions

• After the model is trained, we can make predictions on

the test set. In this case, X_test = [[1]], and the model

should predict a y value close to 2 (because y = 2 * 1).

• Predictions: [2.]

• The model predicts y = 2.0 when X = 1, which is exactly

what we expect because the relationship in the dataset is

linear with a slope of 2 and an intercept of 0.

30

Linear regression: example

• from sklearn.linear_model import LinearRegression

• from sklearn.model_selection import train_test_split

• import numpy as np

• # Example dataset

• experience = np.array([1, 2, 3, 4, 5]).reshape(-1, 1) #

Feature

• salary = np.array([30000, 35000, 40000, 45000, 50000])

Target

31

Linear regression: example

• # Split data

• X_train, X_test, y_train, y_test =

train_test_split(experience, salary, test_size=0.2)

• # Create and train model

• model = LinearRegression()

• model.fit(X_train, y_train)

• # Predict

• predictions = model.predict(X_test)

32

Linear regression: example

• # Coefficient and Intercept

• print(f"Slope (Coefficient): {model.coef_[0]}")

• print(f"Intercept: {model.intercept_}")

33

5

Pandas

34

Pandas :

• Pandas is an essential library for data manipulation and

analysis, particularly with structured data. It provides

DataFrame and Series objects for handling various types

of datasets, from CSVs to SQL queries.

• Key Features:

• Handling and manipulation of structured data.

• Powerful operations such as groupby, pivot, and

merge.

• Handling missing data and time series data.
35

Pandas :

import pandas as pd

Create a DataFrame

data = {'Name': ['John', 'Anna', 'Peter'],

'Age': [28, 24, 35],

'City': ['New York', 'Paris', 'Berlin']}

df = pd.DataFrame(data)

Display the DataFrame

print(df)

36

Pandas :

Display descriptive statistics

print(df.describe())

Key Functions:

pd.DataFrame(): Creates a DataFrame.

df.groupby(): Group data by a specific column.

df.describe(): Summary statistics for numerical columns.

37

Manipulate dataframe:

Select a specific column

ages = df['Age']

Filter rows where Age > 30

older_than_30 = df[df['Age'] > 30]

Create a new column

df['Age_in_10_years'] = df['Age'] + 10

Sort the dataset by Age

sorted_df = df.sort_values(by='Age')

38

Manipulate dataframe:

• # Group by City and calculate the mean Age

grouped = df.groupby('City')['Age'].mean()

Drop missing values

• df_cleaned = df.dropna()

• # Fill missing values

• df_filled = df.fillna({'Age': df['Age'].mean()})

39

Manipulate dataframe:

import pandas as pd

import numpy as np

Create a DataFrame with missing values

df = pd.DataFrame({

'Name': ['Alice', 'Bob', np.nan, 'David'],

'Age': [24, np.nan, 22, 32],

'City': ['New York', 'Paris', 'London', np.nan]})

40

Manipulate dataframe:

• # Fill missing values

• df_filled = df.fillna({'Name': 'Unknown', 'Age':

df['Age'].mean(), 'City': 'Unknown'})

• print(df_filled)

41

Reading a Dataset with Pandas

import pandas as pd

Read a dataset from a CSV file

df = pd.read_csv('sample_data.csv')

Display the first 5 rows

print(df.head())

Display basic information about the dataset

print(df.info())

Display basic statistics

print(df.describe()) 42

Reading a Dataset with Pandas

read_csv() reads the CSV file.

head() shows the first few entries.

info() gives a summary (columns, types, missing values).

describe() gives mean, std, min, max, etc

43

Example of linear regression

import pandas as pd

Reading a dataset from a CSV file

Example file: students_scores.csv

Columns: 'Hours_Studied', 'Test_Score', 'Passed'

df = pd.read_csv('C:\\Users\\hp\\Desktop\\mémoire

licence\\students_scores.csv')

Display the first few rows

print(df.head())

Display dataset information
44

Example of linear regression

print(df.info())

Check for missing values

print(df.isnull().sum())

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LinearRegression

from sklearn.metrics import mean_squared_error

import matplotlib.pyplot as plt

Select features and target variable

45

Example of linear regression

X = df[['Hours_Studied']] # Independent variable

y = df['Test_Score'] # Dependent variable

Split into train and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.2)

Create and train the model

linear_model = LinearRegression()

linear_model.fit(X_train, y_train)

46

Example of linear regression

Make predictions

y_pred = linear_model.predict(X_test)

Evaluate the model

mse = mean_squared_error(y_test, y_pred)

print(f"Mean Squared Error (MSE): {mse:.2f}")

Visualize the regression line

plt.scatter(X, y, color='blue')

plt.plot(X, linear_model.predict(X), color='red')

47

Example of linear regression

plt.xlabel('Hours Studied')

plt.ylabel('Test Score')

plt.title('Linear Regression: Hours Studied vs Test Score')

plt.show()

48

