
Part V: Assignment Problem



Introduction

• The assignment problem (in Operations Research
and Combinatorial Optimization) consists of 
optimally assigning tasks to agents.

• Each agent can perform exactly one task for a given
cost, and each task must be carried out by exactly
one agent.

• Each assignment (agent-task pair) has a defined
cost.

• The goal is to minimize the total cost of the 
assignments in order to complete all the tasks.



introduction

• More formally, the objective is to determine a matching of a size 
equal to the number of tasks, with minimum total weight in a 
weighted bipartite graph.

• If there are as many agents as tasks, it involves determining a perfect
matching of minimum total weight in a weighted bipartite graph.

• Exemples:
• Job Assignment in a Factory

• Assigning Drivers to Delivery Routes

• Bandwidth Allocation to Network Flows

• Assignment of IP Addresses

2
7

3

5
7
9

6
2

3

Min ∑ ci = 3+5+2 = 8  



Problem Formalization

• Let G(V,E) be a simple graph. A matching is a set of edges such that no two edges 
in the set share a common vertex.

• A vertex is said to be saturated by a matching if it is an endpoint of an edge in 
that matching.

• A matching is called perfect if it saturates all the vertices of the graph.

• A matching is said to be maximum if it is impossible to find a matching with a 
larger size (i.e. with greater cardinality).

d

e

f

c

a

b
g

d

e

f

c

a

b
g

d

e

f

c

a

b
g

d

e

f

c

a

b
g

(1)    (2)   (3)   (4) 



Problem Formalization

• Generalization of the maximum matching problem in a bipartite 
graph, as it involves finding, among the matchings of maximum 
cardinality, the one with the minimum (or maximum) total weight.

• Given a set of agents S and a set of tasks T, the problem is modeled 
by a bipartite graph G((S,T),E), with a weight function on the edges 
c:E→R. The assignment problem then consists of finding a matching 
F⊆E with ∣F∣=∣T∣ that minimizes the sum ∑c(e) of the weights of the 
edges in F.

• The problem can also be represented by an assignment matrix 
C=(cij).



Problem Formalization

t1 t2 t3 t4 t5

s1 2 2 11 9 9

s2 2 3 9 10 3

s3 4 10 5 3 6

s4 2 7 5 3 6

s5 5 1 9 2 10

t1

t2

t3

t4

t5

s1

s2

s3

s4

s5



Problem solution

• The algorithm is applied to the assignment matrix A, which is a square 
matrix, so it may be necessary to add dummy rows or columns if 
needed.

• A[i, j] represents the cost or gain of assigning agent i to task j.

• The objective is to select one element per row and per column in 
such a way that the sum of the associated values is optimal.



Hangarian algorithm

Step 0: Reduction of the initial matrix

Step 1: Optimal assignment, or move to Step 2 if impossible

Step 2: Preparation for modifying the matrix

Step 3: Modification of the matrix and return to Step 1

t1 t2 t3 t4 t5

s1 2 2 11 9 9

s2 2 3 9 10 3

s3 4 10 5 3 6

s4 2 7 5 3 6

s5 5 1 9 2 10

t1

t2

t3

t4

t5

s1

s2

s3

s4

s5



Hangarian algorithm

Step 0: Reduction of the initial matrix
a) Find the min value of each row and subtract it from all the elements in that row

b) Find the min value of each column and subtract it from all the elements in that column

Step 1: Optimal assignment, or move to Step 2 if impossible

Step 2: Preparation for modifying the matrix

Step 3: Modification of the matrix and return to Step 1

t1 t2 t3 t4 t5 min

s1 2 2 11 9 9 2

s2 2 3 9 10 3 2

s3 4 10 5 3 6 3

s4 2 7 5 3 6 2

s5 5 1 9 2 10 1

t1 t2 t3 t4 t5

s1 0 0 9 7 7

s2 0 1 7 8 1

s3 1 7 2 0 3

s4 0 5 3 1 4

s5 4 0 8 1 9



Hangarian algorithm

Step 0: Reduction of the initial matrix
a) Find the min value of each row and subtract it from all the elements in that row

b) Find the min value of each column and subtract it from all the elements in that column

Step 1: Optimal assignment, or move to Step 2 if impossible

Step 2: Preparation for modifying the matrix

Step 3: Modification of the matrix and return to Step 1

t1 t2 t3 t4 t5 min

s1 2 2 11 9 9 2

s2 2 3 9 10 3 2

s3 4 10 5 3 6 3

s4 2 7 5 3 6 2

s5 5 1 9 2 10 1

t1 t2 t3 t4 t5

s1 0 0 9 7 7

s2 0 1 7 8 1

s3 1 7 2 0 3

s4 0 5 3 1 4

s5 4 0 8 1 9

min 0 0 2 0 1

t1 t2 t3 t4 t5

s1 0 0 7 7 6

s2 0 1 5 8 0

s3 1 7 0 0 2

s4 0 5 1 1 3

s5 4 0 6 1 8



Hangarian algorithm

Step 0: Reduction of the initial matrix

Step 1: Optimal assignment, or move to Step 2 if impossible
a) Find the row containing the fewest uncrossed zeros (arbitrarily the highest one if tied)

b) Circle one of its zeros (arbitrarily the leftmost one)

c) Cross out all other zeros in the same row and column as the circled zero

d) Repeat the same steps  until there are no more zeros to circle or cross out

e) If there’s one zero per row and per column, the assignment is optimal; otherwise, 
proceed to Step 2

Step 2: Preparation for modifying the matrix

Step 3: Modification of the matrix and return to Step 1

t1 t2 t3 t4 t5

s1 0 0 7 7 6

s2 0 1 5 8 0

s3 1 7 0 0 2

s4 0 5 1 1 3

s5 4 0 6 1 8

/
/



Hangarian algorithm

Step 0: Reduction of the initial matrix

Step 1: Optimal assignment, or move to Step 2 if impossible
a) Find the row containing the fewest uncrossed zeros (arbitrarily the highest one if tied)

b) Circle one of its zeros (arbitrarily the leftmost one)

c) Cross out all other zeros in the same row and column as the circled zero

d) Repeat the same steps until there are no more zeros to circle or cross out

e) If there’s one zero per row and per column, the assignment is optimal; otherwise, 
proceed to Step 2

Step 2: Preparation for modifying the matrix

Step 3: Modification of the matrix and return to Step 1

t1 t2 t3 t4 t5

s1 0 0 7 7 6

s2 0 1 5 8 0

s3 1 7 0 0 2

s4 0 5 1 1 3

s5 4 0 6 1 8

/
/

/



Hangarian algorithm

Step 0: Reduction of the initial matrix

Step 1: Optimal assignment, or move to Step 2 if impossible
a) Find the row containing the fewest uncrossed zeros (arbitrarily the highest one if tied)

b) Circle one of its zeros (arbitrarily the leftmost one)

c) Cross out all other zeros in the same row and column as the circled zero

d) Repeat the same steps until there are no more zeros to circle or cross out

e) If there’s one zero per row and per column, the assignment is optimal; otherwise, 
proceed to Step 2

Step 2: Preparation for modifying the matrix

Step 3: Modification of the matrix and return to Step 1

t1 t2 t3 t4 t5

s1 0 0 7 7 6

s2 0 1 5 8 0

s3 1 7 0 0 2

s4 0 5 1 1 3

s5 4 0 6 1 8

/
/

/



Hangarian algorithm

Step 0: Reduction of the initial matrix

Step 1: Optimal assignment, or move to Step 2 if impossible
a) Find the row containing the fewest uncrossed zeros (arbitrarily the highest one if tied)

b) Circle one of its zeros (arbitrarily the leftmost one)

c) Cross out all other zeros in the same row and column as the circled zero

d) Repeat the same steps until there are no more zeros to circle or cross out

e) If there’s one zero per row and per column, the assignment is optimal; otherwise, 
proceed to Step 2

Step 2: Preparation for modifying the matrix

Step 3: Modification of the matrix and return to Step 1

t1 t2 t3 t4 t5

s1 0 0 7 7 6

s2 0 1 5 8 0

s3 1 7 0 0 2

s4 0 5 1 1 3

s5 4 0 6 1 8

/
/

/

/

The assignment is not optimal !



Hangarian algorithm

Step 0: Reduction of the initial matrix

Step 1: Optimal assignment, or move to Step 2 if impossible

Step 2: Preparation for modifying the matrix
a) Mark every row that does not contain a circled zero

b) Mark every column that has a crossed zero in a marked row

c) Mark every row that has a circled zero in a marked column

d) Repeat steps (b) and (c) until no more markings are possible

e) Draw a line through every unmarked row and every marked column

Step 3: Modification of the matrix and return to Step 1

t1 t2 t3 t4 t5

s1 0 0 7 7 6

s2 0 1 5 8 0

s3 1 7 0 0 2

s4 0 5 1 1 3

s5 4 0 6 1 8

/
/

/

/

X



Hangarian algorithm

Step 0: Reduction of the initial matrix

Step 1: Optimal assignment, or move to Step 2 if impossible

Step 2: Preparation for modifying the matrix
a) Mark every row that does not contain a circled zero

b) Mark every column that has a crossed zero in a marked row

c) Mark every row that has a circled zero in a marked column

d) Repeat steps (b) and (c) until no more markings are possible

e) Draw a line through every unmarked row and every marked column

Step 3: Modification of the matrix and return to Step 1

t1 t2 t3 t4 t5

s1 0 0 7 7 6

s2 0 1 5 8 0

s3 1 7 0 0 2

s4 0 5 1 1 3

s5 4 0 6 1 8

/
/

/

/

X

X



Hangarian algorithm

Step 0: Reduction of the initial matrix

Step 1: Optimal assignment, or move to Step 2 if impossible

Step 2: Preparation for modifying the matrix
a) Mark every row that does not contain a circled zero

b) Mark every column that has a crossed zero in a marked row

c) Mark every row that has a circled zero in a marked column

d) Repeat steps (b) and (c) until no more markings are possible

e) Draw a line through every unmarked row and every marked column

Step 3: Modification of the matrix and return to Step 1

t1 t2 t3 t4 t5

s1 0 0 7 7 6

s2 0 1 5 8 0

s3 1 7 0 0 2

s4 0 5 1 1 3

s5 4 0 6 1 8

/
/

/

/

X

X

X



Hangarian algorithm

Step 0: Reduction of the initial matrix

Step 1: Optimal assignment, or move to Step 2 if impossible

Step 2: Preparation for modifying the matrix
a) Mark every row that does not contain a circled zero

b) Mark every column that has a crossed zero in a marked row

c) Mark every row that has a circled zero in a marked column

d) Repeat steps (b) and (c) until no more markings are possible

e) Draw a line through every unmarked row and every marked column

Step 3: Modification of the matrix and return to Step 1

t1 t2 t3 t4 t5

s1 0 0 7 7 6

s2 0 1 5 8 0

s3 1 7 0 0 2

s4 0 5 1 1 3

s5 4 0 6 1 8

/
/

/

/

X

X

X

X



Hangarian algorithm

Step 0: Reduction of the initial matrix

Step 1: Optimal assignment, or move to Step 2 if impossible

Step 2: Preparation for modifying the matrix
a) Mark every row that does not contain a circled zero

b) Mark every column that has a crossed zero in a marked row

c) Mark every row that has a circled zero in a marked column

d) Repeat steps (b) and (c) until no more markings are possible

e) Draw a line through every unmarked row and every marked column

Step 3: Modification of the matrix and return to Step 1

t1 t2 t3 t4 t5

s1 0 0 7 7 6

s2 0 1 5 8 0

s3 1 7 0 0 2

s4 0 5 1 1 3

s5 4 0 6 1 8

/
/

/

/

X

X

X

X

X



Hangarian algorithm

Step 0: Reduction of the initial matrix

Step 1: Optimal assignment, or move to Step 2 if impossible

Step 2: Preparation for modifying the matrix
a) Mark every row that does not contain a circled zero

b) Mark every column that has a crossed zero in a marked row

c) Mark every row that has a circled zero in a marked column

d) Repeat steps (b) and (c) until no more markings are possible

e) Draw a line through every unmarked row and every marked column

Step 3: Modification of the matrix and return to Step 1

t1 t2 t3 t4 t5

s1 0 0 7 7 6

s2 0 1 5 8 0

s3 1 7 0 0 2

s4 0 5 1 1 3

s5 4 0 6 1 8

/
/

/

/

X

X

X

X

X



Hangarian algorithm

Step 0: Reduction of the initial matrix

Step 1: Optimal assignment, or move to Step 2 if impossible

Step 2: Preparation for modifying the matrix

Step 3: Modification of the matrix and return to Step 1
a) Find the min value among the unlined (uncovered) cells

b) Subtract this value from all unlined cells and add it to all doubly lined cells

c) Go back to Step 1
t1 t2 t3 t4 t5

s1 0 0 7 7 6

s2 0 1 5 8 0

s3 1 7 0 0 2

s4 0 5 1 1 3

s5 4 0 6 1 8

/
/

/

/

X

X

X

X

X

Min = 1



Hangarian algorithm

Step 0: Reduction of the initial matrix

Step 1: Optimal assignment, or move to Step 2 if impossible

Step 2: Preparation for modifying the matrix

Step 3: Modification of the matrix and return to Step 1
a) Find the min value among the unlined (uncovered) cells

b) Subtract this value from all unlined cells and add it to all doubly lined cells

c) Go back to Step 1
t1 t2 t3 t4 t5

s1 0 0 6 6 5

s2 1 2 5 8 0

s3 2 8 0 0 2

s4 0 5 0 0 2

s5 4 0 5 0 7

Min = 1



Hangarian algorithm

Step 0: Reduction of the initial matrix

Step 1: Optimal assignment, or move to Step 2 if impossible
a) Find the row containing the fewest uncrossed zeros (arbitrarily the highest one if tied)

b) Circle one of its zeros (arbitrarily the leftmost one)

c) Cross out all other zeros in the same row and column as the circled zero

d) Repeat the same steps until there are no more zeros to circle or cross out

e) If there’s one zero per row and per column, the assignment is optimal; otherwise, proceed to Step 
2

Step 2: Preparation for modifying the matrix

Step 3: Modification of the matrix and return to Step 1

t1 t2 t3 t4 t5

s1 0 0 6 6 5

s2 1 2 5 8 0

s3 2 8 0 0 2

s4 0 5 0 0 2

s5 4 0 5 0 7



Hangarian algorithm

Step 0: Reduction of the initial matrix

Step 1: Optimal assignment, or move to Step 2 if impossible
a) Find the row containing the fewest uncrossed zeros (arbitrarily the highest one if tied)

b) Circle one of its zeros (arbitrarily the leftmost one)

c) Cross out all other zeros in the same row and column as the circled zero

d) Repeat the same steps until there are no more zeros to circle or cross out

e) If there’s one zero per row and per column, the assignment is optimal; otherwise, proceed to Step 
2

Step 2: Preparation for modifying the matrix

Step 3: Modification of the matrix and return to Step 1

t1 t2 t3 t4 t5

s1 0 0 6 6 5

s2 1 2 5 8 0

s3 2 8 0 0 2

s4 0 5 0 0 2

s5 4 0 5 0 7

/

/



Hangarian algorithm

Step 0: Reduction of the initial matrix

Step 1: Optimal assignment, or move to Step 2 if impossible
a) Find the row containing the fewest uncrossed zeros (arbitrarily the highest one if tied)

b) Circle one of its zeros (arbitrarily the leftmost one)

c) Cross out all other zeros in the same row and column as the circled zero

d) Repeat the same steps until there are no more zeros to circle or cross out

e) If there’s one zero per row and per column, the assignment is optimal; otherwise, proceed to Step 
2

Step 2: Preparation for modifying the matrix

Step 3: Modification of the matrix and return to Step 1

t1 t2 t3 t4 t5

s1 0 0 6 6 5

s2 1 2 5 8 0

s3 2 8 0 0 2

s4 0 5 0 0 2

s5 4 0 5 0 7

/

/ /
/



Hangarian algorithm

Step 0: Reduction of the initial matrix

Step 1: Optimal assignment, or move to Step 2 if impossible
a) Find the row containing the fewest uncrossed zeros (arbitrarily the highest one if tied)

b) Circle one of its zeros (arbitrarily the leftmost one)

c) Cross out all other zeros in the same row and column as the circled zero

d) Repeat the same steps until there are no more zeros to circle or cross out

e) If there’s one zero per row and per column, the assignment is optimal; otherwise, proceed to Step 
2

Step 2: Preparation for modifying the matrix

Step 3: Modification of the matrix and return to Step 1

t1 t2 t3 t4 t5

s1 0 0 6 6 5

s2 1 2 5 8 0

s3 2 8 0 0 2

s4 0 5 0 0 2

s5 4 0 5 0 7

/

/ /
/

/



Hangarian algorithm

Step 0: Reduction of the initial matrix

Step 1: Optimal assignment, or move to Step 2 if impossible
a) Find the row containing the fewest uncrossed zeros (arbitrarily the highest one if tied)

b) Circle one of its zeros (arbitrarily the leftmost one)

c) Cross out all other zeros in the same row and column as the circled zero

d) Repeat the same steps until there are no more zeros to circle or cross out

e) If there’s one zero per row and per column, the assignment is optimal; otherwise, proceed to Step 
2

Step 2: Preparation for modifying the matrix

Step 3: Modification of the matrix and return to Step 1

t1 t2 t3 t4 t5

s1 0 0 6 6 5

s2 1 2 5 8 0

s3 2 8 0 0 2

s4 0 5 0 0 2

s5 4 0 5 0 7

/

/ /
/

/



Hangarian algorithm

Step 0: Reduction of the initial matrix

Step 1: Optimal assignment, or move to Step 2 if impossible
a) Find the row containing the fewest uncrossed zeros (arbitrarily the highest one if tied)

b) Circle one of its zeros (arbitrarily the leftmost one)

c) Cross out all other zeros in the same row and column as the circled zero

d) Repeat the same steps until there are no more zeros to circle or cross out

e) If there’s one zero per row and per column, the assignment is optimal; otherwise, proceed to Step 
2

Step 2: Preparation for modifying the matrix

Step 3: Modification of the matrix and return to Step 1

t1 t2 t3 t4 t5

s1 0 0 6 6 5

s2 1 2 5 8 0

s3 2 8 0 0 2

s4 0 5 0 0 2

s5 4 0 5 0 7



Hangarian algorithm

Step 0: Reduction of the initial matrix

Step 1: Optimal assignment, or move to Step 2 if impossible
a) Find the row containing the fewest uncrossed zeros (arbitrarily the highest one if tied)

b) Circle one of its zeros (arbitrarily the leftmost one)

c) Cross out all other zeros in the same row and column as the circled zero

d) Repeat the same steps until there are no more zeros to circle or cross out

e) If there’s one zero per row and per column, the assignment is optimal; otherwise, proceed to Step2

Step 2: Preparation for modifying the matrix

Step 3: Modification of the matrix and return to Step 1
t1 t2 t3 t4 t5

s1 0 0 6 6 5

s2 1 2 5 8 0

s3 2 8 0 0 2

s4 0 5 0 0 2

s5 4 0 5 0 7

t1 t2 t3 t4 t5

s1 2 2 11 9 9

s2 2 3 9 10 3

s3 4 10 5 3 6

s4 2 7 5 3 6

s5 5 1 9 2 10

Optimal assignment: {(s1,t1), (s2,t5), (s3,t3), (s4,t4), (s5,t2)}
Cost = 2+3+5+3+1 = 14



Hangarian algorithm - Examples

Step 0: Reduction of the initial matrix

Step 1: Optimal assignment, or move to Step 2 if impossible

Step 2: Preparation for modifying the matrix

Step 3: Modification of the matrix and return to Step 1

t1 t2 t3 t4

s1 1 2 6 ∞

s2 ∞ 5 ∞ 10

s3 7 ∞ 5 6

s4 4 ∞ 3 ∞

t1

t2

t3

t4

s1

s2

s3

s4

1
2
6

5
10
7

5
6
4

3



Hangarian algorithm - Examples

Step 0: Reduction of the initial matrix

Step 1: Optimal assignment, or move to Step 2 if impossible

Step 2: Preparation for modifying the matrix

Step 3: Modification of the matrix and return to Step 1

t1 t2 t3 t4

s1 7 8 6 10

s2 5 4 13 14

s3 7 4 3 7

0 0 0 0

t1

t2

t3

t4

s1

s2

s3



Hangarian algorithm - Examples

Step 0: Reduction of the initial matrix

Step 1: Optimal assignment, or move to Step 2 if impossible

Step 2: Preparation for modifying the matrix

Step 3: Modification of the matrix and return to Step 1

t1 t2 t3 t4 max

s1 7 8 6 10

s2 5 4 13 14

s3 7 4 3 7

0 0 0 0

max

t1

t2

t3

t4

s1

s2

s3



Task-Server Assignment in Data Centers

Data centers rely on optimal task-server assignments to 
balance workloads, minimize latency, and reduce 
energy costs. Algorithms like the Hungarian method 
match tasks to servers based on resource availability 
and performance goals. This ensures efficient cloud 
operations for providers like AWS and Google.



Data centers (DCs)

• Data center ? A facility that houses computing infrastructure (servers, 
storage, networking equipment) to support applications, services, and 
data processing. Modern data centers power cloud computing (e.g., 
AWS, Google Cloud), enterprise IT, and large-scale web services.

• Key Components of DC ? 
• Servers: Physical or virtual machines that run workloads.

• Storage: Hard drives, SSDs, or distributed file systems.

• Networking: Switches, routers, firewalls, ... to manage traffic.

• Power/Cooling: Ensures uptime and efficiency.



Task-server assignment Optimization

• Task-server assignment is the process of matching workloads or 
tasks (batch jobs, real time services requests) to servers in a data 
center to optimize:
• Performance (minimize latency, maximize throughput).

• Resource utilization (CPU, RAM, bandwidth).

• Energy efficiency (reduce power consumption).

• Why ?
• Google saved 40% energy via task-server optimizations.

• Netflix avoiding buffering by assigning streams to optimal servers.



Example

• A cloud provider needs to assign 4 tasks (T1–T4) to 4 servers (S1–S4) 
in a data center. Each task has different CPU/RAM requirements, and 
each server has limited resources. The goal is to minimize total energy 
consumption while avoiding overload.

• In this situation The "cost" could represent:
• Energy consumption (watts) if a task runs on a server.
• Latency (ms) between the task’s user and the server.

• The implementation of the Hangarian Algorithm
will give the result: 
• T1→S1 (5w), T2→S4 (3W), T3→S3 (1W), T4→S2 (6W)
• Total Energy = 5 + 3 + 1 + 6 = 15W (Minimal possible)

Task \ 
Server

S1 S2 S3 S4

T1 5 8 6 7

T2 7 4 9 3

T3 3 2 1 5

T4 2 6 4 9



Peer-to-Peer File Download Optimization

Peer-to-Peer (P2P) networks decentralize file sharing, 
but optimizing downloads requires strategic chunk-to-
peer assignments. While heuristics like "rarest-first" 
dominate, combinatorial methods (e.g., Hungarian 
Algorithm) theoretically minimize download times by 
prioritizing high-bandwidth peers.



Peer-to-Preer (P2P) networks

• P2P network ? A decentralized system where devices "peers" directly 
share resources (e.g., files) without relying on a central server. Each 
peer acts as both a client (requesting data) and a server (providing 
data). BitTorrent (file sharing) is a famous example of P2P application.

• Key Features of P2P:
• Decentralization: No central authority—peers communicate directly.

• Self-Organization: Peers dynamically join/leave the network.

• Scalability: More peers improve network capacity.

• Resilience: No single point of failure.



File Download Optimization

• In P2P file sharing, a file is split into chunks (segments). To optimize 
downloads, peers must assign chunks to other peers strategically to:
• Minimize download time.

• Maximize throughput (using high-bandwidth peers).

• Avoid redundant downloads (e.g., fetching the same chunk from multiple 
peers).

• In real systems: The Hungarian Algorithm (or other combinatorial 
methods) is used but  P2P networks like BitTorrent often use 
heuristics.



Example

• In a P2P network a peer (P0) would to download file split into 4 
chunks (C1, C2, C3, C4) from 4 peers (P1, P2, P3, P4) with varying 
bandwidth and chunk availability. The goal is to assign chunks to 
peers to minimize total download time for a new peer (P0).

• In this situation The "cost" represents the time to download a chunk 
from a peer (based on bandwidth and latency).

• The implementation of the Hangarian Algorithm
will give the result: 
• C1→P1 (2 sec), C2→P3 (2 sec), C3→P4 (5 sec), C4→P2.
• Total Time: Dominated by the slowest chunk (5 sec).

Chunk \ 
Peer

P1 P2 P3 P4

C1 2 5 ∞ 3

C2 4 3 2 ∞

C3 ∞ 6 4 5

C4 3 ∞ 5 2


	Slide 1: Part V: Assignment Problem
	Slide 2: Introduction
	Slide 3: introduction
	Slide 4: Problem Formalization
	Slide 5: Problem Formalization
	Slide 6: Problem Formalization
	Slide 7: Problem solution
	Slide 8: Hangarian algorithm
	Slide 9: Hangarian algorithm
	Slide 10: Hangarian algorithm
	Slide 11: Hangarian algorithm
	Slide 12: Hangarian algorithm
	Slide 13: Hangarian algorithm
	Slide 14: Hangarian algorithm
	Slide 15: Hangarian algorithm
	Slide 16: Hangarian algorithm
	Slide 17: Hangarian algorithm
	Slide 18: Hangarian algorithm
	Slide 19: Hangarian algorithm
	Slide 20: Hangarian algorithm
	Slide 21: Hangarian algorithm
	Slide 22: Hangarian algorithm
	Slide 23: Hangarian algorithm
	Slide 24: Hangarian algorithm
	Slide 25: Hangarian algorithm
	Slide 26: Hangarian algorithm
	Slide 27: Hangarian algorithm
	Slide 28: Hangarian algorithm
	Slide 29: Hangarian algorithm
	Slide 30: Hangarian algorithm - Examples
	Slide 31: Hangarian algorithm - Examples
	Slide 32: Hangarian algorithm - Examples
	Slide 33: Task-Server Assignment in Data Centers
	Slide 34: Data centers (DCs)
	Slide 35: Task-server assignment Optimization
	Slide 36: Example
	Slide 37: Peer-to-Peer File Download Optimization
	Slide 38: Peer-to-Preer (P2P) networks
	Slide 39: File Download Optimization
	Slide 40: Example

