

OPERATING SYSTEMS

by

FARAH

Chapter 2

The memory

2.1. Introduction

Main memory is where programs and data are located when the processor is executing

them. It is contrasted with the concept of secondary memory, represented by disks, which

have a larger capacity and where processes can reside before being executed.

Even more than for other IT resources, the price of memory has fallen and the unit

capacity of circuits has increased. However, the need to manage it optimally is still

fundamental, because despite its high availability, it is generally never sufficient. This is due

to the ever-increasing size of programs.

2.1.1. Multi-programming

The concept of multiprogramming is opposed to that of monoprogramming.

Monoprogramming allows only one user process to be executed. This technique is now only

used in microcomputers. In MS-DOS, for example, there is the system in low memory, the

peripheral drivers in high memory (in an area ranging from 640 kB to 1 MB) and a user

program in between.

ROM drivers (BIOS)

User program (RAM)

System (RAM)

Figure1 The organization of DOS memory.

Multi-programming allows several independent processes to be executed at the same

time1 . This technique makes it possible to optimize processor utilization by reducing I/O

waits. Multiprogramming means that several programs are held in memory at the same time,

and it is this technique that gave rise to modern memory management.

1 It should be noted that MS-DOS, although not multi-programmable, is not a mono-programmable system in

the strict sense either; it is a creature of both.

2.1.2. Physical registers

Memory management is almost impossible without the help of hardware. In particular, it

must provide protection. In multi-user systems, for example, a user must be prevented from

accessing the system kernel or other user programs in any way.

To ensure fundamental protection, most processors2 have two registers delimiting the

domain of a process:

• the base register and

• the limit register.

Protection is then provided by the hardware, which compares the addresses sent by the

process with these two registers.

2.2. Fundamental concepts

2.2.1. Production of a programme

Before being executed, a program must go through several stages. Initially, the

programmer creates a file and writes the program in a source language, such as C. A compiler

transforms this program into an object module. A compiler transforms this program into an

object module. The object module represents the translation of the instructions in C into

machine language. The code produced is generally relocatable, starting at address 00000,

and can be translated to any memory location by giving it the base register as its initial

reference. The addresses then represent the offset from this register.

Object modules can be grouped together in specialized libraries, for example using the ar

and ranlib commands (for direct access) under Unix or TLIB with Borland's C compiler. The

libraries are then brought together in a directory, usually /usr/lib on Unix.

Calls to external procedures are left as branch points. The link editor maps these points

to functions contained in the libraries and, in the case of a static link, produces a binary

image. Some systems, notably Unix, allow dynamic links and postpone the link editing phase

2 Unfortunately not on the 8086, which had considerable consequences for DOS and Windows systems.

until the load time. Objects and libraries then have to be constructed in a slightly different

way. This technique means that libraries can be updated without recompiling, and there is

less disk clutter.

The loader links system calls with the kernel, such as the write call. Finally, it loads the

program into memory.

In addition to the compiled code (the text) and the initialized data area, the executable file

contains a certain amount of other information. In the case of the Unix system, this includes

a header consisting of a 'magic' number (a type control code), various sizes (text, data, etc.),

the program entry point, and a table of symbols for debugging purposes. In the case of MS-

DOS, several formats co-exist, in particular COM and EXE.

2.2.2. Management principles

To load, the system allocates a free memory space and places the process in it. It will free

this space once the program has finished.

In many cases, it is not possible to fit all the programs together in memory. Sometimes

the size of a single program is too large. In this case, the programmer can implement an

overlay strategy, which consists of dividing a large program into modules and loading these

modules when they are needed. However, this is very time-consuming and requires a re-

division for each new program.

Modern operating systems implement strategies that relieve the programmer of these

concerns. There are two main strategies for managing loads: toggling and virtual memory.

2.3. Allocation

Before implementing a technique for managing main memory by toggling, it is necessary

to know its state: the free and occupied zones; to have an allocation strategy and finally to

have release procedures. The techniques we are going to describe are used as a basis for

toggling; they are also used in the case of simple multiprogramming where several processes

are loaded into memory and held until the end of their execution.

2.3.1. Memory status

The system keeps track of occupied memory locations by means of a bit table or a linked

list. Memory is divided into allocation units or blocks.

2.3.1.1. Bit tables

The state of the memory blocks can be kept using a bit table. Free units are marked with

a 0 and occupied units with a 1 (or vice versa).

0 0 1 1 0 0

Figure 2

The bit table technique is simple to implement, but is rarely used. The following

observation can be made: the smaller the allocation unit, the fewer the losses during

allocations, but on the other hand, the more space the table takes up in memory.

2.3.1.2. Linked lists

Memory can be represented by a chained list of structures whose members are: type (free

or occupied), start address, length, and a pointer to the next element.

For a memory with the following state :

0 5 8 10 15 20

Figure 3

we'd have the list:

Figure 4

L P P

0
5

5
3

8
2

This diagram can be slightly modified by taking two lists: one for processes and the other

for free zones. The list of free blocks can itself be represented by reserving a few bytes of

each free block to contain a pointer to the next free block.

The MS-DOS system uses a variant of this process, with a 16-byte header preceding each

zone (arena) in memory. The headers contain the type of arena (a pointer to the process

context or 0) and its size.

2.3.2. Allocation policies

There are three main strategies for allocating free space for a process: first fit, best fit and

worst fit.

In the case of "first fit", we take the first free block in the list that can contain the process

we want to load. The "best fit" tries to allocate the smallest memory space available to the

process. The "worst fit" takes the largest available block and splits it in two.

Simulations have shown that the "first adjustment" is better than the others. Paradoxically,

the "best fit", which is more expensive, is not optimal because it produces significant

fragmentation.

2.3.3. Release

Freeing occurs when a process is cleared from memory. The block is then marked as free

and possibly merged with adjacent blocks.

Assuming that X is the block to be released, we have the following merge schemes:

Before After

A X B A L B

A X L A L

L X B L B

L X L L

Figure 5

Memory retrieval

Memory fragmentation is particularly damaging because it can quickly saturate the

available space. This is particularly true for windowing managers. To reduce fragmentation,

memory can be compacted regularly. To do this, move processes, for example, to the bottom

of memory and store them one after the other in a contiguous manner. A single free block is

then built at the top of the memory. This operation is expensive and sometimes requires

special circuits.

Furthermore, once an object or zone has been used, the system programmer must reclaim

the memory "by hand" by freeing the pointer to this zone - free(). This is a source of errors

because this operation is sometimes forgotten. If you allocate in a function, there is no way

of accessing the pointer once the function has returned. The block of memory is then lost

and unusable. This is known as a "memory leak".

Some languages or systems incorporate automatic memory retrieval - garbage collection.

This frees the programmer from this task. This is the case with Java. It is then very easy to

immediately eliminate a zone by assigning object = null. Without this, the garbage collector

has to determine on its own that a zone no longer has a reference in the rest of the program.

Automatic memory retrieval has been the subject of controversy, but as machines become

faster, this quarrel is no doubt over .3

The recovery algorithm can cause problems because periodically the system stops

abruptly to make way for the recovery. You can request that it be started explicitly

3 According to Prolog (or Lisp) proponents, recovery is too important to leave to programmers, and according

to C++ proponents, it is too important to leave to the system.

(synchronously) using the java.lang.Runtime.gc() method. Recovery is also said to be

synchronous when there is no more memory in the heap. The interpreter must be run with

the option: -noasyncgc in order to call the fetcher. The amount of free memory is obtained

using the Runtime.freeMemory() method. The default heap is 1 MB. You can set its value

by running the interpreter with the -ms16m option (for 16 MB).

2.4 Uniform memory :

The first memory version offered was a fully addressable M C. This means that users can

use it in any way they like. And there is no need for any special hard-ware to manage this

memory. This method has its limits, however, since the operating system has no control over

interrupts. There is no resident monitor to manage system calls or errors (especially the

reading of control cards, for example).

2.5 Resident monitor:

This method suggests dividing the memory into two parts, one part for the user and the

second for the resident monitor part of the O.S.. It is more convenient to place the resident

monitor in lower memory, using a fence register to protect the monitor. All addresses

generated by the user program (instructions or data) must be compared with this register.
Program generates an address
If address >= contents of lock bar register then access possible
Otherwise error, generate an interrupt.

Advantages Simple, The task has all the memory.
Disadvantages :
- Poor use of the MC if the program is smaller than the memory,
- The program must be less than or equal in size to the MC
- If I/O the CPU remains inactive

2.6 MULTIPLE PARTITIONS:

This method follows directly from the principle of multi-programming. The memory is

divided into several partitions, each assigned to a program. For user security purposes, two

registers are used. These registers are used to delimit the address space of a program:

- Limit registers (lower and upper limits):
 Used for static location.

- Base register and Limit register

All addresses must be below the Limit, and all addresses are recalculated by automatically
adding the contents of the Base register.

2.6.1 Fixed partition:

The MC is divided into partitions independently of the jobs in progress. For example, if we

have a 32KB memory and we divide it into partitions as follows:

- Resident monitor 10 Kb

- Small spots 4 Ko

- Average stains 6KB

- Large spots 12 Ko

Advantages :

It's easy to do, and programs can be sorted by size so that they occupy the right amount of
memory.

Disadvantages:

- Limiting the degree of multi-programming
- Program size limited by partition size
- Poor use of memory, Notion of "fragmentation

Example:

Scores Partition size (KB) Program size(KB)
1 8 5
2 16 11
3 128 50
4 256 131

If a program arrives with a size of, say, 100KB it cannot be served, even though the unused

global space is greater than 100KB.

2.6.2 Variable scores:

The partitioning is done as the work is carried out, so as to adapt the size of the partitions to

the size of the tasks to be carried out.

Example:

If we have a 256 KB MC, and the monitor takes up 40 KB, that leaves us 216 KB to share

between users.

H.E. H.E. H.E. H.E. H.E.

Job1 Job 1 Job 1 Job 5

Job2

Job2

ends

 Arrival

Job4

Job 4 Job1

finishe

s

Job 4 Arrival

Job 5

Job 4

Job3 Job 3 Job 3 Job 3 Job 3

Figure 6

Job 1 =[40k - 100 k]; Job2=[100K-200K]; Job3=[200K-230K]; Job4=[100K-170K];
Job5=[40K-90K]

Advantage:
- Higher degree of multi-programming

Disadvantages:
- Complexity of Allocation and Deallocation Algorithms
- Fragmentation is not eliminated
- The size of the program is limited by the available (contiguous) memory space.
- If a program is loaded (@ virtual® @ physical) it is no longer possible to move it, so it

is impossible to recover the free fragment space.

2.7. SWAPING

Swapping is used when not all processes can fit in memory simultaneously. In this case,

some processes must be temporarily moved to a temporary memory, usually a reserved part

of the disk (swap area or backing store).

On disk, the swap area of a process can be allocated on demand in the general swap area.

When a process is unloaded from main memory, a place is found for it. Swap areas are

managed in the same way as main memory. A process's swap area can also be allocated once

and for all at the start of execution. When unloading, the process is sure to have a free waiting

area on the disk.

The system executes the processes in memory for a certain quantum of time and then

moves one of these processes to one of those waiting in temporary memory. The replacement

algorithm can be a turnstile.

Figure 7

The to-and-fro system, while helping to compensate for the lack of memory required by

several users, does not allow programs larger than the main memory to be executed.

It should be noted that the time required to execute a process must be much longer than

the time required for swapping.

2.8. Pagination

Paging allows you to have a process in memory whose addresses are non-contiguous. To

achieve this, the process address space and physical memory are divided into pages of a few

kilobytes each. The process pages are loaded onto free pages in memory.

Mémoire utilisateur Mémoire provisoire

Figure 8

The location of pages is preserved using a transcoding table:

0 14
1 4
2 8
3 12

Pagination allows you to write re-entrant programs, i.e. where certain pages of code are

shared by several processes.

2.9. Segmentation

Whereas paging offers a flat, undifferentiated address space (this is offered by the 68000

family of µ-processors), segmentation divides processes into very specific segments. You

can have segments for procedures, for the symbol table, for the main program, and so on.

These segments can be relocatable and originate from a base register specific to the segment.

Segmentation can also be used to share editor code between several processes, for example.

This sharing then relates to one or more segments.

A reduced example of segmented architecture is provided by the 8086 family, which has

3 segments: Code Segment, Stack Segment and Data Segment.

Processus

0
1
2
3

0
1
2
3
4

Mémoire physique

5
6
7
8
9
10
11
12
13
14
15

2.10. Virtual memory

2.10.1. Presentation

Virtual memory allows:

- Execute programs that exceed the size of real memory. To do this, processes and real

memory are "paged" into pages of a few kilobytes (usually 1, 2 or 4 kB).

- Physical memory is expensive and therefore generally of limited capacity, which gave rise

to the idea of using secondary memory (disks, extended memory, etc.), which is

inexpensive. And try to use secondary memory "as" RAM memory.

The total process footprint is the address space or virtual memory. This virtual memory

resides on disk. Unlike the paging described above, only a subset of pages is loaded into

memory. This subset is called the physical (real) space.

Figure 9

The problem is to match a virtual address to a real address in memory, to protect users

from each other and to manage information sharing.

We use a topographical function that associates a real address with a virtual address.

Espace d'adressage

Mémoire physique

0
1
2
3

0
1

4

2
4

This is the classic memory access architecture:

This is the topographic function:

Function topo(x:virtual_address):real_address;

start

topo:=f(x);

end

And here's the architecture with dynamic relocation:

Virtual memory, with its table of pages, is a possible implementation of the topographic

function.

When an address is generated, it is transcoded, using a table, to match its equivalent in

physical memory. This transcoding can also be carried out by Memory Management Unit

(MMU) hardware circuits. If this address corresponds to an address in physical memory, the

MMU transmits the real address on the bus, otherwise a page fault occurs. To access the page

whose address has been generated, it must first be loaded into real memory. To do this, a

"victim" page is selected from the real pages; if the victim page has been modified, it is

transferred to virtual memory (on disk) and the page to be accessed is loaded in its place.

Figure10 The memory management unit.

It is easier to implement the algorithm using sizes corresponding to powers of two. For a

virtual or real address, the most significant bits are reserved to encode the real and virtual

pages. The least significant bits encode the offsets within each of these pages. For example,

let's assume that the pages are 4 kB in size; that the process size is 16 pages; and that the

memory allocation is 4 pages. You need 2 bits to code the real pages, 4 bits for the virtual

pages and 12 bits for the offsets.

CPU

MMU

Bus

Adresses
virtuelles

Adresses
réelles

Mémoire PériphériqueCarte CPU

Structure of real memory addresses

 Page Address in page (12 bits)

 (2 bits)

 transcoding copy

Page Address in page (12 bits)
(4 bits)

Figure11 Memory address structure of the address space

To perform transcoding, tables containing the necessary data are kept, including: a bit to

mark the presence of the page in real memory and a modification bit to indicate whether the

page has been written to. In the latter case, the page must be transferred to disk if it is to be

replaced by another.

P. Virt. P. Real. Present Modif.
0 01 0
1 - X
2 10 0
3 - X
4 - X

15 00

Figure 12

In general, it is a bit in the PSW (Program Status Word) that indicates whether or not

virtual memory is being used.

Basic principles and mechanisms of pagination

A processor with a 32-bit address bus can address 2^32 bytes, or 4 GB. The computer has

8 MB of physical memory.

L = size of the page or box, for example 4096 bytes, i.e. 2^12.

N = number of pages in virtual memory, for example 1 Mega page, or 2^20.

n = number of cells in physical memory, for example 2048 cells, i.e. 2^11.

displacement is the same (physical and virtual pages are the same size) ;

if the virtual page is not present in physical memory, a page fault occurs.

To speed up the process, associative memories are used to record the last pages used:

2.10.2. Page replacement algorithms

Choosing a victim - replacement

Many algorithms :

• FIFO - First In First Out: chronological order of loading ;

• LRU - Least Recently Used: chronological order of use ;

• FINUFO - First In Not Used, First Out (Clock algorithm): LRU approximation;

• LFU - Least Frequently Used ;

• Random: at random ;

Performance: LRU, FINUFO, [FIFO, Random].

System optimization: take locality into account by preloading pages before they are

needed.

Locality: at a given point in time, references observed in the recent past are (generally) a

good estimate of future references.

On average, 75% of references interest less than 20% of the pages. This is non-

uniformity.

we're going to try to anticipate demand.

The problem of the size of the POS

To be used, the POS must be placed in physical memory.

For example, if we have 2^20 virtual pages, the POST will be approximately 2^20 * size

of an entry = 10 MB if an entry is 10 bytes long.

In other words, more than the size of the physical memory !!!!

Solution: we will paginate the POS.

Two-level pagination

Virtual memory is divided into Hyperpages, which are themselves divided into pages.

A virtual address = hyperpage number; page number; movement.

Warning! Memory access is slower with indirection (using associative memories).

The optimal page replacement algorithm consists of choosing as the victim the page that

will be called as late as possible. Unfortunately, we cannot implement this algorithm, but we

try to approximate it as closely as possible, with results that differ from the optimal algorithm

by less than 1%.

The FirstIn-FirstOut technique is fairly easy to implement. It consists of choosing the

oldest loaded page as the victim.

The Least Recently Used algorithm is one of the most effective. It requires special

hardware to implement it. In particular, a column of counters must be added to the table.

Degraded versions can be implemented in software.

Advantages/disadvantages of pagination

Advantages :

• Better use of physical memory (programs implemented in fragments, in non-

consecutive pages).

• Possibility of loading pages only when they are referenced (on-demand loading).

• Independence of virtual space and physical memory (virtual memory is generally

larger).

• Only modified pages can be dumped to disk.

• Possibility of dynamic overlay (coupling).

Disadvantages:

• Internal fragmentation (not all pages are filled).

• Impossible to link two (or more) procedures linked to the same addresses in virtual

space.

2.10.3. Other considerations

2.10.3.1. Thrashing

Pages of physical memory can be allocated equally to each process. For example, if the

total memory is 100 pages and there are five processes, each process will receive 20 pages.

You can also allocate pages in proportion to the size of the programs. If one process is twice

the size of another, it will receive double the number of pages.

Used as they are, these allocation techniques can cause the system to collapse. The system

is only viable if page faults are kept below a relatively low limit. If there are too many

processes, the space available to each will be insufficient and they will spend their time

managing page faults.

The risk of collapse can be limited by considering behaviour charts. The number of page

faults as a function of the number of pages allocated takes the form of a hyperbola. If a

process causes too many page faults (above an upper limit), it will be allocated more pages;

below a lower limit, it will be withdrawn. If there are no more pages available and too many

page faults, we will have to suspend one of the processes.

Figure 13

2.10.3.2. The work set

To determine the viable space of a process, we use the working set model. The working

set is made up of the areas of the process that are accessed over a short period of time (around

ten memory references). For example, updating an individual in a database will use certain

pages of code and the page corresponding to the individual.

Défaut de pages

Nombre de pages

Limite sup.

Limite inf.

Simulations have shown that this workload is relatively stable at any given time. An

optimal allocation would be to allocate to each running process as many pages as its

workspace requires. Under these conditions, page faults will only occur when the workspace

is changed. In fact, this model is only used for prepagination.

2.10.3.3. Local or global allocation

When a page is removed from main memory, the oldest page can be selected:

• from a global point of view (the oldest in the system);

• from a local point of view (the oldest part of the process).

In general, global allocation produces better results.

2.10.3.4. Prepagination

When a process is launched or resumed after a suspension, a certain number of page faults

are inevitably caused. You can try to limit them by recording, for example, the work set

before a suspension. You can also try to guess them. For example, when a programme is

launched, the first pages of code are likely to be executed.

2.10.3.5. Return on instructions

On most processors, instructions are coded over several operands. If a page fault occurs

in the middle of an instruction, the processor must return to the beginning of the initial

instruction and re-execute it. It must then be given the means to determine the address of the

first byte and possibly to cancel certain increments.

This instruction feedback is only possible with the help of hardware. For example, the

68010 has a register that stores the addresses of the first instructions and the increments. This

makes paging possible. The 68000 does not and cannot do this.

2.11. An example of memory management on a microprocessor: the 386

The 386 processor is interesting because it combines paged memory techniques with

segmentation techniques4 . It has 16k independent segments with a capacity of up to 1 billion

32-bit words.

Virtual memory is based on two tables:

• the local descriptor table (LDT), specific to each program. It contains its segments,

including code, stack and data segments;

• the global descriptor table (GDT), unique for the whole system and shared by all

processes. It contains the system's segments, particularly those of the kernel.

The 386 has six segment registers. To access a particular segment, for example the code

segment of a process, it loads a selector into one of the registers. This selector corresponds

to an index in one of two tables. Each entry in these tables contains the base address of the

segment, the boundary address and certain other fields. Using the base address, the

microprocessor can convert the generated offsets into 32-bit linear addresses.

The 386 has optional paging with 4 kB pages. When it is activated, the previous address

is interpreted as a virtual address and converted into a real address. Paging is done on two

levels. The generated address is interpreted as a function of 3 fields:

10 bits 10 bits 12 bits

Dir Page Offset

Figure 14

Dir is an index in a table containing a pointer to a table of pages. In this table, Page is

another index also containing a pointer (double indirection) to a real page. Within this real

page, Offset is the address of the element you are looking for.

4 It is also the most widely used 32-bit processor.

Figure 15

2.12. Unix system calls

fork() causes memory to be allocated

exec() causes a memory modification

wait() causes memory to be freed

Unix executable files contain text and initialised global data; uninitialised data (BSS) is

allocated at load time. In memory, code segments cannot be modified in most compiled

languages and can be shared on most modern systems. This feature optimises memory usage.

On the other hand, the other segments (data and stack) are specific to each process.

The data and stack segments are continuously modified during execution and their size

may vary. The following calls modify these sizes:

int brk(caddr_t addr) is used to move the boundary of the data zone to addr. It can be used

by malloc. Returns -1 if it fails.

Dir

1024
entrées

Page Offset Mot séléctionné

Page réelle
Répertoire des pages
(Page directory) Table des pages

Pile d'exécution

Données

Code

Figure 16

caddr_t sbrk(int incr) is similar to brk. Instead of setting the address, it extends the incr

data zone.

void * malloc(int incr) allocates a contiguous space of size incr in the data zone. Returns

a pointer to the zone and NULL on failure. Malloc is a fairly primitive memory allocation

function. It uses the first-fit algorithm and does not recompact free blocks in the data zone.

It causes fragmentation. In the book on the C language by Kernighan and Ritchie, you can

find the implementation code for malloc. It's an interesting read.

void * calloc(int n_obj, int size) returns an array.

void realloc(void *p, int size) expands the zone allocated to a variable to size. Returns

NULL if unsuccessful.

void free(void *p) frees the zone pointed to by p.

2.13. DOS memory

The MS-DOS system has a much more complicated memory model than Unix. This

complexity should be interpreted as a flaw: the simplicity of Unix is in no way synonymous

with mediocrity, quite the contrary. DOS memory management is, moreover, highly

dependent on the underlying hardware (Intel 8086), which it exploits to the hilt. The original

architecture on which DOS was developed had a 16-bit address bus, allowing up to 64 kB

of memory to be addressed. Later, addressing was based on a base whose value was

contained in specific 16-bit registers. These registers generally correspond to stack (SS), data

(DS) and code (CS) functions. The registers contain the most significant bits of a 20-bit

address, which corresponds to a 1 MB interval.

16 M

1 M + 64 k

Extended Memory

Cache and disk RAM

1 M High Memory Area

640 k

Upper Memory Area

I/O, ROM, Drivers

0

Conventional Memory

Programmes

Figure 17

DOS addressing is in fact restricted to 640 kB, the upper part (Upper Memory Area) being

reserved for various I/O control programs.

The DOS memory model allows addresses above 1 MB. Taking the value 0xFFFF as a

base, it is possible to go up to 1 MB + 64 KB. This corresponds to the High Memory Area.

The use of this memory depends on the (variable) way in which address line 21 is wired.

Current Intel processors allow extended addressing. The 286 allows 16 MB; the 386 and

later, 4 GB. In order to be compatible with the 8086 processors, Intel has provided an

operating mode that allows current machines to be used with the old memory management:

the "real" mode. This mode limits the size to 640 kB. However, modifications to MS-DOS

allow extended memory to be used for RAM disks, for example.

2.14 Windows memory

The first versions of Windows suffered greatly from the 8086 architecture and the legacy

of DOS. However, Windows memory management is now easier with the Windows

programming interface. With this API, the programmer sees memory as an area of flat

addresses.

Windows automatically recompacts memory data using a mechanism known as garbage

collecting. This is absolutely necessary because windowing requires multiple memory

creations and destructions, and without this system, memory would very quickly be in a

"thousand pieces".

After a recompaction operation, in the best of cases, the free blocks form a single large

segment. In reality, compaction is often not complete, but it does make subsequent allocation

easier. Recompaction is carried out regularly on the initiative of the operating system or to

allocate memory that is lacking at a given moment. The recovery of free zones already

existed in certain programming languages such as Prolog or Lisp and in operating systems

such as the Macintosh.

Memory allocation uses pointers to pointers - handles. These handles (HGLOBAL) are

stored in a memory segment: the BurgerMaster5 . The handle that references the memory

block will be constant, but the pointer to the actual memory will vary according to the

operating system. To manipulate the data, the segment must be locked and the pointers used,

which will then be constant.

HGLOBAL GlobalAlloc(UNIT fuFlags, DWORD cbBytes) allocates a segment of length

cbBytes with the fuFlags options. Among these options GMEM_MOVEABLE indicates that

the segment is relocatable, GMEM_FIXED indicates that the segment is fixed. If there is a

failure, the function returns NULL and we can find out why using the GetLastError function.

LPVOID GlobalLock(HGLOBAL) locks a segment and returns a pointer. If it fails, the

function returns NULL.

5 It was the favourite restaurant of Windows developers, it seems.

BOOL GlobalUnlock(HGLOBAL) unlocks a segment. In fact, it decrements the lock

counter on the segment. If this counter goes to zero, the value returned is FALSE, otherwise

TRUE.

HGLOBAL GlobalFree(HGLOBAL) frees a segment. If successful, the function returns

NULL.

2.15 Windows NT memory

Windows NT uses the same heap mechanism as Windows, but adds a faster one. A

process is created with a particular heap and can create others of its own. The functions that

manipulate heaps are as follows:

HANDLE GetProcessHeap(void) retrieves the application's default heap. It is in this heap

that GlobalAlloc calls find free space.

HANDLE HeapCreate(DWORD flOptions, DWORD dwInitialSize, DWORD

cbMaximumSize) creates a new private heap for the process executing it. The possible

options are 0, HEAP_GENERATE_EXCEPTION and HEAP_NO_SERIALIZE. The other

two parameters are usually 0.

LPVOID HeapAlloc(HANDLE hHeap, DWORD dwFlags, DWORD dwBytes) is used

to allocate an area of memory in a heap. This zone is fixed and cannot be unloaded.

DWORD HeapSize(HANDLE hHeap, DWORD dwFlags, LPCVOID lpMem) returns the

size of a block in a heap.

DWORD HeapReAlloc(HANDLE hHeap, DWORD dwFlags, LPVOID lpMem,

DWORD dwBytes) is used to modify the size of a memory zone in a heap.

BOOL HeapFree(HANDLE hHeap, DWORD dwFlags, LPVOID lpMem) is used to
destroy an area of memory in a heap.

BOOL HeapDestroy(HANDLE hHeap) is used to free an entire heap.

