## Apprendre à Ordonner 'Learn to Rank'

par

Dr. Samira LAGRINI

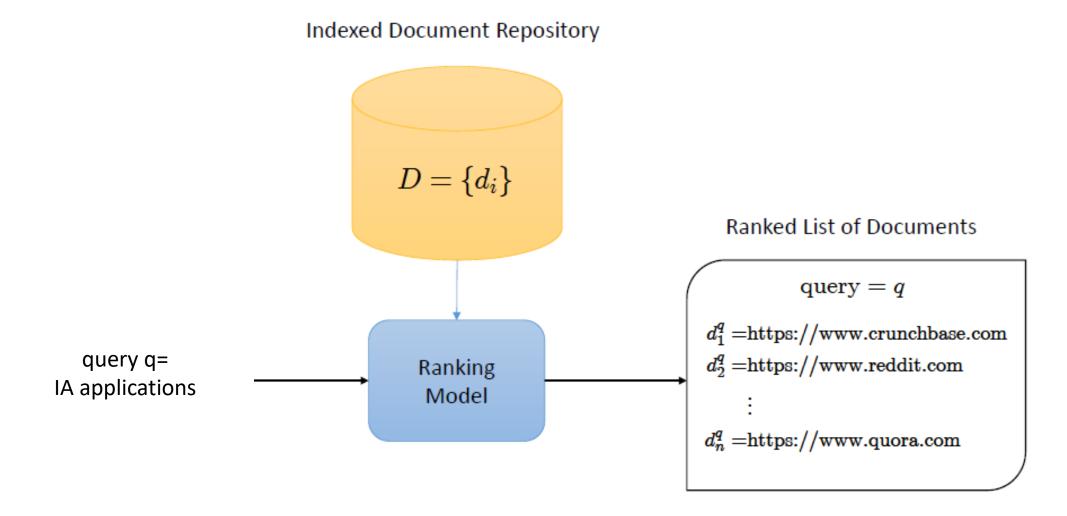
\_65~

Année universitaire: 2024/2025

## Introduction

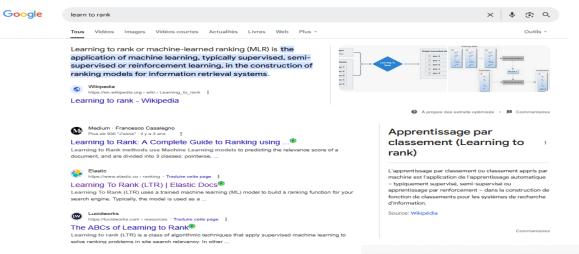
- Apprendre à ordonner (Learning to Rank, LTR) est un problème de l'apprentissage supervisé qui a pour objectif d'apprendre à un modèle à attribuer un classement (ou un score de pertinence) à des éléments (documents, produits..) dans une liste.
- □Le but est de trier des éléments en fonction de leur pertinence pour une requête donnée.
- □Plutôt que de prédire une simple étiquette binaire (pertinent ou non pertinent), le modèle LTR doit apprendre à ordonner les éléments selon un ordre de pertinence.

## Introduction



## Applications Pratiques de LTR

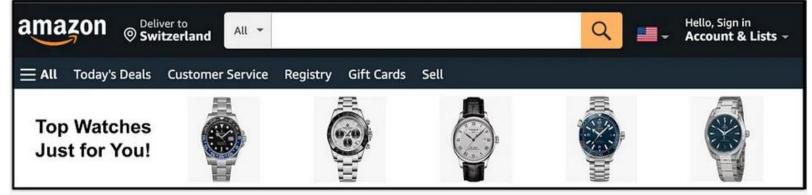
Optimisation des résultats des moteurs de recherche



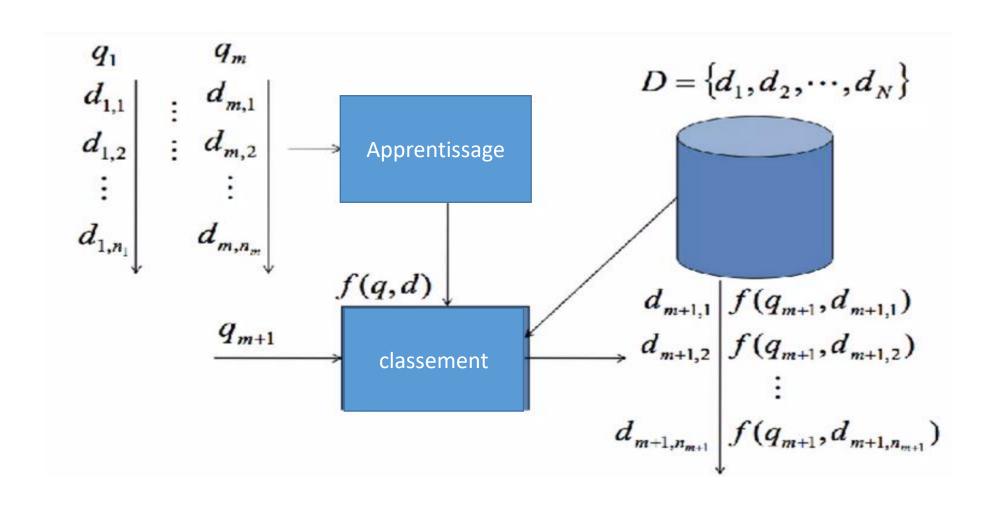
E-commerce et Publicité en ligne



Systèmes de Recommandation



## Construire un Modèle LTR



## Collecte des données d'entraînement

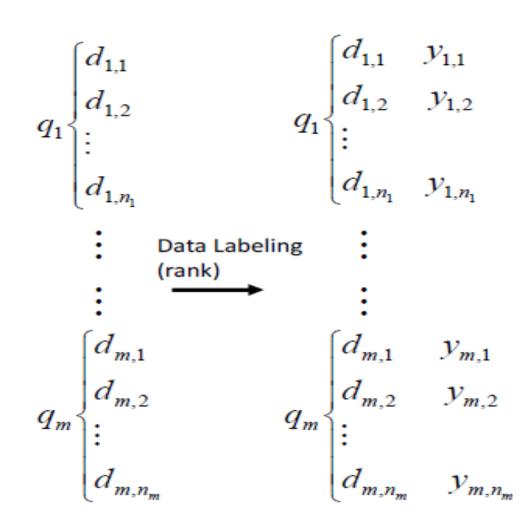
• Les données d'entrainement sont des exemples d'éléments classés par pertinence :

#### > Requêtes et résultats :

Liste de requêtes et de documents associés.

#### >Pertinence

Scores ou labels de pertinence



## Extraction des caractéristiques

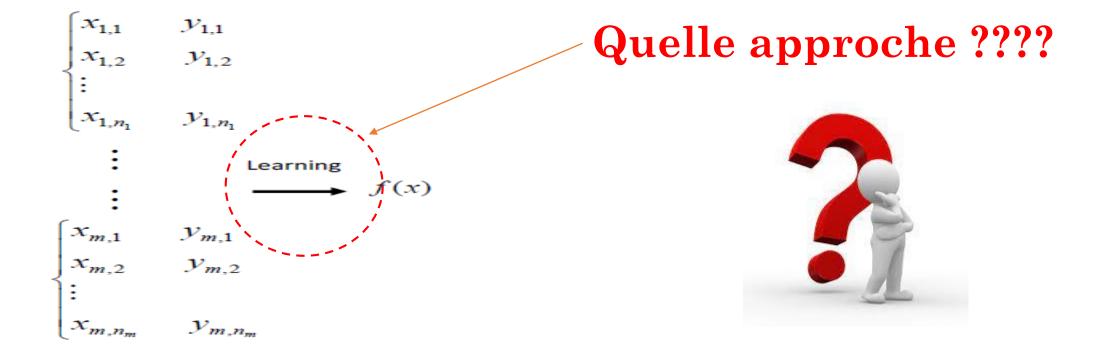
- Pour chaque élément à classer, extraire des caractéristiques (features) qui peuvent influencer son classement:
- ✓ Fréquences de mots de requete, longueur du texte, etc.
- ✓ Date de publication, auteur, etc.
- ✓ Interactions utilisateur : Clics,.. etc.
- **√** .....
- Chaque élément est transformé en un vecteur de caractéristiques qui sera utilisé pour l'entraînement du modèle.

$$\begin{cases} d_{1,1} & y_{1,1} \\ d_{1,2} & y_{1,2} \\ \vdots \\ d_{1,n_1} & y_{1,n_1} \end{cases} \begin{cases} x_{1,1} & y_{1,1} \\ x_{1,2} & y_{1,2} \\ \vdots \\ x_{1,n_1} & y_{1,n_1} \end{cases}$$

$$\vdots \qquad \vdots \qquad \vdots \\ \vdots \qquad \vdots \qquad \vdots \qquad \vdots \\ d_{m,1} & y_{m,1} \\ d_{m,2} & y_{m,2} \end{cases} \begin{cases} x_{m,1} & y_{m,1} \\ x_{m,2} & y_{m,2} \\ \vdots \\ x_{m,n_m} & y_{m,n_m} \end{cases}$$

## Entraîner le modèle

• Sélectionner un algorithme d'apprentissage supervisé pour entraîner le modèle → Cela dépond de l'approche LTR



## Approches d'apprentissage LTR

Given a query q and a set of documents  $D = (d_1, ..., d_n)$ :

#### **Pointwise**

Input: Single candidate

$$x = (q, d_i)$$



Compute **score** between candidate and query



**Solution:** Transform task into Regression.

#### **Pairwise**

**Input:** Pair of candidates

$$x_i = (q, d_i)$$
 and  $x_j = (q, d_j)$ 



Given a pair of candidates decide which one rank higher



**Solution**: Transform task into Binary Classification.

#### Listwise

Input: Whole list of candidates

$$x_1 = (q, d_1)$$
 ..  $x_n = (q, d_n)$ 



optimise its order



**Solution**: Incorporate evaluation metrics (e.g. DCG) into loss.

# Approche point par point (Pointwise)

- Apprendre à classer chaque élément de la liste indépendamment des autres.  $\rightarrow$  input: x = (q, di)
- On attribue un score de pertinence entre chaque élément et la requête.
- → Modéliser la tache comme un problème de régression

#### Algourithms courants

OC-SVM (One-Class Support Vector Machine), Régression linéaire, régression logistique.

Avantages: Simple à implémenter.

Limites: Ignore les relations entre les documents.

## Approche Pointwise

#### Exemple

Supposons que vous avez les résultats suivants pour une requête "chatons" :

- Page A: Note 5
- Page B: Note 3
- Page C: Note 1
- L'objectif de l'approche pointwise est de prédire cette note pour chaque page en fonction de ses caractéristiques (par exemple, la présence du mot "chaton", le nombre de vues, etc.).

## Approche par paire (Pairwise)

- Au lieu de classer directement chaque élément, on compare des paires d'éléments pour déterminer lequel des deux est plus pertinent.  $\rightarrow$  input :  $x_i = (q, d_i)$   $x_k = (q, d_j)$
- Le modèle apprend à prédire quel élément parmi une paire est le plus pertinent et ensuite à en déduire un classement global. → Modéliser la tache comme un problème de classification binaire.

#### Modèles courants

RankNet (réseaux de neurones), Ranking SVM, RankBoost, LambdaRank, and LambdaMART

## Approche Listwise

• L'approche Listwise optimise directement l'ordre complet de tous les éléments dans la liste

Prendre en compte la relation entre les éléments d'une liste plutôt que de les traiter individuellement.

#### Modèles courants

ListNet, ListMLE, AdaRank, SVM MAP, Soft Rank, and AppRank.

## Évaluation des performance

Évaluer la qualité du modèle à l'aide de métriques tel que:

| Métrique                                        | Description                                                                                                                              |
|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| NDCG (Normalized Discounted<br>Cumulative Gain) | Mesure l'efficacité du classement en tenant compte de la<br>pertinence et de la position des éléments dans la liste.                     |
| MAP (Mean Average Precision)                    | Moyenne de la précision pour plusieurs requêtes,<br>prenant en compte la position des éléments pertinents.                               |
| P@k (Precision at k)                            | Mesure la proportion d'éléments pertinents parmi les<br>kkk premiers résultats du classement.                                            |
| R@k (Recall at k)                               | Mesure la proportion des éléments pertinents trouvés<br>dans les kkk premiers résultats par rapport au total des<br>éléments pertinents. |

