

BADJI MOKHTAR UNIVERSITY -ANNABA FACULTY OF TECHNOLOGY SCIENCES AND TECHNOLOGY DEPARTMENT (ST) 1st year LMD 2024/2025

<u>Physics 2: Series 3</u> Gauss's theorem + Conductors

Exercise 1

By using Gauss's theorem:

1- Calculate the electric field \vec{E} created at a point M located outside an

infinite plane (P) of uniform surface charge density σ ($\sigma>0).$

2- Deduce the field \overrightarrow{E} created in M by an infinite plane (P')

perpendicular to (P) of uniform charge density 2σ .

3- Calculate the field $\overline{E_T}$ resulting at this point.

Exercise 2

Consider two concentric spheres of radii R_1 and R_2 ($R_1 < R_2$). The outer sphere of radius R_2 is charged with a surface charge density σ constant and positive, as for the interior sphere of radius R_1 it is charged with a volume charge density ρ constant and positive.

Using Gauss' theorem, determine:

- 1- The electric field E(r) at any point in space.
- 2- The electric potential V(r) at any point in space.

Exercise 3

The cylindrical capacitor consists of two coaxial conducting Cylinders of radii R₁ and R₂ (R₁ < R₂), the first carries a positive charge Q and the second carries a negative charge -Q.

-Calculate the capacitance of this capacitor.

