Object-Oriented Programming:
Application to the Java Language

The collections

The collections
» For now, we've studied the table to structure the data

» Static size
» Slow to find specific elements
» Impossibility of using a displacement pattern in elements
» Since version 2, Java has offered classes for manipulating

the main data structures

» Dynamic arrays implemented by ArrayList and Vector
» Lists implemented by LinkedList

» Sets implemented by HashSetand TreeSet

» These classes all indirectly implement the same

The collections

Collection interface, which they complement with their
own functionalities

+ Collection << Interface >> +

»

LinkedlList

TreeSet

HashSet

[A——

ArrayList

» Since Java version 5, generics can be used o type the

contents of Collections
» Before : Car myCar = (Car)mylList.get(2)

» Now: Car myCar = myList.get(2)

No more explicit
conversion problems

The collections
» The Collection interface
> Genericity and references. elements of any type can be stored,
provided they are objects. A new element introduced into a Java

collection is a reference to the object, not a copy.

» [terators: let you go through the different elements of a

collection one by one.

» Efficiency of operations on collections
» Operations common to all collections: the collections we're going
to study all implement at least the Coflection interface, so they

have common features

Collections: Java generics

» With Java version 5, generics can be used in collections and
other aspects of the language.

» A special syntax has been added to take generics into
account.
» < ? > : indicates that the class type must be specified
» < ?,7? > :indicates that two types must be specified

» With generics, it will be possible to set the type of content
stored in collections when building the collection.

» Benefits

» All accessor and modifier methods that manipulate the elements
of a collection are signed according to the type defined when
the collection was built.

» Checking types during development (before problems with
CastClassException)

The collections: Iterator
» Iterators allow you to browse the elements of a collection
without precise knowledge of the collection's type:
Polymorphism

» There are two families of iterators

» one-way
The collection is browsed from beginning to end; an item is accessed
only once.

> bidirectional

The collection can be explored in both directions; you can

move backwards and forwards through the collection as you

. “ ‘
Wish. [The notion of Iterator "’7
-

is part of the set of -
Design Patterns

The collections: Iterator

» One-way iterator: fteratorinterface
» By default, all collections have an [terator attribute

Check for Iterator << Interface >>
next - s - B Gets the current
+ hasNex : Boolean .
+ next() : < ? > ./ object and
+ remove () moves on to the
De!etes the last next one
object returned
by it's a collection
next() and you get
'K your Iterator
Iterator iter = c.iterator(); baCk
We Check for while (iter.hasNext()) { Retrieve the
the // o = iter.next(); current object,
possibility of } then move on to
the next one

recovering a
object

The collections: Iterator
» Bidirectional iterator: Listiterator interface

» This applies to lists and dynamic tables

» Add and remove objects

Iterator << Interface >>

AN

Adds or modifies
- an item in the
collection at the
current position

Check for
Previous ListIterator << Interface >>
+ previous() : < ? >
+ hasPrev:.ous() : Boolean
We check |+ add(< ? > ¢ — |
. + set(< ? > /
whether itis | °° ()
possible to

retrieve an object

and we get its

: it's a collection
previously - :
Iterator iter = c.listIterator():;

while (iter.hasPrevious()) {

Retrieve the

. . ??? o = iter.previous/();
object previously | -®

we move |,

Listlterator
Initialise at the
start of the list

on to the

MNEAN ZIAT 1

The collections : LinkedList

» This class can be used to manipulate double-chained lists.

» Each collection element is implicitly associated with two
pieces of information: the references to the previous
and next elements.

. | c | a c a b a

Nothin%

aft

er

these
elements
, We go

backwa

rd

LinkedList<String> 11 = new LinkedList<String> () ;
ListIterator iter = ll.listIterator();

iter.add ("Hello") ; .,_——~—*’”"”—ﬂ——ﬂﬂ————ﬂfﬂﬁﬂﬂ

iter.add ("Cuckoo") ;

while (iter.hasPrevious()) {
String o = iter.previous();
System.out.println (o) ;

Adding

- elements
through the
iterator

Using
LinkedListis

transparent

S

The collections : LinkedList
» Possibility of using collections (here LinkedListis an

example) without iterators but less efficient!!!!

LinkedList<String> 11 = new LinkedList<String> () ; The use Of .
LinkedList is
11.add ("Hello") ; not
11.add ("Cuckoo™");
transparent.
/.
for (int i = 0; i < 1ll.size(); i++) { Knowledge
String o = 1ll.get(1); 0\
System.out.println (o) ; — Of these .
} methods is
mandatory
Using the .
add @
Do not modify the collection (add
method of
from LinkedList) while using the
the iterator (next())
class

LinkedList

Collections : ArraylList
» The ArraylList class is an encapsulation of the array with

the ability to make it dynamic in size

» Possibility of using Listlterators, but we prefer to use
them for an element of a given rank.

ArrayList<Object> myArraylList = new ArrayList<Object>() ;

myArrayList.add ("Cuckoo")
; myArrayList.add (34);

for (int i = 0; i < myArraylList.size(); i++) {
Object myObject = myArrayList.get(i);
if (myObject instanceof String) {
System.out.println("String:" + ((String)myObject));
}

if (my object instanceof Integer) {
System.out.println("Integer:" + ((Integer)myObject));

Use the ArraylList class
instead of the location of ' —

the Vector class 2 f
-

Collections: HashSet
» The HashSet class is used to manage sets of

» Two elements cannot be identical

» Plan two things for your classes

» Redefinition of the hashCode() method, which is used to order the

elements of a set (calculating an object's hash table).

» Redefinition of the eguals(Object) method, which compares objects
of the same class to determine whether an element belongs to the

set

Collections: HashSet
» Example: managing points with HashSet

public class TestHashSet ({
public static void main(String[] argv) {
Point pl = new Point(1l,3); Point p2 = new Point(2,2);
Point p3 = new Point(4,5); Point p4 = new Point(l,8);
Point p[] = {pl, p2, pl, p3, p4, p3}

HashSet<Point> ens = new HashSet<Point> () ;
for (int 1 = 0; i < p.length; i++) {

System.out.println ("Le Point "); pli].affiche();
boolean ajoute = ens.add(pl[i]):
if (adds)

System.out.println ("has been added");
else

System.out.println("is already present");
System.out.print ("Ensemble = "); affiche(ens);

public static void affiche (HashSet ens) {

Iterator iter = ens.iterator();
while (iter.hasNext ()) {
Point p =

iter.next () ;
p.affiche();
}
System.out.println () ;

Collections: HashSet

» Example: point management with HashSet

public class Point {
private int x,vy;

Point (int x, int y) {
this.x = x; this.y = y;

} g/
public int hashCode() {

Redefinition of
hashCode() and
equals(Object)
methods

return x+ty;
} Console [<arréké> CAProgr.. wvaw, exe (04/03/04 15:31)] =
public boolean equals (Obj rppr) {

Point p = (Point)pp:;
return ((this.x == p.x) &
(this.y == p.y))’
}
public void affiche () {
System.out.print ("[" + x + " "
ty o+l

= |
| | -

A5

Le Point
Ensenble
Le Point
Enzemble
Le Point
Ensenble
Le Point
Enzemble
Le Point
Enzemble
Le FPoint
Enzemble

[1 3] a été ajouté

= [1 3]

[2 2] & été ajouté

= [2 2] [1 3]

[1 3] est déja present

= [2 2] [1 3]

[4 5] a été ajouté

= [2 2] [1 3] [4 5]

[1 8] & été ajouteé

= [2 2] [1 3] [1 8] [4 5]
[4 5] est déja preésent

= [2 2] [1 3] [1 8] [4 5]

#

iConsole | Taches

