
Object-Oriented Programming: 
Application to the Java Language

The collections



The collections
⮞ For now, we've studied the table to structure the data

⮞ Static size

⮞ Slow to find specific elements

⮞ Impossibility of using a displacement pattern in elements

⮞ Since version 2, Java has offered classes for manipulating

the main data structures

⮞ Dynamic arrays implemented by ArrayList and Vector

⮞ Lists implemented by LinkedList

⮞ Sets implemented by HashSet and TreeSet



The collections
⮞ These classes all indirectly implement the same 

Collection interface, which they complement with their 

own functionalities
Collection << Interface >>

ArrayList

LinkedList

HashSet

TreeSet HashSet

⮞ Since Java version 5, generics can be used to type the 

contents of Collections

⮞ Before : Car myCar = (Car)myList.get(2)

⮞ Now: Car myCar = myList.get(2)

No more explicit 
conversion problems



⮞ The Collection interface

⮞ Genericity and references: elements of any type can be stored, 

provided they are objects. A new element introduced into a Java 

collection is a reference to the object, not a copy.

⮞ Iterators: let you go through the different elements of a 

collection one by one.

⮞ Efficiency of operations on collections

⮞ Operations common to all collections: the collections we're going

to study all implement at least the Collection interface, so they

have common features

The collections



⮞ With Java version 5, generics can be used in collections and 
other aspects of the language.

⮞ A special syntax has been added to take generics into
account.

⮞ < ? > : indicates that the class type must be specified

⮞ < ? , ? > : indicates that two types must be specified

⮞ With generics, it will be possible to set the type of content 
stored in collections when building the collection.

⮞ Benefits

⮞ All accessor and modifier methods that manipulate the elements

of a collection are signed according to the type defined when
the collection was built.

⮞ Checking types during development (before problems with
CastClassException)

Collections: Java generics



The collections: Iterator
⮞ Iterators allow you to browse the elements of a collection 

without precise knowledge of the collection's type: 

Polymorphism

⮞ There are two families of iterators

⮞ one-way

The collection is browsed from beginning to end; an item is accessed 

only once.

⮞ bidirectional

The collection can be explored in both directions; you can 

move backwards and forwards through the collection as you 

wish. The notion of Iterator 
is part of the set of 

Design Patterns



The collections: Iterator
⮞ One-way iterator: Iterator interface

⮞ By default, all collections have an Iterator attribute

Iterator << Interface >>

+ hasNext() : Boolean

+ next() : < ? >

+ remove()

Check for
next

Gets the current
object and
moves on to the
next oneDeletes the last 

object returned 
by

next()

Iterator iter = c.iterator();

while (iter.hasNext()) {

??? o = iter.next();

...

}

it's a collection 
and you get 

your Iterator 
back

We check for
the
possibility of
recovering a

object

Retrieve the 
current object, 
then move on to 
the next one



The collections: Iterator
⮞ Bidirectional iterator: ListIterator interface

⮞ This applies to lists and dynamic tables

⮞ Add and remove objects

ListIterator << Interface >>

+ previous() : < ? >

+ hasPrevious() : Boolean

+ add(< ? >)

+ set(< ? >)

+ ...

Iterator << Interface >>

Iterator iter = c.listIterator();

while (iter.hasPrevious()) {

??? o = iter.previous();

...

}

it's a collection 
and we get its 

ListIterator 
Initialise at the 
start of the list

We check 
whether it is 

possible to 
retrieve an object 

previously

Check for
previous

Adds or modifies 
an item in the 
collection at the 
current position

Retrieve the 
object previously

we move 
on to the 
previous



The collections : LinkedList
⮞ This class can be used to manipulate double-chained lists.

⮞ Each collection element is implicitly associated with two 

pieces of information: the references to the previous 

and next elements.

... c a c a b a b ...

LinkedList<String> l1 = new LinkedList<String>(); 

ListIterator iter = l1.listIterator();

iter.add("Hello");

iter.add("Cuckoo");

while(iter.hasPrevious()) { 

String o = iter.previous(); 

System.out.println(o);

}

Nothing 
after 

these 
elements

, we go 
backward

s

Adding 
elements 
through the 
iterator

Using 

LinkedList is 
transparent



The collections : LinkedList
⮞ Possibility of using collections (here LinkedList is an 

example) without iterators but less efficient!!!!

LinkedList<String> l1 = new LinkedList<String>();

l1.add("Hello");

l1.add("Cuckoo");

for (int i = 0; i < l1.size(); i++) { 

String o = l1.get(i); 

System.out.println(o);

}

Do not modify the collection (add

from LinkedList) while using the 

iterator (next())

Using the 

add

method of 

the

class

LinkedList

The use of 

LinkedList is 
not 
transparent. 
Knowledge 
of these 
methods is 
mandatory



Collections : ArrayList
⮞ The ArrayList class is an encapsulation of the array with 

the ability to make it dynamic in size

⮞ Possibility of using ListIterators, but we prefer to use 

them for an element of a given rank.

}

ArrayList<Object> myArrayList = new ArrayList<Object>();

myArrayList.add("Cuckoo")

; myArrayList.add(34);

for (int i = 0; i < myArrayList.size(); i++) { 

Object myObject = myArrayList.get(i);

if (myObject instanceof String) { 

System.out.println("String:" + ((String)myObject));

}

if (my_object instanceof Integer) { 

System.out.println("Integer:" + ((Integer)myObject));

}

Use the ArrayList class 

instead of the location of 

the Vector class



Collections: HashSet

⮞ The HashSet class is used to manage sets of

⮞ Two elements cannot be identical

⮞ Plan two things for your classes

⮞ Redefinition of the hashCode() method, which is used to order the 

elements of a set (calculating an object's hash table).

⮞ Redefinition of the equals(Object) method, which compares objects 

of the same class to determine whether an element belongs to the 

set



Collections: HashSet

⮞ Example: managing points with HashSet
public class TestHashSet {

public static void main(String[] argv) {

Point p1 = new Point(1,3); Point p2 = new Point(2,2);

Point p3 = new Point(4,5); Point p4 = new Point(1,8);

Point p[] = {p1, p2, p1, p3, p4, p3}

HashSet<Point> ens = new HashSet<Point>(); 

for (int i = 0; i < p.length; i++) {

System.out.println("Le Point "); p[i].affiche(); 

boolean ajoute = ens.add(p[i]);

if (adds)

System.out.println("has been added");

else

System.out.println("is already present"); 

System.out.print("Ensemble = "); affiche(ens);

}

}

public static void affiche(HashSet ens) { 

Iterator iter = ens.iterator(); 

while(iter.hasNext()) {

Point p = 

iter.next(); 

p.affiche();

}

System.out.println();

}

}



Collections: HashSet

public class Point { 

private int x,y;

Point(int x, int y) { 

this.x = x; this.y = y;

}

public int hashCode() { 

return x+y;

}

public boolean equals(Object pp) { 

Point p = (Point)pp;

return ((this.x == p.x) & 

(this.y == p.y));

}

public void affiche() { 

System.out.print("[" + x + " "

+ y + "] ");

}

}

Redefinition of 

hashCode() and 

equals(Object) 
methods

⮞ Example: point management with HashSet


