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Introduction 

 

This course is aimed at students in the core areas (first year) of 

science and technology (ST), material sciences (SM), mathematics and 

computer science (MI). 

These courses introduce basic concepts of material point mechanics in 

physics. This handout is made up of 4 chapters consistent with the 

programs for the first semester. 

We'll start by presenting a mathematical reminders ,where in the first 

part we will we will study dimensional analysis while in the second 

part, we will focus on the vector calculation.  

The first chapter is dedicated to the kinematics of the material point. 

The objective of this chapter is to describe the movement of the 

material point in the different coordinate systems. The study of 

compound movement was studied in this chapter. 

The second chapter deals with the dynamics of the material point, 

within the framework of Newton's mechanics laws.  

The last chapter concerns work and energy. We deal with the work of a 

force, kinetic energy, potential energy, mechanical energy and the 

conservative forces. 

To achieve a correct understanding of the lessons, we have included 

with each chapter a set of exercises with the typical and detailed 

solution. 
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1.1. Generalities about Physical Quantities  عموميات عن المقادير الفيزيائية 

A Physical Quantity is a property that can be measured or calculated, and usually 

equals a value followed by a unit. 

Example : mass (m=5 kg), time (t=12 h) 

There are two types of physical quantities: fundamental quantities and derived 

quantities. 

1.1.1. Fundamental (Basic) quantities  المقادير الأساسية 

Any physical quantity can be expressed on the basis of the fundamental quantities. 

The seven basic quantities are given in Table 1: 

Table1. The seven fundamental quantities 

Physical quantity Symbol 

Length l (x, d) 

Mass m 

Time t 

Electric current i 

Temperature T 

Luminous intensity j (Iv) 

Amount of substance n 

 

1.1.2. Derived Quantities المقاديرالمشتقة  

These quantities are expressed as a combination of the seven fundamental quantities 

(multiplication, division, etc.). 

Examples: 

 Area (surface) S:  S= l x l = l
2
 ,

 
(Unit m

2
). 

 Velocity v:  v = l/t. (Unit m/s). 

 Force F:   F = m a = m(v/t) = m(l/t
2
), (Unit: Newton N = kg m/s

2
). 

1.2. System of units نظام الوحدات 

A physical quantity can be defined by a numerical value which translates its 

intensity and also its unit, which specifies the nature of this quantity. The four 

fundamental units thus chosen define the MKSA system whose initials mean meter,  
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kilogram, second and ampere respectively. The international system of units SI 

comprises seven basic units and two additional units: meter, kilogram, second, 

ampere, kelvin, mole and candela. (One can add a complementary unit: the angles, 

one assigns to a plane angle the radian unit).  

All other units called derived units are obtained by combining these basic units of 

the international system. 

Remark:  

Before the adoption of the MKSA system, another system in which the length was 

measured in centimeters, the mass in grams and the time in seconds already existed, 

is the CGS system (C=centimeter, g=gram and s=second).  

1.3. Dimensional equations  معادلات الأبعاد 

1.3.1. Dimension  البعد 

The nature of a physical quantity is recognized by its dimension. The dimension of 

a physical quantity G is noted by the expression [G]. For example, if G has the 

dimension of a length, it is said to be homogeneous to a length, so the relation [G] = 

L corresponds to the equation to the dimensions (the dimension) of the quantity G.  

So if G is the size of a:  

- mass, note [G]=M, 

- length, note [G]=L, 

- time, note [G]=T, 

- electric current, note [G]=I, 

- temperature, note [G]=θ, 

- luminous intensity, note [G]= J, 

- quantity of substance, note [G]= N. 

The dimension and unity must therefore be coherent with each other. A quantity 

has a single dimension but can be expressed in several units. 

For example, the mass has the dimension M and can be expressed in kg or g. 

The length has the dimension L and can be expressed in m or cm. 

The time has the dimension T and can be expressed in s. 
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Table 2. dimension of fundamental quantities and their units in the SI system 

 

Basic size 
Dimensio

n 
Unit Name (SI) unit symbol (SI) 

Length L meter  m 

Mass M kilogram kg 

Time T second s 

Electric current  I ampere A 

Temperature θ kelvin K 

Amount of substance N mole mol 

Luminous intensity J candela cd 

Flat angle A radian rad 

Solid angle Ω steradian sr 

 

1.3.2. Dimensional equations   معادلات الأبعاد 

A dimensional equation is a mathematical relationship that expresses the 

dimension of a physical quantity as a function of the dimensions of the 

fundamental quantities. Generally, the dimension of a derived quantity is 

expressed by the product of powers of the fundamental dimensions. The 

dimensional equation of a derived physical quantity G is written:  

[G] = M
α 

L
β 

T
γ 
I

σ
 

The dimensional equations allows to:  

•Determine the unit composed of a quantity according to the fundamental quantities.  

• Check if a formula is homogeneous and detect errors in calculations. 

• Perform unit conversions. 

Example:  

velocity: 𝑣 =
𝑥

𝑡
 

The velocity dimension:  𝑣 =  
𝑥

𝑡
 =

 𝑥 

 𝑡 
=

𝐿

𝑇
= 𝐿𝑇−1 

So, the of velocity dimensional equation:  𝑣 = 𝐿𝑇−1 and the unit in SI: m.s
-1 

Some of quantities are reported in the table 2 where the equivalent units are 

specified in the International System of Units (SI).  
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Table 3. Dimensional equations of derived quantities and their units in SI 

Derived quantity 
The 

expression 

dimension

al equation 
IS Unit 

Commonly 

used unit 

Acceleration a=l/t
2 

LT
-2

 m.s
-2

 
 

Force F=ma MLT
-2

 Kg.m.s
-2

 newton (N) 

Pressure p=F/S ML
-1

T
-2

 kg.m
-1

.s
-2

 pascal (Pa) 

Energy, Work W=Fl ML
2T

-2 kg.m
2.s

-2 joule (J) 

Power P=W/t ML
2
T

-3
 kg.m

2
.s

-3
 watt (W) 

Electric charge Q=it IT A.S coulomb (C) 

Electric field E=F/q MLT
-3

I
-1

 kg.m.s
-3

.A
-1

 
Volt/meter 

(V/m) 

Potential (voltage)  U=El ML
2
T

-3
I
-1

 kg.m
2
.s

-3
.A

-1
 volt (V) 

Electrical capacity C=q/U M
-1

L
-2

T
4
I
2
 Kg

-1
.m

-2
.s

4
.A

2
 farad (F) 

Resistance R=U/i ML
2T

-3
I
-2 kg.m

2
. s

-3
.A

-2.
 ohm (Ω) 

 

Note:  

The functions: sin(x), cos(x), tan(x), ln(x), log(x) and e
x 
are dimensionless (without 

dimensions), so [sin(x)]= [cos(x)]= [tan(x)]=[e
x
]=[ln(x)]=[log(x)]=1. 

Also, a constant is dimensionless ([π]=1). 

1.3.3. Homogeneity of dimensions تجانس الأبعاد 

Dimensional equations are used to verify the homogeneity of formulas, that is, both 

its members have the same dimension. 

1.3.4. Conversion from SI to CGS  

Table 4 summarizes some conversions from SI to CGS 
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Table 4. Conversion from SI to CGS
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Quantity IS Unit Symbol 
CGS 

Unit 
Symbol Equivalence 

length  m m cm cm 1m=10
2
cm 

mass kg kg g  g 1kg=10
3
g 

time  s s s s 
 

acceleration  m.s
-2 

m.s
-2 

cm.s
 2
 Gal 1m.s

-2
=10

2
cm.s

-2
(1m.s

-2
=10

2
 Gal) 

force Kg.m.s
-2

 N (newton) g.cm.s
 2
 

Dyn 

(dyne) 
Kg.m.s

-2 
=10

5
g.cm. s

 2
(1N=10

5
dyn

)
 

energy  Kg.m
2
s

-2
 J (joule) g.cm

2.
s

-2
 erg kg.m

2.
s

 2=
10

7
g.cm

2
.s

-2
(1J=10

7
erg

)
 

pressure  Kg.m
-1

.s
-2

 Pa (pascal) g.cm
-1

.s
 2
 

Ba 

(barye) 
Kg.m

-1.
s

-2
=10g.cm-

1
s

−2
(1Pa=10Ba) 

https://fr.wikipedia.org/wiki/Longueur
https://fr.wikipedia.org/wiki/Masse
https://fr.wikipedia.org/wiki/Gramme
https://fr.wikipedia.org/wiki/Temps
https://fr.wikipedia.org/wiki/Seconde_(temps)
https://fr.wikipedia.org/wiki/Acc%C3%A9l%C3%A9ration
https://fr.wikipedia.org/wiki/Force_(physique)
https://fr.wikipedia.org/wiki/Dyne
https://fr.wikipedia.org/wiki/%C3%89nergie
https://fr.wikipedia.org/wiki/Pression
https://fr.wikipedia.org/wiki/Barye
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Exercise 1 

Write the dimensional equations of the following quantities and deduce their units 

in the international system (IS): 

1. The pressure 𝑃 =
𝐹

𝑆
  2. The quantity of movement 𝑃  :  𝐹 =

𝑑𝑃  

𝑑𝑡
  

3. The momentum of 𝐹 : ℳ    /𝑂 𝐹  = 𝑟 ⋀𝐹  4. The angular momentum  𝐿      = 𝑟 ⋀𝑃   

5. The electric field  E = F/q   6. The electric potential  𝑉 = 𝐸. 𝑙 

Exercise 2 

The T-period of a circular Earth satellite may depend on the mass of the Earth m, 

the radius of the circle described R and the constant of the universal gravitation G.  

We will write: T = k.m
a
.R

b.
G

c
,
 
where k is a dimensionless constant. 

- Determine by a dimensional analysis the values of a, b and c. Deduce the 

expression of the formula of the period T. 

Exercise 3 

Experience has shown that the force experienced by a sphere immersed in a moving 

fluid depends on: 

- The viscosity coefficient η of the fluid. 

- The radius of the sphere R. 

- Their relative speed v. 

Find the expression for this force by assuming the form: 𝐹 = 𝑘η𝑎𝑅𝑏𝑣𝑐  

(k is a dimensionless numerical coefficient).We recall that [η]=L
-1

MT
-1

. 

 

 

 

 

 

Exercises 
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Exercise 1 

1. Pressure (P): 

𝑷 =
𝑭

𝑺
 

 𝑃 =  
𝐹

𝑆
 =

 𝐹 

 𝑆 
 

F : force : 

F=ma and 𝑎 =
𝑣

𝑡
=

𝑥

𝑡

𝑡
=

𝑥

𝑡2

 

𝐹 = 𝑚
𝑥

𝑡2
 

So  𝐹 =  𝑚 
 𝑥 

 𝑡2 
= 𝑀.

𝐿

𝑇2 = 𝑀. 𝐿. 𝑇−2   

S : area : 

S=l
2
 

So [S]=L
2 

 𝑃 =
 𝐹 

 𝑆 
=

𝑀. 𝐿. 𝑇−2

𝐿2
 

 𝑃 = 𝑀. 𝐿−1 . 𝑇−2  

Unit of pressure in IS : kg·m⁻¹·s⁻²= pascals (Pa)  

1 Pa = 1 N/m²
 

2. Quantity of movement 𝑷    : 

𝑭   =
𝒅𝑷   

𝒅𝒕
 

𝐹 =
𝑑𝑝 

𝑑𝑡
 𝑑𝑝 = 𝐹 . 𝑑𝑡 = 𝑚. 𝑎 . 𝑑𝑡. 

 𝑝 =  𝑚. 𝑎. 𝑑𝑡 = 𝑚  
𝑑𝑣

𝑑𝑡
𝑑𝑡 = 𝑚  𝑑𝑣 = 𝑚𝑣 

So   𝑝 = 𝑚𝑣   𝑝 =  𝑚𝑣 =  𝑚  𝑣 =  𝑚  
𝑥

𝑡
 = 𝑀.

𝐿

𝑇
 

 𝑝 = 𝑀. 𝐿. 𝑇−1  

Solution 
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Unit of quantity of movement in IS: kg·m/s. 

3. The momentum of force 𝑭   ∶  

𝓜      /𝑶 𝑭    = 𝒓  ⋀𝑭    

𝑀/𝑂 𝐹  = 𝑟. 𝐹   𝑀 =  𝑟 .  𝐹 = 𝐿. 𝑀. 𝐿. 𝑇−2 

𝑀. 𝐿2 . 𝑇−2 =  𝑀  

Unit of momentum of a force in IS: kg·m
2
/s

2 
= joule (J)

 

4. The angular momentum   𝓛       : 

   𝓛      = 𝒓  ⋀𝑷        (p is a quantity of movement)  

ℒ = 𝑟 ∧ 𝑝 = 𝑟 ∧ 𝑚𝑣  ℒ = 𝑟. 𝑚. 𝑣   𝑝 =  𝑟  𝑚  𝑣 =  𝑟  𝑚  
𝑥

𝑡
  

 ℒ = 𝑀. 𝐿2 . 𝑇−1  

Unit of angular momentum in IS: kg·m²/s 

5. Electric Field (E): 

𝑬 =
𝑭

𝒒
 

 𝐸 =
 𝐹 

 𝑞 
 

  𝐹 = 𝑀. 𝐿. 𝑇−2 

q: charge elctrique: 𝑞 = 𝑖𝑡   𝑞 =  𝑖 .  𝑡 = 𝐼𝑇 

 𝐸 =
 𝐹 

 𝑞 
=

𝑀. 𝐿. 𝑇−2

𝐼𝑇
 

 𝐸 = 𝑀. 𝐿. 𝑇−3𝐼−1  

Unit of electric field in IS: kg·m·s⁻³·A⁻¹= (V/m). 

6. Electric p otential (V): 

V = E·l 

 𝑉 =  𝐸 .  𝑙 = 𝑀. 𝐿. 𝑇−3𝐼−1. 𝐿 

 𝑉 = 𝑀𝐿2𝑇−3𝐼−1  

Unit of electric potential in IS:  kg·m²·s⁻³·A⁻¹.= Volt (V). 
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Exercise 2 

The equation of dimensions for period T is given by the following formula: 

[T]=[k.m
a
.R

b.
G

c
] = [k]. [m

a
]. [R

b
]. [G

c
] = [m]

a
. [R]

b
. [G]

c 
(k is a dimensionless 

constant) 

The dimension of each term must be determined: 

[T] = T 

[m] = M 

[R] = L  

[G] = ? 

So according to the law of universal gravitation : 

𝐹 = 𝐺
𝑚𝑚′

𝑟2
 

Or F is the gravitational force between two masses m and m’ separated by distance r  

 𝐺 =
𝐹𝑟2

𝑚𝑚 ′
 , so the dimension of G is : 

 𝐺 =
 𝐹  𝑟 2

 𝑚  𝑚′ 
 

F is a force: F=ma   𝐹 =  𝑚  𝑎 = 𝑀𝐿𝑇−2 

 𝑟 = 𝐿 

 𝑚 =  𝑚′  = 𝑀 

 𝐺 =
𝑀𝐿𝑇−2𝐿2

𝑀2
= 𝑀−1𝐿3𝑇−2 

Replace [G] in the [T] expression  

T = MaLb M−1L3T−2 c = Ma−c Lb+3c T−2c  

 
𝑎 − 𝑐 = 0
𝑏 + 3𝑐 = 0
−2𝑐 = 1

       

𝑎 = 𝑐
𝑏 = −3𝑐
𝑐 = −1/2

       

𝑎 = −1/2
𝑏 = 3/2
𝑐 = −1/2

  

So T = k.m
-1/2

.R
3/2

.G
-1/2     

   𝑇 = 𝑘𝑅 
𝑅

𝑚𝐺
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Exercise 3 

F = kηaRb vc   F =  k  η a R b v c 

The dimensions of the quantities are: 

Viscosity coefficient η:   [η]= M L
-1

T
-1

 

Radius of the sphere R:    [R] = L 

Relative speed v:          [v] = LT
-1

 

Force F:                       F = M. L. T−2 

k is a dimensionless numerical coefficient, so  k = 1 

  F =  k  η a R b v c  

 M. L. T−2 =  ML−1T−1 a L b LT−1 c 

M. L. T−2 =  M aL−a+b+c T−a−c 

 
 

 
1 = a                                                                                                                                       

1 = −a + b + c  b = 1 + a − c = 1 + 1 − 1 = 1 = b                                                   

−2 = −a − c  c = −a + 2 = −1 + 2 = 1 = c                                                                

  

 F = kη1R1v1 

So, the expression for this force                F = kηRv  



 
 

 

 

 

 

 

Part 2 

 

Vector calculus 
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2.1. Scalar quantities and vector quantities مقاديرو الالسلمية  الشعاعية قاديرمال   

Physical quantities are divided into two groups: 

- Scalar quantity such that; mass (m), time (t), energy (E), .... 

- Vector quantity such as velocity  (𝑣 ), force (𝐹 ),... 

2.2. Vectors   الأشعة   

2.2.1. Definition: تعرٌف 

A vector is a line segment AB, having an origin A and an end B. We denote it by 

𝐴𝐵      , characterized by: 

- Its direction which is defined by that of the line which carries the segment 

- Its sense which designates the orientation of the vector (from A towards B). 

- Its magnitude (norm or intensity) which is equal to the length of the segment 

[AB], noted  𝐴𝐵        which is always positive. 

Note: 

A vector can be designated by a single letter: 𝐴𝐵      = 𝑉  . 

 

 

 

 

  

2.2.2. Unit vector  شعاع الوحدة 
A vector is unitary when its magnitude is equal to unity (1). 

If 𝑢   is a unit vector carried by a vector 𝑉   then: 

𝑉  =  𝑉   . 𝑢     𝑢  =
𝑉  

 𝑉   
 

We also have  𝑢   = 1 and 𝑢   is always parallel to 𝑉  ( 𝑢  // 𝑉  ). 

 

 

 

𝑉   

𝑢   

A 

B 

𝑽    

direction 

magnitude 

sense 
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2.3. Vector Operations 

Let 𝑉1
    , 𝑉2

    , 𝑉3
    , be three vectors, a, b and c real numbers 

2.3.1. The sum (addition) of the vectors جمع الأشعة  

The sum of two vectors 𝑉1
     and 𝑉2

     is another vector 𝑆 , with : 

𝑆 = 𝑉1
    + 𝑉2

     

Graphically, we can find the resulting vector 𝑆  by the parallelogram rule. 

 

 

 

 

 

 

 

The sum of n vectors: 𝑉1
    , 𝑉2

    , 𝑉3
    ,…  𝑉𝑛

    . is a vector 𝑆  such that: 

𝑆 = 𝑉1
    + 𝑉2

    + 𝑉3
    + ⋯𝑉𝑛

     

 

 

 

 

 

 

 

2.3.1.1. Properties: الخواص 

* Commutativity (تبديلي): 𝑆 = 𝑉1
    + 𝑉2

    = 𝑉2
    + 𝑉1

     

* Associativity (تجميعي):  𝑉1
    + 𝑉2

     + 𝑉3
    = 𝑉1

    +  𝑉2
    + 𝑉3

     . 

* Distributivity (توزيعي)  : (a+b).  𝑉1
    = a. 𝑉1

    + b. 𝑉1
         

                               and    a.(  𝑉1
     + 𝑉2

    ) = a.  𝑉1
    +a. 𝑉2

     

* The sum of a vector 𝑉1
    and its opposite (- 𝑉1

    ) is zero: 𝑉1
    +  −𝑉1

     = 0   

 

𝑉1
     

𝑉2
     

𝑉2
     

𝑉1
     

𝑺   = 𝑽𝟏
     + 𝑽𝟐

      
𝑉2
     

𝑉1
     

𝑽𝟏
      𝑽𝟑

      

𝑽𝟐
      

𝑺    
𝑽𝒏
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2.3.2. Vector subtraction  الأشعةطرح  

The difference of two vectors 𝑉1
     and 𝑉2

     is a vector 𝐷   , with : 

𝐷   = 𝑉1
    − 𝑉2

    = 𝑉1
    + (−𝑉2

    ) 

Graphically, we can find the resulting vector 𝐷    by the parallelogram rule. 

 

 

 

 

 

 

 

 

Note: 

 𝑉1
    − 𝑉2

    ≠ 𝑉2
    − 𝑉1

    , therefore the difference of the vectors is non-commutative. 

2.3.3. Components of a vector هركبات شعاع 

To determine the components of a vector, it is necessary to choose a reference 

frame (coordinate system) which is a set of non-collinear unit vectors called basis. 

We can then decompose all the other vectors according to these unit vectors and this 

decomposition is unique. We have three types of references frame: 

2.3.3.1. Linear reference frame: ًهعلن خط 

It is composed of a single axis Ox, provided with a unit vector 𝑖   positively oriented. 

The coordinate (x) of point M is defined by: 

𝑂𝑀       = 𝑥𝑖  

(x) is also called the component of the vector 𝑂𝑀       . 

 

 

 

 

 

𝑉2
     

𝑉1
     

(−𝑉2
    ) 

𝑉1
     

𝑫   = 𝑽𝟏
     − 𝑽𝟐

      

𝑋 𝑖  

𝑥 

𝑂 

𝑀(𝑥) 
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2.3.3.2. Planar (two-dimensional) orthogonal reference frame: هعلن هستوي 

It is composed of two orthogonal axes of the plane, OX and OY, provided with unit 

vectors 𝑖  𝑎𝑛𝑑  𝑗  positively oriented. 

The position of a point M is characterized by the vector 𝑂𝑀        : 

𝑉  = 𝑂𝑀        

Let x and y be the projections of M onto the OX and OY axes, respectively. So we 

have:  

𝑉  = 𝑥𝑖 + 𝑦𝑗 =  
𝑥

𝑦
  

 
𝑥 =  𝑉   𝑐𝑜𝑠𝜃

𝑦 =  𝑉   𝑠𝑖𝑛𝜃
  

𝑉  = 𝑥𝑖 + 𝑦𝑗 =  𝑉   𝑐𝑜𝑠𝜃𝑖 +  𝑉   𝑠𝑖𝑛𝜃𝑗 𝑢    

 𝑉  =  𝑉   (𝑐𝑜𝑠𝜃. 𝑖 + 𝑠𝑖𝑛𝜃. 𝑗            
𝑢   

)  𝑉  =  𝑉 . 𝑢   

𝑢   is the unit vector of the vector 𝑉    

𝑢  = 𝑐𝑜𝑠𝜃. 𝑖 + 𝑠𝑖𝑛𝜃. 𝑗  

(x,y) is called the components of the vector 𝑉   or the cartesian coordinates of the 

point M in the plane (OXY) 

 

 

 

 

 

 

 

 

 

 

𝑖  

𝑗  

𝑦 

𝑥 𝑋 

𝑌 

𝑂 

𝑴(𝒙, 𝒚) 

θ 
𝑢   

𝑉   
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2.3.3.3. An orthonormal reference in space: هعلن هتعاهد هتجانس فً الفضاء 

It is composed of three orthogonal axes, OX, OY and OZ, provided with unit vectors 

𝑖  , 𝑗  𝑎𝑛𝑑 𝑘   positively oriented. The position of a point M in space is characterized by 

the vector 𝑉  = 𝑂𝑀       . Let x , y and z be the projections of M onto the axes OX, OY 

and OZ, respectively. So we have: 

𝑉  = 𝑥𝑖 + 𝑦𝑗  + 𝑧𝑘  =  
𝑥
𝑦
𝑧
  

 
 
 

 
 𝑥 =  𝑂𝑀′          𝑐𝑜𝑠𝜃

𝑦 =  𝑂𝑀′          𝑠𝑖𝑛𝜃

𝑧 =  𝑉   𝑐𝑜𝑠𝜑

   𝑂𝑀′          =  𝑉   . 𝑠𝑖𝑛𝜑 

 

 
 
 

 
 𝑥 =  𝑉   𝑠𝑖𝑛𝜑. 𝑐𝑜𝑠𝜃

𝑦 =  𝑉   𝑠𝑖𝑛𝜑. 𝑠𝑖𝑛𝜃

𝑧 =  𝑉   𝑐𝑜𝑠𝜑           

  

𝑉  =  𝑉   . 𝑢   

𝑢   is the unit vector of the vector 𝑉   

𝑢  = 𝑠𝑖𝑛𝜑. 𝑐𝑜𝑠𝜃. 𝑖 + 𝑠𝑖𝑛𝜑. 𝑠𝑖𝑛𝜃. 𝑗 + 𝑐𝑜𝑠𝜑. 𝑘   

(x,y,z) is called the components of the vector 𝑂𝑀        or the cartesian coordinates of the 

point M in the orthonormal reference frame (OXYZ). 

 

 

 

 

 

 

 

 

 

 

 

𝜃 
𝑗  

𝑧 

𝑥 

𝑋 

𝑍 

𝑂 

𝑀(𝑥, 𝑦, 𝑧) 

𝑌 

𝑘   

𝑀′ 

𝑦 

𝑖  

 

𝜑 

𝑢   

 

𝑉   
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2.3.4. Magnitude (norm) of a vector طوٌلة شعاع 

The magnitude of a vector 𝑉  = 𝑥𝑖 + 𝑦𝑗  + 𝑧𝑘   represents its length, it is given by the 

following formula: 

 𝑉   =  𝑥2 + 𝑦2 + 𝑧2 = 𝑉 

 𝑉    is always positive 

2.3.5. Scalar (dot) product ًالجداء السلو 

The dot product of two vectors 𝑉1
     and 𝑉2

     is a scalar given by the following relation: 

𝑉1
    . 𝑉2

    =  𝑉1
     .  𝑉2

     . 𝑐𝑜𝑠𝜃 

Where θ is the angle between the two vectors 𝑉1
    and 𝑉2

     

 

 

 

 

 

2.3.5.1. Properties  

 𝑉  . 𝑉  =  𝑉   .  𝑉   . 𝑐𝑜𝑠0 = 𝑉2  

 𝑉1
    . 𝑉2

    =  𝑉1
     .  𝑉2

     . 𝑐𝑜𝑠𝜃 =  𝑉2
     .  𝑉1

     . cos⁡(−𝜃)  𝑉1
    . 𝑉2

    = 𝑉2
    . 𝑉1

      

 𝑉1
    .  𝑉2

    + 𝑉3
     = 𝑉1

    . 𝑉2
    + 𝑉1

    . 𝑉3
     

  𝑉1
    ± 𝑉2

     
2

= 𝑉1
2 + 𝑉2

2 ± 2𝑉1𝑉2𝑐𝑜𝑠𝜃 

 If 𝜃 =
𝜋

2
, their scalar product is zero: 

𝑉1
    ⊥ 𝑉2

     𝑉1
    . 𝑉2

    = 0 

We will therefore have: 

 𝑖  . 𝑖  =  𝑗  . 𝑗  =  𝑘   . 𝑘   =  1 

 𝑖  . 𝑗  =  𝑗  . 𝑘   =  𝑖  . 𝑘  =  0 

 If we know the coordinates of two vectors in an orthonormal basis, the scalar 

product will be expressed only in terms of the coordinates: 

𝑉2
     

𝑉1
     

θ 
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𝑉1
     

𝑥1

𝑦1

𝑧1

  and  𝑉2
     

𝑥2

𝑦2

𝑧2

   𝑉1
    . 𝑉2

    =  

𝑥1

𝑦1

𝑧1

 .  

𝑥2

𝑦2

𝑧2

  

𝑉1
    . 𝑉2

    =  𝑥1𝑥2 + 𝑦1𝑦2 + 𝑧1𝑧2  

2.3.5.2. Projection of the vector: هسقظ شعاع 

The projection of the vector 𝑉2
     onto 𝑉1

     is given by the following relation: 

𝑝𝑟𝑜𝑗 𝑉2
    /𝑉1

    =  𝑉2
     . 𝑐𝑜𝑠𝜃 

 

 

 

 

 

 

We can rewrite the previous relation in the form of a scalar product: 

𝑢  . 𝑉2
    =  𝑢   .  𝑉2

     . 𝑐𝑜𝑠𝜃 =  𝑢   . 𝑝𝑟𝑜𝑗 𝑉2
    /𝑉1

     

𝑢   is the unit vector of the vector 𝑉1
     

  𝑢   =
𝑉1
    

 𝑉1
     

= 1 

  𝑝𝑟𝑜𝑗 𝑉2
    /𝑉1

    =
𝑉1
    . 𝑉2

    

𝑉1
 

2.3.5.3. Vector projection of vector: شعاع هسقظ شعاع 

The vector projection of vector  𝑉2
     onto 𝑉1

     is a vector defined by: 

𝑝𝑟𝑜𝑗         
𝑉2
    

𝑉1
    

 = 𝑝𝑟𝑜𝑗
𝑉2
    

𝑉1
    

. 𝑢  =
𝑉1
    . 𝑉2

    

𝑉1
. 𝑢  =

 𝑉1
    . 𝑉2

     

𝑉1
.
𝑉1
    

𝑉1
=

𝑉1
    .  𝑉1

    . 𝑉2
     

𝑉1
2  

𝑝𝑟𝑜𝑗         
𝑉2
    

𝑉1
    

 =
𝑉1
    .  𝑉1

    . 𝑉2
     

𝑉1
2  

 

𝑉2
     

𝑉1
     

θ 

𝑢   
                          

𝒑𝒓𝒐𝒋 𝑽𝟐      /𝑽𝟏      
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2.3.5.3. Direction cosines 

The direction cosines of the vector 𝑉  = 𝑥𝑖 + 𝑦𝑗  + 𝑧𝑘   are the cosines of angles that 

the vector V    forms with the coordinate axes.  

Let ,  and  be the angles that the vector 𝑉  makes with the axes OX, OY and OZ. 

cos 𝛼 =
𝑉𝑥

𝑉
 

cos 𝛽 =
𝑉𝑦

𝑉
 

cos 𝛾 =
𝑉𝑧

𝑉
 

 

 

 

2.3.7. vector (cross) product ًالجداء الشعاع 

The cross product of two vectors 𝑉1
     and 𝑉2

     is another vector 𝑃   perpendicular to the 

plane which formed by two vectors, it’s direction is found by using the right-hand 

rule. The vector product is defined by: 

𝑃  = 𝑉1
    ⋀𝑉2

    =  𝑉1
     .  𝑉2

     . 𝑠𝑖𝑛𝜃. 𝑢   

Where 𝑢   is the unit vector perpenducular to plane formed by 𝑉1
     and 𝑉2

    . 

 

 

 

 

 

 

 

 

2.3.7. 1. Properties 

 The magnitude of 𝑃   is given by :  𝑃   =  𝑉1
    ⋀𝑉2

     =  𝑉1
     .  𝑉2

     .  𝑠𝑖𝑛𝜃  

 The cross product is anticommutative: 𝑉1
    ⋀𝑉2

    = − 𝑉2
    ⋀𝑉1

      

 The cross product is distributive: 𝑉1
    ⋀ 𝑉2

    ± 𝑉3
     = 𝑉1

    ⋀𝑉2
    ± 𝑉1

    ⋀𝑉3
     

𝑉1
     

𝜃 

𝑉2
     

𝑃  = 𝑉1
    ⋀𝑉2

     

𝒖    

𝑍 

𝑌 

𝑉   

 

𝛼 

𝑗  

𝑉𝑧  

𝑉𝑥  

𝑋 

𝑘   𝑉𝑦  
𝑖  

 

𝛾 

𝛽 
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 𝑉1
    ⋀𝑉2

    = 0   𝑉1
     ∕∕  𝑉2

      

 𝑖  ⋀ 𝑖  = 𝑗  ⋀ 𝑗   = 𝑘   ⋀ 𝑘    = 0  And𝑖  ⋀ 𝑗   = 𝑘  , 𝑗  ⋀ 𝑘    = 𝑖 ,   𝑘   ⋀ 𝑖  = 𝑗  

 The cross product can be calculated by the determinant method  

based on the coordinates of 𝑉1
     

𝑥1

𝑦1

𝑧1

  and  𝑉2
     

𝑥1

𝑦1

𝑧1

 : 

𝑉1
    ∧ 𝑉2

    =  
𝑖          − 𝑗            𝑘  

𝑥1         𝑦1          𝑧1 
𝑥2         𝑦2          𝑧2 

 =  
𝑦1         𝑧1

𝑦2          𝑧2
 . 𝑖 −  

𝑥1         𝑧1

𝑥2         𝑧2
 . 𝑗 +  

𝑥1         𝑦1

𝑥2         𝑦2
 . 𝑘   

𝑉1
    ⋀ 𝑉2

    =  𝑦1𝑧2 − 𝑧1𝑦2 . 𝑖 −  𝑥1𝑧2 − 𝑧1𝑥2 . 𝑗 +  𝑥1𝑦2 − 𝑦1𝑥2 . 𝑘   

2.3.7.2. Magnitude of the cross product ًطوٌلة الجداء الشعاع 

The magnitude of the cross product of two vectors represents the area of a 

parallelogram formed by these two vectors: 

 𝑉1
    ⋀𝑉2

     =  𝑉1
     .  𝑉2

     .  𝑠𝑖𝑛𝜃  

𝑕 = 𝑉2 .  𝑠𝑖𝑛𝜃  𝑆 = 𝑕. 𝑉1 =  𝑉1
    ⋀𝑉2

      

 

 

 

 

 

2.3.8. Mixed product  الجداء الوختلظ  

The mixed product of three vectors 𝑉1
    , 𝑉2

      𝑎𝑛𝑑  𝑉3
     is the scalar quantity defined by 

 𝑉1
    .  𝑉2

    ∧ 𝑉3
     =  

𝑥1        − 𝑦1        𝑧1

𝑥2         𝑦2           𝑧2 
𝑥3         𝑦3           𝑧3 

 

=  
𝑦2          𝑧2

𝑦3          𝑧3
 . 𝑥1 −  

𝑥2         𝑧2

𝑥3         𝑧3
 . 𝑦1 +  

𝑥2         𝑦2

𝑥3         𝑦3
 . 𝑧1 

𝑉1
    .  𝑉2

    ∧ 𝑉3
     =  𝑦2 . 𝑧3 − 𝑧2 . 𝑦3 . 𝑥1 −  𝑥2 . 𝑧3 − 𝑧2 . 𝑥3 . 𝑦1 +  𝑥2 . 𝑦3 − 𝑦2 . 𝑥3 . 𝑧1  

𝒌     𝒋   

𝒊   

𝑉1
     

𝜃 

𝑉2
     

𝑉1
    ⋀𝑉2

     

𝑆 h 
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Note :  

The value obtained from the mixed product of the three vectors is equal to the 

volume of the parallelepipedformed by these three vectors. 

 

 

 

 

 

 

 

2.3.8.1. Properties: 

 𝑉1
    .  𝑉2

    ∧ 𝑉3
     = 𝑉3

    .  𝑉1
    ∧ 𝑉2

     = 𝑉2
    .  𝑉3

    ∧ 𝑉1
      

 𝑉1
    .  𝑉2

    ∧ 𝑉3
     = 0  Either the three vectors are in the same plane or 𝑉2

    ∥ 𝑉3
    . 

2.3.9. Triple product: الجداء الوضاعف  

The triple product of three vectors 𝑉1
    , 𝑉2

      𝑎𝑛𝑑  𝑉3
     is defined by the vector D or: 

𝐷   = 𝑉1
    ∧  𝑉2

    ∧ 𝑉3
     =  𝑉1

    . 𝑉3
     . 𝑉2

    −  𝑉1
    . 𝑉2

     . 𝑉3
     

2.4. Moment of a vector عزم شعاع 

2. 4.1. Moment of a vector relative to a point عزم شعاع بالنسبة إلى نقطة 

The moment of a vector 𝑉1
    , which passes through point A, relative to a point O is 

defined by the vector ℳ     such that: 

ℳ    𝑉1     𝑂 = 𝑂𝐴       ∧ 𝑉1
     

 

𝑆 

𝑽𝟐
      𝑽𝟑

      

𝑽𝟏
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2.4.2. Moment of a vector relative to an axis  عزم شعاع بالنسبة إلى هحور 

The moment of a vector 𝑉1
    , which passes through point A, relative to an axis ∆  is 

given by the scalar product ℳ such that: 

ℳ𝑉1      ∆  = ℳ    𝑉1     𝑂 =  𝑂𝐴      ∧ 𝑉1
     . 𝑢∆      

𝑢∆     : the unit vector of the axis (Δ). 

2.5. Vector derivatives 

Let a vector 𝑉  depend on time (t) (vector function): 

𝑉   𝑡 = 𝑥 𝑡 𝑖 + 𝑦 𝑡 𝑗  + 𝑧 𝑡 𝑘   

The derivative of the vector 𝑉   with respect to time is defined as follows: 

𝑑𝑉  

𝑑𝑡
=

𝑑𝑥

𝑑𝑡
𝑖 +

𝑑𝑦

𝑑𝑡
𝑗 +

𝑑𝑧

𝑑𝑡
𝑘   

Note: Velocity and acceleration are vector functions. 

2.5.1. Properties 

Consider two vector functions 𝐴 (t) and 𝐵  (t ) and 𝑓(𝑡) a scalar function: 

 
𝑑

𝑑𝑡
 𝐴 + 𝐵   =

𝑑𝐴 

𝑑𝑡
+

𝑑𝐵  

𝑑𝑡
 

 
𝑑

𝑑𝑡
 𝑓. 𝐴  =

𝑑𝑓

𝑑𝑡
+ 𝑓.

𝑑𝐴 

𝑑𝑡
 

 
𝑑

𝑑𝑡
 𝐴 . 𝐵   =

𝑑𝐴 

𝑑𝑡
. 𝐵  + 𝐴.    𝑑𝐵  

𝑑𝑡
 

 
𝑑

𝑑𝑡
 𝐴 ⋀𝐵   =

𝑑𝐴 

𝑑𝑡
⋀𝐵  + 𝐴⋀      𝑑𝐵  

𝑑𝑡
 

2.6. Vector analysis ًالتحلٍل الشعاع 

2.6.1. “Nabla” operator الوؤثر نبلا 

The nabla operator 𝛻   is a vector quantity written in cartesian coordinates: 

𝛻  =
𝜕

𝜕𝑥
𝑖 +

𝜕

𝜕𝑦
𝑗 +

𝜕

𝜕𝑧
𝑘   
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2.6.1.1. “Gradient” operator هؤثر التدرج 

Let f(x, y, z) be a scalar function. Gradient of f is given by the following vector: 

𝑔𝑟𝑎𝑑             𝑓 = 𝛻  𝑓 =  
𝜕𝑓

𝜕𝑥
 𝑖 +  

𝜕𝑓

𝜕𝑦
 𝑗 +  

𝜕𝑓

𝜕𝑧
 𝑘   

2.6.1.2.  “Divergence” operator هثر التباعد 

Let it be 𝑉  = 𝑉𝑥 𝑖 + 𝑉𝑦𝑗  + 𝑉𝑧𝑘   a vector function. We define 𝑑𝑖𝑣𝑉   as follows: 

𝑑𝑖𝑣𝑉     = 𝛻  . 𝑉  =
𝜕𝑉𝑥

𝜕𝑥
+

𝜕𝑉𝑦

𝜕𝑦
+

𝜕𝑉𝑧

𝜕𝑧
 

2.6.1.3.  “Curl” operator هؤثر الدوراى 

Let it be 𝑉  = 𝑉𝑥 𝑖 + 𝑉𝑦𝑗  + 𝑉𝑧𝑘   a vector function. We define 𝑟𝑜𝑡        𝑉    as follows: 

𝑟𝑜𝑡        𝑉      = 𝛻  ∧ 𝑉  =  
𝜕𝑉𝑧

𝜕𝑦
−

𝜕𝑉𝑦

𝜕𝑧
 𝑖   −  

𝜕𝑉𝑧

𝜕𝑥
−

𝜕𝑉𝑥

𝜕𝑧
 𝑗    +  

𝜕𝑉𝑦

𝜕𝑥
−

𝜕𝑉𝑥

𝜕𝑦
 𝑘      

2.6.1.4.  “Laplacian” operator هؤثر لابلاسٍاى 

 

- Laplacian of a scalar function is defined by the following relation: 

𝛻  2 .  𝑓 = 𝛻  . 𝛻   𝑓 =
𝜕2𝑓

𝜕𝑥2
+

𝜕2𝑓

𝜕𝑦2
+

𝜕2𝑓

𝜕𝑧2
 

- Laplacian of a vector function is given by the following relation: 

𝛻  2 .  𝑉   = 𝛻  . 𝛻   𝑉   =
𝜕2𝑉𝑥  

𝜕𝑥2
𝑖   +

𝜕2𝑉𝑦

𝜕𝑦2
𝑗  +

𝜕2𝑉𝑧

𝜕𝑧2
𝑘   
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Exercise 1 

Let the vectors in space be 𝑉1
    = 2𝑖 − 𝑗  + 3𝑘   and 𝑉2

    = −𝑖 + 𝑗 + 2𝑘   represented in 

the frame 𝑅 𝑂, 𝑖,  𝑗 , 𝑘    

-Calculate the angle between the two vectors 𝑉1
     and 𝑉2

    . 

Exercise 2 

Let the vectors in space be represented in an orthonormal coordinate system 𝑅 

(𝑂𝑋𝑌𝑍), 

V1
    = 2𝑖 − 3𝑗 + 𝐾     and  V2

     = −𝑖 + 2𝑗 + 𝐾    

1. Represent these vectors in the reference 𝑅 𝑂𝑋𝑌𝑍 . 

2. Calculate R   = 𝑉1
    + 𝑉2

     and the modules:  V1
     ,  𝑉2

      . 

3. Calculate the scalar product of V1
    𝑎𝑛𝑑 𝑉2

     and deduce the angle between them. 

4. Determine the unit vector carried by the vector 𝑉2
    . Deduce the direction cosines 

of 𝑉2
    . 

Exercise 3 

Let the vectors in space be represented in an orthonormal coordinate system 𝑅 

(𝑂𝑋𝑌𝑍), 

𝑉2
    = 𝑖 + 𝑗 + 𝑘   and 𝑉1

    = 2𝑖 + 𝑗 − 𝑘   

-Calculate the projection and the vector projection of the vector 𝑉2
     onto the vector 

𝑉1
    . 

Exercise 4 

Consider the points A(1,0,-1), B(-1,2,1), C(2,1,3) and D(0,1,0) in the frame 

(OXYZ). 

1- Determine the components and magnitudes of the vectors AB       , AC       and AD      . 

2-  

Exercises 
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3-  Determine the projection and the vector projection of AB       on AC       . 

4- Calculate the surface (area) of triangle ABC and the volume constituted by AB      , 

AC       and AD      . 

Exercise 5 

In the frame 𝑅 𝑂, 𝑖,  𝑗 , 𝑘    we give the sliding vector  V   = i + 2 j + 3k   and which 

passes through the point A(3, 4, 2). 

1. Calculate the moment of the vector V    relative to the origin O, then relative to the 

axes OX and OY. 

 

2. Calculate the moment of vector V    relative to point B (3, 6, 0) 

3. Consider the (Δ) axis of unit vector  𝑢   (-1/√2, 1/2, 1/2) and passing through B, 

calculate the moment of 𝑉   relative to (Δ). 
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Exercise 1 

We have 𝑉1
    . 𝑉2

    =  𝑉1
     .  𝑉2

     . 𝑐𝑜𝑠𝜃  𝑐𝑜𝑠𝜃 =
𝑉1     .𝑉2     

 𝑉1      . 𝑉2      
 

𝑉1
    . 𝑉2

    =  
2

−1
3

  
−1
1
2

 = 2.  −1 +  −1 . 1 + 3.  2 = −2 − 1 + 6 = 3 

 𝑉1
     =  𝑥1

2 + 𝑦1
2 + 𝑧1

2 =  22 + (−1)2 + 32 =  4 + 1 + 9 =  14 

 𝑉2
     =  𝑥2

2 + 𝑦2
2 + 𝑧2

2 =  (−1)2 + 12 + 22 =  1 + 1 + 4 =  6 

𝑐𝑜𝑠𝜃 =
𝑉1
    . 𝑉2

    

 𝑉1
     .  𝑉2

     
=

3

 14 6
= 0.32 

 𝜃 = 71.33  

Exercise 2 

1. Represent V1
    𝑎𝑛𝑑 𝑉2

      in the reference 𝑅 𝑂𝑋𝑌𝑍 . 

 

 

 

 

 

 

 

 

 

 

 

𝑽   𝟏 

 
𝑗  

𝑋 

𝑍 

𝑌 

𝑘   

𝑖  

 

𝑽   𝟐 

 

𝑂 

Solution 
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2. R   = 𝑉1
    + 𝑉2

    =  
2

−3
1

 +  
−1
2
1

 =  
1

−1
2

 = 𝑖 − 𝑗 + 2𝐾    

R   = 𝑖 − 𝑗 + 2𝐾    

 𝑉1
     =  𝑥1

2 + 𝑦1
2 + 𝑧1

2 =  22 + (−3)2 + 12 =  4 + 9 + 1 =  14 

 𝑉1
     =  14  

 𝑉2
     =  𝑥2

2 + 𝑦2
2 + 𝑧2

2 =  (−1)2 + 22 + 12 =  1 + 4 + 1 =  6 

 𝑉2
     =  6  

3. We have   𝑉1
    . 𝑉2

    =  
2

−3
1

  
−1
2
1

 = 2 −1 +  −3 2 + 1 1 = −2 − 6 + 1 = −7 

𝑉1
    . 𝑉2

    = −7  

𝑉1
    . 𝑉2

    =  𝑉1
     .  𝑉2

     . 𝑐𝑜𝑠𝜃  𝑐𝑜𝑠𝜃 =
𝑉1
    . 𝑉2

    

 𝑉1
     .  𝑉2

     
 

𝑐𝑜𝑠𝜃 =
−7

 14 6
= −0.76 

𝜃 = 139.79°  

3. unit vector carried by the vector 𝑉2
    : 

𝑉2
    =  𝑉2

     . 𝑢2      𝑢2     =
𝑉2
    

 𝑉2
     

=
−1

 6
𝑖 +

2

 6
𝑗 +

1

 6
𝑘   

𝑢2     =
−1

 6
𝑖 +

2

 6
𝑗 +

1

 6
𝑘   

- The direction cosines of 𝑉2
     are the components of unit vector carried by the vector 

𝑉2
     

 



Mathematical reminders–Part 2                                                    Vector calculus 

30 

 

𝑢2     =
−1

 6
𝑖 +

2

 6
𝑗 +

1

 6
𝐾   = 𝑐𝑜𝑠𝛼. 𝑖 + 𝑐𝑜𝑠𝛽. 𝑗 + 𝑐𝑜𝑠𝛾. 𝐾    

 
  
 

  
 𝑐𝑜𝑠𝛼 =

−1

 6

𝑐𝑜𝑠𝛽 =
2

 6

𝑐𝑜𝑠𝛾 =
1

 6

  

Exercise 3 

1) The projection of the vector 𝑉2
     onto the vector 𝑉1

     : 

 𝑝𝑟𝑜𝑗 𝑉2     

𝑉1      
=

𝑉1
    . 𝑉2

    

𝑉1
 

𝑉1
    . 𝑉2

    =  
1
1
1
  

2
1

−1
 = 1.2 + 1.1 + 1.  −1 = 2 + 1 − 1 = 2 

𝑉1 =  𝑥1
2 + 𝑦1

2 + 𝑧1
2 =  22 + 12 + 12 =  6 

𝑝𝑟𝑜𝑗 𝑉2     

𝑉1      
=

𝑉1
    . 𝑉2

    

𝑉1
=

2

 6
 

𝑝𝑟𝑜𝑗 𝑉2     

𝑉1      
=

2

 6
 

2) the vector projection of the vector 𝑉2
     onto the vector 𝑉1

     : 

𝑝𝑟𝑜𝑗            𝑉2     

𝑉1      
=

𝑉1
    .  𝑉1

    . 𝑉2
     

𝑉1
2  

𝑉1
2 = 6 

 𝑝𝑟𝑜𝑗          𝑉2      

𝑉1      
=

2

 6
.

 
2
1

−1
 

 6
=

1

3
 2𝑖 + 𝑗 − 𝑘    

𝑝𝑟𝑜𝑗          𝑉2      

𝑉1      
=

1

3
 2𝑖 + 𝑗 − 𝑘    
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Exercise 4 

1. The components and magnitudes of the vectors AB       , AC       and AD       

𝐴𝐵       
𝑥𝐵−𝑥𝐴
𝑦𝐵−𝑦𝐴
𝑧𝐵−𝑧𝐴

  𝐴𝐵       
−1−1
2−0

1− −1 
  𝐴𝐵       

−2
2
2
 = −2i + 2 j + 2k    

𝐴𝐵      = −2i + 2 j + 2k   

 𝐴𝐵       =   −2 2 + 22 + 22 =  4 + 4 + 4 =  12 = 2 3 

 𝐴𝐵       = 2 3  

𝐴𝐶       
𝑥𝑐−𝑥𝐴
𝑦𝐶−𝑦𝐴
𝑧𝐶−𝑧𝐴

  𝐴𝐶       
2−1
1−0

3− −1 
  𝐴𝐶       

1
1
4
 = i +  j + 4k    

𝐴𝐶      = i +  j + 4k   

 𝐴𝐶       =  12 + 12 + 42 =  18 = 3 2 

 𝐴𝐶       = 3 2  

𝐴𝐷       
𝑥𝐷−𝑥𝐴
𝑦𝐷−𝑦𝐴
𝑧𝐷−𝑧𝐴

  𝐴𝐶       
0−1
1−0

0− −1 
  𝐴𝐷       

−1
1
1
 = −i + j + k    

𝐴𝐷      = −i +  j + k   

 𝐴𝐷       =  12 + 12 + 12 =  3 

 𝐴𝐷       =  3  

2. The projection and the vector projection of AB       on AC      : 

a) The projection of AB       on AC       

𝑝𝑟𝑜𝑗 𝐴𝐵      /𝐴𝐶      =
𝐴𝐵      . 𝐴𝐶      

 𝐴𝐶       
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𝐴𝐵      . 𝐴𝐶      =  
−2
2
2

  
1
1
4
 = −2 + 2 + 8 = 8 

𝑝𝑟𝑜𝑗 𝐴𝐵      /𝐴𝐶      =
𝐴𝐵      . 𝐴𝐶      

 𝐴𝐶       
=

8

3 2
 

 𝑝𝑟𝑜𝑗 𝐴𝐵      /𝐴𝐶      =
8

3 2
 

b) The vector projection of AB       on AC      : 

 𝑝𝑟𝑜𝑗         𝐴𝐵      /𝐴𝐶       = 𝑝𝑟𝑜𝑗 𝐴𝐵      /𝐴𝐶       . 𝑢  𝐴𝐶       =
𝐴𝐶      .  𝐴𝐵      . 𝐴𝐶       

 𝐴𝐶       
2  

 𝑝𝑟𝑜𝑗         𝐴𝐵      /𝐴𝐶      = 8.
 𝑖 + 𝑗 + 4𝑘   

18
=

4

9
 𝑖 + 𝑗 + 4𝑘    

𝑝𝑟𝑜𝑗         𝐴𝐵      /𝐴𝐶      =
4

9
 𝑖 + 𝑗 + 4𝑘    

3. The surface ( area) SABC of triangle ABC: 

𝑆 =  𝐴𝐵      ⋀𝐴𝐶        

𝐴𝐵      ∧ 𝐴𝐶      =  
𝑖        − 𝑗            𝑘  

−2        2          2 
1         1           4 

  

𝐴𝐵      ∧ 𝐴𝐶      =  8 − 2 𝑖 −  −8 − 2 𝑗 +  −2 − 2 𝑘   

𝐴𝐵      ∧ 𝐴𝐶      =  6. 𝑖 + 10. 𝑗 − 4. 𝑘   

 𝐴𝐵      ∧ 𝐴𝐶       =  62 + 102 +  −4 2 =  152 

𝑆𝐴𝐵𝐶 =
𝑆

2
=

 152

2
   (𝑠𝑢)  

 

𝑩 

𝑪 𝑺 

A 𝑺𝑨𝑩𝑪 

𝑨𝑩       ⋀𝑨𝑪       
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 the volume constituted by AB       , AC       and AD      : 

AD       𝐴𝐵      ∧ 𝐴𝐶       =  
−1     − 1     1
−2         2        2 
1          1          4 

 = 0    

V=0,  either the 3 vectors are in the same plane 

Exercise 5 

V   = i + 2 j + 3k   which passes through the point A(3, 4, 2). 

1. The moment of the vector 𝑉   relative to the origin O 

ℳ    𝑉   𝑂 = 𝑂𝐴       ∧ 𝑉   

𝑂𝐴       

𝑥𝐴 − 𝑥𝑂

𝑦𝐴 − 𝑦𝑂
𝑧𝐴 − 𝑧𝑂

  𝑂𝐴       

3 − 0
4 − 0
2 − 0

  𝑂𝐴       

3
4
2
  

ℳ    𝑉   𝑂 = 𝑂𝐴      ⋀𝑉  =  
𝑖       − 𝑗         𝑘  

3         4        2 
1          2        3

  

ℳ    𝑉   𝑂 =  4.3 − 2.2 . 𝑖 −  3.3 − 2.1 . 𝑗 +  3.2 − 4.1 . 𝑘   

ℳ    𝑉   𝑂 = 8. 𝑖 − 7𝑗  + 2. 𝑘   

❋  Moment of 𝑉   relative to OX: 

ℳ    𝑉   (𝑂𝑋) = ℳ    𝑉   𝑂 . 𝑖   =  

8
7
2
 .  

1
0
0
 = 8 

❋  Moment of 𝑉   relative to OY: 

ℳ    𝑉   (𝑂𝑦) = ℳ    𝑉   𝑂 . 𝑗    =  

8
7
2
 .  

0
1
0
 = 0 

2) Moment of vector V    relative to point B (3, 6, 0) 
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ℳ    𝑉   𝐵 = 𝐵𝐴       ∧ 𝑉   

𝐵𝐴       

𝑥𝐴 − 𝑥𝐵

𝑦𝐴 − 𝑦𝐵
𝑧𝐴 − 𝑧𝐵

  𝐵𝐴       

3 − 3
4 − 6
2 − 0

  𝐵𝐴       

0
−2
2

  

ℳ    𝑉   𝐵 = 𝐵𝐴      ⋀𝑉  =  
𝑖          − 𝑗         𝑘  

0     − 2      2 
1          2        3

 =  −10 . 𝑖 + 2. 𝑗 + 2. 𝑘   

ℳ    𝑉   𝐵 = −10. 𝑖 + 2. 𝑗 + 2. 𝑘   

3) Moment of 𝑉   relative to (Δ) : 

ℳ    𝑉   (Δ)  = ℳ    𝑉   𝐵 . 𝑢     =  

−10
2
2

 .  

−1/ 2
1/2
 1/2

 =
10

 2
+ 1 + 1 

ℳ    𝑉   (Δ)  =
10

 2
+ 2  
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I.1. Introduction   مقدمة 

The kinematics is the mechanical branch (which is a physical branch) that 

determines the motion of the body in its position, velocity, acceleration, trajectory, 

without addressing the reasons responsible for this movement (forces). We will 

limit our study of kinematics to the study of the movement of a particle. 

I.2. Definitions  

I.2.1. Particle 

The particle is an object without dimensions and its mass is concentrated in its 

center of gravity. Therefore any effect of rotation of the body around itself or its 

spatial extension will be neglected. For example, Earth can be considered a particle 

in relation to the solar system 

I.2.2. Trajectory 

The trajectory of a mobile is the set of successive positions that it occupies over 

time in relation to the chosen reference system. Mathematically it is a relationship 

linking the coordinates x, y and z to each other independently of time. 

 

 

 

 

 

 

 

I.2.3. Equation of motion ( 

The equation of motion  is the variation of the position of a mobile as a function of 

time, in a chosen reference frame. 

Example :  
𝑥 = 2𝑡 − 1
𝑦 = 𝑡2        

   

I.3. Movement characteristics 

Describing the body's motion requires three vectors:: 

 Position vector. 

 Velocity vector. 

 Accélération vector. 

P (t3) 

P (t1) 
P (t2) 

P (t4) 
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I.3.1. Position vecteur 

We call the position vector of a particle M at time t in the Cartesian coordinate 

system (𝑂, 𝑖 , 𝑗 , 𝑘  ), the vector 𝑟 (𝑡) = 𝑂𝑀         

𝑟 (𝑡) = 𝑂𝑀       = 𝑥(𝑡)𝑖 + 𝑦(𝑡)𝑗 + 𝑧(𝑡)𝑘   

Remark: 

The displacement vector represents the oriented distance which separates the 

starting point M from the arrival point M' 

(𝑂𝑀        𝑎𝑛𝑑 𝑂𝑀′         : 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟𝑠, 𝑀𝑀′           𝑑𝑖𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑣𝑒𝑐𝑡𝑜𝑟). 

 

 

 

 

 

 

 

 

 

 

 

 

I.3.2. Velocity vector 

The speed at time t is the variation of the position with respect to time. In addition, 

this quantity is vector. 

𝑣 (𝑡) =
𝑑𝑂𝑀       

𝑑𝑡
 

Velocity vector 𝑣  tangent to the trajectory at point M 

The unit of speed in the international system is m/s. 

There are two velocity vectors: average velocity vector and instantaneous velocity 

vector. 

 

𝒓   

 

𝑗  

𝒛 

𝒙 

𝑋 

𝑍 

𝑂 

𝑴(𝒙, 𝒚, 𝒛) 

𝑌 

𝑘   𝒚 

𝑖  

 

𝑖  

𝑗  

𝑋

X 

𝑌 

𝑂 

M’(t’) 

M(t) 
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I.3.2.1. Average velocity vector 

Average velocity is the change in overall distance relative to elapsed time. 

Let point M be at time t and point M’ at time t’  

𝑣𝑚      =
𝑀𝑀′          

∆𝑡
 

∆𝑡 = 𝑡 ′ − 𝑡       

 

 

 

 

 

 

 

I.3.2.2. Instantaneous velocity vector 

We define the instantaneous velocity at time t by: 

𝑣 =  lim
∆𝑡→0

𝑣𝑚      = 
𝑑𝑂𝑀       

𝑑𝑡
 

Remark:  

The instantaneous velocity vector is carried by the tangent to the trajectory at point 

M 

𝑗  

𝑋 

𝑍 

𝑂  

𝑀(𝑡) 

𝑌 

𝑘   

𝑖  

 

𝒗    

𝑖  

𝑗  

𝑋X 

𝑌 

𝑂 

M’(t’) 

M(t) 
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I.3.3. Accelération vector  

The acceleration vector at time t is the change in velocity vector with respect to 

time. 

𝑎 =
𝑑𝑣 

𝑑𝑡
=

𝑑2𝑂𝑀       

𝑑𝑡2
 

The unit of acceleration in the system international is m/s
I.
 

We distinguish two accelerations: 

I.3.3.1. Average acceleration vector 

Average acceleration vector is the variation in velocity vector over time 

𝑎 𝑚 =
∆𝑣 

∆𝑡
=

𝑣 ′    − 𝑣 

𝑡 ′ − 𝑡
 

 

 

 

 

 

 

 

 

 

 

I.3.3.2. Instantaneous acceleration vector 

Instantaneous acceleration is the derivative of the velocity vector with respect to 

time 

𝑎 =  lim
∆𝑡→0

𝑎𝑚      = lim
∆𝑡→0

∆𝑣 = 

𝑎 =  
𝑑𝑣 

𝑑𝑡
=

𝑑2𝑂𝑀       

𝑑𝑡2
 

 

𝑗  

𝑋 

𝑍 

𝑂 

𝑀(𝑡) 

𝑌 

𝑘   

𝑖  

 

𝑀′(𝑡′) 

𝒗    

𝒗′     

𝒂   𝒎 
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I.4. Coordinate system 

The vectors: position, velocity and acceleration of a mobile M are defined in 

relation to a reference frame, so the description of the movement of M requires the 

definition of these vectors. 

I.4.1. Cartesian coordinates 

Soit A direct orthonorm repair from the origin of the base (𝑖 , 𝑗 , 𝑘  ).  

Let 𝑅(𝑂, 𝑖 , 𝑗 , 𝑘  ) be a direct orthonormal frame of origin O and base (𝑖 , 𝑗 , 𝑘  ) 

I.4.1.1. Position vector: 

𝑂𝑀       = 𝑥𝑖 + 𝑦𝑗  + 𝑧𝑘              

 

 

 

 

 

 

 

 

 

 

I.4.1.2. Velocity vector: 

𝑣 =
𝑑𝑂𝑀       

𝑑𝑡
=

𝑑𝑥

𝑑𝑡
𝑖 +

𝑑𝑦

𝑑𝑡
𝑗 +

𝑑𝑧

𝑑𝑡
𝑘  = 𝑥 𝑖 + 𝑦 𝑗 + 𝑧 𝑘  = 𝑣𝑥 𝑖 + 𝑣𝑦 𝑗 + 𝑣𝑧𝑘   

The components in cartesian coordinates of the velocity vector are therefore: 

 
 
 

 
 𝑣𝑥 =

𝑑𝑥

𝑑𝑡
= 𝑥         

𝑣𝑦 =
𝑑𝑦

𝑑𝑡
= 𝑦         

𝑣𝑧 =
𝑑𝑧

𝑑𝑡
= 𝑧         

   

The unit vectors (𝑖 , 𝑗 , 𝑘  ) are fixed in the cartesian reference frame, therefore: 

𝑑𝑖 

𝑑𝑡
=

𝑑𝑗 

𝑑𝑡
=

𝑑𝑘  

𝑑𝑡
= 0 

𝒓  = 𝑶𝑴         

 

𝑗  

𝑧 

𝑥 

𝑋 

𝑍 

𝑂 

𝑀(𝑥, 𝑦, 𝑧) 

𝑌 

𝑘   
𝑦 

𝑖  

 
𝑖  

𝑗  

𝑋

X 

𝑌 

𝑂 

M(x,y) 

x 

y 

 𝑂𝑀       = 𝑥𝑖 + 𝑦𝑗   
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I.4.1.3. Accélération vector: 

𝑎 =
𝑑𝑣  

𝑑𝑡
=

𝑑𝑣𝑥

𝑑𝑡
𝑖 +

𝑑𝑣𝑦

𝑑𝑡
𝑗 +

𝑑𝑣𝑧

𝑑𝑡
𝑘  = 𝑥 𝑖 + 𝑦 𝑗  + 𝑧 𝑘  = 𝑎𝑥 𝑖 + 𝑎𝑦 𝑗 + 𝑎𝑧𝑘    

The components in cartesian coordinates of the velocity vector are therefore: 

𝑎𝑥 =
𝑑𝑣𝑥

𝑑𝑡
= 𝑥    

 𝑎𝑦 =
𝑑𝑣𝑦

𝑑𝑡
= 𝑦          

 𝑎𝑧 =
𝑑𝑣𝑧

𝑑𝑡
= 𝑧   

I.4.2. Polar coordinates 

We can locate the position of the point M by a coordinate r (distance between the 

origin of the mark and the point M) and θ oriented angle that the vector 𝑟  makes 

with the abscissa axis (OX). 

The data (r, θ) called polar coordinates. The basis of the polar coordinate system is 

formed by two unit vectors (𝑢𝑟     , 𝑢𝜃     ) 

𝑂𝑀       = 𝑟. 𝑢𝑟       𝑂𝑀        = 𝑟   

 𝑢𝑟      =  𝑢𝜃      = 1  and  𝑢𝑟     ⊥ 𝑢𝜃                

0 ≤ 𝑟 < +∞et0 ≤ 𝜃 ≤ 2𝜋            

Polar coordinates are linked to Cartesian coordinates by: 

 
𝑥 = 𝑟. 𝑐𝑜𝑠𝜃

𝑦 = 𝑟. 𝑠𝑖𝑛𝜃

  𝑟 =  𝑥2 + 𝑦2  

 

 

 

 

 

 

 

 

 

𝑖  

𝑌 

𝑂 

𝑀 

𝑋 

𝑗  

𝑟  

 

𝒖   𝒓 𝒖   𝜽 

𝜽 

𝒖   𝒓 
𝒖   𝜽 
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I.4.2.1. Position vector: 

𝑂𝑀        𝑡 = 𝑟  𝑡 =  𝑂𝑀        . 𝑢𝑟     = 𝑟. 𝑢𝑟      

𝑢𝑟     =  𝑐𝑜𝑠𝜃. 𝑖 + 𝑠𝑖𝑛𝜃. 𝑗  

 𝑶𝑴        (𝒕) = 𝒓  (𝒕) = 𝒓.  𝒄𝒐𝒔𝜽. 𝒊 + 𝒔𝒊𝒏𝜽. 𝒋    

I.4.2.2. velocity vector:  

𝑣  𝑡 =
𝑑𝑟  𝑡 

𝑑𝑡
=

𝑑

𝑑𝑡
 𝑟. 𝑢𝑟      =

𝑑𝑟

𝑑𝑡
𝑢𝑟     + 𝑟

𝑑𝑢𝑟      

𝑑𝑡
  

 
𝑑𝑢𝑟      

𝑑𝑡
=  

𝑑

𝑑
.  𝑐𝑜𝑠𝜃. 𝑖 + 𝑠𝑖𝑛𝜃. 𝑗   =  −𝑠𝑖𝑛𝜃. 𝑖 + 𝑐𝑜𝑠𝜃. 𝑗   

𝑑𝜃

𝑑𝑡
=

𝑑𝜃

𝑑𝑡
𝑢𝜃      

𝑢𝜃     = −𝑠𝑖𝑛𝜃. 𝑖 + 𝑐𝑜𝑠𝜃. 𝑗  

𝒗    𝒕 =
𝒅𝒓

𝒅𝒕
𝒖𝒓     + 𝒓 

𝒅𝜽

𝒅𝒕
𝒖𝜽     = 𝒓  𝒖𝒓      + 𝒓𝜽  𝒖𝜽      

𝜃   𝑡 = 𝜔 𝑡 =  𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑢𝑡𝑦   السرعة  الزاوية  

So the components of the velocity in the polar base are:  
𝑣𝑟 = 𝑟     

𝑣𝜃 = 𝑟𝜃  
  

I.4.2.3. Acceleration vector:  

𝑎  𝑡 =
𝑑𝑣  𝑡 

𝑑𝑡
=

𝑑

𝑑𝑡
 𝑟  𝑢𝑟      + 𝑟𝜃  𝑢𝜃      

=
𝑑2𝑟

𝑑𝑡2
𝑢𝑟     + 𝑟 

𝑑𝑢𝑟     

𝑑𝑡
+

𝑑𝑟

𝑑𝑡
𝜃  𝑢𝜃     + 𝑟 

𝑑2𝜃

𝑑𝑡2
𝑢𝜃     + 𝑟 𝜃 

𝑑𝑢𝜃     

𝑑𝑡
 

𝑑𝑢𝜃     

𝑑𝑡
=

𝑑

𝑑
.  −𝑠𝑖𝑛𝜃. 𝑖 + 𝑐𝑜𝑠𝜃. 𝑗   =  −𝑐𝑜𝑠𝜃. 𝑖 − 𝑠𝑖𝑛𝜃. 𝑗   

𝑑𝜃

𝑑𝑡
= −

𝑑𝜃

𝑑𝑡
𝑢𝑟      

𝑎  𝑡 =
𝑑𝑣  𝑡 

𝑑𝑡
=  

𝑑2𝑟

𝑑𝑡2
− 𝑟𝜃 2 𝑢𝑟     +  2

𝑑𝑟

𝑑𝑡

𝑑𝜃

𝑑𝑡
+ 𝑟

𝑑2𝜃

𝑑𝑡2
 𝑢𝜃      

𝒂    𝒕 =
𝒅𝒗    𝒕 

𝒅𝒕
=  𝒓 − 𝒓𝜽𝟐  𝒖𝒓     +  𝟐𝒓 𝜽 + 𝒓𝜽  𝒖𝜽      

So the components of the acceleration in the polar base are: 
𝑎𝑟 = 𝑟 − 𝑟𝜃2  

   
𝑎𝜃 = 2𝑟 𝜃 + 𝑟𝜃 
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I.4.3. Cylindrical coordinates 

In the cylindrical coordinate system, a point M in space is represented by 

coordinates (r, θ, z), where: r and θ are the polar coordinates of the projection of M 

onto the XY plane, z is the distance along the OZ axis, and the unit vectors (𝑢𝑟     , 𝑢𝜃     , 

𝑘  ) constituting the basis of the cylindrical reference frame 

( 0 ≤ r < +∞ , 0≤ θ ≤ 2π and -∞ < z < + ∞ ). 

The movement of a point  M is divided into two movements:  

-a movement in the polar reference frame on the plane (XOY)  

- a translation movement along the OZ axis. 

I.4.3.1. Position Vector:  

𝑂𝑀       = 𝑂𝑀′         + 𝑀′𝑀          = 𝑟. 𝑢𝑟     + 𝑧 𝑘    

𝑂𝑀′         = 𝑟. 𝑢𝑟      

𝑀′𝑀          = 𝑧 𝑘   

𝑂𝑀       = 𝑟. 𝑢𝑟     + 𝑧 𝑘   

 𝑂𝑀        =  𝑟2 + 𝑧2 

 𝑢𝑟     =  𝑐𝑜𝑠𝜃. 𝑖 + 𝑠𝑖𝑛𝜃. 𝑗  

𝑢𝜃     = −𝑠𝑖𝑛𝜃. 𝑖 + 𝑐𝑜𝑠𝜃. 𝑗  

 
𝑥 = 𝑟. 𝑐𝑜𝑠𝜃
𝑦 = 𝑟. 𝑠𝑖𝑛𝜃
𝑧 = 𝑧           

       

 
𝑟 =  𝑥2 + 𝑦2

𝑡𝑎𝑛𝜃 =
𝑦

𝑥
        

𝑧 = 𝑧                

           

 

I.4.3.2. Velocity vector 

𝑣  𝑡 =
𝑑𝑂𝑀        

𝑑𝑡
=

𝑑

𝑑𝑡
 𝑟. 𝑢𝑟     + 𝑧𝑘   =

𝑑𝑟

𝑑𝑡
𝑢𝑟     + 𝑟

𝑑𝑢𝑟      

𝑑𝑡
+

𝑑𝑧

𝑑𝑡
𝑘  = 𝑟  𝑢𝑟      + 𝑟𝜃  𝑢𝜃     + 𝑧 𝑘     

So the components of the velocity vector in the cylindrical base are:  

𝑣𝑟 = 𝑟     

𝑣𝜃 = 𝑟𝜃 

𝑣𝑧 =  𝑧    

  

 

𝒌    
𝒖𝜽      

𝒖𝒓      
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I.4.3.3. Acceleration vector  

𝑎 =
𝑑𝑣 

𝑑𝑡
=

𝑑

𝑑𝑡
 𝑟  𝑢𝑟      + 𝑟𝜃  𝑢𝜃     + 𝑧 𝑘   

=
𝑑2𝑟

𝑑𝑡2
𝑢𝑟     + 𝑟 

𝑑𝑢𝑟     

𝑑𝑡
+

𝑑𝑟

𝑑𝑡
𝜃  𝑢𝜃     + 𝑟 

𝑑2𝜃

𝑑𝑡2
𝑢𝜃     + 𝑟 𝜃 

𝑑𝑢𝜃     

𝑑𝑡
+ 𝑧 𝑘   

𝑎 =
𝑑𝑣 

𝑑𝑡
=  

𝑑2𝑟

𝑑𝑡2
− 𝑟𝜃 2 𝑢𝑟     +  2

𝑑𝑟

𝑑𝑡

𝑑𝜃

𝑑𝑡
+ 𝑟

𝑑2𝜃

𝑑𝑡2
 𝑢𝜃     + 𝑧 𝑘   

𝒂    𝒕 =
𝒅𝒗    𝒕 

𝒅𝒕
=  𝒓 − 𝒓𝜽𝟐  𝒖𝒓     +  𝟐𝒓 𝜽 + 𝒓𝜽  𝒖𝜽     + 𝒛 𝒌    

So the components of the acceleration vector in the cylindrical base are: 

 
𝑎𝑟 = 𝑟 − 𝑟𝜃2     

𝑎𝜃 = 2𝑟 𝜃 + 𝑟𝜃 

𝑎𝑧 =  𝑧               

  

I.4.4. Spherical coordinates 

A point M is represented in the spherical coordinate  system, by the coordinates (r, 

θ, 𝜑),where the unitary vectors ( 𝑢𝑟     , 𝑢𝜃     ,  𝑢𝜑      ) constituting  the basis: 

0 ≤ 𝑟 < +∞  

 0 ≤ 𝜃 ≤ 𝜋     

0 ≤ 𝜑 < 2𝜋 ). 

 

 

 

 

 

 

I.4.4.1. Position Vector 

𝑂𝑀       = 𝑟. 𝑢𝑟      

 
 
 

 
 𝑢𝑟     = sin 𝜃 𝑐𝑜𝑠𝜑. 𝑖 + 𝑠𝑖𝑛𝜃. sin 𝜑 . 𝑗 + cos 𝜃 𝑘             

𝑢𝜃     =
𝑑𝑢𝑟     

𝑑𝜃
= cos 𝜑 𝑐𝑜𝑠𝜃. 𝑖 + sin 𝜑 𝑐𝑜𝑠𝜃. 𝑗 − sin 𝜃 𝑘  

𝑢𝜑      = 𝑢𝑟     ⋀ 𝑢𝜃      = − 𝑠𝑖𝑛𝜑. 𝑖 + 𝑐𝑜𝑠𝜑. 𝑗                          

  

 

𝑢𝜑       
 𝑢𝑟      

𝑢𝜃      
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𝑂𝑀       = 𝑟𝑢𝑟     = 𝑟 sin 𝜃 𝑐𝑜𝑠𝜑𝑖 + 𝑠𝑖𝑛𝜃. sin 𝜑 𝑗 + cos 𝜃 𝑘    

𝑂𝑀       =   
𝑥 = 𝑟𝑠𝑖𝑛𝜃. 𝑐𝑜𝑠𝜑   
𝑦 = 𝑟𝑠𝑖𝑛𝜃. 𝑠𝑖𝑛𝜑    
𝑧 = 𝑟𝑐𝑜𝑠𝜃             

  

I.4.4.2. Velocity vector 

𝑣  𝑡 =
𝑑𝑂𝑀       

𝑑𝑡
=

𝑑

𝑑𝑡
 𝑟. 𝑢𝑟      =

𝑑𝑟

𝑑𝑡
𝑢𝑟     + 𝑟

𝑑𝑢𝑟     

𝑑𝑡
 

𝑑𝑢𝑟     

𝑑𝑡
=

𝑑𝑢𝑟     

𝑑𝜃

𝑑𝜃

𝑑𝑡
+

𝑑𝑢𝑟     

𝑑𝜑

𝑑𝜑

𝑑𝑡

= 𝜃  𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜑𝑖 + 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜑𝑗 − sin 𝜃 𝑘   

+ 𝜑  −𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑𝑖 + 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑𝑗   

𝑑𝑢𝑟     

𝑑𝑡
= 𝜃 𝑢𝜃     + 𝜑 sin 𝜃 𝑢𝜑       

𝑣 = 𝑟 𝑢𝑟     + 𝑟𝜃 𝑢𝜃     +r𝜑 sin 𝜃 𝑢𝜑       

The components of velocity vector in the spherical basis are:𝑣 =   

𝑣𝑟 = 𝑟                 

𝑣𝜃 = 𝑟𝜃               
𝑣𝑧 =  𝑟𝜑 sin 𝜃   

  

 

I.4.4.3. Acceleration vector  

𝑎 =
𝑑𝑣 

𝑑𝑡
=

𝑑

𝑑𝑡
 𝑟 𝑢𝑟     + 𝑟𝜃 𝑢𝜃     +  r𝜑 sin 𝜃 𝑢𝜑        

𝑎 =
𝑑𝑟 

𝑑𝑡
𝑢𝑟     + 𝑟 

𝑑𝑢𝑟     

𝑑𝑡
+

𝑑𝑟

𝑑𝑡
𝜃 𝑢𝜃     + 𝑟

𝑑𝜃 

𝑑𝑡
𝑢𝜃     + 𝑟𝜃 

𝑑𝑢𝜃     

𝑑𝑡
+

𝑑𝑟

𝑑𝑡
𝜑 sin 𝜃 𝑢𝜑      + r

d𝜑 

dt
sin 𝜃 𝑢𝜑      

+ r𝜑 
𝑑 sin 𝜃

𝑑𝑡
𝑢𝜑      + r𝜑 sin 𝜃

𝑑𝑢𝜑      

𝑑𝑡
 

𝑑𝑢𝜃     

𝑑𝑡
=

𝑑𝑢𝜃     

𝑑𝜃

𝑑𝜃

𝑑𝑡
+

𝑑𝑢𝜃     

𝑑𝜑

𝑑𝜑

𝑑𝑡
     

𝑑𝑢𝜃     

𝑑𝑡
= 𝜃  −𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑𝑖 − 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑𝑗 − cos 𝜃 𝑘   + 𝜑  −𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜑𝑖 + 𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜑𝑗   

𝑑𝑢𝜃      

𝑑𝑡
= −𝜃 𝑢𝑟     + 𝜑 cos 𝜃 𝑢𝜑          
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𝑢𝜑      = 𝑢𝑟     ⋀ 𝑢𝜃     =
𝑑𝑢𝑟     

𝑑𝑡
⋀ 𝑢𝜃     + 𝑢𝑟     ⋀  

𝑑𝑢𝜃     

𝑑𝑡

=  𝜃 𝑢𝜃     + 𝜑 sin 𝜃 𝑢𝜑       ⋀ 𝑢𝜃     + 𝑢𝑟     ⋀  −𝜃 𝑢𝑟     + 𝜑 cos 𝜃 𝑢𝜑        

𝑢𝜑      = −𝜑  sin 𝜃 𝑢𝑟     + cos 𝜃 𝑢𝜃       

𝑎 =  𝑟 − 𝑟𝜃2 − r𝜑 2 sin2 𝜃 𝑢𝑟     +  2𝑟 𝜃 + 𝑟𝜃 − r𝜑 2 sin 𝜃𝑐𝑜𝑠𝜑 𝑢𝜃     

+  2𝑟 𝜑 sin 𝜃 + 2𝑟𝜃 𝜑 cos 𝜃 + 𝑟𝜑 sin 𝜃 𝑢𝜑       

The acceleration components in the sphérique basis are: 

𝑎 =  

𝑎𝑟 = 𝑟 − 𝑟𝜃2 − r𝜑 2 sin2 𝜃                             

𝑎𝜃 = 2𝑟 𝜃 + 𝑟𝜃 − r𝜑 2 sin 𝜃𝑐𝑜𝑠𝜃                  

𝑎𝜑 =  2𝑟 𝜑 sin 𝜃 + 2𝑟𝜃 𝜑 cos 𝜃 + 𝑟𝜑 sin 𝜃  

  

I.4.5. Frenet frame (Intrinsic basis) 

For movements on curvilinear trajectories, the study of point M in cartesian 

coordinates is complex. Frenet frame, associated with point M, makes it possible to 

overcome this difficulty. We associate two unit vectors: 𝑢𝑡     and 𝑢𝑛     . 

Frenet frame is a reference frame that moves with the mobile M. Its characteristics 

are: 

• Its origin is a point M 

• Unit vector 𝑢𝑡     is tangent to the trajectory in M and oriented in the direction of 

movement. 

• Unit vector 𝑢𝑛         is normal to the trajectory in M (and therefore also to 𝑢𝑡    ) and 

oriented towards the center of the curvature 

 

 

 

 

 

 

 

 

 

𝑗  

𝑋 

𝑂 

𝑀 

𝑌 

𝑖  

 

M’ 

𝒖   𝒕 

𝒖   𝒕 𝒖   𝒏 

𝒖   𝒏 
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I.4.5.1. Curvilinear abscissa  

The curvilinear abscissa s at time t of point M is the algebraic value of the arc 

(MM’) 

𝑠 𝑡 = 𝑀𝑀′  (MM'=OM'-OM= r'-r=∆r) 

When M’ approaches M, M'M=dr=dOM 

So    𝑑𝑂𝑀       = 𝑑𝑠 𝑢𝑡     

I.4.5.2. Velocity vector in the Frenet reference frame: 

By definition, the velocity vector is the derivative of the position vector 

𝑣 =
𝑑𝑂𝑀       

𝑑𝑡
=

𝑑𝑂𝑀       

𝑑𝑠

𝑑𝑠

𝑑𝑡
     

𝑑𝑠

𝑑𝑡
𝑢𝑡    = 𝑣 𝑢𝑡    =  

𝑣

0
  

𝑣 = 𝑣 𝑢𝑡     

Where the speed v (magnitude) in this system is expressed by the derivative of the 

curvilinear abscissa s with respect to time: 

𝑣 =
𝑑𝑠

𝑑𝑡
 

The velocity vector is always tangential to the trajectory of the mobile. 

I.4.5.3. Acceleration vector in the Frenet reference frame: 

The acceleration vector is defined by the derivative of the velocity vector: 

𝑎 =
𝑑𝑣 

𝑑𝑡
=

𝑑

𝑑𝑡
 𝑣 𝑢𝑡     =  

𝑑𝑣

𝑑𝑡
𝑢𝑡    + 𝑣

𝑑𝑢𝑡    

𝑑𝑡
 

𝑑𝑢𝑡    

𝑑𝑡
=

𝑑𝑢𝑡    

𝑑𝑠

𝑑𝑠

𝑑𝑡
=

𝑑𝑢𝑡    

𝑑𝑠

𝑑𝑠

𝑑𝜃

𝑑𝜃

𝑑𝑡
=

𝑑𝑢𝑡    

𝑑𝜃

𝑑𝑠

𝑑𝑡

𝑑𝜃

𝑑𝑠
 

The derivative of the unit vector 𝑢𝑡     with respect to θ gives: 

𝑑𝑢𝑡    

𝑑𝜃
= 𝑢𝑛      

The sd arc :  ds = Rd θ            
𝑑𝜃

𝑑𝑠
=

1

𝑅
 

Where R represents the radius of the curvature of the trajectory. 

𝑑𝑢𝑡    

𝑑𝑡
=

𝑣

𝑅
𝑢𝑛      
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𝑎 =
𝑑𝑣

𝑑𝑡
𝑢𝑡    +

𝑣2

𝑅
𝑢𝑛      

Tangential acceleration    𝑎𝑡    =
𝑑𝑣

𝑑𝑡
𝑢𝑡     

Normal acceleration         𝑎𝑛     =
𝑣2

𝑅
𝑢𝑛      

𝑎 = 𝑎𝑡𝑢𝑡    + 𝑎𝑛𝑢𝑛      

 𝑎  =  𝑎𝑡
2 + 𝑎𝑛

2           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I.5. Types of movement أنواع الحركة 

If we consider the path as the criterion for dividing movement, we have two types 

of movement: 

I.5.1. Rectilinear Movement المستقيمةالحركة  

The body's movement is rectified if the track is a drop. The repère is composed of 

an ax (Ox). The point M is repeated by my son x. 

𝑟  𝑡 = 𝑂𝑀       = 𝑥 𝑡 𝑖  

𝑣 =   
𝑑𝑂𝑀       

𝑑𝑡
=

𝑑𝑥

𝑑𝑡
𝑖 = 𝑥 𝑖  

𝑎 =  
𝑑𝑣 

𝑑𝑡
=

𝑑2𝑂𝑀       

𝑑𝑡2
=

𝑑2𝑥

𝑑𝑡𝑡
𝑖 = 𝑥 𝑖  

𝑗  

𝑋 

𝑂 

𝑀 

𝑌 

𝑖  

 

M’ 

𝒖   𝒕 

𝒂   𝒕 

𝒖   𝒏 

𝒗    

𝒂   𝒏 

dθ 

ds 

M 

M’ 

R 
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I.5.1.1. Uniform rectilinear movement  المنتظمةالحركة المستقيمة     

The motion rectangle uniform and the vitesse are constant at all times. 

𝑣 𝑡 = 𝑣0 = 𝑐𝑡𝑒 

𝑎 =
𝑑𝑣

𝑑𝑡
= 0 

𝑣 =
𝑑𝑥

𝑑𝑡
= 𝑣0  𝑑𝑥 = 𝑣0𝑑𝑡   𝑑𝑥 =

𝑥

𝑥0

 𝑣0

𝑡

𝑡0

𝑑𝑡  𝑥 − 𝑥0 = 𝑣0 𝑡 − 𝑡0  

 𝑥 = 𝑥0 + 𝑣0 𝑡 − 𝑡0  

If at  𝑡0 = 0 𝑎𝑛𝑑 𝑥0 = 0  

 
 
 

 
 

𝑥 = 𝑣0 𝑡
    

𝑣 𝑡 = 𝑣0

𝑎 𝑡 = 0

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I.5.1.2. Uniformly varied rectilinear movement   الحركة المستقيمةالمتغيرة بانتظام  

This movement of acceleration is constant at all times. 

𝑎 =
𝑑𝑣

𝑑𝑡
=

𝑑2𝑥

𝑑𝑡2
= 𝑎0 = 𝑐𝑡𝑒 

𝑎 =
𝑑𝑣

𝑑𝑡
= 𝑎0  𝑑𝑣 = 𝑎0𝑑𝑡   𝑑𝑣

𝑣

𝑣0

=  𝑎0𝑑𝑡
𝑡

𝑡0

 

 𝑣 − 𝑣0 = 𝑎0 𝑡 − 𝑡0  

𝑡 

𝑂 

𝑎(𝑡) 

𝑣(𝑡) 

𝑡 

𝑂 

𝒗𝟎 > 0 

𝒗𝟎 < 0 

𝑡 

𝑂 

𝑥(𝑡) 

𝒙 = 𝒙𝟎 + 𝒗𝟎𝒕 

𝒙 = 𝒙𝟎 + 𝒗𝟎𝒕 

𝒗𝟎 < 0 

𝒗𝟎 > 0 
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𝑣 =
𝑑𝑥

𝑑𝑡
= 𝑣0 + 𝑎0 𝑡 − 𝑡0   𝑑𝑥

𝑥

𝑥0

=  𝑣0𝑑𝑡
𝑡

𝑡0

+ 𝑎0   𝑡 − 𝑡0 𝑑𝑡
𝑡

𝑡0

 

 𝑥 − 𝑥0 = 𝑣0 𝑡 − 𝑡0 +
1

2
𝑎0 𝑡 − 𝑡0 

2 

𝑥(𝑡) =
1

2
𝑎0 𝑡 − 𝑡0 

2 + 𝑣0 𝑡 − 𝑡0 + 𝑥0 

 

 case where a0 > 0 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 case where a0 < 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒙𝟎 

𝑡 

𝑂 

𝑥(𝑡) 

Parable 

𝑣(𝑡) 

𝑡 

𝑂 

𝒗𝟎 

𝑡 

𝑂 

𝑎(𝑡) 

𝒂 = 𝒄𝒕𝒆 

𝑡 

𝑂 

𝑥(𝑡) 

Parable 

𝑣(𝑡) 

𝑡 

𝑂 

𝒗𝟎 

𝑡 

𝑂 

𝑎(𝑡) 

𝒂 = 𝒄𝒕𝒆 
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Note:  

The movement is said to be accelerated (متسبرعة) if 𝑎  . 𝑣 > 0, and decelerated or 

delayed (متببطئة) if  𝑎     . 𝑣 < 0 .  As for the direction of movement, it is indicated by 

the direction of the speed v. 

I.5.2. Circular movement الحركة الدائرية 

After moving the circle, the mobile phone will be replaced on a circle of rayon R 

and center O. It is préférable to use the base polaire. 

 

 

 

 

 

 

 

 

a) Vector position: 

𝑂𝑀       = 𝑟. 𝑢𝑟     = 𝑅. 𝑢𝑟      

b) Vecteur vitesse: 

𝑣  𝑡 =
𝑑𝑂𝑀       

𝑑𝑡
=

𝑑

𝑑𝑡
 𝑅. 𝑢𝑟      =

𝑑𝑅

𝑑𝑡
𝑢𝑟     + 𝑅

𝑑𝑢𝑟     

𝑑𝑡
= 𝑅𝜃 𝑢𝜃      

𝑣  𝑡 = 𝑅𝜃 𝑢𝜃      

c) Vecteur accélération: 

𝑎  𝑡 =
𝑑𝑣  𝑡 

𝑑𝑡
=

𝑑

𝑑𝑡
 𝑅𝜃  𝑢𝜃      = 𝑅 

𝑑2𝜃

𝑑𝑡2
𝑢𝜃     + 𝑅 𝜃 

𝑑𝑢𝜃     

𝑑𝑡
 

𝑎  𝑡 =
𝑑𝑣  𝑡 

𝑑𝑡
= −𝑅𝜃 2𝑢𝑟     + 𝑅𝜃 𝑢𝜃      

𝑗  

𝑋 

𝑂 

M 

𝑌 

𝑖  

 

M0 

𝒗    

𝒖   𝜽 

𝒖   𝒓 

𝜽 
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I.5.2.1. Uniform circular movement 

Circular motion is uniform if the angular velocity is a constant w = Cste 

𝜃 = 𝜔𝑡  𝜃 = 𝜔 = 𝑐𝑡𝑒  𝜃 = 0 

𝜃 = 𝜔: angular velocity 

𝑂𝑀       = 𝑅. 𝑢𝑟      

𝑣  𝑡 =
𝑑𝑂𝑀       

𝑑𝑡
= 𝑅𝜔𝑢𝜃      

𝑎  𝑡 =
𝑑𝑣  𝑡 

𝑑𝑡
= −𝑅𝜔2𝑢𝑟      

Then also read: 

𝜃 = 𝜃 𝑡 + 𝜃0 

I.5.2.2. Uniformly varied circular movement 

Circular motion is uniformly varied if the angular acceleration is a constant ̈θ= Cste 

Angular acceleration 𝜃 = 𝑐𝑡𝑒 

𝜃 = 𝜃 𝑡 + 𝜃0 

𝜃 =
1

2
𝜃0
 𝑡2 + 𝜃 0𝑡 + 𝜃0 

Remark 

The uniformly varied circular motion is either accelerated or retarded : 

 The uniformly varied circular motion accelerated if the scalar product: 

𝜃0
 . 𝜃 0 > 0 

 The uniformly varied circular motion retarded if the scalar product:  

𝜃0
 . 𝜃 0 < 0 

 

I.6. Relative motion 

II.6.1. Change of frames of reference 

The study of the movement of a particle in all of the above was in a fixed (absolute) 

frame of reference R.  
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We can also choose another frame of reference R' in motion relative to the first, and 

determine the position, velocity and acceleration of the mobile. 

- 𝑅 𝑂, 𝑖 , 𝑗 , 𝑘    fixed reference, which is called absolute reference. 

- 𝑅′(𝑂′, 𝑖′  , 𝑗′   , 𝑘′    ) in any movement relative to R which is called relative reference. 

 The movement of point M relative to “R” is called absolute movement. 

- The movement of « R' » relative to « R » is called entrainment movement.  

To determine the vectors: position, speed and acceleration, we have different 

methods: direct method and composition method 

I.6 2 . Direct method 

I.6 2 .1. Position vector 

𝑂𝑀       
/𝑅 = 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘   

I.6 2 .2.  Absolute velocity vector 

𝑣 𝑎 𝑀 = 𝑣  𝑀 
𝑅 

=  𝑑𝑂𝑀       

𝑑𝑡
 
𝑅

=
𝑑𝑥

𝑑𝑡
𝑖 +

𝑑𝑦

𝑑𝑡
𝑗 +

𝑑𝑧

𝑑𝑡
𝑘  = 𝑥 𝑖 + 𝑦 𝑗 + 𝑧 𝑘   

 𝑑𝑖 

𝑑𝑡
 
𝑅

= 0   ,    
𝑑𝑗 

𝑑𝑡
 
𝑅

= 0   ,    
𝑑𝑘  

𝑑𝑡
 

𝑅

= 0   

I.6 2 .3. Absolue acceleration  vector 

𝑎 𝑎 𝑀 = 𝑎 (𝑀)/𝑅 =  𝑑𝑣𝑎     

𝑑𝑡
 
𝑅

=  𝑑
2𝑂𝑀        

𝑑𝑡 2
 =

𝑑2𝑥

𝑑𝑡 2
𝑖 +

𝑑2𝑦

𝑑𝑡 2
𝑗 +

𝑑2𝑧

𝑑𝑡 2
𝑘  = 𝑥 𝑖 + 𝑦 𝑗 + 𝑧 𝑘  𝑅  

 

 

 

 

 

 

 

 

 

 

 

 

𝑍′ 𝑀 

𝑗  

𝑋 

𝑍 

𝑂 
𝑌 

𝑘   

𝑖  

 

𝑶𝑶′         

𝑗 ′ 

𝑋′ 

𝑂′ 

𝑌′ 

𝑘′     

𝑖′    

 

𝑶′𝑴          

𝑶𝑴         
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I.6.3. compound movement 

I.6.3.1. position vector 

𝑂𝑀       = 𝑂𝑂′        + 𝑂′𝑀          

𝑂𝑀         the movement of M relative to the absolute reference R 

𝑂′𝑀          the movement of M relative to the relative reference R’ 

𝑂𝑂′         the movement of R’ relative to the R (translation and/or rotation). 

𝑂𝑀       
/𝑅 = 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘   

𝑂′𝑀         
/𝑅′ = 𝒙′𝑖′   + 𝑦′𝑗′   + 𝑧′𝑘′     

I.6.3.2. Absolute velocity vector:  شعاع السرعة المطلقة  

𝑣 𝑎 𝑀 =  𝑑𝑂𝑀        

𝑑𝑡
 
𝑅

=  𝑑𝑂𝑂′         

𝑑𝑡
 
𝑅

+  𝑑𝑂′𝑀         

𝑑𝑡
 
𝑅

=  𝑑𝑂𝑂′         

𝑑𝑡
 
𝑅

+  𝑑
𝑑𝑡

 𝑥′𝑖′   + 𝑦′𝑗′   + 𝑧′𝑘′      
𝑅

   

𝑣 𝑎 𝑀 =
𝑑𝑂𝑂′        

𝑑𝑡
+

𝑑𝑥′

𝑑𝑡
𝑖′   +

𝑑𝑦′

𝑑𝑡
𝑗′   +

𝑑𝑧′

𝑑𝑡
𝑘′    + 𝑥′

𝑑𝑖′   

𝑑𝑡
+ 𝑦′

𝑑𝑗′   

𝑑𝑡
+ 𝑧′

𝑑𝑘′    

𝑑𝑡
 

𝜔   = 𝜔    𝑅′ 𝑅   the angular velocity of R’ with respect to R. 

 𝑑𝑖′   

𝑑𝑡
 

𝑅

= 𝜔    𝑅′ 𝑅  ⋀ 𝑖′    

 𝑑𝑗′   

𝑑𝑡
 

𝑅

= 𝜔    𝑅′ 𝑅  ⋀ 𝑗′    

 𝑑𝑘′    

𝑑𝑡
 

𝑅

= 𝜔    𝑅′ 𝑅  ⋀ 𝑘′     

𝑣 𝑎 𝑀 =
𝑑𝑂𝑂′        

𝑑𝑡
+ 𝑥′𝜔    𝑅′ 𝑅  ⋀ 𝑖′  + 𝑦′𝜔    𝑅′ 𝑅  ⋀ 𝑗′   + 𝑧′𝜔    𝑅′ 𝑅  ⋀ 𝑘′    +

𝑑𝑥′

𝑑𝑡
𝑖′  +

𝑑𝑦′

𝑑𝑡
𝑗′   

+
𝑑𝑧′

𝑑𝑡
𝑘′     

𝑣 𝑎 𝑀 =
𝑑𝑂𝑂′        

𝑑𝑡
+ 𝜔    𝑅′ 𝑅  ⋀ 𝑥′ 𝑖′  + 𝑦′ 𝑗′   + 𝑧′ 𝑘′     +

𝑑𝑥′

𝑑𝑡
𝑖′  +

𝑑𝑦′

𝑑𝑡
𝑗′   +

𝑑𝑧′

𝑑𝑡
𝑘′     

𝑣 𝑎 𝑀 =
𝑑𝑂𝑂′        

𝑑𝑡
+ 𝜔    𝑅′ 𝑅  ⋀𝑂′𝑀         +  𝑑𝑂′𝑀         

𝑑𝑡
 
𝑅′

 

 

 
𝑣 𝑒  𝑣 𝑟  
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𝑣 𝑎 𝑀 = 𝑣 𝑟 + 𝑣 𝑒            absolute velocity 

𝑣 𝑟 =  𝑑𝑂′𝑀         

𝑑𝑡
 
𝑅′

: relative velocity 

𝑣 𝑒 =
𝑑𝑂𝑂′        

𝑑𝑡
+ 𝜔    𝑅′ 𝑅  ⋀𝑂′𝑀         : entrainment velocity  

The movement of the R can be translated ( 
𝑑𝑂𝑂′        

𝑑𝑡
) and rotated (𝜔    𝑅′ 𝑅  ⋀𝑂′𝑀         ). 

*Special cases: 

- If M is fixed in R', 𝑣 𝑟 = 0   𝑣 𝑎 𝑀 = 𝑣 𝑒  

- If R' is fixed relative to R, 𝑣 𝑒 = 0   𝑣 𝑎 𝑀 = 𝑣 𝑟  

- If R' in translation movement relative to R, 𝜔   = 0    𝑣 𝑒 =
𝑑𝑂𝑂′        

𝑑𝑡
 

- If R' in rotational movement relative to R  𝑣 𝑒 = 𝜔    𝑅′ 𝑅  ⋀𝑂′𝑀          

I.6.3.2. Absolute acceleration vector 

𝑎 𝑎 𝑀 =  𝑑𝑣𝑎     

𝑑𝑡
 
𝑅

=
𝑑

𝑑𝑡
   

𝑑𝑂𝑂′        

𝑑𝑡
+ 𝜔    𝑅′ 𝑅  ⋀𝑂′𝑀         + 𝑣𝑟     

𝑅

 

=  𝑑
2𝑂𝑂′        

𝑑𝑡2
 
𝑅

+
𝑑

𝑑𝑡
 𝜔   ⋀𝑂′𝑀          +  𝑑𝑣𝑟    

𝑑𝑡
 
𝑅

 

𝑎 𝑎 𝑀 =  𝑑
2𝑂𝑂′        

𝑑𝑡2
 
𝑅

+
𝑑𝜔   

𝑑𝑡
⋀𝑂′𝑀         + 𝜔   ⋀  𝑑𝑂′𝑀         

𝑑𝑡
 
𝑅

+ 𝜔   ⋀(𝑥′ 𝑖′  + 𝑦′ 𝑗′  + 𝑧′ 𝑘 ′    ) +  𝑑
2𝑂′𝑀         

𝑑𝑡2
 
𝑅′

 

We note that: 
𝑑𝑂′𝑀         

𝑑𝑡
 
𝑅

= 𝜔   ⋀𝑂′𝑀         +  𝑑𝑂′𝑀         

𝑑𝑡
 
𝑅′

(see previous section) 

 𝑑𝑣𝑟    

𝑑𝑡
 
𝑅

=
𝑑

𝑑𝑡
 
𝑑𝑥′

𝑑𝑡
𝑖′  +

𝑑𝑦′

𝑑𝑡
𝑗′   +

𝑑𝑧′

𝑑𝑡
𝑘′     

= 𝑥 ′𝜔   ⋀𝑖′  + 𝑦 ′𝜔   ⋀𝑗′   + 𝑧 ′𝜔   ⋀𝑘′    +
𝑑𝑥 ′

𝑑𝑡
𝑖′  +

𝑑𝑦 ′

𝑑𝑡
𝑗′   +

𝑑𝑧 ′

𝑑𝑡
𝑘′     

 𝑑𝑣𝑟    

𝑑𝑡
 
𝑅

= 𝜔   ⋀(𝑣𝑟    ) +  𝑑𝑣𝑟    

𝑑𝑡
 
𝑅′
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𝑎 𝑎 𝑀 =  𝑑
2𝑂𝑂′        

𝑑𝑡2
 
𝑅

+
𝑑𝜔   

𝑑𝑡
⋀𝑂′𝑀         + 𝜔   ⋀(𝜔   ⋀𝑂′𝑀         + 𝑣𝑟)      + 𝜔   ⋀(𝑣𝑟    ) +  𝑑𝑣𝑟    

𝑑𝑡
 
𝑅′

 

𝑎 𝑎 𝑀 =  𝑑
2𝑂𝑂′        

𝑑𝑡2
 
𝑅

+
𝑑𝜔   

𝑑𝑡
⋀𝑂′𝑀         + 𝜔   ⋀(𝜔   ⋀𝑂′𝑀         ) + 𝜔   ⋀𝑣𝑟    + 𝜔   ⋀(𝑣𝑟    ) +  𝑑𝑣𝑟    

𝑑𝑡
 
𝑅′

 

𝑎 𝑎 𝑀 =
𝑑2𝑂𝑂′        

𝑑𝑡 2 +
𝑑𝜔    

𝑑𝑡
⋀𝑂′𝑀         + 𝜔   ⋀  𝜔   ⋀𝑂′𝑀          + 2𝜔   ⋀𝑣  𝑟 +  𝑑𝑣𝑟     

𝑑𝑡
 
𝑅′

 

 

 

𝑎 𝑎 = 𝑎 𝑟 + 𝑎 𝑒 + 𝑎 𝑐  

 

𝑎 𝑎 : Absolute accélération  

𝑎 𝑟 =  𝑑𝑣  𝑟

𝑑𝑡
 
𝑅′

: relative accélération 

𝑎 𝑒 =  𝑑
2𝑂𝑂′        

𝑑𝑡 2  
𝑅

+
𝑑𝜔    

𝑑𝑡
⋀ 𝑂′𝑀         + 𝜔   ⋀ 𝜔   ⋀𝑂′𝑀          : Entrainment accélération 

𝑎 𝑐 = 2𝜔   ⋀𝑣 𝑟 : Coriolis accélération 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑎 𝑒  𝑎 𝑟  𝑎 𝑐  
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Exercise 1 

The movement of a point M is given by the following time equations: 

  
𝑥 = 𝑡2          
𝑦 = 2𝑡2 + 1

  

-Determine the equation of motion and the nature of the trajectory, represent this 

trajectory graphically. 

Exercise 2 

The motion of a point M is given by the following time equations: 

 
𝑥 = 𝑡            
𝑦 = 2𝑡2 + 1
z = −3t      

  

- Determine the vectors of velecity and acceleration of particle M. 

Exercise 3 

The movement of a point M is described in polar coordinates by: r(θ) =R.sinθ 

θ=wt et R, w are positive constants. 

1- Calculate the components of the velocity: vr and vθ 

2-Calculate the components of the acceleration: ar and aθ 

Exercise 4 

A material point M is moving along the (OX) axis with an acceleration ax as 

represented 

in the graph below. It is assumed that at t = 0, vx = 0, and x = 0. 

1) (a) Find the expressions for the velocity vx(t) during the different phases of the 

motion. 

    (b) Graphically represent vx(t) during all phases. 

    (c) Determine the instants t1 and t2 when the object changes the direction of 

motion. 

Exercises 
 

sin 

-cos cos 

-sin 

derivation 

 اشتقاق



Chapter 1                                                                                        Kinematics of a particle 

58 

 

Z1 

Y 

j1 

k1 

Y1 
o1 o 

  Y 

j

  Y 

k  

M

  Y 

A 

t 

 

  Y 

t 

 

  Y 

Z

  Y 

X1 X   Y 

i1 i   Y 

 

2) (a) Find the expressions for the position x(t) of the object during the different 

phases of the motion. 

    (b) Determine the nature of the motion between t = 0 and t = 7 s. 

Exercise 6 

Consider the absolute reference frame R₁(O₁X₁Y₁Z₁) and the relative reference 

frame R(OXYZ) which rotates around the axis O₁X₁ with an angular speed constant 

ω (OX≡ O₁X₁). Let (D) be a fixed line in the frame R, parallel to OY and passing 

through point A, with OA      = bk     (b = cte). 

Let M be a point moving along the line (D) according to the relation: 

AM       =
1

2
at2 j  

(a = cte) 

-Calculate the absolute velocity and acceleration of point M in the relative reference 

frame R, using the: 

1. Direct method. 

2. The method of composing velocities and accelerations. 
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Exercice 1 

 
𝑥 = 𝑡2          
𝑦 = 2𝑡2 + 1

  

We have 𝑥 = 𝑡2 we replace it in the equation of 𝑦 = 2𝑡2 + 1 so : 𝑦 = 2𝑥2 + 1 

y =  2x2  + 1  

The trajectory is a line that does not pass through the origin. 

 

 

 

 

 

 

 

 

 

 

 

Exercice 2 

1-Velocity: 

𝑣 =
𝑑𝑂𝑀       

𝑑𝑡
= 𝑥 𝑖 + 𝑦 𝑗 + 𝑧 𝑘  = 𝑣𝑥 𝑖 + 𝑣𝑦 𝑗 + 𝑣𝑧𝑘   

𝑂𝑀       = 𝑥𝑖 + 𝑦𝑗  + 𝑧𝑘  = 𝑡𝑖 + 2𝑡2𝑗  + 3𝑡𝑘   𝑣 =

 
  
 

  
 𝑣𝑥 =

𝑑𝑥

𝑥𝑡
= 1          

𝑣𝑦 =
𝑑𝑦

𝑑𝑡
= 4𝑡        

𝑣𝑧 =
𝑑𝑧

𝑑𝑡
= −3       

  

𝒗   = 𝒊 + 𝟒𝒕𝒋 − 𝟑𝒌    

x 0 -1/2 

y 1 0 

Y=2x+1 

𝑖  

𝑗  

𝑋

X 

𝑌 

𝑂 

Solution 
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2-Acceleration: 

 𝑎 =
𝑑𝑣  

𝑑𝑡
= 𝑣 𝑥 𝑖 + 𝑣 𝑦 𝑗 + 𝑣 𝑧𝑘   

 𝑎 =

 
 
 
 

 
 
 𝑣𝑥 =

𝑑𝑥

𝑥𝑡
= 0         

         

𝑣𝑦 =
𝑑𝑦

𝑑𝑡
= 4    

      

𝑣𝑧 =
𝑑𝑧

𝑑𝑡
= 0          

  

𝒂   = 𝟒𝒋  

 

Exercise 3 

1- Velocity in polar coordinates: 

 𝑣  𝑡 =
𝑑𝑟

𝑑𝑡
𝑢𝑟     + 𝑟 

𝑑𝜃

𝑑𝑡
𝑢𝜃     = 𝑟  𝑢𝑟      + 𝑟𝜃  𝑢𝜃       

𝑣𝑟 = 𝑅𝜔. 𝑐𝑜𝑠𝜃

𝑣𝜃 = 𝑅𝜔. 𝑠𝑖𝑛𝜃 

  

r =R.sinθ 𝑟 = 𝑅. 𝜃 . 𝑐𝑜𝑠𝜃 = 𝑅. 𝜔. 𝑐𝑜𝑠𝜃 

𝑑𝜃

𝑑𝑡
= 𝜃 = 𝜔 

𝑣 =  

𝑣𝑟 = 𝑅𝜔. 𝑐𝑜𝑠𝜃

𝑣𝜃 = 𝑅𝜔. 𝑠𝑖𝑛𝜃 

  

2- Acceleration in polar coordinates: 

 𝑎  𝑡 =
𝑑𝑣  𝑡 

𝑑𝑡
=  𝑟 − 𝑟𝜃2  𝑢𝑟     +  2𝑟 𝜃 + 𝑟𝜃  𝑢𝜃       

𝑎𝑟 = −2𝑅𝜔2 . 𝑠𝑖𝑛𝜃
 

𝑎𝜃 = 2𝑅𝜔2 . 𝑐𝑜𝑠𝜃     

  

 

𝑎  𝑡  
𝑎𝑟 = −2𝑅𝜔2 . 𝑠𝑖𝑛𝜃

 
𝑎𝜃 = 2𝑅𝜔2 . 𝑐𝑜𝑠𝜃     
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Exercise 4 

1) (a) The expressions for the velocity v(t):   

𝑎 =
𝑑𝑣

𝑑𝑡
 𝑑𝑣 = 𝑎𝑑𝑡 

 𝑣 𝑡 =  𝑎 𝑡 𝑑𝑡  

• For t ∈ [0, 1]: a(t) = 1 m/s
2
   𝑣 𝑡 =  𝑑𝑡 = 𝑡 + 𝐶1 

At    t = 0 s, v = 0 m/s   C1 = 0   v(t) = t 

• For t ∈  [1, 3]: a(t) = 0 m/s
2
   v(t) = C2. 

At    t = 1 s, v = 1 m/s   C2 = 1   v(t) = 1 m/s 

• For t ∈  [3, 6]: a(t) = −1 m/s
2
   𝑣 𝑡 = − 𝑑𝑡 = −𝑡 + 𝐶3   

At    t = 3 s, v =1 m/s   C3 = 4    v(t) = −t + 4    

• For t ∈  [6, 7]: a(t) = 2 m/s
2
   𝑣 𝑡 =  2𝑑𝑡 = 2𝑡 + 𝐶4    

At             t = 6 s, v = −14 m/s   C4 = −14   v(t) = 2t – 14    

(b) Graphical representation of v(t) during all phases:   

 

 

 

 

 

 

 

 

 

 

 

2) (a) The expressions for the position x(t):  

𝑣 =
𝑑𝑥

𝑑𝑡
 𝑑𝑥 = 𝑣𝑑𝑡  𝑥 𝑡 =  𝑣 𝑡 𝑑𝑡  

• For   t ∈ [0, 1]: v(t) = t   𝑥 𝑡 =  𝑡𝑑𝑡  x t =
1

2
𝑡2 + 𝐶1 

 



Chapter 1                                                                                        Kinematics of a particle 

62 

 

Z1 

Y 

j1 

k1 

Y1 
o1 o 

  Y 

j

  Y 

k  

M

  Y 

A 

t 

 

  Y 

t 

 

  Y 

Z

  Y 

X1 X   Y 

i1 i   Y 

 

At      t = 0 s, x = 0m   C1 = 0   𝑥 𝑡 =
1

2
𝑡2 

• For   t ∈  [1, 3]: v(t) = 1 m/s   𝑥 𝑡 =  𝑑𝑡  x t = 𝑡 + 𝐶2 

At      t = 1 s, x = 1/2 m   1/2 = 1 + C2  C2 = −1/2   𝑥 𝑡 = 𝑡 −
1

2
 

• For    t ∈ [3, 6]: v(t) = −t+4   𝑥 𝑡 =  (−t + 4)𝑑𝑡  x t =
−𝑡2

2
+ 4𝑡 + 𝐶3 

At      t = 3 s, x = 5/2 m =15/2+ C3   C3 = −5   𝑥 𝑡 =
−𝑡2

2
+ 4𝑡 − 5 

• For t ∈  [6, 7]: v(t) = 2t − 14   𝑥 𝑡 =  2t − 14)𝑑𝑡  x t = 𝑡2 − 14𝑡 + 𝐶4 

At         t = 6 s, x = 1m =-48+ C4  C4=49   x(t) = t
2
 − 14t + 49 

(b) The nature of the motion between t = 0 and t = 3 s: 

• t ∈  [0, 1]: a.v= t > 0   uniformly accelerated rectilinear motion . 

• t ∈  [1, 3]: a.v = 0   uniform rectilinear motion. 

Exercise 5 

 

 

 

 

 

 

 

 

 

 

Position vector 

𝑂1𝑀         = 𝑂𝑀       = 𝑂𝐴      + 𝐴𝑀         

𝑂𝐴      = 𝑏. 𝑘   

𝐴𝑀       =
1

2
𝑎𝑡2 . 𝑗  

𝑂1𝑀         = 𝑂𝑀       =
1

2
𝑎𝑡2 . 𝑗 + 𝑏. 𝑘    

𝜔   = 𝜔𝑖  
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1. Calculate absolute velocity 𝒗   𝒂 and absolute accéleration 𝒂   𝒂 using direct 

method: 

1.a. Absolute velocity 𝒗   𝒂 

𝑣 𝑎 𝑀 = 𝑣  𝑀 
𝑅1

 
=  𝑑𝑂1𝑀         

𝑑𝑡
 
𝑅1

=
𝑑

𝑑𝑡
  

1

2
𝑎𝑡2 . 𝑗 + 𝑏. 𝑘    

𝑅1

 

𝑣 𝑎 𝑀 =  𝑑𝑂1𝑀         

𝑑𝑡
 
𝑅1

=  𝑎𝑡. 𝑗 +
1

2
𝑎𝑡2  𝑑𝑗 

𝑑𝑡
 
𝑅1

+  𝑏.
𝑑𝑘     

𝑑𝑡
 

𝑅1

 

𝜔   = 𝜔𝑖  

 𝑑𝑗 

𝑑𝑡
 
𝑅1

= 𝜔    𝑅 𝑅1  ⋀ 𝑗 = 𝜔𝑖 ⋀ 𝑗 =  𝜔𝑘   

 𝑑𝑘  

𝑑𝑡
 

𝑅1

= 𝜔    𝑅 𝑅1  ⋀ 𝑘  = 𝜔𝑖 ⋀ 𝑘  =  −𝜔𝑗  

𝑣 𝑎 𝑀 = 𝑎𝑡. 𝑗 +
1

2
𝑎𝑡2𝜔𝑘  −  𝑏𝜔𝑗  

𝑣 𝑎 𝑀 =  𝑎𝑡 −  𝑏𝜔 . 𝑗 +
1

2
𝑎𝜔𝑡2 . 𝑘   

1.b. Absolute accéleration 𝒂   𝒂 

𝑎 𝑎 𝑀 = 𝑎 (𝑀)/𝑅1
=  𝑑𝑣𝑎     

𝑑𝑡
 
𝑅1

=  𝑑
2𝑂1𝑀         

𝑑𝑡2
 
𝑅1

=
𝑑

𝑑𝑡
   𝑎𝑡 −  𝑏𝜔 . 𝑗 +

1

2
𝑎𝑡2𝜔. 𝑘    

𝑅1

 

𝑎 𝑎 𝑀 = 𝑎. 𝑗 +  𝑎𝑡 −  𝑏𝜔  𝑑𝑗 

𝑑𝑡
 
𝑅1

+ 𝑎𝜔𝑡. 𝑘  +
1

2
𝑎𝜔𝑡2 .  

𝑑𝑘  

𝑑𝑡
 

𝑅1

 

𝑎 𝑎 𝑀 = 𝑎. 𝑗 +  𝑎𝑡 −  𝑏𝜔 𝜔𝑘  + 𝑎𝜔𝑡. 𝑘  −
1

2
𝑎𝜔𝑡2 . 𝜔𝑗  

𝑎 𝑎 𝑀 =  𝑎 −
1

2
𝑎𝜔2𝑡2 . 𝑗 +  2𝑎𝜔𝑡 −  𝑏𝜔2 𝑘   

2. Calculate absolute velocity 𝒗   𝒂 and absolute accéleration 𝒂   𝒂 using composing 

method: 
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2.a. absolute velocity 𝒗   𝒂 

𝑣 𝑎 𝑀 = 𝑣 𝑟 + 𝑣 𝑒  

𝑣 𝑟 =  𝑑𝑂𝑀       

𝑑𝑡
 
𝑅

=
𝑑

𝑑𝑡
  

1

2
𝑎𝑡2 . 𝑗 + 𝑏. 𝑘    

𝑅
 

𝑣 𝑟 = 𝑎𝑡. 𝑗  

𝑣 𝑒 =
𝑑𝑂1𝑂        

𝑑𝑡
+ 𝜔    𝑅 𝑅1  ⋀𝑂𝑀        

𝑣 𝑒 = 0  +  𝜔𝑖 ⋀  
1

2
𝑎𝑡2 . 𝑗 + 𝑏. 𝑘    

𝑣 𝑒 =
1

2
𝑎𝜔𝑡2 . 𝑘  − 𝑏𝜔. 𝑗  

𝑣 𝑒 = −𝑏𝜔. 𝑗 +
1

2
𝑎𝜔𝑡2 . 𝑘   

𝑣 𝑎 𝑀 = 𝑣 𝑟 + 𝑣 𝑒  

𝑣 𝑎 𝑀 = 𝑎𝑡. 𝑗 +  −𝑏𝜔. 𝑗 +
1

2
𝑎𝜔𝑡2 . 𝑘    

𝑣 𝑎 𝑀 =  𝑎𝑡 −  𝑏𝜔 . 𝑗 +
1

2
𝑎𝜔𝑡2 . 𝑘   

2.b. Absolute accéleration 𝒂   𝒂 

𝑎 𝑎 = 𝑎 𝑟 + 𝑎 𝑒 + 𝑎 𝑐  

𝑎 𝑟 =  𝑑𝑣 𝑟
𝑑𝑡

 
𝑅

 

𝑎 𝑟 =  𝑑

𝑑𝑡
 𝑎𝑡. 𝑗   

𝑅
= 𝑎𝑗  

𝑎 𝑟 = 𝑎𝑗  

𝑎 𝑒 =  𝑑
2𝑂1𝑂        

𝑑𝑡2
 
𝑅1

+
𝑑𝜔   

𝑑𝑡
⋀ 𝑂𝑀       + 𝜔   ⋀ 𝜔   ⋀𝑂𝑀         
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𝜔   = 𝑐𝑠𝑡       𝑑𝜔   = 0   

𝑎 𝑒 = 0  + 0  ⋀ 𝑂𝑀       + 𝜔𝑖 ⋀  𝜔𝑖 ⋀  
1

2
𝑎𝑡2 . 𝑗 + 𝑏. 𝑘     

𝑎 𝑒 = 𝜔𝑖 ⋀  
1

2
𝑎𝜔𝑡2𝑘  − 𝜔𝑏. 𝑗   

𝑎 𝑒 = −
1

2
𝑎𝜔2𝑡2𝑗 − 𝜔2𝑏. 𝑘   

𝑎 𝑐 = 2𝜔   ⋀𝑣 𝑟  

𝑎 𝑐 = 2𝜔𝑖 ⋀𝑎𝑡. 𝑗 = 2𝜔𝑎𝑡. 𝑘   

𝑎 𝑐 = 2𝜔𝑎𝑡. 𝑘   

𝑎 𝑎 = 𝑎 𝑟 + 𝑎 𝑒 + 𝑎 𝑐  

𝑎 𝑎 𝑀 =  𝑎 −
1

2
𝑎𝜔2𝑡2 . 𝑗 +  2𝑎𝜔𝑡 −  𝑏𝜔2 𝑘   
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II.1. Introduction  

In the previous chapter we studied the movement of bodies without taking 

into account the causes which provoke the movement. In this chapter (dynamics) we 

study the causes of movement, which are forces. 

Dynamics is the analysis of the relationship between forces applied to a body and 

changes in the movement of this body. It explains the relationship that exists 

between forces and other quantities. 

II.2. Definition  

II.2.1. Concept of force  

The movement is the result of the interaction between the particle and its 

environment. This interaction is the force (vector quantity). 

The unit of force in SI is the Newton: 1N = 1 Kg.m.s
-2 

 

 

 

 

 

 

 

 

 

There are two main categories of forces: 

a- Contact forces: friction forces, tension forces, etc. 

b- Forces at a distance: gravitational forces, electric forces, magnetic forces. 

Example: a body slides on a horizontal surface by a wire.  

II.2.2. Mass 

Mass is a scalar physical quantity that represents the quantity of matter which 

makes up a particle, and it represents the inertia of the body. 

The unit of mass in SI is kg
 

 

𝑃   

𝑅   
𝑇   

𝐹𝑐
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II.2.3. Material point 

We call a material point or point mass a mechanical system that can be modelled by 

a geometric point M with which its mass m is associated. 

Material system: is a set of material points. 

We freely choose the system we study. Anything other than the system being 

studied is called the exterior. 

II.2.4. Isolated or pseudo-isolated system 

A system is isolated if it is not subject to any external force. 

A system is pseudo isolated if the Σ of the external forces applied to this system is 

zero:  

Σ F = 0 

II.3. Momentum 

A movement of a body does not depend only on the speed but also on its mass, two 

different masses which move at the same speed do not arrive in the same way. For 

this we introduce a quantity which is the momentum P   . 

The momentum relative to the reference frame R of a material point M, of mass m 

and speed  𝑣  is given by: 

𝑃  = 𝑚𝑣  

Unit: kg.m/s; dimension: [momentum] = MLT
−1 

II.3.1 Conservation of quantity of movement: 

If we have a system composed of N particles of masses mi and speeds 𝑉𝑖
   , then the 

total momentum of the system is given by: 

𝑃  =  𝑃𝑖
   

𝑁

𝑖=1

= 𝑃1
    +  𝑃2

    + 𝑃3
    + ⋯… 

For an isolated system this momentum is constant: 

𝑃  =  𝑃𝑖
   

𝑁

𝑖=1

= 𝑐𝑠𝑡 
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II.3.2. Case of two particles in collision 

Consider a system of two particles m1 and m2.  

Before the collision the speeds are noted V1 and V2. 

𝑃  = 𝑃1
    + 𝑃2

    = 𝑚1𝑣 1 + 𝑚2𝑣 2 

After the collision the speeds are noted as V’1 and V’2. 

𝑃′    = 𝑃′1      + 𝑃′2      = 𝑚1𝑣′    1 + 𝑚2𝑣′    2 

Conservation of momentum: 

𝑃  = 𝑃  ′ ⟹ 𝑃1
    + 𝑃2

    = 𝑃′1
      + 𝑃′2

      ⟹ 𝑃1
    − 𝑃′1

      = 𝑃′2
      − 𝑃′2

       

⟹ Δ𝑃1
    = −Δ𝑃2

     

An interaction produces an exchange of momentum. The quantity of 

movement“lost” by one particle is equal to the momentum “gained” by the other. 

II.4. Fundamental Laws of Dynamics  القوانين الأساسيت في الديناميك 

II.4.1. 1
st
 Newton's law ‘Principle of Inertia’ عطالتالمبدأ  

a. Statement of principle:نص المبدأ 

If the material body is not subjected to any force or the vector resultant of the 

applied forces is zero, it is: 

  in a uniform rectilinear movement (v = cst and a=0)حزكة مستقيمة منتظمة 

 at rest ( سكونفي ال ), if it was initially at rest (v=0). 

This property of all bodies to resist change in speed (zero acceleration) is called 

inertia. 
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Example:  

The movements of passengers caused by vehicles when starting and braking.  

b. Galilean frame of reference   غاليلي معلم

An inertia reference frame is a reference frame in which the principle of inertia is 

realized. i.e, it keeps its inertia: it remains at rest if it is at rest and it keeps its 

uniform rectilinear movement as long as  𝐹 = 0  . 

Note:  

Any frame of reference in uniform rectilinear translation with respect to a Galilean 

frame of reference is itself Galilean. 

The earth's reference frame is not reallyGalilean because of its movement. But we 

consider it to be a Galilean reference because we carry out studies with low times. 

Example on a non-Galilean frame of reference:  

An object placed in a truck in uniform rectilinear motion. The body remains 

immobile in relation to the truck as long as the latter's movement maintains its 

uniform rectilinear character. When the truck executes a movement in a turn, the  

body would slide. Indeed, the reference linked to the truck is animated by a 

curvilinear movement and the principle of inertia is no longer applicable (the object 

would not maintain its state of rest in relation to the truck). 

Note:  

The principle of inertia can then be stated as follows: “A free particle moves with a 

constant quantity of movement in a Galilean frame of reference. » 

𝑃  = 𝑐𝑠𝑡      𝐹 =
𝑑𝑃  

𝑑𝑡
= 0   

This is another formulation of the principle of inertia. 

II.4.2. 2
nd 

Newton's Law: ‘Fundamental Relation of Dynamics (FRD)’ 

The resultant of the forces exerted on a body is the derivative of the momentum: 

 𝐹𝑒𝑥𝑡
        =

𝑑𝑃  

𝑑𝑡
=

𝑑 𝑚𝑣  

𝑑𝑡
 

If the mass of the system is constant then: 
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 𝐹𝑒𝑥𝑡
        = 𝑚

𝑑𝑣 

𝑑𝑡
= 𝑚𝑎  

II.4.3. 3
rd

 Newton’s Law: ‘Principle of reciprocal actions’ 

Given that M1 and M2 two material points, 𝐹12
       and 𝐹21

      the reciprocal interaction 

forces, applied by M1 on M2 and that applied by M2 on M1, respectively.  

The principle of reciprocal actions, also called the principle of action 𝐹12
       and the 

reaction 𝐹21
       , states that: 

 These two actions (forces) are exerted simultaneously and are of the same 

nature 

  These two forces are opposite 𝐹12
      = −𝐹12

       and equal in moduli  𝐹12
       =

 𝐹12
       . 

 𝐹12
       and 𝐹21

      are belong to the same segment [M1M2]:  

𝐹12
      ∧ 𝑀1𝑀2

            = 0   , 𝐹21
      ∧ 𝑀1𝑀2

            = 0   

 

 

 

 

Remark: 

Isolated system: In the case of the system {M1, M2} is isolate (in R reference 

frame): 

𝐹21
      =

𝑑𝑃1     

𝑑𝑡
 and  𝐹12

      =
𝑑𝑃2     

𝑑𝑡
 

𝐹12
      = −𝐹21

      ⟹
𝑑𝑃2
    

𝑑𝑡
= −

𝑑𝑃1
    

𝑑𝑡
 

𝑑𝑃1
    

𝑑𝑡
+

𝑑𝑃2
    

𝑑𝑡
= 0  →

𝑑

𝑑𝑡
 𝑃1
    + 𝑃2

      = 0   

 𝑃1
    + 𝑃2

     = 𝑃 𝑀1 ,𝑀2 
                = 𝑐𝑠𝑡       

The momentum of an isolated system is conserved. 

M1 M2 

𝐹21
        𝐹12
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II.5. Classification of forces 

II.5.1. Forces at a distance 

The body which exerts the force is not in contact with the one on which it acts. 

There are 3 kinds of forces at a distance: 

a) Gravitational forces: 

This is the action of one mass (body) on another. These two bodies attract each 

other mutually with two opposing forces (according to Newton's 3rd law):  𝐹12
      =

−𝐹21
       

It’s the Law of universal gravitation which explains attraction between two bodies 

of respective masses m1 and m2, separated by distance d. 

𝐹12 = 𝐹21 = 𝐹𝑔 = 𝐺
m1m2

𝑑2
 

These forces are attractive. 

G: the gravitational constant, G = 6.67.10-11 [m
3
/kg.s²]  

Near the earth, the force of gravitation is what keeps objects on the ground. 

 

 

 

 

 

b) Weight of a mass:  

Consider a point mass m, in gravitational interaction with Earth. The latter acts on 

the mass with a force that we called the weight of the mass. Newton's second law 

allows us to define this weight: 

𝑃  = 𝑚𝑔  

 

 

 

 

𝒖    

m1 m2 
d 

𝑭   𝟐𝟏 𝑭   𝟏𝟐 

𝑃  = 𝑚𝑔  

 

𝑚 
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𝑔  is the acceleration of gravity (terrestrial acceleration), g=9.80 m/s
2
. 

c) Electric forces:  

They are exerted between two bodies carrying electrical charges. They can be both 

attractive or repulsive. 

 

 

 

 

 

 

 

 

 

 

 

d) Magnetic forces:  

They are exerted between magnets or between the latter and certain materials 

(particularly iron). Both can be attractive or repulsive. 

 

 

 

 

 

 

 

 

 

 

 

 

 

repulsive forces  

 q2 > 0 قوة تنافر

or q2 < 0 

q1 > 0 

or q1 < 0 

r 

𝑭   𝟏𝟐 𝑭   𝟐𝟏 

attractive forces  

 q2 < 0 قوة تجاذب

or q2 > 0 

q1 > 0 

or q1 < 0 

r 

𝑭   𝟏𝟐 𝑭   𝟐𝟏 

𝒖    

𝒖    

S N 

S N 

S N S N 
F F 

N S 
F F 

N S 

N S 

N S 

F F 

F F 
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II.5.2. Contact forces 

There must be contact between the two objects for a contact force to arise. 

a) Reaction of a support (Solid-solid contact) 

The force acting on an object placed on a horizontal support is called the support 

reaction, Rn
     . Represents the result of all actions performed on the contact surface. 

The object being in equilibrium: 

 𝐹𝑒𝑥𝑡
        = 𝑃  + 𝑅𝑛

     = 0  ⟹ 𝑃  = −𝑅𝑛
      

 

 

 

 

 

 

 

 

 

 

b) Friction force 

Friction force is the force that opposes the movement of the body. There are two 

friction forces: solid and fluid. 

 Solid–Solid friction: dynamic friction force (the body is moving): 

When the solid moves under the action of an external force𝐹𝑒
    , the intensity fd of the 

friction force is proportional to that of the reaction normal to the support 𝑅𝑛
     . 

𝑓𝑑
    = 𝜇𝑑𝑅𝑛

      

μd:the dynamic friction coefficient معامم الاحتكاك انحزكي 

Note: 

static friction force (the body is fixed)  𝑓𝑠    : 

P    

Rn
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𝑓𝑠   = 𝜇𝑠𝑅𝑛
       

μs: the static friction coefficientمعامم الاحتكاك انسكوني 

 

 

 

 

 

 

 

 

 

 Friction forces in fluids 

When a solid body moves in a fluid (gas or liquid), a friction force appears. 

It is calculated by the formula: 

𝑓𝑓    = −𝑘𝜂𝑣  

k is the coefficient which depends on the shape of the solid body and η is the 

viscosity coefficient. 

c) Tension forces:  

A tension force is a force developed in a rope or spring when it is stretched by an 

applied force. Tension is exerted along the entire length of the rope/spring in a 

direction opposite to the force applied to it. Tension can also sometimes be called 

stress, strain, or strain. 

 

 

 

 

 

 

 

 

P    

R    Rn
      

𝑓𝑑
     

F   



Chapter 2                                                                                          Dynamics of a particle 

76 
 

 

II.6. Cinematic moment (Angular momentum) 

II.6.1. Angular momentum of a material point 

We call angular momentum noted (𝐿𝑂
     ) of point M rotating around a point O, the 

moment of its quantity of movement 𝑃  = 𝑚𝑣  :    

𝐿𝑂
     = 𝑂𝑀       ∧ 𝑃  = 𝑟 ∧ 𝑚𝑣  

The unit of angular momentum: Kg.m
2
.s

-1 

 

 

 

 

 

 

 

 

The angular momentum is a vector perpendicular to the plane containing the vectors 

𝑟 and 𝑃  . 

 If the movement is circular with radius r, we will have 

𝑟 ⊥ 𝑣     and 𝑣 = 𝜔𝑟 

𝐿𝑂
     = 𝑟 ∧ 𝑚𝑣 ⟹ 𝐿𝑂 = 𝑟. 𝑚𝑣. 𝑠𝑖𝑛

𝜋

2
= 𝑟𝑚𝑣 = 𝑚𝑟2𝜔 

𝐿𝑂
     = 𝑚𝑟2𝜔    

 For a curvilinear plane movement, we use polar coordinates, with pole O:  

𝑣 = 𝑟 𝑢𝑟     + 𝑟𝜃 𝑢𝜃      

𝐿𝑂
     = 𝑟 ∧ 𝑚𝑣 = 𝑚𝑟 ∧ 𝑣 = 𝑚𝑟 ∧  𝑟 𝑢𝑟     + 𝑟𝜃 𝑢𝜃      = 𝑚𝑟2𝜃 𝑘  ⟹ 𝐿𝑂 = 𝑚𝑟2𝜃  

II.6.2. Angular momentum theorem 

At a fixed point O of a Galilean frame of reference, the derivative with respect to 

time of the angular momentum of a material point is equal to the sum of the 

moments of all the forces applied to it. 

 

plane of  
movement 

trajectory 
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𝑑𝐿𝑂
     

𝑑𝑡
= ℳ    /𝑂   𝐹𝑒𝑥𝑡

          

Proof: 

𝐿𝑂
     = 𝑟 ∧ 𝑃  = 𝑟 ∧ 𝑚𝑣 ⟹

𝑑𝐿𝑂
     

𝑑𝑡
=

𝑑𝑟 

𝑑𝑡
∧ 𝑚𝑣 + 𝑟 ∧

𝑑𝑚𝑣 

𝑑𝑡
= 𝑣 ∧ 𝑚𝑣 + 𝑟 ∧

𝑚𝑑𝑣 

𝑑𝑡

= 𝑟 ∧ 𝑚𝑎 = 𝑟 ∧ 𝐹 = ℳ    /𝑂(𝐹 ) 

II.6.3. Conservation of angular momentum – central forces 

a. Definition of a central force 

We call “Central force” any force acting on a material point and having the 

following properties: 

* It is carried by the line joining the material point to a fixed point O (center of 

force). 

* Its module depends only on the distance “r” to the point O: 

𝐹 = 𝑓 𝑟 𝑢𝑟       𝑎𝑛𝑑  𝑂𝑀       = 𝑟𝑢𝑟      . 

Examples: 

-The gravitational force is a central force: 

 𝐹 𝑔 = 𝐺
m1m2

𝑟2 𝑢𝑟     =
𝑘

𝑟2 𝑢𝑟      

-The Coulomb force between 2 electric charges is a central force:  

𝐹 𝑒 = 𝐾
q1q2

𝑟2
𝑢𝑟     =

𝑘

𝑟2
𝑢𝑟      

b. Conservation of angular momentum 

The derivative of angular momentum vanishes (=0) if: 

a. The particle is isolated  𝐹𝑒𝑥𝑡
        = 0  : which means that the angular momentum 

of a free particle is constant 
𝑑𝐿𝑂      

𝑑𝑡
= 0  ⟹ 𝐿𝑂 = 𝑐𝑡𝑒 

b. If the force 𝐹 is central: 𝐹  is parallel to 𝑟 , so the angular momentum relative 

to the center of forces is constant. 

𝑑𝐿𝑂
     

𝑑𝑡
= ℳ    /𝑂   𝐹𝑒𝑥𝑡

         = 𝑟 ∧ 𝐹 = 0   𝑟 // 𝐹  ⟹ 𝐿𝑂
     = 𝑐𝑡𝑒 𝐿𝑂

     isconserved  

The opposite is true;if the angular momentum is constant then the force is central. 
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II.6.4. Inertia forces or pseudo forces: a non-Galilean frame reference 

Let R be a Galilean frame of reference and R' a non-Galilean frame of reference. R' 

is mobile relative to R. The law of composition of accelerations gives: 

𝑎𝑎     = 𝑎𝑟     + 𝑎𝑒     + 𝑎𝑐      

The fundamental principle of dynamics in a Galilean frame R is written: 

 𝐹𝑒𝑥𝑡
        = 𝑚𝑎𝑎     = 𝑚

𝑑𝑣𝑎     

𝑑𝑡
 

𝑎𝑎     and𝑣𝑎      are the absolute acceleration and speed. 

In the non-Galilean (relative) frame R', the fundamental principle of dynamics is: 

𝑎𝑟     = 𝑎𝑎     − 𝑎𝑒     − 𝑎𝑐     ⟹ 𝑚𝑎𝑟     = 𝑚𝑎𝑎     − 𝑚𝑎𝑒     − 𝑚𝑎𝑐     ⟹ 𝑚𝑎𝑟     =  𝐹𝑒𝑥𝑡
        + 𝐹𝑒

    + 𝐹𝑐
     

with 𝐹𝑒
    = −𝑚𝑎𝑒      (force of inertia of Entrainment),𝐹𝑐

    = −𝑚𝑎𝑐      (force of Coriolis 

inertia) are pseudo forces or forces of 'inertia. Therefore, the law of dynamics can 

be applied in a non-Galilean frame of reference provided that the Entrainmentinertia 

force and the Coriolis inertia force are added. 
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Exercise1 

Calculate the gravitational field of a body of mass m:  

a- On the surface of the earth,  

b- At a height h from the earth.  

mt = 5.98×10
24

kg ,the mass of the earth 

rt = 6.37×10
6 

mthe radius of the earth,  

Exercise 2 

Let a spring be fixed at one of these ends, we hang a mass m at the other end. When 

the spring extends, a restoring force is exerted on the mass, proportional to this 

elongation and called tension. 

Determine the differential equation of motion using the PFD. 

 

 

 

 

 

 

 

 

Exercise 3 

A simple pendulum consists of a mass m considered point fixed to the free end of a 

wire of length l, we move the mass away from its initial position by an angle θ0, and 

we release it without initial speed, we neglect air friction.  

Determine the differential equation of motion using: 

a) The fundamental principle of dynamics FPD (use the polar coordinate 

system) in a Galilean frame R. 

Exercises 
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b) The fundamental principle of dynamics FPD in the non-Galilean (relative) 

frame R' 

c) The angular momentum theorem. 

 

 

 

 

 

 

 

 

 

Exercise 4 

A projectile of mass m is launched into the Earth's gravity field with a velocity 

vector v0 making an angle α with the horizontal. Friction forces are negligible. 

Then study the movement of the projectile. 

 

 

 

 

 

 

 

 

 

Exercise 5 

A brick of mass m is kept in balance on a plane inclined at an angle α relative to the 

horizontal by an inelastic wire of negligible mass. The contact between the solid 

and the inclined plane is frictionless. 

1. Remember the condition under which the solid is in equilibrium. 
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2. Find the expressions for the tension T of the wire and the reaction N of the plane 

as a function of m,g and α 

3. We cut the wire, deduce the expression for the acceleration of the brick. What is 

the nature of the movement? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

α 
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Exercise 1 

a- On the surface of the earth: 

𝐹𝑔 = 𝐺
mtm

𝑟𝑡
2 = 𝑚𝑔 ⟹ 𝑔 = 𝐺

mt

𝑟𝑡
2  

AN : 𝑔 = 6.67 × 10−11 5.98×1024

 6.37×106 2 = 9.82 𝑚. 𝑠−2 

𝑔 = 9.82 𝑚. 𝑠−2  

b- At a height h from the earth. 

𝐹𝑔′ = 𝐺
mtm

 𝑟𝑡 + h 2
= 𝑚𝑔 ⟹ 𝑔′ = 𝐺

mt

 𝑟𝑡 + h 2
 

𝐹𝑔′ = 𝐺
mt

 𝑟𝑡 + h 2
 

Exercise 2 

 

 

 

 

 

 

 

 

 

 

 

Solution 
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At equilibrium: 

 𝐹𝑒𝑥𝑡
        = 𝑃  + 𝑇  = 0  ⟹ 𝑇  = −𝑃  ⟹ 𝑇 = 𝑚𝑔 

𝑇 = 𝑚𝑔 = 𝑘 𝑙𝑒𝑞 − 𝑙0 = 𝑘𝑥0 

k: spring stiffness constant 

l: length of the spring at time t, l0: length of the spring when empty. 

By giving an elongation x to the spring then leaving the system alone, it executes 

oscillations. Newton's law gives: 

 𝐹𝑒𝑥𝑡
        = 𝑃  + 𝑇  = 𝑚𝑎 ⟹ 𝑚𝑔 + 𝑇  = 𝑚𝑎  

By projection on (OX): 

mg − T = mg − k 𝑥 + 𝑥0 = m𝑥  

mg − k𝑥0 − k𝑥 = m𝑥 (mg = k𝑥0) 

𝑚𝑥 + 𝑘𝑥 = 0 

𝜔0
2 =

𝑘

𝑚
⟹ 𝑥 + 𝜔0

2𝑥 = 0  

Solution of the equation: x=Acos(ωt+φ)  

Exercise 3 

a) Determine the differential equation of motion using to the PFD (use the polar 

coordinate system) in a Galilean frame R: 

 𝐹𝑒𝑥𝑡
        = 𝑚𝑎 ⟹ 𝑃  + 𝑇  = 𝑚𝑎  

 

 

 

 

 

 

 

 

 

 

θ 

𝑙 

𝑂 = 𝑂′ 

𝑀 
𝑌 

𝑋 

𝒖𝒓      

𝒖𝜽      

𝑻    

𝑷    



Chapter 2                                                                                          Dynamics of a particle 

84 
 

 

By projecting onto the polar base: 

mgcosθ – T = mar 

-mgsinθ = maθ 

r = Cte=l  

𝑎 =  𝑟 − 𝑟𝜃2  𝑢𝑟     +  2𝑟 𝜃 + 𝑟𝜃  𝑢𝜃     ⟹ 𝑎 =  
𝑎𝑟 = 𝑙

𝜃2 

𝑎𝜃 = 𝑙𝜃 

  

mgcosθ – T = m 𝑙𝜃2  

-mgsinθ = m𝑙𝜃 ⟹ 𝜃 +
𝑔

𝑙
𝑠𝑖𝑛θ = 0 

If  θ <<     sin𝜃 ≈ θ,        𝜃 +
𝑔

𝑙
θ = 0 

We pose 𝜔2 =
𝑔

𝑙
⟹ 𝜃 + 𝜔2θ = 0  

The equation of motion of the pendulum is a second order differential equation, its 

solution is: 

𝜃 𝑡 = 𝐴1𝑐𝑜𝑠𝜔𝑡 + 𝐴2𝑠𝑖𝑛𝜔𝑡 

b) Determine the differential equation of motion, using the PFD in the non-Galilean 

(relative) frame R': 

we use the cylindrical base (𝑢𝑟     , 𝑢𝜃     , 𝑘  ) 

 𝐹𝑒𝑥𝑡
        = 𝑚𝑎𝑎      

𝑎𝑎     = 𝑎𝑟     + 𝑎𝑒     + 𝑎𝑐     ⟹  𝐹𝑒𝑥𝑡
        = 𝑚𝑎𝑟     + 𝑚𝑎𝑒     + 𝑚𝑎𝑐      

⟹ 𝑚𝑎𝑟     =  𝐹𝑒𝑥𝑡
        − 𝑚𝑎𝑒     − 𝑚𝑎𝑐     =  𝐹𝑒𝑥𝑡

        + 𝐹𝑒
    + 𝐹𝑐

     

 
𝐹𝑒
    = −𝑚𝑎𝑒       force of inertia of Entrainment 

𝐹𝑐
    = −𝑚𝑎𝑐       force of Coriolis inertia                 

  

𝑎 𝑟𝑒 =  𝑑𝑣  𝑟

𝑑𝑡
 
𝑅′

=  𝑑𝑂𝑀        

𝑑𝑡
 
𝑅′

= 0       (𝑂𝑀       = 𝑂′𝑀         = 𝑙𝑢𝑟     = 𝑐𝑠𝑡      ⟹  𝑑𝑂𝑀        

𝑑𝑡
 
𝑅′

= 0   

𝑚𝑎𝑟     =  𝐹𝑒𝑥𝑡
        − 𝑚𝑎𝑒     − 𝑚𝑎𝑐     =  𝐹𝑒𝑥𝑡

        + 𝐹𝑒
    + 𝐹𝑐

    = 0   
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In the cylindrical base we have:  𝑎 =

 
 
 

 
 𝑎𝑟 = 𝑟 − 𝑟𝜃

2 
  

 

𝑎𝜃 = 2𝑟 𝜃 + 𝑟
𝜃 

𝑎𝑧 = 𝑧                

  

𝑎 𝑒 =  𝑑
2𝑂𝑂′        

𝑑𝑡2
 
𝑅

+
𝑑𝜔   

𝑑𝑡
∧ 𝑂′𝑀         + 𝜔   ⋀  𝜔   ⋀𝑂′𝑀          = 0  +

𝑑𝜔𝑘  

𝑑𝑡
∧ 𝑙𝑢𝑟     + 𝜔𝑘  ⋀ 𝜔𝑘  ⋀𝑙𝑢𝑟       

𝑎 𝑒 = 𝜃 𝑘  ∧ 𝑙𝑢𝑟     + 𝜃 𝑘  ⋀ 𝜃 𝑘  ⋀𝑙𝑢𝑟      = 𝑙𝜃 𝑢𝜃     − 𝑙𝜃 2𝑢𝑟      

𝑎 𝑐 = 2𝜔   ⋀𝑣 𝑟𝑎 𝑐 = 2𝜔   ⋀0  = 0   

 𝐹𝑒𝑥𝑡
        + 𝑚𝑙𝜃 2𝑢𝑟     − 𝑚𝑙𝜃 𝑢𝜃     = 𝑃  + 𝑇  + 𝑚𝑙𝜃 2𝑢𝑟     − 𝑚𝑙𝜃 𝑢𝜃     = 0   

By projecting onto the polar base: 

𝑚𝑔𝑐𝑜𝑠𝜃 − 𝑇 + 𝑚𝑙𝜃 2 = 0 

−𝑚𝑔𝑠𝑖𝑛𝜃 − 𝑚𝑙𝜃 = 0  𝜃 +
𝑔

𝑙
𝑠𝑖𝑛θ = 0 

If θ <<     sin𝜃 ≈ θ,        𝜃 +
𝑔

𝑙
θ = 0 

We pose 𝜔2 =
𝑔

𝑙
⟹ 𝜃 + 𝜔2θ = 0  

c) Determine the differential equation of motion, using the angular momentum 

theorem: 

𝑑𝐿𝑂
     

𝑑𝑡
=  ℳ    /𝑂   𝐹𝑒𝑥𝑡

          

𝐿𝑂
     = 𝑂𝑀       ∧ 𝑝 = 𝑂𝑀       ∧ 𝑚𝑣  

 we use polar coordinates, with pole O:  

 𝑣 = 𝑟 𝑢𝑟     + 𝑟𝜃 𝑢𝜃         and  r = Cte=l 

𝐿𝑂
     = 𝑚𝑂𝑀       ∧ 𝑣 = 𝑚𝑂𝑀       ∧  0𝑢𝑟     + 𝑙𝜃 𝑢𝜃      = 𝑚𝑙2𝜃 𝑘  ⟹ 𝐿𝑂 = 𝑚𝑙2𝜃  

𝑑𝐿𝑂      

𝑑𝑡
= 𝑚𝑙2𝜃 𝑘            (1) 

 ℳ    /𝑂   𝐹𝑒𝑥𝑡
         = ℳ    /𝑂 𝑃   + ℳ    /𝑂 𝑇   = 𝑂𝑀       ∧ 𝑃  + 𝑂𝑀       ∧ 𝑇   
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𝑂𝑀       ∧ 𝑃  = 𝑙𝑢𝑟     ∧  𝑚𝑔𝑐𝑜𝑠𝜃𝑢𝑟     − 𝑚𝑔𝑠𝑖𝑛𝜃𝑢𝜃      = −𝑙𝑚𝑔𝑠𝑖𝑛𝜃𝑘   

𝑂𝑀       ∧ 𝑇  = 𝑙𝑢𝑟     ∧ −𝑇. 𝑢𝑟     = 0   

 ℳ    /𝑂  𝐹𝑒𝑥𝑡
         = −𝑙𝑚𝑔𝑠𝑖𝑛𝜃𝑘            (2) 

 1 =  2  𝑚𝑙2𝜃 𝑘  = −𝑙𝑚𝑔𝑠𝑖𝑛𝜃𝑘   

𝑚𝑙2𝜃 = −𝑙𝑚𝑔𝑠𝑖𝑛𝜃  𝜃 +
𝑔

𝑙
𝑠𝑖𝑛𝜃 = 0  

If θ <<     sin𝜃 ≈ θ,        𝜃 +
𝑔

𝑙
θ = 0 

We pose 𝜔2 =
𝑔

𝑙
⟹ 𝜃 + 𝜔2θ = 0  

Exercise 4 

 

 

 

 

 

 

 

 

We can predict the movement of a projectile launched with an initial speed v0 

making an angle with the horizontal by: 

𝑎 = −𝑔𝑗 ⟹ 𝑎  
0

−𝑔
  

We decompose the movement of M along the 2 axes OX and OY: 

According to OX: 

Accélération 𝑎𝑥  : 
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𝑎𝑥 = 0 =
𝑑𝑣𝑥

𝑑𝑡
⟹ 𝑣𝑥 = 𝑐𝑡𝑒 = 𝑣0𝑥 = 𝑣0𝑐𝑜𝑠𝛼 

𝑣𝑥 = 𝑣0𝑐𝑜𝑠𝛼 =
𝑑𝑥

𝑑𝑡
⟹ 𝑑𝑥 = 𝑣𝑥𝑑𝑡 ⟹ 𝑥 − 𝑥0 = 𝑣𝑥𝑡 

𝑥 = 𝑥0 + 𝑣𝑥𝑡 

From the initial conditions: 

At 𝑡=0:  

𝑣𝑥 0 = 𝑣0𝑥 = 𝑣0𝑐𝑜𝑠𝛼  

𝑥 0 = 𝑥0 = 0

  

 𝑥 = 𝑣0𝑐𝑜𝑠𝛼. 𝑡  

According to OY:  

Accélération 𝑎𝑦  : 

𝑎𝑦 = −𝑔 =
𝑑𝑣𝑦

𝑑𝑡
⟹ 𝑣𝑦 − 𝑣0𝑦 = −𝑔𝑡 

𝑣𝑦 − 𝑣0𝑦 = −𝑔𝑡 

𝑣𝑦 = −𝑔𝑡+𝑣0𝑠𝑖𝑛𝛼 

𝑣𝑦 = −𝑔𝑡 + 𝑣0𝑠𝑖𝑛𝛼 =
𝑑𝑦

𝑑𝑡
⟹ 𝑑𝑦 = 𝑣𝑦𝑑𝑡 ⟹ 𝑦 − 𝑦0 = 𝑣𝑦 𝑡 

From the initial conditions: 

At 𝑡=0: 

𝑣𝑦 0 = 𝑣0𝑦 = 𝑣0𝑠𝑖𝑛𝛼   

𝑦 0 = 𝑦0 = 0

  

𝑦 = −
1

2
𝑔𝑡2+𝑣0𝑠𝑖𝑛𝛼. 𝑡  

The trajectory equation: 

𝑡 =
𝑥

𝑣0𝑐𝑜𝑠𝛼
⟹ 𝑦 = −

1

2
𝑔  

𝑥

𝑣0𝑐𝑜𝑠𝛼
 

2

+𝑣0𝑠𝑖𝑛𝛼.  
𝑥

𝑣0𝑐𝑜𝑠𝛼
 

= −
𝑔

 2𝑣0
2𝑐𝑜𝑠2𝛼

𝑥2 + 𝑡𝑎𝑛𝛼. 𝑥 
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𝑦 = −
𝑔

 2𝑣0
2𝑐𝑜𝑠2𝛼

𝑥2 + 𝑡𝑎𝑛𝛼. 𝑥 

The maximum altitude h انذروة: 

𝑣𝑦 𝑡𝑀 = 0 = −𝑔𝑡𝑀+𝑣0𝑠𝑖𝑛𝛼 ⟹ 𝑡𝑀 =
𝑣0𝑠𝑖𝑛𝛼

𝑔
  

⟹ 𝑡𝑀 =
𝑣0𝑠𝑖𝑛𝛼

𝑔
 

(tM : peak time). 

𝑕 = 𝑦 𝑡𝑀 = −
1

2
𝑔𝑡𝑀

2 +𝑣0𝑠𝑖𝑛𝛼. 𝑡𝑀 = −
1

2
𝑔  

𝑣0𝑠𝑖𝑛𝛼

𝑔
 

2

+𝑣0

𝑣0𝑠𝑖𝑛𝛼

𝑔
𝑠𝑖𝑛𝛼  

𝑕 =
 𝑣0𝑠𝑖𝑛𝛼 

2𝑔

2

 

The time for which the projectile reaches point I: 

𝑦 𝑡𝑃 = 0 = −
1

2
𝑔𝑡𝑃

2+𝑣0𝑠𝑖𝑛𝛼. 𝑡𝑃 = 𝑡𝑃  −
1

2
𝑔𝑡𝑃 +𝑣0𝑠𝑖𝑛𝛼  

⟹

 
 

 
𝑡𝑝 = 0  
             

𝑡𝑃 =
2𝑣0𝑠𝑖𝑛𝛼

𝑔

  

Calculation of xP range: 

replaces tP in x(t): 

𝑥 𝑡𝑃 = 𝑣0𝑐𝑜𝑠𝛼.
2𝑣0𝑠𝑖𝑛𝛼

𝑔
=

2𝑣0
2𝑐𝑜𝑠𝛼𝑠𝑖𝑛𝛼

𝑔
 

2𝑐𝑜𝑠𝛼𝑠𝑖𝑛𝛼 = 𝑠𝑖𝑛2𝛼 ,  

So :      𝑥𝑃 =
𝑣0

2𝑠𝑖𝑛2𝛼

𝑔
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Exercise 5 

 

 

 

 

 

 

 

 

 

 

1. Equilibrium condition : 

 𝐹 𝑒𝑥𝑡 = 0   

𝑃  + 𝑁   + 𝑇  = 0   

2. Expression of T and N : 

By projection on the tangential axis (OX) : 

𝑃𝑇 + 0 − 𝑇 = 0 ⟹ 𝑇 = 𝑃𝑇 = 𝑚𝑔 𝑠𝑖𝑛𝛼 

𝑇 = 𝑚𝑔 𝑠𝑖𝑛𝛼  

By projection on the tangential axis (OY) 

−𝑃𝑁 + 𝑁 + 0 = 0 ⟹ 𝑁 = 𝑃𝑁 = 𝑚𝑔 𝑐𝑜𝑠𝛼 

𝑁 = 𝑚𝑔 𝑐𝑜𝑠𝛼  

3. Acceleration of the brick: 

Once the wire is cut, the voltage T no longer exists, so we write the PFD : 

 𝐹𝑒𝑥𝑡
        = 𝑚𝑎 ⟹ 𝑃  + 𝑁   = 𝑚𝑎  
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By projection on the tangential axis (OX) : 

𝑃𝑇 + 0 = 𝑚𝑎 ⟹ 𝑚𝑔 𝑠𝑖𝑛𝛼 = 𝑚𝑎 

𝑎 = 𝑔 𝑠𝑖𝑛𝛼  
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Work and Energy 
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III.1. Work  

III.1.1. Elementary work 

Consider a constant force F   acting on a material point M. We define the elementary 

work 𝑑𝑊 of the force F   by: 

𝑑𝑊 = 𝐹 ∙ 𝑑𝑙  

𝑑𝑙  is the elementary displacement. 

F  =  𝐹𝑥 𝑖 + 𝐹𝑦 𝑗 + 𝐹𝑧𝑘   

𝑑𝑙    =  𝑑𝑥𝑖 + 𝑑𝑦𝑗 + 𝑑𝑧𝑘   

𝑑𝑊 = 𝐹𝑥 . 𝑑𝑥 + 𝐹𝑦 . 𝑑𝑦 + 𝐹𝑧 . 𝑑𝑧 

The work of a force F   applied to a material point moving from point A to point B is: 

𝑊𝐴→𝐵(𝐹 ) =  𝑑𝑊
𝐵

𝐴

=  𝐹 
𝐵

𝐴

∙ 𝑑𝑙     

The unit of work, in the SI system, is the Joule. 

 

 

 

 

 

 

Remark: 

Force F   can be decomposed into two vectors: 

 F//
       parallel to the displacement dl    ,  

 F⊥
      perpendicular to the displacement dl     

WA→B F   =  F  
B

A

∙ dl    =  (F//
      

B

A

+ F⊥)       ∙ dl     

Where  F⊥
     ∙ dl    = 0  so:    

WA→B F   =  F  
B

A

∙ dl    =  F//
      

B

A

∙ dl     
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Hence only the component of the force parallel to the displacement F//
       provides 

work, the work of the force perpendicular to the displacement is zero. 

III.2. Constant force on a rectilinear movement: 

Consider a material point M moving on the  

line segment [AB] under the effect of a force F   . 

 

 

 

 

 

By definition, the work of the force F   on the rectilinear displacement AB is given 

by: 

WA→B F   = F  . AB      = F. AB. cos α 

α is the angle that F   makes with AB      .  

This work is  

 positive (motor work) if the force is in the direction of movement (driving 

force): 

cos 𝛼 > 0 ⇒ 0 < 𝛼 < 𝜋
2  

 Negative (resistant work) ifthe force is in the direction opposite to the 

displacement (force resisting): 

cos 𝛼 < 0 ⇒ 𝜋
2 < 𝛼 < 𝜋 

 zero if the force is perpendicular to the displacement:cos 𝛼 = 0 ⇒ 𝛼 =
𝜋

2
 

Example 

calculate the work of the forces: 𝑃  , 𝑅   and 𝑓  

𝑊𝐴→𝐵 𝑃   = 𝑃  . 𝐴𝐵      = 𝑃. 𝐴𝐵. 𝑐𝑜𝑠  
𝜋

2
− 𝛼     = 𝑃. 𝐴𝐵. sin 𝛼 

𝑊𝐴→𝐵 𝑃   = 𝑃. 𝐴𝐵. sin 𝛼 

𝑊𝐴→𝐵 𝑅   = 𝑅  . 𝐴𝐵      = 𝑅. 𝐴𝐵. 𝑐𝑜𝑠 𝜋/2 = 0 

𝑊𝐴→𝐵 𝑅   = 0 
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𝑊𝐴→𝐵 𝑓  = 𝑓 . 𝐴𝐵      = 𝑓. 𝐴𝐵. 𝑐𝑜𝑠 𝜋 = −𝑓. 𝐴𝐵 

𝑊𝐴→𝐵 𝑓  = −𝑓. 𝐴𝐵 

 

 

 

 

 

 

 

III.3. Power 

The power of a force F   is the ratio of its work to the time taken to accomplish it. 

Average power: Pmoy =
WAB

∆t
 

Instantaneous power: P(t) =
dW AB

dt
 

The unit of power, in the SI system, is the Watt. 

III.4. Kinetic energy 

Let's calculate the work of the resultant of the force F   applied to a material point of 

mass m between two points A and B. 

𝑊𝐴→𝐵 𝐹  =  𝐹 
𝐵

𝐴

∙ 𝑑𝑙     

Now according to the fundamental principle of dynamics we have: 

𝐹 = 𝑚𝑎 = 𝑚
𝑑𝑉  

𝑑𝑡
 

𝑊𝐴→𝐵 𝐹  =  𝑚
𝐵

𝐴

𝑑𝑉  

𝑑𝑡
∙ 𝑑𝑙    =  𝑚

𝐵

𝐴

∙ 𝑑𝑉  ∙
𝑑𝑙 

𝑑𝑡
=  𝑚

𝐵

𝐴

∙ 𝑉  . 𝑑𝑉   
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Where   
𝑑𝑙     

𝑑𝑡
= 𝑉   

However, since the displacement is very small, we can consider it as rectilinear, 

then the vectors are parallel. The work then becomes: 

𝑊𝐴→𝐵 𝐹  =  𝑚
𝐵

𝐴

∙ 𝑉. 𝑑𝑉 = 𝑚  𝑉𝑑𝑉
𝐵

𝐴

= 𝑚  
1

2
𝑉2 

𝐴

𝐵

=
1

2
𝑚𝑉𝐵

2 −
1

2
𝑚𝑉𝐴

2 

𝑊𝐴→𝐵 𝐹  =
1

2
𝑚𝑉𝐵

2 −
1

2
𝑚𝑉𝐴

2 

The value 𝐸𝐶 =
1

2
mV2 is called the kinetic energy of the material point. 

III.4.1. Kinetic energy theorem 

“The work of the resultant of the forcesapplied to a material point between two 

points is equal to the variation of the kinetic energy of thematerial point » 

𝑊𝐴→𝐵 𝐹  = ∆𝐸𝐶 = 𝐸𝐶 𝐵 − 𝐸𝐶(𝐴) 

III.5. Potential Energy 

III.5.1. Conservative force and non-conservative force 

 A force is said to be conservative if its work between two points A and B does 

not depend on the path followed (W1, W2, and W3), but only from the starting 

point A and the ending point B. 

 

 

 

 

 

 

 Any conservative force derives from a potential function 𝐸𝑝 𝑥, 𝑦, 𝑧 such that 

𝑭   = −𝒈𝒓𝒂𝒅              𝑬𝒑 𝒙, 𝒚, 𝒛  

 

A 

B 

W1 

W2 

W3 
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𝐹𝑥 𝑖 + 𝐹𝑦 𝑗 + 𝐹𝑧𝑘  = −
𝜕𝐸𝑝

𝜕𝑥
𝑖 −

𝜕𝐸𝑝

𝜕𝑦
𝑗 −

𝜕𝐸𝑝

𝜕𝑧
𝑘   

Examples: Force of gravity; force of weight; spring return force. 

Remark:  

If a force 𝐹  is conservative, its rotational is zero:  

𝑟𝑜𝑡         𝐹 = ∇   ∧ F  = 0   

 

 The forces are called non-conservative when their work depends on the path 

followed. 

Example: Friction force. 

III.6. Potential energy 

 Potential energy is the potential function associated with the conservative force. 

 Potential energy is the energy related to position. 

 Potential energy is defined up to a constant; it is always referred to a reference 

frame taken as the origin to calculate it.  

 The work of a conservative force is related to the potential energy by the 

expression: 

𝑊𝐴→𝐵 𝐹  = −∆𝐸𝑃 = 𝐸𝑃 𝐴 − 𝐸𝑃(𝐵) 

III.7. Total Mechanical Energy 

The mechanical (total) energy of a material point is the sum of kinetic and potential 

energies: 

𝐸𝑀 = 𝐸𝑃 + 𝐸𝐶  

III.7.1. Principle of Conservation of Mechanical Energy 

 The mechanical energy of a material point subjected to conservative forces is 

conserved. 

𝐸𝑀(𝐴) = 𝐸𝑀(𝐵)⇒ 𝐸𝑃(𝐴) + 𝐸𝐶(𝐴) =  𝐸𝑃(𝐵) + 𝐸𝐶(𝐵) = 𝑐𝑠𝑡 
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𝐸𝑀 𝐴 = 𝐸𝑀 𝐵 = 𝑐𝑠𝑡 

The variation in mechanical energy is zero 

∆𝐸𝑀 = 0 

 If one of the forces is not conservative, the mechanical energy is not conserved.  

The variation of the mechanical energy between two points A and B is equal to 

the sum of the work of the non-conservative forces between these two points. 

∆𝐸𝑀 =  𝑊

𝑖

(𝐹𝑛𝑐
      ) 

Such that 𝐹𝑛𝑐
       are the non-conservative forces 

III.7.2. Examples of conservative forces 

a) Force of gravity 

𝐹𝑔    = −𝐺
𝑀𝑚

𝑟2 𝑢  𝐹𝑔    = −𝑔𝑟𝑎𝑑           𝐸𝑃 𝑟 = −
𝑑𝐸𝑃

𝑑𝑟
𝑢   

𝐺
𝑀𝑚

𝑟2
=

𝑑𝐸𝑃

𝑑𝑟
𝑑𝐸𝑃 = 𝐺

𝑀𝑚

𝑟2
𝑑𝑟 

𝐸𝑃(𝑟) =  𝐺
𝑀𝑚

𝑟2
𝑑𝑟 

𝐸𝑃 𝑟 = 𝐺
𝑀𝑚

𝑟
+ 𝑐𝑠𝑡 

b) Elastic force 

𝐹 = −𝑘𝑥𝑖 𝐹 = −𝑔𝑟𝑎𝑑           𝐸𝑃 𝑟 = −
𝑑𝐸𝑃

𝑑𝑥
 

𝑑𝐸𝑃 = 𝑘𝑥𝑑𝑥 

𝐸𝑃 𝑥 =  𝑘𝑥𝑑𝑥 =
1

2
𝑘𝑥2 + 𝑐𝑠𝑡𝑒 

𝐸𝑃 𝑥 =
1

2
𝑘𝑥2 + 𝑐𝑠𝑡 
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c) Electric force 

𝐹𝑒
    = −𝐾

𝑄𝑞

𝑟2
𝑢   

Following the same reasoning as above, we will have: 

𝐸𝑃 𝑟 = −𝐾
𝑄𝑞

𝑟
+ 𝑐𝑠𝑡 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝐹  

𝑢   

𝑞 
𝑄 𝑟  
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Exercise 1 

A simple pendulum consists of a mass m considered point fixed to the free end of a 

wire of length l, we move the mass away from its initial position by an angle θ0, and 

we release it without initial speed, we neglect air friction.  

Determine the differential equation of motion using: 

a) The kinetic energy theorem. 

b) The total mechanical energy theorem. 

 

 

 

 

 

 

 

 

Exercise 2 

Let a material point M be subject to a force field F.  

𝐹 =  𝑥 − 𝑎𝑦 𝑖 +  3𝑦 − 2𝑥 𝑗  

1. Calculate the work of the force F for the displacement of M from the point 0(0,0) 

to the point A(2,4) passing through the point C(0,4). 

2. Find the value of a so that F is conservative, deduce the energy potential Ep 

resulting from this force field. 

3. Determine the work of F for the displacement of M following a trajectory 

circular with radius R and center 0(0,0). 

 

Exercises 
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Exercise 1 

a. Determine the differential equation of motion  

using the kinetic energy theorem: 

𝑊𝐴→𝐵 𝐹  = ∆𝐸𝐶 = 𝐸𝐶 𝐵 − 𝐸𝐶 𝐴 ⇒ 𝑑𝑊 = 𝑑𝐸𝐶 

𝑊 = 𝐹 ∙ 𝑙 ⇒ 𝑑𝑊 = 𝐹 ∙ 𝑑𝑙  

𝐹 = 𝑃  + 𝑇  = 𝑚𝑔 + 𝑇   

𝑇  = −𝑇𝑢𝑟      

𝑚𝑔 = 𝑚𝑔𝑐𝑜𝑠𝜃𝑢𝑟     − 𝑚𝑔𝑠𝑖𝑛𝜃𝑢𝜃      

𝑙 = 𝑙𝑢𝑟     ⇒𝑑𝑙 = 𝑙𝑑𝑢𝑟     = 𝑙𝑑𝜃
𝑑𝑢𝑟     

𝑑𝜃
 

𝑑𝑢𝑟     

𝑑𝜃
= 𝑢𝜃      

𝑑𝑙 = 𝑙𝑑𝜃𝑢𝜃      

𝑑𝑊 = 𝐹 ∙ 𝑑𝑙 = (𝑚𝑔 + 𝑇  )𝑑𝑙  

𝑑𝑊 = (𝑚𝑔𝑐𝑜𝑠𝜃𝑢𝑟     − 𝑚𝑔𝑠𝑖𝑛𝜃𝑢𝜃     − 𝑇𝑢𝑟     )𝑙𝑑𝜃𝑢𝜃      

𝑢𝜃     . 𝑢𝑟     = 0          𝑢𝜃     . 𝑢𝜃     = 1 

𝑑𝑊 = −𝑚𝑔𝑙𝑠𝑖𝑛𝜃𝑑𝜃 

𝐸𝐶 =
1

2
mv2 

𝑣 = l𝜃  

𝐸𝐶 =
1

2
ml2𝜃 2 ⇒𝑑𝐸𝐶 = ml2𝜃 𝑑𝜃 

𝑑𝑊 = 𝑑𝐸𝐶 ⇒ − 𝑚𝑔𝑙𝑠𝑖𝑛𝜃𝑑𝜃 = ml2𝜃 𝑑𝜃 

Solution 
 

θ 

𝑙 

𝑂 

𝑀 
𝑌 

𝑋 

𝒖𝒓      

𝒖𝜽      

𝑻    

𝑷    
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𝜃 +
𝑔

𝑙
𝑠𝑖𝑛𝜃 = 0  

If θ <<     sin𝜃 ≈ θ,        𝜃 +
𝑔

𝑙
θ = 0 

We pose 𝜔2 =
𝑔

𝑙
⟹ 𝜃 + 𝜔2θ = 0  

b. Determine the differential equation of motion using the total mechanical energy 

theorem: 

𝐸𝑀 = 𝐸𝑃 + 𝐸𝐶 = 𝑐𝑡𝑒
d

dt
 𝐸𝑃 + 𝐸𝐶 = 0 

We have calculated 𝐸𝐶 in the previous answer: 

𝐸𝐶 =
1

2
ml2𝜃 2  

𝑑𝑊 = −𝑑𝐸𝑝…………...(1) 

𝑑𝑊 = −𝑚𝑔𝑙𝑠𝑖𝑛𝜃𝑑𝜃......(2) 

 1 = (2) ⇒ 𝑑𝐸𝑝 = 𝑚𝑔𝑙𝑠𝑖𝑛𝜃𝑑𝜃 

𝐸𝑝 =  𝑚𝑔𝑙𝑠𝑖𝑛𝜃𝑑𝜃 = −𝑚𝑔𝑙𝑐𝑜𝑠𝜃 + 𝐶 

If 𝜃 = 0 ⇒𝐸𝑝 = 0 ⇒ 𝐶 = 𝑚𝑔𝑙 

𝐸𝑝 = 𝑚𝑔𝑙(1 − 𝑐𝑜𝑠𝜃)  

𝐸𝑀 = 𝐸𝑃 + 𝐸𝐶 = 𝑚𝑔𝑙 1 − 𝑐𝑜𝑠𝜃 +
1

2
ml2𝜃 2 = cte 

d

dt
 𝐸𝑃 + 𝐸𝐶 = 0 ⇒𝑚𝑔𝑙𝑠𝑖𝑛𝜃 +  ml2𝜃 𝑑𝜃 = 0 

𝜃 +
𝑔

𝑙
𝑠𝑖𝑛𝜃 = 0  

If θ <<     sin𝜃 ≈ θ,        𝜃 +
𝑔

𝑙
θ = 0 

We pose 𝜔2 =
𝑔

𝑙
⟹ 𝜃 + 𝜔2θ = 0  
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Exercise 2 

𝐹 =  𝑥 − 𝑎𝑦 𝑖 +  3𝑦 − 2𝑥 𝑗  

1. The work of the force F for the displacement  

of M from the point O(0,0) to the point A(2,4)  

passing through the point C(0,4): 

We know that: 

𝑑𝑊 = 𝐹 ∙ 𝑑𝑙  

𝑑𝑙  is the elementary displacement. 

𝑑𝑙    =  𝑑𝑥𝑖 + 𝑑𝑦𝑗  

F  =  𝐹𝑥 𝑖 + 𝐹𝑦 𝑗 =  𝑥 − 𝑎𝑦 𝑖 +  3𝑦 − 2𝑥 𝑗  

𝑑𝑊 = 𝐹𝑥 . 𝑑𝑥 + 𝐹𝑦 . 𝑑𝑦 

𝑑𝑊 =  𝑥 − 𝑎𝑦 . 𝑑𝑥 +  3𝑦 − 2𝑥 . 𝑑𝑦 

𝑊𝑂𝐶𝐴 = 𝑊𝑂𝐶 + 𝑊𝐶𝐴  

 The path from OC:  
𝑥 = 0 ⇒ 𝑑𝑥 = 0            

𝑦 𝑣𝑎𝑟𝑖𝑒𝑠 𝑓𝑟𝑜𝑚 0 →  4

  

𝑊𝑂𝐶 =  𝑑𝑊
4

0

=   3𝑦 − 2(0) . 𝑑𝑦
4

0

=  3𝑦. 𝑑𝑦 =  3𝑦2

2
 

0

44

0

=
3(4)2

2
 

𝑊𝑂𝐶 = 24  

 The path from ACA:  
𝑥 𝑣𝑎𝑟𝑖𝑒𝑠 𝑓𝑟𝑜𝑚 0 →  2

𝑦 = 4 ⇒ 𝑑𝑦 = 0           
          

    

𝑊𝐶𝐴 =  𝑑𝑊
2

0

=   𝑥 − 𝑎(4) . 𝑑𝑥
2

0

=  𝑥. 𝑑𝑥 −  4𝑎𝑑𝑥
2

0

=  𝑥
2

2
 

0

22

0

− 4𝑎𝑥 0
2 

𝑊𝐶𝐴 =
22

2
− 4𝑎 2 = 2 − 8𝑎 

𝑊𝐶𝐴 = 2 − 8𝑎  

𝑊𝑂𝐶𝐴 = 𝑊𝑂𝐶 + 𝑊𝐶𝐴 = 24 + 2 − 8𝑎 = 26 − 8𝑎 

𝑖  

𝑗  

𝑋

X 

𝑌 

𝑂 

A C 
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𝑊𝑂𝐶𝐴 = 26 − 8𝑎  

2. For the force to be conservative, it must verify: 

𝑟𝑜𝑡         𝐹 = 0   

𝑟𝑜𝑡         𝐹 = ∇   ∧ F   

𝛻  =
𝜕

𝜕𝑥
𝑖 +

𝜕

𝜕𝑦
𝑗 +

𝜕

𝜕𝑧
𝑘   

𝐹 =  𝑥 − 𝑎𝑦 𝑖 +  3𝑦 − 2𝑥 𝑗  

∇   ∧ F  =   

𝑖                        − 𝑗                     𝑘  

𝜕

𝜕𝑥
                    

𝜕

𝜕𝑦
                 

𝜕

𝜕𝑧
 

𝑥 − 𝑎𝑦          3𝑦 − 2𝑥          0

   

∇   ⋀ F  = −
𝜕

𝜕𝑧
 3𝑦 − 2𝑥 𝑖 +

𝜕

𝜕𝑧
 𝑥 − 𝑎𝑦 𝑗 +  −

𝜕

𝜕𝑥
 3𝑦 − 2𝑥 −

𝜕

𝜕𝑦
 𝑥 − 𝑎𝑦  𝑘   

∇   ⋀ F  =  −2 + 𝑎 𝑘   

∇   ⋀F  =  −2 + 𝑎 𝑘  = 0  ⇒ 𝑎 = 2 

For a=2, F   is conservative 

3. The work of F for the displacement of M following a trajectory circular with 

radius R and center 0(0,0): 

𝐹 =  𝑥 − 2𝑦 𝑖 +  3𝑦 − 2𝑥 𝑗  

 F   is conservative force ⇒ F   derives from a potential 𝐸𝑝 : 

𝐹 = 𝐹𝑥 𝑖 + 𝐹𝑦 𝑗 + 𝐹𝑧𝑘  = −𝑔𝑟𝑎𝑑             𝐸𝑝 = −
𝜕𝐸𝑝

𝜕𝑥
𝑖 −

𝜕𝐸𝑝

𝜕𝑦
𝑗 −

𝜕𝐸𝑝

𝜕𝑧
𝑘   

 𝑥 − 2𝑦 𝑖 +  3𝑦 − 2𝑥 𝑗 = −
𝜕𝐸𝑝

𝜕𝑥
𝑖 −

𝜕𝐸𝑝

𝜕𝑦
𝑗  
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𝜕𝐸𝑝

𝜕𝑥
= − 𝑥 − 2𝑦 …… . (1)

𝜕𝐸𝑝

𝜕𝑦
= − 3𝑦 − 2𝑥 … . (2)

  

𝑓𝑟𝑜𝑚  1 ⇒ 𝐸𝑝 = −  𝑥 − 2𝑦 𝑑𝑥 = −
𝑥2

2
+ 2𝑥𝑦 + 𝐶 𝑦 …… . (3) 

𝑓𝑟𝑜𝑚  3 ⇒
𝜕𝐸𝑝

𝜕𝑦
= 2𝑥 +

𝑑𝐶(𝑦)

𝑑𝑥
……… (4) 

 4 =  2 ⇒ 2𝑥 +
𝑑𝐶 𝑦 

𝑑𝑥
= − 3𝑦 − 2𝑥 ⇒

𝑑𝐶 𝑦 

𝑑𝑥
= −3𝑦 

𝐶 𝑦 = −
3𝑦2

2
+ 𝐶 

𝐸𝑝 = −
𝑥2

2
+ 2𝑥𝑦 −

3𝑦2

2
+ 𝐶  
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