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Introduction

This course is aimed at students in the core areas (first year) of
science and technology (ST), material sciences (SM), mathematics and

computer science (MI).

These courses introduce basic concepts of material point mechanics in
physics. This handout is made up of 4 chapters consistent with the

programs for the first semester.

We'll start by presenting a mathematical reminders ,where in the first
part we will we will study dimensional analysis while in the second

part, we will focus on the vector calculation.

The first chapter is dedicated to the kinematics of the material point.
The objective of this chapter is to describe the movement of the
material point in the different coordinate systems. The study of

compound movement was studied in this chapter.

The second chapter deals with the dynamics of the material point,

within the framework of Newton's mechanics laws.

The last chapter concerns work and energy. We deal with the work of a
force, kinetic energy, potential energy, mechanical energy and the

conservative forces.

To achieve a correct understanding of the lessons, we have included
with each chapter a set of exercises with the typical and detailed

solution.
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1.1. Generalities about Physical Quantities 4xl il palal) (e il gas
A Physical Quantity is a property that can be measured or calculated, and usually
equals a value followed by a unit.

Example : mass (m=5 kg), time (t=12 h)

There are two types of physical quantities: fundamental quantities and derived

quantities.

1.1.1. Fundamental (Basic) quantities 4sbu) yaial
Any physical quantity can be expressed on the basis of the fundamental quantities.

The seven basic quantities are given in Table 1:

Tablel. The seven fundamental quantities

Physical quantity Symbol
Length 1(x,d)
Mass m
Time t
Electric current 1
Temperature T
Luminous intensity j (L)
Amount of substance n

1.1.2. Derived Quantities 4&idall il

These quantities are expressed as a combination of the seven fundamental quantities

(multiplication, division, etc.).
Examples:
d Area (surface) S: S=1x 1=1*,(Unit m).

0 Velocity v: v = I/t. (Unit m/s).
0 Force F: F=m a=m(v/t) = m(l/t?), (Unit: Newton N = kg m/s?).

1.2. System of units <as gl AU
A physical quantity can be defined by a numerical value which translates its
intensity and also its unit, which specifies the nature of this quantity. The four

fundamental units thus chosen define the MKSA system whose initials mean meter,
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kilogram, second and ampere respectively. The international system of units SI
comprises seven basic units and two additional units: meter, kilogram, second,
ampere, kelvin, mole and candela. (One can add a complementary unit: the angles,
one assigns to a plane angle the radian unit).

All other units called derived units are obtained by combining these basic units of
the international system.

Remark:

Before the adoption of the MKSA system, another system in which the length was
measured in centimeters, the mass in grams and the time in seconds already existed,

1s the CGS system (C=centimeter, g=gram and s=second).

1.3. Dimensional equations ) cYilaa

1.3.1. Dimension 2z

The nature of a physical quantity is recognized by its dimension. The dimension of
a physical quantity G is noted by the expression [G]. For example, if G has the
dimension of a length, it is said to be homogeneous to a length, so the relation [G] =
L corresponds to the equation to the dimensions (the dimension) of the quantity G.
So if G is the size of a:

- mass, note [G]=M,

- length, note [G]=L,

- time, note [G]=T,

- electric current, note [G]=I,

- temperature, note [G]=0,

- luminous intensity, note [G]=J,

- quantity of substance, note [G]= N.

The dimension and unity must therefore be coherent with each other. A quantity
has a single dimension but can be expressed in several units.

For example, the mass has the dimension M and can be expressed in kg or g.

The length has the dimension L and can be expressed in m or cm.

The time has the dimension T and can be expressed in s.
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Table 2. dimension of fundamental quantities and their units in the SI system

Basic size L)lmensm Unit Name (SI) unit symbol (SI)
Length L meter m

Mass M kilogram kg

Time T second S

Electric current I ampere A

Temperature 0 kelvin K

Amount of substance N mole mol

Luminous intensity J candela cd

Flat angle A radian rad

Solid angle Q steradian ST

1.3.2. Dimensional equations ) <Yalaa

A dimensional equation is a mathematical relationship that expresses the

dimension of a physical quantity as a function of the dimensions of the

fundamental quantities. Generally, the dimension of a derived quantity is

expressed by the product of powers of the fundamental dimensions. The

dimensional equation of a derived physical quantity G is written:

[G]=M"LFT'TI°

The dimensional equations allows to:

*Determine the unit composed of a quantity according to the fundamental quantities.

* Check if a formula is homogeneous and detect errors in calculations.

e Perform unit conversions.

Example:

velocity: v = f

The velocity dimension: [v] = [ﬂ = %

So, the of velocity dimensional equation: [v] = LT ™! and the unit in SI: m.s~

_—

LT 1

1

Some of quantities are reported in the table 2 where the equivalent units are

specified in the International System of Units (SI).
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Table 3. Dimensional equations of derived quantities and their units in SI

LD U glperession glirg(ill::it(i):n L0 Ssoeltliulllll(l)irtlly
Acceleration a=l/t* LT m.s™

Force F=ma MLT Kg.m.s™ newton (N)
Pressure p=F/S ML'T? kg.m™'.s? pascal (Pa)
Energy, Work W=Fl ML*'-2 kg.m**-2 joule (1)
Power P=W/t ML’T" kg.m?.s™ watt (W)
Electric charge Q=it IT A.S coulomb (C)
Electric field E=F/q MLT 1! kg.m.s>. A" X;)/lrtr/l;neter
Potential (voltage) | U=El ML*TT! kg.m*.s” A volt (V)
Electrical capacity | C=q/U ML TP Kg'.m?s'A? farad (F)
Resistance R=U/i ML*-3'2 | kgm® sP.A™* ohm (Q)
Note:

The functions: sin(x), cos(x), tan(x), In(x), log(x) and e* are dimensionless (without

dimensions), so [sin(x)]= [cos(x)]= [tan(x)]=[e*]=[In(x)]=[log(x)]=1.

Also, a constant is dimensionless ([r]=1).

1.3.3. Homogeneity of dimensions 2t (uilas

Dimensional equations are used to verify the homogeneity of formulas, that is, both

its members have the same dimension.

1.3.4. Conversion from SI to CGS

Table 4 summarizes some conversions from SI to CGS
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Table 4. Conversion from SI to CGS

CGS

Quantity IS Unit Symbol Unit Symbol Equivalence
length m m cm cm Im=10°cm
mass kg kg g g 1kg=10"g
time s s s s
acceleration | m.s” m.s” cm.s’ Gal Im.s”=10’cm.s”(1m.s*=10" Gal)
force Kg.m.s? | N (newton) | g.cm.s’ 21)}//?16) Kg.m.s?=10°g.cm. s (IN=10°dyn’
energy Kg.m’s” | J (joule) gem’s® | erg kg.m”s* 10'g.cm”.s*(1J=10"erg’

-1 2 1.2 |Ba L2 1.2 _
pressure Kgm™.s” | Pa(pascal) | gcm s (barye) Kg.m s7=10g.cm-'s “(1Pa=10Ba)
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Exercises

Exercise 1
Write the dimensional equations of the following quantities and deduce their units

in the international system (IS):

1. The pressure P = g 2. The quantity of movement P: (ﬁ' = d—P)

t
3. The momentum of F: M /0 (ﬁ ) = 7AF 4. The angular momentum L =#A\P
E.

5. The electric field E = F/q 6. The electric potential V = E. [

Exercise 2

The T-period of a circular Earth satellite may depend on the mass of the Earth m,
the radius of the circle described R and the constant of the universal gravitation G.
We will write: T = k.m®.R>G*, where k is a dimensionless constant.

- Determine by a dimensional analysis the values of a, b and c. Deduce the

expression of the formula of the period 7.

Exercise 3

Experience has shown that the force experienced by a sphere immersed in a moving
fluid depends on:

- The viscosity coefficient # of the fluid.

- The radius of the sphere R.

- Their relative speed v.

Find the expression for this force by assuming the form: F = kn*R?v°¢

(k is a dimensionless numerical coefficient). We recall that [5#]=L"MT".
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Solution

Exercise 1

1. Pressure (P):

S :area
S=I°
So [S]=L?
[F] M.L.T™?
[P] = -

[P]=M.L1.T2

Unit of pressure in IS : kg-m™-s™= pascals (Pa)
1 Pa=1N/m?

2. Quantity of movement P:
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Unit of quantity of movement in IS: kg-m/s.
3. The momentum of force F :

M;o(F)=r.F=[M] =[r].[Fl= L.M.L.T™2

M.I2.T2 = [M]

Unit of momentum of a force in IS: kg-m?/s*= joule (J)

—_—

4. The angular momentum L :

—_—

L=7AP (pisa quantity of movement)

L=FAp=FAmi=L=rmv=lpl = [Flmlv] = rlim [5]

[£] = M.I2.T1

Unit of angular momentum in IS: kg-m?*/s

5. Electric Field (E):

E=—
q

[E]=ﬂ

[q]
= [F]= M.L.T~2
q: charge elctrique: ¢ = it = [q] = [i].[t] = IT

_ﬂ _ M.L.T2
El=1q0="1r

[E]=M.L.T317!

Unit of electric field in IS: kg'm-s™-A™'= (V/m).
6. Electric p otential (V):

V=El
[V]=[E].[l] = M.L.T3171.L

[V] = ML2T 31

Unit of electric potential in IS: kg m?-s™-A™'.= Volt (V).

10
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Exercise 2

The equation of dimensions for period 7 is given by the following formula:
[T]=[k.m*.R™G°] = [k]. [m®]. [R"]. [G*] = [m]*. [R]. [G]® (k is a dimensionless
constant)

The dimension of each term must be determined:

[T]=T
[m]=M
[R]=L
[G]=7?
So according to the law of universal gravitation :
mm’
F = G —2
r

Or F is the gravitational force between two masses m and m’ separated by distance r

Fr? . . .
= G = —, so the dimension of G is :
mm

[F1[r]?
[m][m]

Fis a force: F=ma = [F] = [m][a] = MLT 2

[G] =

[r] =L
[m] = [m]=M

_ MLT2L?

M2 — M—1L3T—2

[G]

Replace [G] in the [T] expression

T = MaLb (M—1L3T—2)c — Ma—cLb+3cT—2c
a—c=0 a=c a=-1/2

{b+3c=0 = {b=—3€ = {b=3/2
-2c=1 c=-1/2 c=-1/2

SoT=km'2R*.G"?

11
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Exercise 3

F = kn*R°v¢ = [F] = [k][n]*[R]"[v]°

The dimensions of the quantities are:

Viscosity coefficient n: [n]J=M LT

Radius of the sphere R: [R]=L

Relative speed v: [v]=LT"

Force F: [F]= M.L. T2

k is a dimensionless numerical coefficient, so [k]= 1
= [F] = [k][n]*[RI°[v]°

= M.LT?2 =ML T H2(@L)P(LT V)

M.L. T2 = (M)aL—a+b+cT—a—c

(([1=a
l=-a+b+co>b=14+a-c=1+1-1=[1=D]

—2=—a—c:>c=—a+2=—1+2=

= F = kn!R'v!

So, the expression for this force F = knRv

12
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2.1. Scalar quantities and vector quantities istxid) sl g iwldl p3Bg)l
Physical quantities are divided into two groups:

- Scalar quantity such that; mass (m), time (t), energy (E), ....

- Vector quantity such as velocity (v), force (ﬁ )see-

2.2. Vectors 4=y
2.2.1. Definition; <& =i

A vector is a line segment AB, having an origin A and an end B. We denote it by

A_B: characterized by:
- Its direction which is defined by that of the line which carries the segment
- Its sense which designates the orientation of the vector (from A towards B).

- Its magnitude (norm or intensity) which is equal to the length of the segment
[AB], noted ||E|| which is always positive.
Note:

A vector can be designated by a single letter: AB =V.

magnitude

/ﬂ

V Sense

direction

2.2.2. Unit vector s.-g ¢las
A vector is unitary when its magnitude is equal to unity (1).

If 1 is a unit vector carried by a vector V then:

We also have ||i]| = 1 and % is always parallel to V(i// V).

//I_/)v
u

14
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2.3. Vector Operations

Let 71), 72), 73), be three vectors, a, b and c real numbers
2.3.1. The sum (addition) of the vectors ¥ sx

The sum of two vectors Vf and 72) is another vector § , with :
S=V+V,

Graphically, we can find the resulting vector S by the parallelogram rule.

v

—

Vi

The sum of n vectors: Vf, 72), V;,. .. I—/,: is a vector S such that:
S=Vi+V,+ V5 + -V,

§ P

2.3.1.1. Properties: u<! 3
* Commutativity (Jk8): S =V, +V, =V, + 1,
* Associativity ((s=ad): (71) + 72)) + Vg) = 71) + (Vz) + Vg))
* Distributivity (=) : (@+b). Vi=a. V;+b. V;
and a.(71)+ @ =a. 7{+a. 72)

* The sum of a vector Vl)and its opposite (- 7{) 1s zero: Vf + (—71)) =0

15
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2.3.2. Vector subtraction iy - b

The difference of two vectors Vf and V; is a vector D , with :
D=V ~V, =V +(-)

Graphically, we can find the resulting vector D by the parallelogram rule.

v, >
2
(=V3)
D=V,-V,
A

Note:

—

Vi — 72) * 72 — 71, therefore the difference of the vectors is non-commutative.

2.3.3. Components of a vector &d <ls

To determine the components of a vector, it is necessary to choose a reference
frame (coordinate system) which is a set of non-collinear unit vectors called basis.
We can then decompose all the other vectors according to these unit vectors and this

decomposition is unique. We have three types of references frame:

2.3.3.1. Linear reference frame: b3 alaa
It is composed of a single axis Ox, provided with a unit vector 7 positively oriented.

The coordinate (x) of point M is defined by:

B

OM = xT
(x) 1s also called the component of the vector OM.

M(x)

v

@ >
NI J X
Y

X

v

16
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2.3.3.2. Planar (two-dimensional) orthogonal reference frame: s s alza
It is composed of two orthogonal axes of the plane, OX and OY, provided with unit

vectors T and J positively oriented.

The position of a point M is characterized by the vector OM

-

V=0M

Let x and y be the projections of M onto the OX and OY axes, respectively. So we

have:

S L, (X
V=xi+y = (y)
X = ||I7||cos€

{y = ||I7||sm9

V =xi+yj = ||V]|cosi + ||V||sin6ju

>V = ||I7||(c059.?+ sind.N) =V =|IV|.4

u

i is the unit vector of the vector V
U = cosh.1+ sin6.j

(x,y) is called the components of the vector V or the cartesian coordinates of the

point M in the plane (OXY)

M(x,y)

v

17
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2.3.3.3. An orthonormal reference in space: sbadl) & (uilaia dalaia alea

It is composed of three orthogonal axes, OX, OY and OZ, provided with unit vectors

1,7 and k positively oriented. The position of a point M in space is characterized by

the vector V = OM. Let x , y and z be the projections of M onto the axes OX, OY

and OZ, respectively. So

we have:

X
I_/>=xT+y* + zk = (y)
VA
|{x = ||W| cosf
ly= [037°|| sing = ||0M’|| = [[7].sing
2= Wllcose

X = ||I7||Sin<p.c059
S ]y= ||V||Sin¢.sin9

Lz = ||I7||cos<p

7 = |7

i is the unit vector of the vector V

i = sing.cosh.T + sing.sind.j + cosp. k

(x,y,z) 1s called the components of the vector OM or the cartesian coordinates of the

point M in the orthonormal reference frame (OXYZ).

AZ
z s\‘“\
V\*.Mm»n

@ !
- A |
k :u : y R

/) -
MI

18
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2.3.4. Magnitude (norm) of a vector §lad 4l sh
The magnitude of a vector V=xi+ yj + zk represents its length, it is given by the

following formula:

V| =Vait 2+ 2=V

||l7|| 1s always positive

2.3.5. Scalar (dot) product () ¢laal)

The dot product of two vectors V; and V5 is a scalar given by the following relation:
V.V, = |[Vi |- |V2]|- cose

Where 0 is the angle between the two vectors Vfand V;

v

2.3.5.1. Properties

& 7.7 = |7].|[7]].coso = v2

s V.75 =[] [l cost = |[Tz)]. ||| cosit—0) = 7.V, = 7.7,
o NG+ V) =WV, +1.V;

e (V) = V% + V52 + 2V Vyc0s8

o If6 = %, their scalar product is zero:

Vi LV, =2V, =0

We will therefore have:

- -

*ii=jj=kk=1
*ij=jk=1k=0

«»» If we know the coordinates of two vectors in an orthonormal basis, the scalar

product will be expressed only in terms of the coordinates:

19
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X1 X2 X1 X2
v, ()’1) and V, ()@) >V, = <y1> . <}’2>
A Z) A Z

ViV = x1x5 + y1y0 + 212,

2.3.5.2. Projection of the vector: §las hiwa

The projection of the vector 72> onto 71) is given by the following relation:
proj Vo /V; = ||V2||.cost9

—

v,

0

<:l v

ﬁ S~——
1
projV;/Vyq

We can rewrite the previous relation in the form of a scalar product:
u.V, = ||lull. ||V2 || cos@ = ||ul|.proj V,/V;

U is the unit vector of the vector Vf

Sl = 2
Ull = —=-=
|||
T
= proj V5 Vi = 1V12

2.3.5.3. Vector projection of vector: §lxd hiwa plad

The vector projection of vector Vz) onto 71 is a vector defined by:

PrOJV;/ = ProjE U= A U= (72-V2) E = —Vl) (72.v2)
Vi I_/_; v o V12

_,V;/ _n(nn)
Vi V2

20
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2.3.5.3. Direction cosines
The direction cosines of the vector V = x7 + yj + zk are the cosines of angles that
the vector V forms with the coordinate axes.

Let o, B and y be the angles that the vector Vmakes with the axes OX, OY and OZ.

X

V,
COS(X=7 7 A

V

y

COSp = —

B V

V

COSYy = —
)4 v -
yL

2.3.7. vector (cross) product Sladd) glaal)
The cross product of two vectors Vf and 72) is another vector P perpendicular to the
plane which formed by two vectors, it’s direction is found by using the right-hand

rule. The vector product is defined by:
Where 1 is the unit vector perpenducular to plane formed by I_/_; and V;

A

P =V,A\V,

|l

2.3.7. 1. Properties
< The magnitude of P is given by :|| P|| = |[V;AV]| = ||V ]|. ||VZ |- Isiné|
% The cross product is anticommutative: V; AV, = —(V,AV;)
# The cross product is distributive: ViA(V; + V3) = ViAV; + VAV,
21
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o VN, =0=V, //V; z\
@ INi=jAj=kANk=0AndiAj=k jAk=% kKANi=] kK i
U‘,

*» The cross product can be calculated by the determinant method

X1 X1
based on the coordinates of Vf ()ﬁ) and 72 (3’1):
2 Z

-

e k i 24
ViV, =[x Y1 Z [ Ty, Z

X2 V2 Z

X1 A

» |x1 }’1| 7
X7 VA ' '

X Y2 k

l |

ViAVy = (112, — 21y2).T— (12, — 212).] + (01y2 — y13)- k
2.3.7.2. Magnitude of the cross product Sl slaall 4l gha

The magnitude of the cross product of two vectors represents the area of a

parallelogram formed by these two vectors:

IViAZ = [[i]l. | 72]]. Isine]

h=V,.|sinf| =S = h.V;, = |V, A

ViAV;

2.3.8. Mixed product hlisall glaal)

The mixed product of three vectors Vf, V; and V; is the scalar quantity defined by

X1 - N 21
— ——> —>
Vi.(iGAVE) = X2 ¥ Z;
X3 Y3 Z3
_ |}’2 Zz| _ |x2 Zz| |x2 }’2| 2
Y3 zz|" "1 s R F y3l

V. (V;AV;) = (¥2-23 — 22.¥3)- %1 — (X2.23 — 23 %3). y1 + (X2. Y3 — ¥2.%3). 23
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Note :
The value obtained from the mixed product of the three vectors is equal to the

volume of the parallelepipedformed by these three vectors.

2.3.8.1. Properties:
& V.V AT3) = V5. (Vi ATV;) = V5. ( ATF)

% V. (V; A V;) = 0 =Either the three vectors are in the same plane or V, || V3.

2.3.9. Triple product: —islaall glaal)

The triple product of three vectors 71, VZ) and 73> is defined by the vector D or:
b= A (7 AT5) = (R.75).Wi - (ToTo).T5

2.4. Moment of a vector gl aj
2. 4.1. Moment of a vector relative to a point 4h&i 1 4uilly pladi aje
The moment of a vector 71), which passes through point A, relative to a point O is

defined by the vector M such that:

—

¥ 4

0

23
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2.4.2. Moment of a vector relative to an axis s ) 4l pladi o e

The moment of a vector Vl), which passes through point A, relative to an axis(A) is

given by the scalar product M such that:
U, the unit vector of the axis (A).

2.5. Vector derivatives

Let a vector I_/)depend on time (t) (vector function):

V() = x0T+ y(©)] +z(Dk

The derivative of the vector V with respect to time 1s defined as follows:

av dx++dy++dzz
dt de' Tad) Tar

Note: Velocity and acceleration are vector functions.

2.5.1. Properties

Consider two vector functions /T(t) and §(t ) and f(t) a scalar function:

d r» = dA | dB
° E(A+B)=E+E

d r? 3 dA 5 . —dB
o —(AB)=—.B+A—

d dA dB
o —(AAB) =—"AB+AA—

2.6. Vector analysis (s bdd) Juladl)

2.6.1. “Nabla” operator > il

The nabla operator 7 is a vector quantity written in cartesian coordinates:

A L,
xl-l— ]+aZ
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2.6.1.1. “Gradient” operator gl fis
Let f{x, , z) be a scalar function. Gradient of f'is given by the following vector:

grad f = Vf = (f> +<a§)1+(a£>

2.6.1.2. “Divergence” operator =il jia

Letitbe V =V, i+ V] v+, k a vector function. We define divV as follows:

g7 = 7.7 = ey O OV
Y=Y T e Ty T oz

2.6.1.3. “Curl” operator &/l fisa

Letitbe V = VT + V,j + V,k a vector function. We define W(V) as follows:
roi(V) =P a¥ = (2220 )r - (2 T8y (2 TE )R
ro B ~\dy oz l ox oz}’ dx 0y

2.6.1.4. “Laplacian” operator (>3 S

- Laplacian of a scalar function is defined by the following relation:

0f O O
8x2 dy?  0z?

V2.(f) =V.V(f) =

- Laplacian of a vector function is given by the following relation:

L o oo aV,H 0%V, , 0%V,
VZ.(V)=\7.\7(V)=621 62]+622k
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Exercises

Exercise 1

Let the vectors in space be V; = 2f —J + 3k and V, = —7 + J + 2k represented in
the frame R(O, .7, E)
-Calculate the angle between the two vectors Vf and 7{

Exercise 2

Let the vectors in space be represented in an orthonormal coordinate system R

(0XYZ),

V,=21-3]+K and V, = i+ 2+ K

1. Represent these vectors in the reference R(0OXYZ).

2. Calculate R = Vf + V; and the modules: ||V1)||, ||7£|| .

3. Calculate the scalar product of V_fand 72) and deduce the angle between them.

4. Determine the unit vector carried by the vector 72) Deduce the direction cosines
of 72)

Exercise 3

Let the vectors in space be represented in an orthonormal coordinate system R

(0XYZ),

V,=t+f+kandV, =2i+j—k

-Calculate the projection and the vector projection of the vector VZ) onto the vector
V1.

Exercise 4

Consider the points A(1,0,-1), B(-1,2,1), C(2,1,3) and D(0,1,0) in the frame
(0XYZ).

1- Determine the components and magnitudes of the vectors AB , AC and AD.
2-
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3- Determine the projection and the vector projection of AB on AC.
4- Calculate the surface (area) of triangle ABC and the volume constituted by A_B:
AC and AD.

Exercise 5
In the frame R(0,7,J, 75) we give the sliding vector V =7+ 27+ 3k and which
passes through the point A(3, 4, 2).

1. Calculate the moment of the vector V relative to the origin O, then relative to the

axes OX and OY.
2. Calculate the moment of vector V relative to point B (3, 6, 0)

3. Consider the (A) axis of unit vector # (-1/72, 1/2, 1/2) and passing through B,

calculate the moment of V relative to (A).

27



Mathematical reminders—Part 2 Vector calculus

r Solution

I—

Exercise 1

ViVy
v -1vz]l

We have VfV; = ||Vf|| ||V£|| cosf = cosf =

2\ /-1
V{.VZ’=<—1>(1)=2.(—1)+(—1).1+3.(2)=—2—1+6=3
3/\2

Vil = Va2 +yi2 + 22 =22 + (-1)2+ 32 =V4+1+9 =14

V2|l = Va2 + y22 + 22 = J(—1)? + 12+ 22 =V1+1+4 =6

0 A > 0.32
COSU = —; — = = V.
Vil V2]l viave
=0 =71.33
Exercise 2

1. Represent Vfand V; in the reference R(0XYZ).

AZ

v
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2R=Vi+V,=-3|+]| 2
1 1

Vil = Vo + 912 + 22 = 22+ (32 + 12 =VA + 9 + 1 = V14

Il
 ~
) ’L -
~__—

Il

~

|

~u

+

N

=N

V2] = vis

V2]l = Vxo? + 3.2 + 22 = (1?2 + 22+ 12 =VI+ 4+ 1=6

V2] = Vo

2\ /-1
3. Wehave V..V, = (-3)( 2 ) =2(-D+(=3)2+1(D)=-2-6+1=-7

1 1
ViV, = =7
ey ViV,
V. Vo = ||[Vi||- ||| cos6 = cosf = ——
[VAl-[[V2
g =——" 0.76
cosu = = —Vu.
V14v/6
60 = 139.79°|

3. unit vector carried by the vector VZ):

—

V= Vil =1 = 2 = i+ f

= U Uy = ——=—F7—1 — —

2 2 2 2 ”Vz” \/E \/E] \/E
w _1*+2*+11?
Uy =—i+—=j+—=
2=V Ve T Ve

- The direction cosines of V; are the components of unit vector carried by the vector
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rcosaf
T = it ji R T+ cosB.j+ K = { cosp
Uy =—=1i+—=j+—=K = cosa.i+ cosf.j + cosy.K = { cos
 cosy
Exercise 3
1) The projection of the vector 72) onto the vector 7{ :
. .Y,
projy;, =-—7—
2
L 1\ / 2
.V, =11 1 |=12+11+1.(-1)=2+1-1=2
1/ \-1
Vi=Jo2+y2+z2=422+12+12=+6
. N, _ 2
projy, =——=—
V2 7 Vi V6
_ 2
proj, =—=
2 " \/8

2) the vector projection of the vector 72) onto the vector 7{ :

_ (W)

T0J 7, =
P ]VZ/V—1> Vlz
V12=6
2

)
. -1 . -
= PT0)y;, ==t = (2047 K
RTINS (2t+7-k)

Projv;, (2t+7 - E)
Vi

S-S e[l
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Exercise 4

1. The components and magnitudes of the vectors AB , AC and AD

— [XBTXA — ( —1-1 — 2 - - —
AB(YB—YA):MB( 2-0 ):>AB(§): —21+ 27+ 2K

ZB—Z/ 1-(-1)

AB = —21+ 27+ 2k

|4B|| = V(=2)2 +22 + 22 = VA + 4+ 4 =12 = 23

48] = 243

., [Xc—XQ _ 2—-1 — 1 - - —
Ac<yc—yA):>AC( 1-0 >:>AC(1)=1+ j + 4k

Zc—ZA 3—(-1)

|AC|| = V12 + 12 + 42 = V18 = 3V2

[4C]| = 3v2
— s [XD™X4 s 0-1 | . L -
AD (ig:ﬁj) = AC (0_1(—_01)) 4D (1)=-1+7+k
AD = -1+ J+K
|AD|| = V12 + 12+ 12 =3
|4D]| = V3

2. The projection and the vector projection of AB on AC:
a) The projection of AB on AC
AB.AC

projﬁ/ﬁ :W
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_2\ /1
E.ZE=(2)(1)=—2+2+8=8
2/ \4

, AB.AC 8
e ac] 3V

8
roj -—= 2 = ——
pbTOJ 75 jac 32

b) The vector projection of AB on AC:

- . AC.(4B.40)
PTOJag/ac = PYO) zgjac -Yac = — . —.2
lac]

(4 j+4k) 4

= PT0j45,4¢ = 8. 18 —§(T+f+4k)

., 4 . L -
PT0j45 /ac = §(l+] +4k)

3. The surface ( area) S,zc of triangle ABC:

EAA—C’ A
s = |[ABAAT]
S S A
ABANAC = |2 2 2
1 1 4

ABAAC =(8—-2)1—(-8—2)]+ (-2-2)k

ABAAC = 6.1+ 10.7 — 4.k

|AB A AC|| = /6% + 102 + (—4)2 = V152

Sapc =
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e the volume constituted by AB, AC and AD:

o -1 -1 1
AD(ABANAC)=|-2 2 2|=0
1 1 4

V=0, either the 3 vectors are in the same plane

Exercise 5
V =1+ 27+ 3K which passes through the point A(3, 4, 2).

1. The moment of the vector V relative to the origin O

X4 — Xo 3—-0 3
OA|Ya—Yo |=04(4-0)|=>04(4
ZA_ZO 2—0 2

My,0 = OANV =

w N =

—J
4
2

=W~y

My =(43-22).1—(33-21).7+(B.2-41.k

My =81-7] +2.k

% Moment of V relative to OX:
8 1
M 105y = My T = ; : 8 =8

% Moment of V relative to OY:

2) Moment of vector V relative to point B (3, 6, 0)
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X4 — Xp 3-3 0
BA|Ya—Ys |>BA|4—6|=>BA| —2
Zy — Zp 2—0 2
My,g=BANV =10 —2 2 |=(10).T+2.j+2.k
1 2 3

My =-10.T+ 2.7+ 2.k

3) Moment of V relative to (A) :

—10\ /—-1/V2 0
Moo =Mz = 2 || /2 |==+1+1
V/(A) V/B 2 1/2 \/f

10

Vector calculus
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Chapter 1 Kinematics of a particle

I.1. Introduction 4edia

The kinematics is the mechanical branch (which is a physical branch) that
determines the motion of the body in its position, velocity, acceleration, trajectory,
without addressing the reasons responsible for this movement (forces). We will
limit our study of kinematics to the study of the movement of a particle.

I.2. Definitions

I.2.1. Particle

The particle is an object without dimensions and its mass is concentrated in its
center of gravity. Therefore any effect of rotation of the body around itself or its
spatial extension will be neglected. For example, Earth can be considered a particle

in relation to the solar system

1.2.2. Trajectory
The trajectory of a mobile is the set of successive positions that it occupies over
time in relation to the chosen reference system. Mathematically it is a relationship

linking the coordinates x, y and z to each other independently of time.

P (ts)

1.2.3. Equation of motion (
The equation of motion is the variation of the position of a mobile as a function of

time, in a chosen reference frame.

x=2t—1

Example : {y _ 12

I.3. Movement characteristics

Describing the body's motion requires three vectors::
= Position vector.

= Velocity vector.

= Accélération vector.
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1.3.1. Position vecteur

We call the position vector of a particle M at time t in the Cartesian coordinate

system (0,7, k), the vector #(t) = OM

#(t) = OM = x()i + y(t)] + z(D)k

Remark:

The displacement vector represents the oriented distance which separates the

starting point M from the arrival point M'

(WVI) and OM": position vectors, MM' diplacement vector).

AKZ
Y A M(t)
Z\\\‘\
< SN M(x,y M’(t’)
T | 1.
I_C)“ E ]
0 e > >
7 j L Y 0|7 X
x ___________________ 'y/l
X

1.3.2. Velocity vector

The speed at time t is the variation of the position with respect to time. In addition,

this quantity is vector.

) = dOM
T T
Velocity vector v tangent to the trajectory at point M

The unit of speed in the international system is m/s.

There are two velocity vectors: average velocity vector and instantaneous velocity

vector.
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Q &

1.3.2.1. Average velocity vector
Average velocity is the change in overall distance relative to elapsed time.

Let point M be at time t and point M’ at time t’

MM
Pn =

At=t —t

Y a M(t)

M'(t’)

=}
v

>

>y

~

1.3.2.2. Instantaneous velocity vector

We define the instantaneous velocity at time t by:

5 _ i oo OM
YT aD T Tar

Remark:

The instantaneous velocity vector is carried by the tangent to the trajectory at point

M
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1.3.3. Accelération vector

The acceleration vector at time t is the change in velocity vector with respect to

time.
. dv _d’OM
=T A

The unit of acceleration in the system international is m/s"

We distinguish two accelerations:

I.3.3.1. Average acceleration vector

Average acceleration vector is the variation in velocity vector over time

=
v

~y
~y
h.<

1.3.3.2. Instantaneous acceleration vector
Instantaneous acceleration is the derivative of the velocity vector with respect to

time

a= lima, = lim AV =

At—0 At—0
. dv_d?OM
= A T ae
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I.4. Coordinate system
The vectors: position, velocity and acceleration of a mobile M are defined in
relation to a reference frame, so the description of the movement of M requires the

definition of these vectors.
1.4.1. Cartesian coordinates
Soit A direct orthonorm repair from the origin of the base (7,7, E).

-

Let R(0,1,7, k) be a direct orthonormal frame of origin O and base (3, ], k)

1.4.1.1. Position vector:

OM = xi +yj +zk

AZ
Z F~o_ Y A
Te-el M(x,
e M@y2) (x,y)
L . y Lo
r=0M !
EAA E “f :
0 Y > !
i v Y ol > . i,
: /’ L X
x _____________________ Iv//
OM = xi +yj
X
1.4.1.2. Velocity vector:

dOM dx_. dy. dz

=it otk =dit i+ ik = v+ ]+ vk

The components in cartesian coordinates of the velocity vector are therefore:

r _dx_
v, = — =
x dt
dy .
v, =— =
<Y dt
v —dz—z'
Z 74

\
The unit vectors (3, J, ig) are fixed in the cartesian reference frame, therefore:

di dj dk

dt dt dt
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1.4.1.3. Accélération vector:

dv de-o de - dUZ 7 e T .70 -»> - 7
—=—l+—=j+—=2k=Xi+ +Zk=a,i+a,j+a,k
dt dt dtJ dt Y x v z

a

The components in cartesian coordinates of the velocity vector are therefore:

dv,
a, = =X
o dt
dv.
5% .
a = ——=
y T ar Y
__dv,
Az = =

1.4.2. Polar coordinates
We can locate the position of the point M by a coordinate r (distance between the
origin of the mark and the point M) and 0 oriented angle that the vector 7 makes

with the abscissa axis (OX).

The data (r, 0) called polar coordinates. The basis of the polar coordinate system is

formed by two unit vectors (u,, ug)

OM =r.u = ||5A7|| =r

w1l = llugll = 1 and w L uy
0<r<+owetd <0 <2rm

Polar coordinates are linked to Cartesian coordinates by:

X =71.cos0

=1 =.x%+y?

y =r.sin6
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1.4.2.1. Position vector:
oM(t) = 7(t) = ||oM||. %, = r. %,
u, = cosO.1+ sinb.j

OM(t) = 7(t) = r.(cos0.i + sinb.j)

1.4.2.2. velocity vector:

- dT(t) _ d_T—> dW
30 ==L w) =Ly +r
dW _ @ - . 2N\ _ (i - - d_9 _ d_e——>
= d.(c059.1+sm9.]) = ( SlTl@.l+COS@.])dt =—"Ug
Ug = —sind.1+ cos6.j
v(t) = ' +r qg Lo =T + 10 uy
6 (t) = w(t) = angular velocuty &3 e
v, =71
So the components of the velocity in the polar base are: {vr =0
) =
1.4.2.3. Acceleration vector:
S dv(t) d P
at) = Tt g W + 76 Uy)
d’r_, .du_’ dr . e _, .duy
=Wur+ dt d9u9+rd2 +T9W
dug d d9 de _,
W=—( sinf.T+ cos6.7) = (— COSHL—smG]) T
dv(t) [(d*r . drdé  d?6
a(t 0% U+ (2——+71— |uy
a(t) = dt <dt2 ’ )ur+< acdr " az)®
dv(t : .
a® = O _ (i~ ro2yz; + (26 + rb)g

a, =t —r?
So the components of the acceleration in the polar base are:
ag =210 + 10
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1.4.3. Cylindrical coordinates

In the cylindrical coordinate system, a point M in space is represented by
coordinates (r, 0, z), where: r and 0 are the polar coordinates of the projection of M
onto the XY plane, z is the distance along the OZ axis, and the unit vectors (u,, Uy,
I_c)) constituting the basis of the cylindrical reference frame
(0<r<+w,0<0<2mand -0 <z<+ o).

The movement of a point M is divided into two movements:

-a movement in the polar reference frame on the plane (XOY)

- a translation movement along the OZ axis.
1.4.3.1. Position Vector:

OM=0M+MM=ru+zk

_— 7

OM'=r.u, o
MM=zk

OM=ru +zk

o = Ve

u, = cos6.1+ sinb.j

Uy = —sinf.1+ cos6.]

X =1.cosbO

y = r.sin@

z=z

}I

r=.,x%+y?

tanh =~

X

zZ=2z
1.4.3.2. Velocity vector
- _dm_i o _)_d_T_) du_r’ d_Z_)_.—> N .7
v(t) =— = (r.ur +Zk) = U +r— +dtk =7ru, +rluy + zk

v, =7
So the components of the velocity vector in the cylindrical base are: { vy = r0
v, = Z
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1.4.3.3. Acceleration vector

a=—-= (U +rou, +2
_dzr_>+ du—r)+dr9_*+ da’e__ N edu9+ 7
=qE W T g T e T e v 0tz
, _dv _ (d*r 02\ 4 2drd9+ d’o + 57
= a2 7T )" dtdt  dez)teT?
dv(t . ) . -
a(t) = di)=(i*—r02)ﬁ:+(21"0+r0)i?;+2k

So the components of the acceleration vector in the cylindrical base are:

a, =+ —r6?
ag =210 +16
a, = Z

1.4.4. Spherical coordinates

A point M is represented in the spherical coordinate system, by the coordinates (r,

0, @),where the unitary vectors ( u,,ug, U,) constituting the basis:

0<r<+4ow

0<O6<m 3

0<¢<2m). lLou
\n fu(p
e
M<__>
/ lug

1.4.4.1. Position Vector

OM =r.w

(% = sin@ cosg.T + sinb.sin @ Jj+cosOk

du, S
Iu_g’ = d_Br = cos @ cosO.T+ sin @ cosO.] —sinf k
\ %, =4 AUy =—sing.i+ cosp.j
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OM = ru, = r(sin 6 cosgt + sinf.sin @ j + cos O I_c))

. X =rsinf.cosp
OM = {y = rsinf.sing
z =rcosf

1.4.4.2. Velocity vector

_doM _d . dr_., dw,
dt _dro M T art dt

duT du, d9+du - de
dt _ df dt " dg dt

= 6(cosBcos@l + cosfsingj — sin @ E)
+ @(—sinbsingi + sinfcosej)

dw 6‘—) + . . 9 —
— =0u sinfu
¥ =1, +ru, +r¢ sinfu,
v, =T
The components of velocity vector in the spherical basis are:¥ = {v, = ré

v, = r¢sinf

1.4.4.3. Acceleration vector

- d‘l—?) d .« — A — . . —
a=E=E(rur + 1rfuy + r<psm9uq))
L, dr_ ,du_r’ dr .__| do dug dr do .
a=aur+r Fr dt9u9+rau9 +r9d—+d—<psm9u +rdt sin 0 u,,
dsinf __ du,
+ro it u, +r<psm97

di; dig d6  dug do

dt ~ do dt  de dt

du, . S

d_tg = 0(—sinfcosei — sinBsingj — cos O k) + ¢(—cosOsingi + cosOcosgj)
du—’ A—> . —

d—t‘) = —0u, + ¢ cos O u,
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U, =uUNug = It ANug +u, A ar

= (0ug + ¢ sin0u,) )Aup + w A (-6, + ¢ cos 0 u,)

——

u, = —@(sinfu, + cos 6 uy)

d = (¥ —162 —r¢?sin? 0)u, + (27 + r8 — r¢? sin Gcose )uy
+ (27¢ sin @ + 2r0¢ cos 6 + rd sin 0)u,
The acceleration components in the sphérique basis are:
a, =¥ —16% —r@?sin? 0
d =1 ag =210 + 16 —r¢?sinHcosh

a, = 2r¢sinf + 2r0¢ cos O + r¢ sin 6

1.4.5. Frenet frame (Intrinsic basis)

For movements on curvilinear trajectories, the study of point M in cartesian
coordinates is complex. Frenet frame, associated with point M, makes it possible to
overcome this difficulty. We associate two unit vectors: u; and u, .

Frenet frame is a reference frame that moves with the mobile M. Its characteristics
are:

* [ts origin is a point M

« Unit vector u; is tangent to the trajectory in M and oriented in the direction of
movement.

* Unit vector u, is normal to the trajectory in M (and therefore also to u;) and

oriented towards the center of the curvature

~y

~ VY
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I.4.5.1. Curvilinear abscissa

The curvilinear abscissa s at time t of point M is the algebraic value of the arc
(MM’)

s(t) = MM' (MM'=OM'-OM= r'-r=Ar)

When M’ approaches M, M'M=dr=dOM

So dOM =dsu;

1.4.5.2. Velocity vector in the Frenet reference frame:

By definition, the velocity vector is the derivative of the position vector

. _dOM _dOMds _ ds_. _ %_(v)
VST T ds dt  odcttT VM T g
v=vu,

Where the speed v (magnitude) in this system is expressed by the derivative of the

curvilinear abscissa s with respect to time:

ds

vV=—
dt
The velocity vector is always tangential to the trajectory of the mobile.

1.4.5.3. Acceleration vector in the Frenet reference frame:

The acceleration vector is defined by the derivative of the velocity vector:

%_dﬁ_d( 2 = dv_,  di
= @M T TV g

di;ds  du;dsd6 _ du; dsdo

du; du ds df _ du, ds d§

dt ds dt ds dfdt do dtds

The derivative of the unit vector u, with respect to 0 gives:

du; _,

a0 M

Thesdarc: ds=RdO6 = a4 _1
ds R

Where R represents the radius of the curvature of the trajectory.
du;

_v_)
dt _R™
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2
iYLy
dc* R

. . — dv —s

Tangential acceleration a; = o We

. —_— vt —

Normal acceleration Ay = Uy

~4

I.5. Types of movement 4S_all ¢/ gl

MI

dé

If we consider the path as the criterion for dividing movement, we have two types

of movement:

1.5.1. Rectilinear Movement 4aiiual) 45 al)

The body's movement is rectified if the track is a drop. The repére is composed of

an ax (Ox). The point M is repeated by my son X.

#(t) = OM = x(£)i

. dOM _dx,
VE Tar Tt T
. dp  d*OM  d%x.
a= = =—1l=XI

T dr . dez det
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1.5.1.1. Uniform rectilinear movement 4aiiialidaiioall 4S al)
The motion rectangle uniform and the vitesse are constant at all times.

v(t) = vy = cte

dv 0
a=—=
dt
X
dx t
U:E:v():)dx:vodtﬁ dx: vodtﬁx—xO:vo(t—to)
X0 to
=>x =xp +vy(t —ty)
{x=v0t

If at t0=0andx0=0=>!77(t)=vo

la(t) =0
v(t)
x(t) A A a(t) A
X =Xxg+ vot

Vo > 0

0 > 0 > C—— )
t t
N X =X+ Vot vo <0
Vo < 0

1.5.1.2. Uniformly varied rectilinear movement 4aifivall 4 al) sUsTHL 3 il

This movement of acceleration is constant at all times.

_dv d*x o
a=—r=_7 =0 =cte
dv v t
azazao:dvzaodtﬁfdvzjaodt

) to

ﬁv_v():ao(t_to)
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t

v=E=v0+a0(t—t0)=>j dx=j

X0 to

t
vodt + aoj (t —ty)dt
to
1 2
=2X—Xy = Uo(t - to) +§a0(t - to)

1
x(8) = 5a0(t = to)* +vo(t — to) + xg

e case where a,> 0

v(t)
x(t) A A o)
A
a = cte
Parable
|
xN Vo
/
0 > 0 > 0
t t .
e case where a, <0
v(t)
x(t) A .
A a(t) &
Parable
Vo
0 >
0 > 0 > t
t t
a = cte
|
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Note:

The movement is said to be accelerated (i=_luis) if a.v > 0, and decelerated or

delayed (Aklic) if '@ .7 < 0. As for the direction of movement, it is indicated by

the direction of the speed v.

1.5.2. Circular movement 43 sl 4S )

After moving the circle, the mobile phone will be replaced on a circle of rayon R

and center O. It is préférable to use the base polaire.

a) Vector position:

b) Vecteur vitesse:

) doM d .
v(t) _T_E(R.ur

¢) Vecteur accélération:

_av(t) d

a(t) =—2;

a(t)

d
D=3

o 20

Y

A

<U

OM =r.u, =R,
— dﬁ_; A—
u, +R It = ROuy

7(t) = ROuy

2

dt?

3 dv(t)
Cdt

_*+Réd%
Y dt

= —RO%*u; + ROu,

v
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1.5.2.1. Uniform circular movement
Circular motion is uniform if the angular velocity is a constant w = Cste

=wt=>0=w=cte=>6=0

6 = w: angular velocity

OM =R.w,
) dOM .
v(t) = 7 = Rwuy
R dv(t)
a(t) = ek —Rw?u;
Then also read:
6 =6t + 6,

1.5.2.2. Uniformly varied circular movement

Circular motion is uniformly varied if the angular acceleration is a constant 8= Cste
Angular acceleration 6 = cte

6 =6t + 6,

1 .. .
0= Eeotz + 0ot + 0,

Remark
The uniformly varied circular motion is either accelerated or retarded :
e The uniformly varied circular motion accelerated if the scalar product:
6,.6, > 0
e The uniformly varied circular motion retarded if the scalar product:

6.6, <0

1.6. Relative motion

I1.6.1. Change of frames of reference
The study of the movement of a particle in all of the above was in a fixed (absolute)

frame of reference R.
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We can also choose another frame of reference R' in motion relative to the first, and

determine the position, velocity and acceleration of the mobile.
- R(O, [N E) fixed reference, which is called absolute reference.

-R'(0/, i, 7’, F’) in any movement relative to R which is called relative reference.
The movement of point M relative to “R” is called absolute movement.

- The movement of « R’ » relative to « R » is called entrainment movement.

To determine the vectors: position, speed and acceleration, we have different

methods: direct method and composition method

1.6 2. Direct method

1.6 2.1. Position vector
OM,p = xT + yj + zk
1.6 2.2. Absolute velocity vector

doM| dx. d dz
v, (M) = v(M) = ar =—171+ yf+—k—xl+y]+zk

dtht dt dt
di| - dj| - dk| -
at|, =" a7 @) TP
tR tR tR

1.6 2.3. Absolue acceleration vector

dy(M) = a(M)r =

dva d?oM| _

T de?

Z A
A
k /////
7
I -
i ] Y
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1.6.3. compound movement

1.6.3.1. position vector

OM =00 +0'M

OM the movement of M relative to the absolute reference R

0'M the movement of M relative to the relative reference R’

00’ the movement of R relative to the R (translation and/or rotation).
W/R = xi +yj + zk

W/Rr =xT +y7j + 2K

1.6.3.2. Absolute velocity vector: 4ilhal) ds jul) glad

> __dOM| _ do0’ dO'M| _ d00’ d( i P a1
va (M) = dt lp —  dt |R e lp = ar |R+dt(xl tyJ +Zk)R
d00' dx'= dy'- dz'— di dj  dk
boM) =—+—i'"+—j'"+—k'+x'—+y' —+2—
Va (M) i Tat T dt ac " ar T de
W = W /p) the angular velocity of R” with respect to R.
dill AT
—| = wow i
It (R /R)
R
dj . =
_— = W¢p'
it ® /RNJ
R
i’ = BN
It (R /R)
R
. oo’ %y Ea Il S
v, (M) = Tt + X' W N+ YO N+ 20w )Nk +EL+E]
L
dt
. doo’ | T T Ty X Ay d2
Ua(M)= i +a)(R'/R)/\(Xl+y] + 2z k)+El+E] +E
S doo’ | _ ——  dO'M
Ua(M)ZT‘l'w(R’/R)/\OM"' I
\ J
Y
7, 7,
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7, (M) =1, + 7, absolute velocity
do'M . .
¥, = ——| :relative velocity
dt lp’
L doo’

+ W /ry/NO'M: entrainment velocity

Ve =74

The movement of the R can be translated ( dstO,) and rotated (@ g /gy AO'M).

*Special cases:

—

-IfMis fixedinR', v, = 0= v,(M) = 7,

Q

{

-IfR'is fixed relative to R, B, = 0 = #,(M) = 3,

!

. . . - L doo’
- If R' in translation movement relative to R, w=0=v, = —

- If R' in rotational movement relative to R = ¥, = & g/z)AO'M

1.6.3.2. Absolute acceleration vector

) dv,| d (do0" _ .
aa(M)z dt =E _dt +(1)(R'/R)/\0M+Ur
R R
_&o0 ;2 (BAO'M) + dv.
- dt? de dt
R R
d (M)—dzw + 99 000+ N Ml GAGT + T+ LLoM
%a _dtZRdt COaltRw(m yj +zk) de? |,
We note that:ﬂ| = WwA\O'M +M| (see previous section)
dt g dt g’
dv/| d (dx’7>,+dy’__>,+dz’P)
dt|, —dt dc " Tae) Ta
= SGAT + Y BN + 2N+ X D P
= X'wN\i' + y'oNj'+ Zz'w PR TS A
dv, dv,
o = BA@) +—
de |, de |,
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G, (M) d°00" + 95 (0 + BAGNOTE + 73 + NG +
a = — wA\(w % I
a,(M) = —| +—=-NOM + oA(WNO M) + wA\v, + o\ (V) +

dt dt dt |,

2707 - — —_— —
d, (M) = L2+ 22 NOM + BN (5/\0'1\/1? + 26N, + 2

dt dt t lpr

— /
Y
C_ie d)f ar
d, =a, +d, +d.
d,: Absolute accélération
N dv, . L1z .
a, = —| :relative accélération
dt g’
> dZW dw P — — AT . ry 7 .
d, =—-| +=—A0'M + GA(JAO'M): Entrainment accélération
dt R dt

d, = 2w/\v,: Coriolis accélération

C
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Exercises

Exercise 1

The movement of a point M is given by the following time equations:
{x = t?
y=2t2+1
-Determine the equation of motion and the nature of the trajectory, represent this

trajectory graphically.

Exercise 2

The motion of a point M is given by the following time equations:

x=t
y=2t*+1
z = =3t

- Determine the vectors of velecity and acceleration of particle M.

Exercise 3

The movement of a point M is described in polar coordinates by: r(6) =R.sin6

. tpe sin derivation
0=wt et R, w are positive constants. e
1- Calculate the components of the velocity: v, and vg

-COS CoS
2-Calculate the components of the acceleration: a, and ag
-sin

Exercise 4
A material point M is moving along the (OX) axis with an acceleration ax as
represented
in the graph below. It is assumed that at t =0, v, = 0, and x = 0.
1) (a) Find the expressions for the velocity v,(t) during the different phases of the
motion.

(b) Graphically represent v,(t) during all phases.

(c) Determine the instants t; and t, when the object changes the direction of

motion.
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2) (a) Find the expressions for the position x(t) of the object during the different
phases of the motion.

(b) Determine the nature of the motion between t =0 and t =7 s.

Exercise 6

Consider the absolute reference frame R1(0;X;1Y1Z4) and the relative reference
frame R(OXYZ) which rotates around the axis O;X; with an angular speed constant
o (OX= 04X;). Let (D) be a fixed line in the frame R, parallel to OY and passing
through point A, with 0A = bk (b =cte).

Let M be a point moving along the line (D) according to the relation:

m—l 23

(a=cte)

-Calculate the absolute velocity and acceleration of point M in the relative reference
frame R, using the:

1. Direct method.

2. The method of composing velocities and accelerations.

v
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Exercice 1

{xzt2
y=2t>+1

We have x = t? we replace it in the equation of y = 2t + 1so:y = 2x% + 1

Solution

y= 2x* +1

The trajectory is a line that does not pass through the origin.

Y=2x+1

x| 0| -1/2
y| 1 LA
Exercice 2
1-Velocity:
- dO—]\4) o> .« > .7 - - -
v=7=xl+y]+zk=vxl+vy]+vzk
§
vx
OM = xi+yj +zk = ti + 2t%] + 3tk =>v={"
\
V=1i+4tj -3k

>
><V
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2-Acceleration:

- d’l_]) .« .« -_)
azzzvxl+vy1+vzk

( dx
v, =— =
*oxt
dy
Sg={" =g %
_dz 0
Ve T ar T
\
a=4j
Exercise 3
1- Velocity in polar coordinates:
dr do v, = Rw.cos0O
P)=—u +1r —Uy =7u, +ro uy =
dt dt _ .
Vg = Rw. sinf

r=R.sin0= 7 = R.0.c0s0 = R.w. cosO

do _ 5 _
a0 ¢

v, = Rw.cosO
5= [

V9 = Rw.sinf

2- Acceleration in polar coordinates:

i) a, = —2Rw?.siné

dt

Qo) = (i = r62)i; + (276 + 16 ﬁi

ag = 2Rw?. cosO

a, = —2Rw?.sind
a(t)

ag = 2Rw?.cosH
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Exercise 4

1) (a) The expressions for the velocity v(t):

dv
a=—>=dv = adt
dt

=>v(t) = fa(t)dt

«Fort€[0,1:a(t)=1m/s’ = v(t) = [dt =t + C;

At t=0s,v=0m/s=C;=0=v(t)=t
«Fort € [1,3]: a(t) = 0 m/s* = v(t) = C,.

At t=1s,v=1m/s=>C,=1=v(t)=1m/s

«Fort€ [3,6]:a(t)=—1m/s> = v(t) = — [dt = —t + C;
At t=3s,v=lm/s=>C;=4 =v(t)=-t+4

«Fort € [6,7]:a(t)=2m/s’ = v(t) = [2dt = 2t + C,
At t=6s,v=—14m/s > C4=—-14=v(t)=2t— 14
(b) Graphical representation of v(t) during all phases:

-~

1 v 1)

s

2) (a) The expressions for the position x(t):

dx
vV=—>=dx =vdt =
dt

«For te[0,1]:v(t)=t=x(t) = [ tdt = x(t) :§t2 + G

x(t) = fv(t)dt

-
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At t=0s,x=0m:>clzoz>x(t)=§t2
«For t€ [1,3]:v()=1m/s=>x(t) = [dt=>x(t) =t +C,
At t=1s,x=l/2m:>1/2=1+C2:>C2=—1/2:>x(t)=t—%

«For t€[3,6]:v(t)=-t+4 = x(t) = [(—t+ 4)dt > x(t) = _th + 4t + C;

At t=35x=52m=152+C;=C; = -5 > x(t) = =+ 4t — 5

*Forte [6,7]: v(t) =2t — 14 = x(t) = [ 2t — 14)dt = x(t) =t* — 14t + C,4
At t=6s, x=1m=-48+ C;=C,=49 = x(t) = * — 14t + 49

(b) The nature of the motion between t=0and t=3 s:

*t € [0, 1]: a.v=t > 0 = uniformly accelerated rectilinear motion .

*t € [1, 3]: a.v = 0 = uniform rectilinear motion.

Exercise 5

v

Y1

Position vector

O.M = OM = 04 + AM

OA=bh.k
AM = = at?.]
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1. Calculate absolute velocity ¥, and absolute accéleration a, using direct
method:

1.a. Absolute velocity vV,

do,M d (1 .
U,(M) = B(M) , = =—(sat?j )
v, (M) = v( )/R1 a |, dt(zat J+b.k .
) doM .1, df dk
v,(M) = 7 —at.]+§at i +b'E
Ry R1 Ry

W = wl
df — - >p > >
a = W@R/rpNJ = WIN] = wk

Ry
dk . LS .
—| =o0gprpNk =wiNk = —wj
dt

Ry

1 -
v, (M) = at.j + Eatzwk — bwj

1 —
7, (M) = (at — bw).j+ antz.k

1.b. Absolute accéleration d,

Ao (M) = d(M _ G| _ oM d (at — bw).j + - at?w.k
QM) = aM)m, =77 =g ~ar\ ¢ @rJratw
R1 R1 Ry
) ) dj o1 dk
a,(M) =a.j+ (at — ba))aR1 +awt.k+§awt >
R

— - 1
a,(M) = a.j+ (at — bw)wk + awt. k — antz.wf

R 1 R -
d,(M) = (a _anztz) J+ Qawt — bw?)k

2. Calculate absolute velocity U, and absolute accéleration d, using composing
method:
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2.a. absolute velocity v,

U,(M) =, + 7,

. dOM _d(l t2*+bE>
Vr = dtR_dtZa SRR
U, = at.j
- _d5:5 — A
v, = at + a)(R/Rl)/\OM

- 1 -
5, =0+ w?/\(zatz.f+ b.k)

1 , .
=§awt .k —bw.j

mﬁl

. | _—
v, = —bw.] +§awt k

1 -
v, (M) = at.j + (—bw.f+zawt2.k>

1 S
v, (M) = (at — bw).] + antz.k

2.b. Absolute accéleration a,

d, =d, +d, + da,

- dl_y)T
a, =

dt R
- d -
a, = E(at.f) ; = qj

a, = aj

. d¥0,0| d& — _ .
a, = a2 + EA OM + a)/\(w/\OM)

1
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w

QU
o

QU

e

Qu

(o

QU
Q

0

s

cst=>d

el
I

0

- — 1 —
+ 0A OM + wil <a)?/\ (E at®.j+ b. k>>

- 1 7 -
= wi/ (zawtzk — a)b.j)

20\,

= 2wiAat.] = 2wat. k

1 -
d, = —anztzf—a)zb.k
d, = 2wat.k
C
> 1 242\ 7 2\,
a,(M) = (a—an t ).]+(2awt— bw*)k
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Chapter 2 Dynamics of a particle

I1.1. Introduction

In the previous chapter we studied the movement of bodies without taking
into account the causes which provoke the movement. In this chapter (dynamics) we
study the causes of movement, which are forces.
Dynamics is the analysis of the relationship between forces applied to a body and
changes in the movement of this body. It explains the relationship that exists

between forces and other quantities.

I1.2. Definition

I1.2.1. Concept of force

The movement is the result of the interaction between the particle and its
environment. This interaction is the force (vector quantity).

The unit of force in SI is the Newton: IN = 1 Kg.m.s™

R

~l

ol

There are two main categories of forces:

a- Contact forces: friction forces, tension forces, etc.

b- Forces at a distance: gravitational forces, electric forces, magnetic forces.
Example: a body slides on a horizontal surface by a wire.

I1.2.2. Mass

Mass is a scalar physical quantity that represents the quantity of matter which
makes up a particle, and it represents the inertia of the body.

The unit of mass in SI is kg
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I1.2.3. Material point
We call a material point or point mass a mechanical system that can be modelled by
a geometric point M with which its mass m is associated.
Material system: is a set of material points.
We freely choose the system we study. Anything other than the system being
studied is called the exterior.
I1.2.4. Isolated or pseudo-isolated system
A system is isolated if it is not subject to any external force.
A system is pseudo isolated if the X of the external forces applied to this system is
Zero:

XF=0
I1.3. Momentum
A movement of a body does not depend only on the speed but also on its mass, two
different masses which move at the same speed do not arrive in the same way. For
this we introduce a quantity which is the momentum P.
The momentum relative to the reference frame R of a material point M, of mass m
and speed v is given by:

P =mb

Unit: kg.m/s; dimension: [momentum] = MLT ™'

I1.3.1 Conservation of quantity of movement:
If we have a system composed of N particles of masses m; and speeds V;, then the

total momentum of the system is given by:

ﬁ=2ﬁ=ﬁ{+ﬁz’+?§+---...

N
i=1

For an isolated system this momentum is constant:

ﬁ=cst

~.

-3

N
i=1
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v, V.
I1.3.2. Case of two particles in collision
Consider a system of two particles m; and my.

Before the collision the speeds are noted V; and V5.
13)=F1)+Fz)=m11_7)1 +m21_7)2

After the collision the speeds are noted as V’; and V.

_ —

P’=P'1+P,2=m1v,1+m2v’2

Conservation of momentum:
ﬁ=ﬁ'$ﬁf+§=P_&)+P_,2)$F;—P'1 =P'2—P,2
=>AF1)=—AFZ)

An interaction produces an exchange of momentum. The quantity of

movement“lost” by one particle is equal to the momentum “gained” by the other.
I1.4. Fundamental Laws of Dynamics ¢liall 8 daulal) oyl gl)

I1.4.1. 1* Newton's law ‘Principle of Inertia’4aslisa
a. Statement of principle:ixall yai
If the material body is not subjected to any force or the vector resultant of the
applied forces is zero, it is:
% in a uniform rectilinear movement (v = cst and a=0) ekiis daive S a
% atrest (055 2), if it was initially at rest (v=0).
This property of all bodies to resist change in speed (zero acceleration) is called

inertia.
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Example:

The movements of passengers caused by vehicles when starting and braking.

b. Galilean frame of reference & alae
An inertia reference frame is a reference frame in which the principle of inertia is

realized. i.e, it keeps its inertia: it remains at rest if it is at rest and it keeps its

uniform rectilinear movement as long as ). F=0.

Note:

Any frame of reference in uniform rectilinear translation with respect to a Galilean
frame of reference is itself Galilean.

The earth's reference frame is not reallyGalilean because of its movement. But we

consider it to be a Galilean reference because we carry out studies with low times.

Example on a non-Galilean frame of reference:

An object placed in a truck in uniform rectilinear motion. The body remains
immobile in relation to the truck as long as the latter's movement maintains its
uniform rectilinear character. When the truck executes a movement in a turn, the
body would slide. Indeed, the reference linked to the truck is animated by a
curvilinear movement and the principle of inertia is no longer applicable (the object
would not maintain its state of rest in relation to the truck).

Note:

The principle of inertia can then be stated as follows: “A free particle moves with a

constant quantity of movement in a Galilean frame of reference. »

- RN - dﬁ —
P=cst:>F=E=0

This is another formulation of the principle of inertia.
IL.4.2. 2" Newton's Law: ‘Fundamental Relation of Dynamics (FRD)’

The resultant of the forces exerted on a body is the derivative of the momentum:

__. dP d(@md)
Z Feet =07 = —ar

If the mass of the system is constant then:
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— dv .
ZFM = ma =ma

11.4.3. 3" Newton’s Law: ‘Principle of reciprocal actions’

Given that M; and M, two material points, 1—7; and E)the reciprocal interaction

forces, applied by M, on M, and that applied by M, on M, respectively.
The principle of reciprocal actions, also called the principle of action F_lz) and the

reaction a , States that:

» These two actions (forces) are exerted simultaneously and are of the same

nature
» These two forces are opposite E) = —F_12) and equal in moduli ||F_12)|| =
1722 |-

> F—12) and E)are belong to the same segment [M;M,]:

Fiy A\M{M, =0, Fpy AM;M, =0

Fp1 Fi;

4
A
[ ]

©
My M,

Remark:

Isolated system: In the case of the system {M,, M,} is isolate (in R reference

frame):

oo 4P

F); =—and F, = —=
21 = 12 =,

., dP, dP]

Fpp= Py =2 _

12 21:>dt dt

dP, dP, - d ,— —.
E‘I‘E—O—)E(Pl-l-Pz)—o

(P1 + Pz) = P{MllMZ} = cst
The momentum of an isolated system is conserved.
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IL.5. Classification of forces

I1.5.1. Forces at a distance

The body which exerts the force is not in contact with the one on which it acts.
There are 3 kinds of forces at a distance:

a) Gravitational forces:

This is the action of one mass (body) on another. These two bodies attract each
other mutually with two opposing forces (according to Newton's 3rd law): F_lz) =
—F

It’s the Law of universal gravitation which explains attraction between two bodies

of respective masses m; and m,, separated by distance d.

m; m;
F12=F21=Fg=07

These forces are attractive.
G: the gravitational constant, G = 6.67.10-11 [m’/kg.s?]

Near the earth, the force of gravitation is what keeps objects on the ground.

b) Weight of a mass:
Consider a point mass m, in gravitational interaction with Earth. The latter acts on
the mass with a force that we called the weight of the mass. Newton's second law

allows us to define this weight:

gl

I

3
Q
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g is the acceleration of gravity (terrestrial acceleration), g=9.80 m/s”.

¢) Electric forces:

They are exerted between two bodies carrying electrical charges. They can be both

attractive or repulsive.

FZI - FlZ
. .u repulsive forces
q1 > 0 r qz S o Jﬁm Dﬁ
or q; < 0 or ;< 0
FZI FlZ i
attractive forces
‘—» ———————————— <—‘—>
q:>0 r q:<0 olad B0
orq;<0 orq,>0
d) Magnetic forces:

They are exerted between magnets or between the latter and certain materials

(particularly iron). Both can be attractive or repulsive.
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11.5.2. Contact forces

There must be contact between the two objects for a contact force to arise.

a) Reaction of a support (Solid-solid contact)
The force acting on an object placed on a horizontal support is called the support

reaction, R_n) Represents the result of all actions performed on the contact surface.

The object being in equilibrium:

ol

b) Friction force

Friction force is the force that opposes the movement of the body. There are two

friction forces: solid and fluid.

O Solid—Solid friction: dynamic friction force (the body is moving):
When the solid moves under the action of an external forcefe), the intensity f; of the
friction force is proportional to that of the reaction normal to the support _Ig
fa = u4aRy
ug:the dynamic friction coefficient (Sl lSia¥) Jalas
Note:

static friction force (the body is fixed) ]_C; :
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fs = UsR,

u,: the static friction coefficient s sSwll SM<IAY) Jalas

1
'
'
'
\
\
\
\
il

\
v

ol

3 Friction forces in fluids

When a solid body moves in a fluid (gas or liquid), a friction force appears.

It is calculated by the formula:

]Tf) = —knv
k 1s the coefficient which depends on the shape of the solid body and # is the
viscosity coefficient.
¢) Tension forces:
A tension force is a force developed in a rope or spring when it is stretched by an
applied force. Tension is exerted along the entire length of the rope/spring in a

direction opposite to the force applied to it. Tension can also sometimes be called

stress, strain, or strain.

=}

ﬂuhw/y‘\A

=
e
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I1.6. Cinematic moment (Angular momentum)

I1.6.1. Angular momentum of a material point
We call angular momentum noted (L_O)) of point M rotating around a point O, the

moment of its quantity of movement P=mi:

—

Lo =0OMAP =#Amb

1

The unit of angular momentum: Kg.m”.s

trajectory

plane of
movement

The angular momentum is a vector perpendicular to the plane containing the vectors
#and P.
O If the movement is circular with radius r, we will have

7 Lvandv = wr

T - - . T 2
Lo=7Amv = L, =r.mv.smz=rmv=mr W
Lo = mr’e

[ For a curvilinear plane movement, we use polar coordinates, with pole O:

U =7u, +rou,

Lo = Amb = mit AD = mi A (7, + r01;) = mr20k = Ly = mr20

I1.6.2. Angular momentum theorem

At a fixed point O of a Galilean frame of reference, the derivative with respect to

time of the angular momentum of a material point is equal to the sum of the

moments of all the forces applied to it.
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= Mo Foxe
Proof:
T 2 n B Am3 dLy dFA ++e/\dmv S A 4 7 mdv
=7 =rTAMV==>—=—AANmMv+rA—=UVAmv+rA——
0 dt ~ dt d dt

I1.6.3. Conservation of angular momentum — central forces

a. Definition of a central force

We call “Central force” any force acting on a material point and having the
following properties:

* It 1s carried by the line joining the material point to a fixed point O (center of
force).

* Its module depends only on the distance “r” to the point O:

F=f(u and OM =7, .

Examples:

-The gravitational force is a central force:

oo mump—  k —
E=G 7 U =Sl

-The Coulomb force between 2 electric charges is a central force:

= Q1q2_,  k _,

Ro=K=320 = =
T T

b. Conservation of angular momentum

The derivative of angular momentum vanishes (=0) if:

a. The particle is isolated ), F,,, = 0: which means that the angular momentum

. dly _ =
of a free particle is constant d—to =0= Ly = cte

b. If the force Fis central: F is parallel to 7, so the angular momentum relative

to the center of forces is constant.

[ B P .
% =M, (Z Fext) =7#AF =0(7//F) = Ly = cte(Lyisconserved)

The opposite is true;if the angular momentum is constant then the force is central.
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I1.6.4. Inertia forces or pseudo forces: a non-Galilean frame reference
Let R be a Galilean frame of reference and R' a non-Galilean frame of reference. R’
is mobile relative to R. The law of composition of accelerations gives:
a, =a, +a; +a;
The fundamental principle of dynamics in a Galilean frame R is written:
dvg

ZF‘”“ =ma; =m dt

a,andv, are the absolute acceleration and speed.

In the non-Galilean (relative) frame R', the fundamental principle of dynamics is:
= - T - T = mE = M@ — M, — & = MG = ) Fog +F A,
with 17; = —ma, (force of inertia of Entrainment),f*": = —ma, (force of Coriolis
inertia) are pseudo forces or forces of 'inertia. Therefore, the law of dynamics can

be applied in a non-Galilean frame of reference provided that the Entrainmentinertia

force and the Coriolis inertia force are added.
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Chapter 2 Dynamics of a particle

Exercises

— —

Exercisel

Calculate the gravitational field of a body of mass m:
a- On the surface of the earth,

b- At a height h from the earth.

m, = 5.98 ><1024kg ,the mass of the earth

r, = 6.37%10° mthe radius of the earth,

Exercise 2

Let a spring be fixed at one of these ends, we hang a mass m at the other end. When
the spring extends, a restoring force is exerted on the mass, proportional to this
elongation and called tension.

Determine the differential equation of motion using the PFD.

=

=}

ﬂuhw/\_ﬁ/\A

=
e

Exercise 3
A simple pendulum consists of a mass m considered point fixed to the free end of a
wire of length 1, we move the mass away from its initial position by an angle 6,, and
we release it without initial speed, we neglect air friction.
Determine the differential equation of motion using:

a) The fundamental principle of dynamics FPD (use the polar coordinate

system) in a Galilean frame R.
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b) The fundamental principle of dynamics FPD in the non-Galilean (relative)
frame R'

c) The angular momentum theorem.

Exercise 4
A projectile of mass m is launched into the Earth's gravity field with a velocity
vector vy making an angle a with the horizontal. Friction forces are negligible.

Then study the movement of the projectile.

Exercise 5

A brick of mass m is kept in balance on a plane inclined at an angle a relative to the
horizontal by an inelastic wire of negligible mass. The contact between the solid
and the inclined plane is frictionless.

1. Remember the condition under which the solid is in equilibrium.
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2. Find the expressions for the tension T of the wire and the reaction N of the plane
as a function of m,g and a

3. We cut the wire, deduce the expression for the acceleration of the brick. What is
the nature of the movement?
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Chapter 2
Solution
Exercise 1 La temre \;)/,_ (m)
a- On the surface of the earth: [ ,;i
JIRE]
m.m m
F;]=G;2=mg=g=G—2t \_/
t t
. _ 11 5.98x10%4 _ -2
AN:g =6.67 X 10 ©37x105 — 9.82m.s
g=982m.s7?
b- At a height h from the earth.
m.m m,

o= O me

Exercise 2

zmg:g’zG(rt_l_h)z

F.=G—2
g (Tt+h)2

A

g
;§

o
<~ @4
sl _
©—--4+0000000

=

M)

al
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Chapter 2 Dynamics of a particle

At equilibrium:

Y P =F+T=0=T=-F=T=mg

T=mg=k(l., — ) = kxo

k: spring stiffness constant

[: length of the spring at time ¢, /,: length of the spring when empty.

By giving an elongation x to the spring then leaving the system alone, it executes

oscillations. Newton's law gives:

Zm=ﬁ+7=m&=>m§+7=m&
By projection on (OX):

mg — T = mg — k(x + xy) = m¥

mg — kxg — kx = m¥(mg = kx,)

mX+kx=20

, _k - 2

wj=—=|X¥+wijx=0
m

Solution of the equation: x=Acos(wt+p)

Exercise 3
a) Determine the differential equation of motion using to the PFD (use the polar

coordinate system) in a Galilean frame R:

~

d-- -~ ==

=l
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Chapter 2 Dynamics of a particle

By projecting onto the polar base:
mgcosd — T = ma,
-mgsinf = may

r = Cte=l
i=F—-1r0)u + (210 +r6)uy = d =

mgcosd — T =m 16?2
-mgsin® =mlf = 6 + %sin@ =0

If << = sinf=0, = é+§e=o

Weposewzz%: 6 +w6=0

The equation of motion of the pendulum is a second order differential equation, its
solution is:

0(t) = Ajcoswt + A,sinwt

b) Determine the differential equation of motion, using the PFD in the non-Galilean

(relative) frame R'":

— — 7
we use the cylindrical base (u,., ug, k)
z Fext = maa
a—a’za—;+a—e’+a—g=>ZFext = Mm@ + ma; + ma,

—

::’ma—r):ZFext_ma—e)_ma_c):ZFext'i'F;-l' c

F, = —ma, (force of inertia of Entrainment)

F, = —ma; (force of Coriolis inertia)

S dv doM - —_— —— Y — doM -
e =—| =—| =0 (OM=0M=1lu, =cst=>——- =0
dt Ig dt g’ dt g

—

ma—;:ZFext _ma—e)_ma_c):ZFext +Fe)+Fc :6
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2
( a, =1 — re
In the cylindrical base we have: a = . o
ag =270 +r
k a, =7z
3, = £00 49 o */\(*/\07/1) =0+ dwEAz—*+ KA(wk A
de = — Tt o/ (@ = 7 N+ ok A0k,
d, = 6k A, + OkA(OkA,) = 16, — 162,

gl

4, = 268M\B,d, = 28A0 = 0

zm+mlézu_;—mléu_g’= P+T+mlo*w — mlbu, =0
By projecting onto the polar base:

mgcos® — T + mlf? = 0

—mgsind —mlf = 0= 6 + gsinf) =0

I
Ifo<< = sinf=0, = é+§e=o

Weposew2:%=> 6+ w0=0

c) Determine the differential equation of motion, using the angular momentum

theorem:

dL, _ .
W = ZM/O (Z Fext)
Lo = OM AP = OM Am®
(3 we use polar coordinates, with pole O:

U =7u, +r0u, and r= Cte=l

L, = mOM A D = mOM A (0, + 16ug) = ml20k = L, = mié

dLg
dt

= mi26k (1)

> Mo (D Feur) = Myo(F) + Myo(T) = OM AP + OB AT
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OM AP = [w. A (mgcosdn, — mgsinfug) = —lmgsindk

OMAT =lw A—T.w =0

> J\_/f/o (Z E;) = —lmgsin&l_c) (2)

(1) = (2) = ml2dk = —lmgsinfk

mil?0 = —lmgsind = |6 + %sin@ =0

Ifo<< = sinf=0, = é+%e=o

Weposewzz%: 6 +w6=0

Exercise 4

I |
-

o
-
~,

L4 ¥

\.?:I

0"' '

We can predict the movement of a projectile launched with an initial speed v,

making an angle with the horizontal by:

- -»> —)(0)
a=-—-gj=a
9] —g

We decompose the movement of M along the 2 axes OX and OY:
According to OX:

Accélération a,, :
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dv,
a, =0= It = v, = cte = vy, = Vycosa
dx
U, =vocosa=aﬁdx=vxdt:»x—x0 = v, t

X =Xxg+ vt
From the 1nitial conditions:

v, (0) = vy, = vycosa
At t=0:
x(0) =x,=0

X = vpcosa.t
| 0

According to OY:

Accélération a, :

dv,
a, =—g=E$Uy—on = —gt
v, — vy, = —gt
v, = —gt+vysina
. dy
vy, = —gt+vsina =—-=dy =v,dt =y —y, = vt

dt
From the initial conditions:

v, (0) = vy, = vysina
At t=0:
y(0)=y,=0

1 )
y= —Egt +vysina. t

The trajectory equation:

X 1 X \2 ) X
t= =>y=——g< ) +vosma.( )

VyCoSa 27 \yycosa Vycosa
g
= —Z—sz + tana. x
2vy“cos“a
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y=- Zg x? + tana.x
2vy°cos’a
The maximum altitude h &
v, (ty) = 0 = —gty+vesina = ty = 2
VpSina
= tM =
9

(tm : peak time).

1 (vyysina 2 VoSina
Vo

1
h=y(ty) = —Egtﬁ+vosina. ty = =59 sina

(vosincx)2
h=——
29

The time for which the projectile reaches point I:

1 1
y(tp) =0 = —Egt,§+vosina. tp =tp (—Egtp +vosina>

([ % =0

2v,sina
tp = ——
g

Calculation of xp range:
replaces tp in x(t):

2vysina 2vy°cosasina
g

x(tp) = vycosa.

2cosasina = sin2a ,

So : Xp =
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Exercise 5

1. Equilibrium condition :

zﬁext =0

P+N+T=0
2. Expression of T and N :
By projection on the tangential axis (OX) :

Pr+0—-T=0=T = Pr =mgsina

|T = mg sina|

By projection on the tangential axis (OY)

—Py+N+0=0= N =Py =mg cosa

IN = mg cosa|

3. Acceleration of the brick:

Once the wire is cut, the voltage T no longer exists, so we write the PFD :

ZFextzmo_i:ﬁ+ﬁ=m&
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By projection on the tangential axis (OX) :

Py + 0 = ma = mg sina = ma

a=gsina

Dynamics of a particle
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Chapter 3 Work and Energy

III.1. Work

III.1.1. Elementary work

Consider a constant force F acting on a material point M. We define the elementary
work dW of the force F by:

dw = F - dl

dl is the elementary displacement.

F= EI+Ej+FEk

dl = dxi+ dyj + dzk

dW = F.dx + F,.dy + F,.dz

The work of a force F applied to a material point moving from point A to point B is:

B

B
WAﬁB(ﬁ)=f dW=j F-dl
A

A

The unit of work, in the SI system, is the Joule.

Remark:
Force F can be decomposed into two vectors:

. F_//) parallel to the displacement a,

e F, perpendicular to the displacement di
wAﬁB(F)=f F-dl=f (F, +F,)-dl
A A
Where F—fal) =0 so:

B B
wAﬁB(ﬁ):fﬁ-a:fF—/;-a
A A
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Chapter 3 Work and Energy

Hence only the component of the force parallel to the displacement F_//) provides
work, the work of the force perpendicular to the displacement is zero.
I11.2. Constant force on a rectilinear movement:

Consider a material point M moving on the

line segment [AB] under the effect of a force F.

A B

By definition, the work of the force F on the rectilinear displacement AB is given
by:
Wy _p (ﬁ) = F.AB = F.AB.cosa
a is the angle that F makes with AB.
This work is

» positive (motor work) if the force is in the direction of movement (driving

force):
cosa >0 =>0<0(<7T/2

» Negative (resistant work) ifthe force is in the direction opposite to the
displacement (force resisting):
cosa<0 ="/ <a<m
» zero if the force is perpendicular to the displacement:cosa = 0 = a = %
Example

- -

calculate the work of the forces: P, R and f

WA_,B(P)) = P.AB = P.AB. cos (g - a) = P.AB.sina

Wy_z(P) = P.AB.sina
Wy_p(R) = R.AB = R.AB.cosm/2 = 0
WA_,B(}_?)) =0
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Wy_ps(f) = f.AB = f.AB.cosm = —f.AB

Wy (f) = —f.AB

I11.3. Power
The power of a force F is the ratio of its work to the time taken to accomplish it.
. _ WaB
Average power: P, = A
dW s

Instantaneous power: P(t) = "

The unit of power, in the SI system, is the Watt.

I11.4. Kinetic energy

Let's calculate the work of the resultant of the force F applied to a material point of

mass m between two points A and B.
- B > -
Wy_s(F) = f F-dl
A

Now according to the fundamental principle of dynamics we have:

PR dv
—ma—mdt
L (B oav -, (B dl (P,
Wig(F)=| m—-dl=| m-dV-—=| m-V.dV
dt t
A A A

94



Chapter 3 Work and Energy

dl —
Where i V

However, since the displacement is very small, we can consider it as rectilinear,

then the vectors are parallel. The work then becomes:

N 5 B 1 17 1 1
WAHB(F)=] m-V.dV=mJ VdV=m[EV2] =EmVBZ—EmVA2
A A A
Sy 1 1
Wy_s(F) = SmVg — EmVA2

The value E; = %mV2 is called the kinetic energy of the material point.

I11.4.1. Kinetic energy theorem
“The work of the resultant of the forcesapplied to a material point between two

points is equal to the variation of the kinetic energy of thematerial point »
Wy (F) = AE; = Ec(B) — E¢(4)
I1L.5. Potential Energy

II1.5.1. Conservative force and non-conservative force

» A force is said to be conservative if its work between two points A and B does
not depend on the path followed (W, W,, and W3), but only from the starting
point A and the ending point B.

W3

> Any conservative force derives from a potential function E,, (x, y, z)such that

F = —grad E,(x,y,z)
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FitRj+ER=— "oy 05, OBy
SR L P ay] 0z

Examples: Force of gravity; force of weight; spring return force.

Remark:

If a force F is conservative, its rotational is zero:

——

rotF =VAF=0

» The forces are called non-conservative when their work depends on the path
followed.

Example: Friction force.

I11.6. Potential energy

v Potential energy is the potential function associated with the conservative force.

v' Potential energy is the energy related to position.

v Potential energy is defined up to a constant; it is always referred to a reference
frame taken as the origin to calculate it.

v' The work of a conservative force is related to the potential energy by the

expression:

WA—»B(F)') = —AEp = Ep(A) — Ep(B)
II1.7. Total Mechanical Energy

The mechanical (total) energy of a material point is the sum of kinetic and potential

energies:
EM = Ep + EC

I1L.7.1. Principle of Conservation of Mechanical Energy
¢ The mechanical energy of a material point subjected to conservative forces is

conserved.

Ey(A) = Ey(B)= Ep(A) + Ec(A) = Ep(B) + E¢(B) = cst
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The variation in mechanical energy is zero
AEM =0

+¢ If one of the forces is not conservative, the mechanical energy is not conserved.
The variation of the mechanical energy between two points A and B is equal to

the sum of the work of the non-conservative forces between these two points.
AEy = ) W (Fy)
i
Such that K are the non-conservative forces

I11.7.2. Examples of conservative forces

a) Force of gravity

F, = —Gr—rznu:ﬂfg = —gradEp(r) = —d—rP
Mm dE Mm
G— =—=dEp=6G—d

Mm
Ep(r) = GT + cst

b) Elastic force

F = —kxi=F = —gradE(r) = —%

dEp = kxdx

1
Ep(x) = f kxdx = Ekx2 + cste

1
Ep(x) = Ekx2 + cst
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!

L R

¢) Electric force

Following the same reasoning as above, we will have:

Ep(r) = —KQT—q + cst
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Exercises

Exercise 1

A simple pendulum consists of a mass m considered point fixed to the free end of a
wire of length 1, we move the mass away from its initial position by an angle 6,, and
we release it without initial speed, we neglect air friction.
Determine the differential equation of motion using:

a) The kinetic energy theorem.

b) The total mechanical energy theorem.

Exercise 2

Let a material point M be subject to a force field F.

F=(x—ay)i+ @y—2x)j

1. Calculate the work of the force F for the displacement of M from the point 0(0,0)
to the point A(2,4) passing through the point C(0,4).

2. Find the value of a so that F is conservative, deduce the energy potential Ep
resulting from this force field.

3. Determine the work of F for the displacement of M following a trajectory

circular with radius R and center 0(0,0).
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L Solution

Exercise 1
a. Determine the differential equation of motion 0 X

using the kinetic energy theorem:

Wyog(F) = AEc = Ec(B) — Ec(A) = dW = dE,

d---——————c == -

_ . Y
T =-Tu,
mg = mgcosbu, — mgsinfu, u,
T—l_’:df—ld_’—ldedﬂ? P
T Al = do
du, |
dg ~ 1o
dl = 1dou,

dW = F-dl = (mg + T)dl
dW = (mgcosbu, — mgsinfu, — Tu,)ld6Ou,

U =0 Upug=1

dW = —mglsin6d6o

Ec = 2 my?
C—va
v=10

1 . )
E; = Emlze2 = dE, = ml*6d6
dW = dE; = — mglsinfdf = ml*>6de
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2 +%sin9 =0

If0<< = sinf=0, = é+§le=o

We pose w? =%=>|é+w26=0|

b. Determine the differential equation of motion using the total mechanical energy

theorem:
d
EM = Ep + EC = Ctej&(Ep + Ec) =0

We have calculated E in the previous answer:

1 .
EC = Emlzez

(1) = (2) > dE, = mglsinfdb

E, = jmglsin@de = —mglcosf + C

If0 =0=E,=0=C=mgl

E, = mgl(1 — cos0)

1 .
Ey = Ep + E; = mgl(1 — cosf) + EmIZH2 = cte

d ..
a(Ep + E;) = 0=>mglsind + ml?6do = 0

2 +%sin9 =0

Ifo<< = sinf=0, = é+§e=o

Weposewzz%: 6 + w?0 =0
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Exercise 2

F=&x-ay)i+@y- 2x)j Y

1. The work of the force F for the displacement C I“*‘f A

of M from the point O(0,0) to the point A(2,4) - ___-Ji _____ E

passing through the point C(0,4): 1 _____i _____ I

We know that: i

dw = F - dl { R 5 R
! X

dl is the elementary displacement.

dl = dxi+dyj

F= Fi+ Ej=(x—ay)i+ Gy —2x)j
dW = F..dx + F,.dy

dW = (x —ay).dx + (3y — 2x).dy
Woca = Woc + Wea

O The path from O—C: {x=0=>dx=0

y varies from0 — 4

3y? *

(o o 3yt 3@y
Woc—fodW—jo(By—Z(O)).dy—jo 3y.dy = 5| =

2

0

x varies fromQ0 — 2

O The path from AC—A:
y=4=dy=0

2

—4ax|?
0

2

2 2 2 2 X
WCA:j dW=j (x—a(4)).dx=f x.dx—j dadx = —
0 0 0 0 2

2

WCA 27—4(1(2):2—8(1

WCA=2_8a

WOCA:W06+WCA:24+2—8a:26—8a
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Chapter 3 Work and Energy

WOCA =26 — 8a|

2. For the force to be conservative, it must verify:

rotF =0
rotF =VAF
79409
“ox' T ay! Taz

F=(x—ay)i+ @y —2x)j

T —7 K
VAE= |2 9 9

0x dy 0z

X —ay 3y — 2x 0
N 0 ., 0 . 0 0 R
VAF = —E(By—Zx)l+&(x—ay)]+<—a(3y—2x)—$(x—ay)>k

VAF = (=2 + )k
V)/\l—?)=(—2+a)l_c)=6=>a=2
For a=2, F is conservative

3. The work of F for the displacement of M following a trajectory circular with

radius R and center 0(0,0):
F=(x—-2y)+ @y —-2x)j

> Fis conservative force = F derives from a potential E),:

O0E

F o= i 7 _>=— = — Pi_ A P
F=FEi+Ej+Ek grad E, o ay] F k
(x — 29)1 + By — 22)] = 0E, , O0E,

X — 2y)i y—2x)j=——7"0 3y

103



Chapter 3 Work and Energy
0E, - ¢ 2y) 1
o - X2y e (1)
9F, _ (3y — 2%) ... (2
by y—2x)...(2)

2

from (1) =>E, = —f(x—Zy)dx = —x7+2xy+C(y)

) dC(y)
_p =
from(3) = 3y 2x + LT (4)
B dC(y) _ dC(y) _
3 2
co)=-2-+c
2
PRSP S
pT T T T

(3)
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