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Foreword 

This course “Electricity and Electromagnetism” or “Physics 2” is 

aimed at students in the core areas (first year) of science and technology 

(ST), material sciences (SM), mathematics and computer science (MI). 

These courses introduce basic concepts of electricity and electromagnetism, 

and study the interaction between static and moving charged particles.  

This “physics 2” course is made up of four chapters consistent with the 

programs for the second semester. 

The first chapter gives the main notions of Electrostatics.  

The second chapter is dedicated to the conductors.  

The third chapter is devoted to the Electrokinetics 

The last chapter concerns electromagnetisme. 

To achieve a correct understanding of the lessons, we have included with 

each chapter a set of exercises with the typical and detailed solution. 

I express my sincere gratitude to all those who contributed their expertise to 

the creation of this handout. May it guide you on your own journey through 

the wonders of electricity and electromagnetism, illuminating new avenues of 

understanding and inspiring boundless curiosity. 

 

DRABLIA Samia 
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I.1. Introduction  

Electrostatics is a part of electricity that focuses on phenomena created by fixed (immobile) 

electrical charges. This branch studies the interactions between these charges.

I.2. Electrification experiments 

Electrification represents a charge transfer phenomenon. There are three types of 

electrification of an object: by friction, by contact and by influence.

I.2.1. Electrification by friction

We rub a plastic or glass ruler with wool and bring it close to the small pieces of paper, it 

attracts it. Without friction, nothing happens, after friction the ruler will be electrified 

(charged). 

 

 

 

 

 

 

 

 

I.2.2. Contact electrification  

Contact electrification is the transfer of electrons from a charged body to another uncharged 

body (electrically neutral), so the electrons move towards it and it has the same type of 

charges and therefore repulsion occurs. 

 

 

 

 

 

I.2.3. Electrification by influence  

We approach a neutral rod to an electrified ball, without touching it. We notice that the ball 

is attracted towards the rod, we see that it has been electrified by influence. When the rod is 

moved away, the pendulum returns to its initial position  

Plastic ruler 

Small pieces of paper 

Before rubbing After rubbing 

 

 

 

 

 
 
 

 
 

 
 
 

 
 

Before contact After contact 
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I.3. The electrical charge 

I.3.1. Definition of electrical charge

The atom is the smallest particle of a body that can exist. A body is made up of an assembly 

of atoms. The atom consists of a nucleus around which electrons revolve. The nucleus is 

made up of two particles called nucleons. These particles are protons and neutrons. The 

number of protons in an atom is equal to the number of electrons.

The electrical charge is a scalar quantity, like mass, represents a fundamental property of 

matter, which makes it possible to explain certain phenomena (electrostatics, 

electromagnetism, etc.), it is denoted q and its unit in SI is the Coulomb (C). There are two 

types of electrical charges, positive and negative. Two charges of the same sign repel each 

other and two charges of opposite signs attract each other. 

I.3.2. The elementary charge

It is the smallest amount of charge e = 1.602176634x10 -19 C, the electric charge of an: 

electron: qe = - e = -1.602176634.10-19 C  

proton: qp = + e = 1.602176634.10-19 C. 

I.3.3. The point charge 

Is an electric charge localized at a dimensionless point. Hence, the characteristic of a point 

charge is: It takes up no space and acts uniformly on its surroundings 

I.3.4. Conservation of electrical charge 

In an isolated body the algebraic sum of the electric charges remains constant: 

qfinal = qinitial

I.4. Conductive materials, insulating  

From an electrical point of view, there are two main families of materials: conductors and 

insulators. 

 

 
 

 
 

 

   - - - 
 

 

 
 

 

https://fr.wikipedia.org/wiki/Point_(g%C3%A9om%C3%A9trie)
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I.4.1. Conductive materials  

In conductors, electrical charges are free to move and are distributed throughout the material. 

An electrical conductor therefore conducts electric current (iron, aluminum, salt water, etc.). 

I.4.2. Insulating materials (dielectric) 

Conversely, an electrical insulator is a medium that does not conduct electric current , 

because it does not allow the passage of free electrons from one atom to another (ebonite, 

glass, porcelain, plastics, etc.) , the insulation is charged by friction (rubbing).

I.5. Coulomb's law  

I.5.1. interaction between two point charges q1 and q2  

Consider two point charges q 1 and q 2 separated by r placed in a vacuum. The first exerts a 

force on the second �⃗�12, the second exerts a force on the first �⃗�21.

Coulomb's law allows us to determine the electrostatic force, which is written:

�⃗⃗⃗�𝒆 = �⃗⃗⃗�𝟏𝟐 = −�⃗⃗⃗�𝟐𝟏 = 𝑲
𝒒𝟏 𝒒𝟐

𝒓𝟐
 �⃗⃗⃗� ⇒ 𝑭𝒆 = 𝑭𝟏𝟐 = 𝑭𝟐𝟏 = 𝑲

|𝒒𝟏 |. |𝒒𝟐|

𝒓𝟐
  

𝐾 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒 =
1

4𝜋𝜀0
= 8,9875. 109 Nm2C−2,  

we will often use the value 9.10 9 Nm 2 C-2 . 

 

𝜀0=8.8542.10 -12 C 2 /Nm 2 is the  permittivity. 

 

 

 

 

 

 

 

 

 

 

 

Note :  

In a medium other than vacuum, ε0 will be replaced by ε= ε0 εr where εr represents the relative 

permittivity, therefore the force is given by the following relation: 

�⃗⃗⃗�𝒆 =
𝒒𝟏 𝒒𝟐

𝟒𝝅𝜺𝟎𝛆𝐫𝒓𝟐
 �⃗⃗⃗� ⇒ 𝑭𝒆 =

|𝒒𝟏 |. |𝒒𝟐|

𝟒𝝅𝜺𝟎𝛆𝐫𝒓𝟐
  

Repulsive force 

 
q2 > 0 

or q2 < 0 

q1 > 0 

or q1 < 0 

r 

�⃗⃗⃗�𝟏𝟐 �⃗⃗⃗�𝟐𝟏 

Attractive force  

 
q2 < 0 

or q2 > 0 

q1 > 0 

or q1 < 0 

r 

�⃗⃗⃗�𝟏𝟐 �⃗⃗⃗�𝟐𝟏 

�⃗⃗⃗� 

�⃗⃗⃗� 
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Example: 

Calculate the force exerted by the charge q1 = 6 10-4 C on a charge q2 = -3 10-4 C separated 

by the distance 9 mm. 

Solution: 

 

 

 

 

 

�⃗⃗⃗�𝒆 = �⃗⃗⃗�𝟏𝟐 = 𝑲
𝒒𝟏 𝒒𝟐

𝒓𝟐
 (− �⃗⃗⃗�) ⇒ 𝑭𝒆 = 𝑭𝟏𝟐 = 𝑲

|𝒒𝟏 |. |𝒒𝟐|

𝒓𝟐
  

 

𝐹12 = 𝐾
|𝑞1 |. |𝑞2|

𝑟2
= 9. 109

|6. 10−4|. |−3. 10−4|

(9. 10−3)2
= 9. 109

6. 10−4. 3. 10−4

81. 10−6
= 2. 107 𝑁 

 

𝐹12 = 2. 107 𝑁  

 

I.5.2. Principle of superposition 

Assuming that there exist n immobile electric charges in a vacuum. The electrostatic force 

exerted by the n charges on a charge q located at a point M is: 

 �⃗�1 = 𝐾
𝑞1 𝑞

𝑟1
2  �⃗⃗�1, �⃗�2 = 𝐾

𝑞2 𝑞

𝑟2
2  �⃗⃗�2, …..�⃗�𝑛 = 𝐾

𝑞𝑛 𝑞

𝑟𝑛
2  �⃗⃗�𝑛 

 

 

 

 

⇒ �⃗⃗⃗�(𝑴) = ∑𝑲
𝒒.𝒒𝒊

𝒓𝒊
𝟐 �⃗⃗⃗�𝒊

𝒏

𝒊=𝟏

 

 

 

 

 

 

 

�⃗⃗⃗� 

Attractive force   

q2 < 0 q1 > 0 r 

�⃗⃗⃗�𝟏𝟐 

�⃗�(𝑀) = �⃗�1 + �⃗�2 + �⃗�𝑛 

�⃗�(𝑀) = 𝐾
𝑞. 𝑞1

𝑟1
2 �⃗⃗�1 + 𝐾

𝑞. 𝑞2

𝑟2
2 �⃗⃗�2+. . . +𝐾

𝑞. 𝑞𝑛

𝑟𝑛2
�⃗⃗�𝑛 

q 

qn 

q2 

q1 M 

�⃗⃗⃗�𝟏 

�⃗⃗⃗�𝟐 

�⃗⃗⃗�𝒏 �⃗⃗⃗�⬚ 

r1 

r2 
rn 
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I.6. The electrostatic field 

I.6.1. Definition 

Coulomb's law can be written as follows 

�⃗⃗⃗� = 𝑲
𝒒𝒒′

𝒓𝟐
 �⃗⃗⃗� = 𝒒′𝑲

𝒒

𝒓𝟐
�⃗⃗⃗� = 𝒒′�⃗⃗⃗�

A point charge q located at O, creates at any point M in space (in a vacuum), an electrostatic 

field  �⃗⃗⃗�, given by the following relation: 

�⃗⃗⃗� = 𝑲
𝒒

𝒓𝟐
 �⃗⃗⃗� ⇒ 𝑬 = 𝑲

|𝒒|

𝒓𝟐
 

 

 

 

 

 

 The unit of E in SI is Volt/meter (V/m)  

 �⃗⃗⃗� =
�⃗⃗⃗�

𝒒′
  If q' >0, �⃗⃗� 𝑎𝑛𝑑 �⃗� have the same direction and if q'<0, �⃗⃗� 𝑎𝑛𝑑  �⃗� are of 

opposite directions. 

 

 

 

 

 

 

 

 

 

I.6.2. Electrostatic field created by a set of point charges 

Consider n charges located at points Pi, the electrostatic field produced by these charges at 

point M is the vector sum of all the fields due to each of the charges.  

So we have: 

�⃗⃗⃗� 
The electrostatic field directs the charge outwards 
 M q  > 0 r 

�⃗⃗⃗� 

The electrostatic field directs towards the charge 
 

�⃗⃗⃗� 

M q  < 0 r 

�⃗⃗⃗� 

�⃗⃗⃗� M 

q  > 0 r 

�⃗⃗⃗� 

q’  > 0 

O 

q’  < 0 

�⃗⃗⃗� M 

q  > 0 r 

�⃗⃗⃗� 

�⃗⃗⃗� 

�⃗⃗⃗� 
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�⃗⃗�(𝑀) = �⃗⃗�1 + �⃗⃗�2 + ⋯+ �⃗⃗�𝑛 

�⃗⃗�1 = 𝐾
𝑞1

𝑟1
2 �⃗⃗�1, �⃗⃗�2 = 𝐾

𝑞2

𝑟2
2 �⃗⃗�2, . . . �⃗⃗�𝑛 = 𝐾

𝑞𝑛

𝑟𝑛2
�⃗⃗�𝑛 

�⃗⃗�(𝑀) = 𝐾
𝑞1

𝑟1
2 �⃗⃗�1 + 𝐾

𝑞2

𝑟2
2 �⃗⃗�2+. . . +𝐾

𝑞𝑛

𝑟𝑛2
�⃗⃗�𝑛 

�⃗⃗⃗�(𝑴) = 𝑲∑
𝒒𝒊

𝒓𝒊
𝟐 �⃗⃗⃗�𝒊

𝒏

𝒊=𝟏

 

 

 

 

 

 

 

 

 

 

I.6.3. Field lines 

Electric field lines are an excellent way of visualizing electric fields. A field line is drawn 

tangential to the net at a point. Thus at any point, the tangent to the electric field line matches 

the direction of the electric field at that point. Secondly. In other words, if you see more 

electric field lines in the vicinity of point A as compared to point B, then the electric field is 

stronger at point A. 

Properties of Electric Field Lines 

 The field lines never intersect each other. 

 The field lines are perpendicular to the surface of the charge. 

 The magnitude of charge and the number of field lines, both are proportional to each 

other. 

 The start point of the field lines is at the positive charge and end at the negative 

charge. 

 For the field lines to either start or end at infinity, a single charge must be used. 

 

r1 

r2 rn 

qn 

q2 

q1 

M 

�⃗⃗⃗�𝟏 

�⃗⃗⃗�𝟐 

�⃗⃗⃗�𝒏 �⃗⃗⃗�⬚ 
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 case of a positive charge                                           case of a negative charge 

 

 

 

 

 

 

 

 

   Case of two opposite charges (dipole)                                    Case of two positive charges 

 

I.7. The electrostatic potential 

The electrostatic potential is a scalar physical quantity which defines the electrical state of a 

point in space. It corresponds to the electrostatic potential energy (measured in joules) of a 

charged particle at this point divided by the charge (measured in coulomb) of the particle. 

So to determine the expression of the potential it is necessary to calculate the potential 

energy. 

I.7.1. Interaction energy between two point charges 

To introduce the notion of electrostatic potential, let us look at the interaction between two 

electric charges q and Q. Acording to Coulomb`s law, the charge q experiences a force: 

�⃗� = 𝐾
𝑞𝑄

𝑟2
 �⃗⃗� 

In mechanics, we know that a force �⃗� applied to an object that moves a elementary distance 

𝑑𝑙⃗⃗⃗⃗   provides a work dW 

 

�⃗⃗⃗� 
�⃗⃗⃗�+ 

�⃗⃗⃗�− M 

 

M 

�⃗⃗⃗�+ 

�⃗⃗⃗�+ 

�⃗⃗⃗�⬚ 

+ 

�⃗⃗⃗� 

�⃗⃗⃗� 

�⃗⃗⃗� 

�⃗⃗⃗� 

- 
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𝑑𝑊 = �⃗� . 𝑑𝑙⃗⃗⃗⃗  

Suppose a charge q moves in a space from a point A 

at a point B in an electric field �⃗⃗� created by Q.  

At each position M, it experiences a force: 

�⃗� = 𝑞 �⃗⃗� 

𝑑𝑊 = �⃗� . 𝑑𝑙⃗⃗⃗⃗ = 𝑞�⃗⃗� . 𝑑𝑙⃗⃗⃗⃗  

⇒ 𝑊 = ∫ 𝑞�⃗⃗� . 𝑑𝑙⃗⃗⃗⃗

𝐵

𝐴

= 𝑞 ∫ �⃗⃗� . 𝑑𝑙⃗⃗⃗⃗

𝐵

𝐴

 

We call 𝐶 = ∫ �⃗⃗� . 𝑑𝑙⃗⃗⃗⃗𝑩

𝑨
 the circulation of vector E between A and B. 

we have 𝐸 =
𝑄

4𝜋𝜀0𝑟2    

⇒ 𝑊 =
𝑞𝑄

4𝜋𝜀0
∫

𝑑𝑙. 𝑐𝑜𝑠𝛼

𝑟2

𝐵

𝐴

 

And we also have  𝑑𝑟 = 𝑑𝑙. 𝑐𝑜𝑠𝛼  

⇒𝑊 =
𝑞𝑄

4𝜋𝜀0
∫

𝑑𝑟

𝑟2

𝐵

𝐴

=
𝑞𝑄

4𝜋𝜀0
[
−1

𝑟
]
𝑟1

𝑟2

 

𝑾 =
𝒒𝑸

𝟒𝝅𝜺𝟎
(
𝟏

𝒓𝟏
−

𝟏

𝒓𝟐
) 

 

We see that the work does not depend on the path taken by the particle between A and B. As 

well as the circulation of the field �⃗⃗�  depends only on the initial and final positions. In 

mechanics, the work is equal to the variation of the potential energy, and we found that the 

work does not depend on the path followed, therefore it depends on the potential energy Ep 

measured in the initial and final positions A and B. 

 W = E p (A) - E p (B) = -∆E p⇒𝑑𝑊 = −𝑑𝐸𝑝 =
𝑞𝑄

4𝜋𝜀0
∫

𝑑𝑟

𝑟2 

∆𝐸𝑝 = 𝐸𝑝(𝐵) − 𝐸𝑝(𝐴) = −
𝑞.𝑄

4𝜋𝜀0
∫

𝑑𝑟

𝑟2

𝑟2

𝑟1

 ⇒ 𝐸𝑝 =
𝑞𝑄

4𝜋𝜀0𝑟
+ 𝐶 

When𝑟 → ∞ ⇒ 𝐸𝑃 = 0⇒𝑐 = 0 

 

�⃗� 

𝐵 

𝐴 

𝑑𝑙⃗⃗⃗⃗  

𝛼 

𝑑𝑟 

𝑟2 

𝑟 

𝑟1 

𝑟 + 𝑑𝑟 

�⃗⃗⃗� 𝑄 𝑞 
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SO     𝑬𝒑 =
𝒒𝑸

𝟒𝝅𝜺𝟎𝒓
 

We call the electric potential V created by the charge q 

𝑽(𝒓) =
𝑬𝒑

𝑸
=

𝑲𝒒

𝒓
 

 The potential is expressed in Volt (V) (i.e. in J/C). 

Remark: 

The circulation of �⃗⃗� from A to B is therefore equal to the difference between the values of 

the potential at A and at B: 

    𝐶 = ∫ �⃗⃗�. 𝑑𝑙⃗⃗⃗⃗ =

𝐵

𝐴

−
𝐾𝑞

𝑟𝐵
+

𝐾𝑞

𝑟𝐴
= 𝑉(𝐴) − 𝑉(𝐵) 

I.7.2. Relationship between field and electrostatic potential 

𝑉(𝑟) =
𝐾𝑞

𝑟
⇒ 𝑑𝑉 = −𝐾𝑞

𝑑𝑟

𝑟2
= −

𝐾𝑞

𝑟2
𝑑𝑟 = −

𝐾𝑞

𝑟2
𝑑𝑙. 𝑐𝑜𝑠𝛼 = −�⃗⃗�. 𝑑𝑙⃗⃗⃗⃗  

In an O,x,y,z coordinate system: 

�⃗⃗� (
𝐸𝑥
𝐸𝑦

𝐸𝑧

)     and   𝑑𝑙⃗⃗⃗⃗ (
𝑑𝑥
𝑑𝑦
𝑑𝑧

) 

⇒ E⃗⃗⃗. dl⃗⃗⃗⃗ = 𝐸𝑥𝑑𝑥 + 𝐸𝑦𝑑𝑦 + 𝐸𝑧𝑑𝑧 

𝑑𝑉 =
𝜕𝑉

𝜕𝑥
𝑑𝑥 +

𝜕𝑉

𝜕𝑦
𝑑𝑦 +

𝜕𝑉

𝜕𝑧
𝑑𝑧 

by identification:  𝐸𝑥 = −
𝜕𝑉

𝜕𝑥
,    𝐸𝑦 = −

𝜕𝑉

𝜕𝑦
   𝑒𝑡   𝐸𝑧 = −

𝜕𝑉

𝜕𝑧
 

therefore the vector of the field is written: 

�⃗⃗� = 𝐸𝑥𝑖 + 𝐸𝑦𝑗+𝐸𝑧�⃗⃗� = − (
𝜕𝑉

𝜕𝑥
𝑖 +

𝜕𝑉

𝜕𝑦
𝑗 +

𝜕𝑉

𝜕𝑧
�⃗⃗�) = −𝑔𝑟𝑎𝑑⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗𝑉 

�⃗⃗� = −𝑔𝑟𝑎𝑑⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗𝑉 

The gradient operator in Cartesian coordinates is written:   

𝑔𝑟𝑎𝑑⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ =
𝜕

𝜕𝑥
𝑖 +

𝜕

𝜕𝑦
𝑗 +

𝜕

𝜕𝑧
�⃗⃗� 

We say the electric field �⃗⃗� derives from potential V. 
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I.7.3. Principle of superposition 

Consider n fixed point charges qi,placed at points Mi in a vacuum. 

The electrical potential created by the whole of these charges at a point M is written: 

𝑉(𝑀) = 𝑉1 + 𝑉2 + ⋯+ 𝑉𝑛 = 𝐾
𝑞1

𝑟1
+ 𝐾

𝑞2

𝑟2
+. . . +𝐾

𝑞𝑛

𝑟𝑛
 

⇒ 𝑽(𝑴) = ∑𝑽𝒊

𝒏

𝒊=𝟏

= ∑𝑲
𝒒𝒊

𝒓𝒊

𝒏

𝒊=𝟏

 

 

 

 

 

 

 

I.7.4. Equipotential surfaces 

The equipotential surface is the set of points in space having the same value of electric 

potential. It is therefore defined by: 

V(x, y, z) = V 0 = Cste 

 

 

 

 

 

 

 

 For any path 𝑑𝑙⃗⃗⃗⃗ located on the equipotential surface, we have: ∫ �⃗⃗⃗�. 𝒅𝒍⃗⃗⃗⃗⃗ =
𝑩

𝑨
𝟎. 

This shows that everything 𝑑𝑙⃗⃗⃗⃗  on the equipotential surface is perpendicular to �⃗⃗�. 

The equipotential surfaces are therefore perpendicular to the field lines. 

 

I.7.5. Work and potential energy of a moving charge  

 The work of the electrostatic force �⃗�, and the potential energy, when moving a charge 

q from point A to point B in an electrostatic field �⃗⃗�, are given by the following formulas: 

W AB ( �⃗⃗⃗�)= q.(V A -V B ) 

r1 

r2 rn 

qn 

q2 

q1 

M 

𝑽(𝑴) 

R2 

R3 

𝑽𝟏 = 𝑲
𝒒

𝑹𝟏
 

R1 

𝑽𝟐 = 𝑲
𝒒

𝑹𝟐
 

𝑽𝟑 = 𝑲
𝒒

𝑹𝟑
 

q 

�⃗⃗⃗� 
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V(A)-V(B) is the electrostatic potential difference between points A and B and is equal to: 

𝑉(𝐴) − 𝑉(𝐵) =
𝑊

𝐴→𝐵

𝑞
=

𝑄

4𝜋𝜀0
(
1

𝑟1
−

1

𝑟2
) 

E p (A) - E p (B) = - ∆E p = W AB 

Special case: 

If a point charge q is placed at the point M where there is an electric field and potential 

�⃗⃗�(𝑀)and V(M), it will have a potential energy E p given by: 

E p (q) = qV(M) 

I.8. Electric dipole 

The electric dipole is a system made up of two equal charges and opposite signs, +q and –q 

, separated by a distance a . Every electric dipole is characterized by its dipole moment �⃗⃗⃗� 

 which is defined by: 

�⃗⃗⃗� = 𝒒. �⃗⃗⃗� ⇒ 𝑷 = |𝒒|. 𝒂 

The vector �⃗�is directed from the negative charge ( -q ) to the positive charge (+q). 

I.8.1. Electric potential produced by an electric dipole: 

We will calculate the electric potential produced by the two charges (+q) and (-q), at the 

point M located at the distance r1 from the charge (+q) and at the distance r2 from the charge 

(-q). The distance a is very small compared to the distances r1 and r2. 

The electrostatic potential V created in M by the two electric charges is equal to the sum of 

the potentials created by each charge taken separately: 

𝑉(𝑀) = 𝑉(𝑞+) + 𝑉(𝑞−) 

𝑉(𝑞+) =
1

4𝜋𝜀0

(+𝑞)

𝑟1
 

𝑉(𝑞−) =
1

4𝜋𝜀0

(−𝑞)

𝑟2
 

𝑉(𝑀) = 𝑉(𝑞+) + 𝑉(𝑞−) =
1

4𝜋𝜀0

(+𝑞)

𝑟1
+

1

4𝜋𝜀0

(−𝑞)

𝑟2
 

a 
+q -q 
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𝑉(𝑀) =
𝑞

4𝜋𝜀0

(𝑟2 − 𝑟1)

𝑟1𝑟2
 

We have: 

 a ≪ r ⇒𝑟1+𝑟2 ≈ 2𝑟 𝑒𝑡 𝑟1𝑟2 ≈ 𝑟2 

𝑟2 − 𝑟1 = 𝑎. 𝑐𝑜𝑠𝛼 

a ≪ r ⇒𝛼 ≈  𝜃, So :(𝑟2 − 𝑟1) = 𝑎 cos 𝜃 

𝑉(𝑀) = 𝑉(𝑟, 𝜃) =
𝑞

4𝜋𝜀0

𝑎. cos 𝜃

𝑟2
=

𝑃 cos 𝜃

4𝜋𝜀0𝑟2
. 

𝑃 = 𝑞. 𝑎 

Or, 

𝑉(𝑀) = 𝑉(𝑟, 𝜃) =
1

4𝜋𝜀0

�⃗⃗�. �⃗⃗�𝑟

𝑟2
 

 

a 

r2 r 

𝜃 

 

r1 

P⃗⃗⃗ +q O 

M 

-q 
+ +

r2-r1 

α 
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I.8.2. Dipole Electrostatic Field 

As V only depends on r and θ, we therefore calculate the components of the electric field in 

polar coordinates. Let be the polar reference frame with center O and base vectors (�⃗⃗�𝑟 , �⃗⃗�𝜃). 

The electrostatic field vector �⃗⃗� at point M is written in polar coordinates: 

�⃗⃗�(𝑀) = 𝐸𝑟 �⃗⃗�𝑟 + 𝐸𝜃 �⃗⃗�𝜃 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We also have �⃗⃗�(𝑀) = −𝑔𝑟𝑎𝑑⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗𝑉(𝑀) 

𝑔𝑟𝑎𝑑⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ in polar coordinates is written: 

𝑔𝑟𝑎𝑑⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ =

(

 
 

𝜕
𝜕𝑟

1
𝑟 .

𝜕
𝜕𝜃)

 
 

 

the radial Er and tangential E  components  are therefore : 

{
 
 

 
 𝐸𝑟 = −

𝜕 𝑉

𝜕𝑟
=

1

4𝜋𝜀0

2𝑃 cos 𝜃

𝑟3

𝐸𝜃   =  −
1

𝑟

𝜕 𝑉

𝜕𝜃
=

1

4𝜋𝜀0

𝑃 sin 𝜃

𝑟3

 

The module of the electric field vector is therefore 

a 

r2 

r 

𝜃 

 

r1 

+q O 

M 

-q 

�⃗⃗⃗�𝒓 
�⃗⃗⃗�𝜽 

�⃗⃗⃗�𝜽 

�⃗⃗⃗�𝒓 

�⃗⃗⃗� 
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𝐸 = √𝐸𝑟
2 + 𝐸𝜃

2 

Either  

𝐸 =
1

4𝜋𝜀0

𝑃

𝑟3 √4cos2𝜃 + sin2 𝜃   

𝐸 =
1

4𝜋𝜀0

𝑃

𝑟3
√3cos2𝜃 + 1  

 

I.8.3. Field lines equation: 

The field line �⃗⃗� is collinear with dl, so : 

�⃗⃗� ∖∖  𝑑𝑙⃗⃗⃗⃗  ⇒  �⃗⃗� = 𝐶. 𝑑𝑙⃗⃗⃗⃗   (𝑐 = 𝑐𝑡𝑒) 

�⃗⃗� (
𝐸𝑟

𝐸𝜃
)  𝑎𝑛𝑑 𝑑𝑙⃗⃗⃗⃗ (

𝑑𝑟

𝑟𝑑𝜃
) ⇒

�⃗⃗�

𝑑𝑙⃗⃗⃗⃗
= 𝐶 ⇒

𝑑𝑟

𝐸𝑟
=

𝑟𝑑𝜃

𝐸𝜃
⇒

𝐸𝑟𝑑𝜃

𝐸𝜃
=

𝑑𝑟

𝑟
 

2𝐾𝑃 cos 𝜃
𝑟3 𝑑𝜃

𝐾𝑃 sin 𝜃
𝑟3

=
𝑑𝑟

𝑟
⇒

2 cos 𝜃

sin 𝜃
=

𝑑𝑟

𝑟
⇒

𝑑𝑟

𝑟
=

2d(sin𝜃)

sin 𝜃
 

∫
𝑑𝑟

𝑟
= 2∫

d(sin𝜃)

sin 𝜃
⇒ 𝑙𝑛𝑟 = 2𝑙𝑛 sin 𝜃 + 𝑐 = 𝑙𝑛2 sin𝜃 + 𝑐 ⇒ 𝑙𝑛

𝑟

sin 𝜃2
= 𝑐 ⇒

𝑟

sin 𝜃2
= 𝑐 

The trajectory equation is            

𝑟 = 𝑐 sin 𝜃2  
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I.8.4. Potential energy of a dipole placed in a uniform external field 𝑬𝟎
⃗⃗ ⃗⃗ ⃗ : 

𝐸𝑝 = 𝐸𝑝(+𝑞) + 𝐸𝑝(−𝑞) = 𝑞𝑉𝐵 + (−𝑞)𝑉𝐴 = 𝑞(𝑉𝐵 − 𝑉𝐴) 

we know that : 𝑑𝑉 = −𝐸0
⃗⃗⃗⃗ . 𝑑𝑙⃗⃗  ⃗ 

⇒ ∫ 𝑑𝑉 = −𝐸0
⃗⃗⃗⃗ . 𝑎           (∫𝑑𝑙⃗⃗  ⃗ = 𝑎 )

𝑉𝐵

𝑉𝐴

 

⇒ 𝐸𝑝 = 𝑞. (−𝐸0
⃗⃗⃗⃗ . 𝑎 ) = −𝑞𝑎 . 𝐸0

⃗⃗⃗⃗ = −�⃗� . 𝐸0
⃗⃗⃗⃗  

𝐸𝑝 = −𝑝 . 𝐸0
⃗⃗⃗⃗ = −𝑝. 𝐸0. 𝑐𝑜𝑠𝜃  

 

 

 

 

 

𝜃 𝑬𝒑 
 

0 −𝑝. 𝐸0 stable equilibrium 

±
𝜋

2
 0  

± 𝜋 𝑝. 𝐸0 unstable equilibrium 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ep 

𝜽 

𝟎 

p.E0 

-p.E0 

𝜋

2
 

−
𝜋

2
 −𝜋 

𝜋 

unstable 

stable 

unstable 

a 

𝜃 

 
B(+q) O A(-q) 

𝑬𝟎
⃗⃗ ⃗⃗ ⃗ 

�⃗⃗⃗� 
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I.9. Electric field created by a  distribution of charges

A continuous charge distribution is used to describe the charge of a macroscopic object . 

While the electric charge is an integer multiple of the unit of electric charge, it can be 

considered continuous. We can define three types of charge density, depending on the shape 

and dimensions of the object which creates the electric field: 

 Linear charge density λ:  

It is defined as the charge density byunit of length.  

This is the case with an electric wire. 

𝜆 =
𝑑𝑞

𝑑𝑙
 

 Surface charge density σ:  

This is the charge density per unit area. 

It is found in a flat body; For example a disk. 

 𝜎 =
𝑑𝑞

𝑑𝑠
 

 Volume charge density ρ :  

It is the charge density per unit volume. 

It is used when the object has three dimensions; 

Example: charged sphere. 

𝜌 =
𝑑𝑞

𝑑𝑉
 

 

I.10. Gauss's theorem 

Gauss' theorem allows us to quickly calculate the electric field �⃗⃗�created by symmetrical 

charge distributions. First, we must define the notions of the Solid Angle and the flow of the 

electric field through a surface. 

I.10.1. Concept of solid angle  

We saw in the previous study plane angles. But when it comes to spatial geometry we find 

the angle solid.

 

dl dq 

M 

𝒅�⃗⃗⃗� 

ds 

dq 

M 

𝒅�⃗⃗⃗� 

dv 

dq 
M 𝒅�⃗⃗⃗� 

S 
Ω 

R 

O 
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The solid angle is an "angle" in space, consider a sphere with center O and radius r. 

We define the solid angle Ω under which we see a surface (S), from a point O, contained in 

a cone with vertex O. 

dΩ =
𝑑𝑆.⃗⃗⃗ �⃗⃗�

𝑅2
=

𝑑𝑆. �⃗⃗�. �⃗⃗�

𝑅2
=

𝑑𝑆. 𝑐𝑜𝑠𝛼

𝑅2
 

 

 

 

 

 

Remark: 

If �⃗⃗� 𝑎𝑛𝑑 �⃗⃗� are parallel, then cos α =1, and therefore the solid angle is equal to: 

dΩ =
𝑑𝑆

𝑅2
⇒ Ω =

𝑆

𝑅2
 

I.10.2. Concept of of the electric field through any surface 

The flow of the field �⃗⃗�(𝑀)created at a point𝑀 by a charge distribution 𝑄across a closed 

surface (S) is defined by

ΦS = ∯ �⃗⃗�(𝑀)
𝑆

𝑑𝑆 ⃗⃗⃗ ⃗(𝑀) 

With 𝑑𝑆 ⃗⃗⃗ ⃗elementary surface vector: 𝑑𝑆 ⃗⃗⃗ ⃗ = 𝑑𝑆. �⃗⃗�and �⃗⃗�unit vector 

I.10.3. Gauss's theorem 

The field flux E⃗⃗⃗across a closed surface created by a charge distribution is equal to the 

algebraic sum of the charges present within that surface (S G ) divided by𝜀0 

 

I.10.4. The relationship between solid angle and electric flux: 

The electric field produced by a point charge 

q at a distance from the load East𝐸 =
𝑘𝑞

𝑟2 

The flow through an elementary surface dS located at the 

distance r from the charge q is: 

ΦS = ∯ �⃗⃗�(𝑀)
𝑆

𝑑𝑆 ⃗⃗⃗ ⃗(𝑀) =
∑𝑄𝑖

𝜀0
 

 

dS d�⃗⃗⃗� 

�⃗⃗⃗� 

𝛂 
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ΦS = ∯ �⃗⃗�
𝑆

𝑑𝑆 ⃗⃗⃗ ⃗ = ∯ 𝐾
𝑞

𝑟2
𝑆

 𝑑𝑆. 𝑐𝑜𝑠𝛼 = ∯ 𝐾𝑞
𝑆

 dΩ

*General calculation method: 

- Find a closed surface passing through the point M where you want to calculate the field. 

- Write the flow definition ΦS = ∯ �⃗⃗�
𝑆

𝑑𝑆 ⃗⃗⃗ ⃗ 

- Apply Gauss' theorem after calculating the algebraic charge inside the surface. 
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Exercises 
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Exercise 1 

We place respectively at points A, B and C the charges q 1 =1.5 10 -3 C, q 2 = -0.5 10 -3 C and 

q 3 =10 3 C. We give AC=1m and BC=0.5m.  

- Calculate the force exerted on the charge q3. 

Exercise 2 

We place at the vertices of a square ABCD of dimension a=1cm the charges qA = 2 μC, qB 

= -4 μC, qC = 2 μC and qD = 1μC. 

-Calculate the field modulus at point O intersection of the diagonals. 

Exercise 3 

Consider a finished wire AB of length L and uniform positive linear charge . 

1- Calculate the field vector E⃗⃗⃗ and the potential V created by the fine wire AB at any point 

M located at distance x from the wire. 

2 - Deduce �⃗�  and V when M is in the mediating plane of wire AB. 

3- Deduce �⃗�  when the wire AB is of infinite length. 

Exercise 4 

1°) a) Determination of the field E⃗⃗⃗M created by the disk at point M of the axis OX, located 

at a distance x from the center O of the disk. 

b) Calculate the electric potential V created at point M. 

2°) Let's check the relationship between the potential and the field: �⃗⃗� = −𝑔𝑟𝑎𝑑⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗𝑉 

3) Let us distinguish the field 𝐸 when the radius of the disk R tends towards infinity. 

Exercise 5 

A wire, of infinite length, is uniformly charged by a positive linear density . 

1)-By application of Gauss's Theorem calculate the electrostatic field created by this 

distribution at a point located at distance x from the wire. 

Exercise 6 

By using Gauss's theorem: 

1- Calculate the electric field �⃗�  created at a point M located outside an infinite plane (P) of 

uniform surface charge density σ (σ > 0). 

2- Deduce the field �⃗� ` created in M by an infinite plane (P’) perpendicular to (P) of uniform 

charge density 2σ. 
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3- Calculate the field 𝐸𝑇
⃗⃗ ⃗⃗  resulting at this point. 

Exercise 7 

Consider two concentric spheres of radii R1 and R2 (R1 < R2). The outer sphere of radius 

R2 is charged with a surface charge density σ constant and positive, as for the interior sphere 

of radius R1 it is charged with a volume charge density 𝜌 constant and positive.  

Using Gauss's theorem, determine: 

1- The electric field E(r) at any point in space. 

2- The electric potential V(r) at any point in space. 

 

 

 

 

 

 

 

 

Exercise 8 

We consider a uniformly charged ring with center O, radius R and positive linear charge . 

1)-Calculate the field  𝐸⃗⃗⃗⃗ 𝑡𝑜𝑡 and the potential V created at point M located on its axis OX such 

that OM = x 

2)-Find the potential V using the relationship between the field and the potential. 

 

 

 

 

 

 

 

R1 

R2 

σ 

ρ 

O 

𝑀 

𝑥 

R 

𝑋 
O 
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Solution 
 



Chapter 1                                                                     Electrostatics 

25 

 

Exercise 1 

 

 

 

 

 

 

 

�⃗�𝐶 = �⃗�1 + �⃗�2 ⇒ |�⃗�𝐶| = √𝐹1
2 + 𝐹2

2  

𝐹1 = 𝐾
𝑞1.𝑞3

𝑟1
2      Repulsion force (q1 >0 and q3 >0) 

𝐹2 = 𝐾
𝑞2.𝑞3

𝑟1
2       Force of attraction (q2 <0 and q3 >0) 

AN:𝐹1 = 9. 109 1.5 10−3.10−3

12 = 13.5 103 𝑁 

𝐹2 = 9. 109
0.5 10−3. 10−3

(0.5)2
= 18 103 𝑁 

⇒ |�⃗�𝐶| = √(13.5 103) 2 + (18 103)2 = 22.5 103 𝑁  

|�⃗�𝐶| = 22.5 103 𝑁  

Exercise 2 

 

 

 

 

 

 

 

 

 

 

q1 

B 

A 
C 

q3 

q2 

r1=AC 

r2=BC 

�⃗⃗⃗�𝟐 
�⃗⃗⃗�𝑪 

�⃗⃗⃗�𝟏 

Y' 

�⃗⃗�𝐷 

�⃗⃗�𝐵 �⃗⃗�𝐶 

�⃗⃗�𝐴 

X 

X' 

Y 

O 

B 

D C 

A 

�⃗⃗⃗�𝑶 
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-Field module 

�⃗⃗�𝑂 = �⃗⃗�𝐴 + �⃗⃗�𝐵 + �⃗⃗�𝐶 + �⃗⃗�𝐷 

𝐸𝐴 = 𝐾 
𝑞𝐴

𝑂𝐴2
 

𝐸𝐵 = 𝐾 
𝑞𝐵

𝑂𝐵2
 

𝐸𝐶 = 𝐾 
𝑞𝐶

𝑂𝐶2  

𝐸𝐷 = 𝐾 
𝑞𝐷

𝑂𝐷2
 

We have: 𝑞𝐴 = 𝑞𝐶 and 𝑞𝐵 = 4𝑞𝐷 (in absolute value) 

With: OA =OB= OC =OD =𝑎√2 2⁄  

As the vectors are not straight, they must be projected on the axes (OX) and (OY) 

�⃗⃗�𝑂 = 𝐸𝑂𝑋 𝑖 + 𝐸𝑂𝑌 𝑗 ⇒ 𝐸𝑂 = √𝐸𝑂𝑋
2 + 𝐸𝑂𝑌

2  

To simplify the calculations we choose the axes (OX) and (OY) coincident with the 

diagonals of the square 

Projection along the OX axis 

𝐸𝑜𝑥 = −𝐸𝐴 + 𝐸𝐶 ⇒ 𝐸𝑜𝑥 = −𝐾 
𝑞𝐴

(𝑎√2 2⁄ )2
+ 𝐾 

𝑞𝐶

(𝑎√2 2⁄ )2
= 0 (E A = E C ) 

𝐸𝑜𝑥 = 0  

Projection along the OY axis 

𝐸𝑜𝑦 = 𝐸𝐵 + 𝐸𝐷 = 𝐾 
𝑞𝐵

(𝑎√2 2⁄ )2
+ 𝐾 

𝑞𝐷

(𝑎√2 2⁄ )2
=  

2𝐾

𝑎2
(𝑞𝐵 + 𝑞𝐷) 

𝐸𝑜𝑦  
2𝐾

𝑎2
(𝑞𝐵 + 𝑞𝐷)  

⇒ 𝐸𝑂 = √𝐸𝑂𝑋
2 + 𝐸𝑂𝑌

2  = √0 + 𝐸𝑂𝑦
2 = 𝐸𝑂𝑦 =

2𝐾

𝑎2
(𝑞𝐵 + 𝑞𝐷) 

�⃗⃗�𝑜 = �⃗⃗�𝑜𝑦 =
2𝐾

𝑎2
(𝑞𝐵 + 𝑞𝐷)𝑗 . 

�⃗⃗�𝑜 = 9. 109  
2(4 × 10−6 + 1 × 10−6)

(10−2)2
𝑗 = 9. 108 𝑗 

𝐸𝑂 = 9. 108  𝑉/𝑚  
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Exercise 3 

1.a- We take an elementary length 𝑑𝑙which carries an elementary charge  𝑑𝑞 = 𝜆. 𝑑𝑙,this 

charge creates an elementary field 𝑑�⃗⃗�at point M, according to Coulomb's law 

𝑑�⃗⃗� =
𝑘. 𝑑𝑞

𝑟2
�⃗⃗� =

1

4𝜋𝜀0

𝜆𝑑𝑙

𝑟2
�⃗⃗� ⇒ 𝐸 =

1

4𝜋𝜀0

𝜆𝑑𝑙

𝑟2
 

here r is the distance between the charge dq and the point M. 

Let's project the vector 𝑑�⃗⃗�onto the ox and oy axes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑑�⃗⃗� = 𝑑�⃗⃗�𝑥  + 𝑑�⃗⃗�𝑦    𝑜𝑟 {
𝑑�⃗⃗�𝑥 = 𝑑𝐸𝑥 𝒾

𝑑�⃗⃗�𝑦 = 𝑑𝐸𝑦𝒿
 

�⃗� = 𝐸𝑋 𝑖 + 𝐸𝑌 𝑗 

⇒ 𝐸 = √𝐸𝑥
2 + 𝐸𝑦

2 

Projection on the ox axis 

𝑑𝐸𝑥 = 𝑑𝐸 cos 𝛼 =
1

4𝜋𝜀0

𝜆𝑑𝑙

𝑟2
cos 𝛼   

Projection on the oy axis 

𝑑𝐸𝑦 = 𝑑𝐸 sin𝛼 =
1

4𝜋𝜀0

𝜆𝑑𝑙

𝑟2
sin 𝛼   

B 

A 

α 
𝑑�⃗⃗�𝑥 

 

𝛼2 

𝛼1 

L 

x 

dl 

 dq 

 

𝑙 

𝑑�⃗⃗� 𝑑�⃗⃗�𝑦 

r 

y 

M x 
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The components 𝑑𝐸𝑥and 𝑑𝐸𝑦 are a function of three variables  𝑑𝑙, 𝛼 et 𝑟. Let's express them  

according to of a single variable , α for example . 

tan 𝛼 =
𝑙

𝑥
⇒ 𝑙 = 𝑥 tan 𝛼 ⇒ 𝑑𝑙 =

𝑥𝑑𝛼

cos2 𝛼
 

Andcos 𝛼 =
𝑥

𝑟
⇒ 𝑟 = 𝑥 cos 𝛼 

Let us replace dl and r in the expressions of dE x and dE y :  

𝑑𝐸𝑥 =
𝜆

4𝜋𝜀0𝑥
cos 𝛼 𝑑𝛼   and   𝑑𝐸𝑦 =

𝜆

4𝜋𝜀0𝑥
sin 𝛼 𝑑𝛼     

Calculation of 𝐸𝑥: 

𝐸𝑥 = ∫𝑑𝐸𝑥 =
𝜆

4𝜋𝜀0𝑥
∫ cos 𝛼 𝑑𝛼 =

𝜆

4𝜋𝜀0𝑥
sin 𝛼|

−𝛼2

𝛼1𝛼1

−𝛼2

 

𝐸𝑥 =
𝜆

4𝜋𝜀0𝑥
(sin𝛼1 + sin𝛼2)  

Calculation of 𝐸𝑦 : 

𝐸𝑦 = ∫𝑑𝐸𝑦 =
𝜆

4𝜋𝜀0𝑥
∫ sin𝛼 𝑑𝛼

𝛼1

−𝛼2

= −
𝜆

4𝜋𝜀0𝑥
cos 𝛼|

−𝛼2

𝛼1

 

1𝐸𝑦 =
𝜆

4𝜋𝜀0𝑥
(cos 𝛼2 − cos 𝛼1)  

𝐸 = √𝐸𝑥
2 + 𝐸𝑦

2 

𝐸 =
𝜆

4𝜋𝜀0𝑥
√(sin 𝛼1 + sin𝛼2)

2 + (cos𝛼2 − cos 𝛼1)
2 =

𝜆

4𝜋𝜀0𝑥
√2 − 2(sin 𝛼1 sin 𝛼2 − cos𝛼1 cos𝛼2) 

𝐸 =
𝜆

4𝜋𝜀0𝑥
√2(1 − cos(𝛼1 + 𝛼2)) =

𝜆

4𝜋𝜀0𝑥
√4 sin2

(𝛼1 + 𝛼2)

2
 

𝐸 =
2. 𝜆

4𝜋𝜀0𝑥
sin

(𝛼1 + 𝛼2)

2
 

1.b-Calculation of potential : 

𝑑𝑉 =
𝑘𝑑𝑞

𝑟
=

𝜆𝑑𝑙

4𝜋𝜀0𝑟
=

𝜆𝑑𝑙

4𝜋𝜀0(𝑥2 + 𝑙2)1⁄2
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𝑉 = ∫𝑑𝑉 =
𝜆

4𝜋𝜀0
∫

𝑑𝑙

(𝑥2 + 𝑙2)
1

2⁄

𝐿

0

𝜆

4𝜋𝜀0
ln (𝑙 + √𝑥2 + 𝑙2)|

0

𝐿
 

𝑉 =
𝜆

4𝜋𝜀0
[ln (𝐿 + √𝑥2 + 𝐿2) − ln(𝑥)] =

𝜆

4𝜋𝜀0
𝑙𝑛

𝐿 + √𝑥2 + 𝐿2

𝑥
 

2.a - Deduce �⃗⃗⃗� and V when M is in the mediating plane of wire AB: 

To do this, simply take: α 1 = α 2  

𝐸 =
2 𝐾 𝜆 

𝑥
sin 𝛼1 =

2 𝐾 𝜆 

𝑥
(

L
2
r
) =

 𝐾 𝜆 𝐿 

𝑥 √𝑥2 +
𝐿
4

2
 

𝑬 =
𝟐 𝑲 𝝀 𝑳

𝒙 √𝟒𝒙𝟐 + 𝑳𝟐
 

Another method which consists of associating the elements dℓ in pairs so that the 

components normal to Oy of the corresponding fields compensate for each other (reasons of 

symmetry with respect to Oy); only the components are added 𝑑𝐸𝑥 = 𝑑𝐸 𝑐𝑜𝑠 𝛼 

for    𝛼1 = 𝛼2 ,            𝐸𝑥 =
𝐾 𝜆 

𝑥
(sin α1 +sin α1) =

𝐾 𝜆 

𝑥
(2 sin α1) 

    𝑠𝑖𝑛 𝛼1 =
𝐿

2⁄

𝑟
    𝑠𝑜    𝐸𝑥 =

2𝐾 𝜆 

𝑥
(

𝐿

√4𝑥2 + 𝐿2
)       

 𝑬 = 𝑬𝒙 =
𝟐 𝑲 𝝀 𝑳 

𝒙 √𝟒𝒙𝟐 + 𝑳𝟐
 

2.b - Deduce the potential V created at point M which is located in the mediating plane 

of wire AB: 

We have  𝑑𝑉 =
𝐾 𝑑𝑞

𝑟
=

𝐾 𝜆 𝑑ℓ

𝑟
=

𝐾 𝜆 𝑑ℓ

√𝑥2+ℓ
2
 

⇒𝑉 = 𝐾𝜆 ∫
    𝑑ℓ  

√𝑥2 + ℓ
2

𝐿
2

−
𝐿
2

= 𝐾𝜆. 𝑙𝑛 [𝑙 + √𝑙2 + 𝑥2]
−
𝐿
2

𝐿
2

 

 

 ⇒𝑽 = 𝑲𝝀. 𝒍𝒏 (
𝑳 + √𝑳𝟐 + 𝟒𝒙𝟐

−𝑳 + √𝑳𝟐 + 𝟒𝒙𝟐
) 
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3- Deduce �⃗⃗� when the wire AB is of infinite length: 

When the wire AB is of infinite length, this results in :𝛼1 = 𝛼2 = 𝜋
2⁄  

 

𝐸 =
2𝐾 𝜆 

𝑥
sin (

𝜋
2⁄ + 𝜋

2⁄

2
) =

2𝐾 𝜆 

𝑥
sin

𝜋

2
 

𝐄 =
𝟐 𝑲 𝝀 

𝒙
 

 

Exercise 4 

1°) a) Determination of the field E⃗⃗⃗Mcreated by the disk at point M of the axis OX, located at 

a distance x from the center O of the disk: 

For reasons of symmetry with respect to the Ox axis, the component EMy
=0, therefore the 

field �⃗⃗�𝑀 will only admit the component �⃗⃗�𝑀𝑥
, either : 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑑𝐸𝑀𝑥
= 𝑑𝐸𝑀 cos 𝛼  

The elementary field 𝑑�⃗⃗�𝑀 due to an element of surface dS of charge dq = σ dS, has the 

expression: 

𝑑𝐸𝑀 = 
𝐾 𝑑𝑞

𝑟2 =
𝐾 𝜎 𝑑𝑆

𝑟2  

M X 

x 

r 

𝑑�⃗⃗�𝑀 

ℓ 

dℓ 

O 
dθ 

dS 

𝑑�⃗⃗�𝑀𝑥
 

𝑑�⃗⃗�𝑀𝑦
 

Y 

α 

M 

N 
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We will therefore write : 

𝑑𝐸𝑀𝑥
= 𝐾𝜎 

 𝑑𝑆

𝑟2  cos 𝛼 

Or : dS = 𝑀�̂�dℓ = ℓ dθ dℓ 

And  cos 𝛼 = 
𝑥

𝑟
 = 

𝑥

√𝑥2+ℓ
2
  

SO : 𝑑𝐸𝑀𝑥
= 𝐾𝜎  

 ℓ 𝑑𝜃 𝑑ℓ  

𝑥2+ℓ
2 .

𝑥

√𝑥2+ℓ
2
 = 𝐾𝜎 𝑥 (

  𝑑𝜃 ℓ 𝑑ℓ  

(𝑥2+ℓ2)
3

2⁄
) 

𝐸𝑀𝑥
= 𝐾𝜎 𝑥 ∫ 𝑑𝜃

2𝜋

0

∫
   ℓ 𝑑ℓ  

(𝑥2 + ℓ2)
3

2⁄
=

𝑅

0

𝐾𝜎 𝑥 2𝜋 [−
1

√𝑥2 + ℓ
2
]

0

𝑅

 

𝑬𝑴 = 𝑬𝑴𝒙
= 𝟐𝝅𝑲𝝈  (𝟏 −

𝒙

√𝒙𝟐 + 𝑹𝟐
)    

b) Calculate the electric potential V created at point M: 

𝑑𝑉 =
𝐾 𝑑𝑞

𝑟
=

𝐾 𝜎 𝑑𝑆

𝑟
=

𝐾 𝜎 ℓ 𝑑𝜃 𝑑ℓ

√𝑥2 + ℓ
2

 

𝑉 = 𝐾𝜎∫ 𝑑𝜃

2𝜋

0

∫
   ℓ 𝑑ℓ  

√𝑥2 + ℓ
2

𝑅

0

= 2𝜋𝐾𝜎 [√𝑥2 + ℓ
2]

0

𝑅

 

𝑽 = 𝟐𝝅𝑲𝝈(√𝒙𝟐 + 𝑹𝟐 − 𝒙)  

2°) Let's check the relationship between the potential and the field: �⃗⃗⃗� = −𝒈𝒓𝒂𝒅⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 𝑽 

𝐸𝑀 = − 
𝑑𝑉

𝑑𝑥
= − 2𝜋𝐾𝜎 (

2𝑥

2√𝑥2 + 𝑅2
− 1) = 2𝜋𝐾𝜎 (1 −

𝑥

√𝑥2 + 𝑅2
) 

𝐸𝑀 = 2𝜋𝐾𝜎 (1 −
𝑥

√𝑥2 + 𝑅2
)  

We find the same result as that of question 1, the relationship E⃗⃗⃗ = − grad⃗⃗⃗⃗⃗⃗⃗⃗ ⃗⃗ V is verified. 

3) Let us distinguish the field 𝐸 when the radius of the disk R tends towards infinity 

When 𝑅 → ∞ ⇒ 𝐸𝑀 = 2𝜋𝐾𝜎  (1 −
𝑥

√𝑥2+𝑅2
) = 2𝜋𝐾𝜎  (1 − 0) =  2𝜋𝐾𝜎  

 

𝑬𝑴 = 𝟐𝝅𝑲𝝈     

It is the field of an infinite plane uniformly charged at a surface density σ ˃ 0 
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Exercise 5 

A wire, of infinite length, is uniformly charged by a positive linear density . 

1)-By application of Gauss's Theorem calculate the electrostatic field created by this 

distribution at a point located at distance x from the wire. 

1)- Let us take as a closed surface (Gaussian surface ) , a cylinder of radius x and length l 

and axis the infinite wire. 

For reasons of symmetry the field �⃗⃗�is radial (carried by ox). 

The flux of the vector �⃗⃗�leaving the closed surface is 

ɸ(�⃗⃗�) = ɸ
𝑆1

(�⃗⃗�) + ɸ
𝑆2

(�⃗⃗�) + ɸ
𝑆3

(�⃗⃗�). 

ɸ(�⃗⃗�) = ∯ �⃗⃗�
𝑆1

. 𝑑𝑆1 + ∯ �⃗⃗�
𝑆2

. 𝑑𝑆2 + ∯ �⃗⃗�
𝑆3

. 𝑑𝑆3 

 

 

 

 

 

 

 

 

 

 

 

 

 

The field �⃗⃗� is perpendicular to the normal at any point on both basis 𝑆1and 𝑆2 therefore 

�⃗⃗�. 𝑑𝑆1 = �⃗⃗�. 𝑑𝑆2 = 0 

⇒ ɸ
𝑆1

(�⃗⃗�) = ɸ
𝑆2

(�⃗⃗�) = 0 

Also, the field �⃗⃗�is parallel to the normal of the lateral surface 2 𝑆⃗⃗⃗3 

ɸ𝑆3
(�⃗⃗�) = ∯ 𝐸

𝑆3

. 𝑑𝑆3 = 𝐸. 𝑆3 = 𝐸2𝜋𝑥𝑙 

2)-The total charge contained in the Gaussian surface is. 

dS⃗⃗⃗⃗⃗2 

x 

dS⃗⃗⃗⃗⃗1 

�⃗⃗� 

dS⃗⃗⃗⃗⃗3 

M 
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𝑄 = ∫𝑑𝑞 =  𝜆∫𝑑𝑙 = 𝜆𝑙 

Gauss 's theorem 

𝐸2𝜋𝑥𝑙 =
𝜆𝑙

𝜀0
 

𝐸 =
𝜆

2𝜋𝑥𝜀0
 

Exercise 6 

1)-Let us take as a Gaussian surface a cylinder with an axis perpendicular to the plane. By 

reason of symmetry the field �⃗⃗�is perpendicular to the plane (P) 

The flux of the vector �⃗⃗�leaving the Gaussian surface is 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ɸ(�⃗⃗�) = ɸ𝑆1
(�⃗⃗�) + ɸ𝑆2

(�⃗⃗�) + ɸ𝑆3
(�⃗⃗�) 

ɸ(�⃗⃗�) = ∯ �⃗⃗�
𝑆1

. 𝑑𝑆1 + ∯ �⃗⃗�
𝑆2

. 𝑑𝑆2 + ∯ �⃗⃗�
𝑆3

. 𝑑𝑆3 

The field �⃗⃗�is perpendicular to the normal of the side surface 𝑆3⇒ ɸ𝑆3
= 0 

On the other hand, we have everything from the two  bases  𝑆1and 𝑆2thefield �⃗⃗�is parallel to 

the normal so 

ɸ(�⃗⃗�) = ɸ𝑆1
+ ɸ𝑆2

= 𝐸𝑆1 + 𝐸𝑆2 = 2𝐸𝑆1 = 2𝐸𝑆      (𝑆1 = 𝑆2 = 𝑆) 

dS⃗⃗⃗⃗⃗3 

E⃗⃗⃗ 

dS⃗⃗⃗⃗⃗1 

dS⃗⃗⃗⃗⃗
2 

E⃗⃗⃗ 

P 
𝑆 
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The charge contained in the Gaussian surface is 

𝑄 = ∬ 𝑑𝑞
𝑆

= 𝜎 ∬ 𝑑𝑆
𝑆

=  𝜎𝑆 with𝑆 = 𝑆1 = 𝑆2 

We apply Gauss' theorem: 

ɸ(�⃗⃗�) = 2𝐸𝑆 =    
𝜎𝑆

𝜀0
        

𝐸 =
𝜎

2𝜀0
 

2)-By analogy with question 1, the field 𝐸′⃗⃗⃗⃗ created by the plane (P') is 

   𝐸′ =
𝜎

𝜀0
 

The resulting field �⃗⃗� is then  �⃗⃗�𝑡𝑜𝑡𝑎𝑙 = �⃗⃗� + �⃗⃗�′ 

 

𝐸𝑡𝑜𝑡𝑎𝑙 = √𝐸2 + 𝐸′2 = √(
𝜎

2𝜀0
)
2

+ (
𝜎

𝜀0
)
2

=
√5

2

𝜎

𝜀0
⇒ 𝐸𝑡𝑜𝑡 =

√5

2

𝜎

𝜀0
 

 

𝐸𝑡𝑜𝑡 =
√5

2

𝜎

𝜀0
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P 

P′ 

�⃗⃗�′ 

�⃗⃗� �⃗⃗�𝑡𝑜𝑡 

M 
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Exercise 7 

Given the symmetry of the problem, the field is radial. 

 

 1st case _ :  r < R 1   

The flux Φ leaving the Gaussian sphere is: 

Φ = E 1 (r) S G = E 1 (r) 4πr 2 (S G =S Gauss ) 

The internal charge of the Gaussian sphere is: 

∑𝑞𝑖𝑛𝑡 = ∫𝜌 𝑑𝑉

𝑟

0

= ∫𝜌. 4𝜋𝑟2𝑑𝑟

𝑟

0

=
4𝜌 𝜋 𝑟3

3
 

We will therefore have: 

ɸ = 𝐸1. 𝑆 =
∑𝑞𝑖𝑛𝑡

𝜀0
⇒ 𝐸14𝜋𝑟2 =

𝜌4𝜋𝑟3

3𝜀0
 

𝐸1 =
𝜌𝑟

3𝜀0
 

 

b) 2nd case : _  R 1 < r < R 2   

Φ = E 2 (r) S G = E 2 (r) 4πr 2  

The internal charge of the Gaussian sphere is: 

∑𝑞𝑖𝑛𝑡 = ∫ 𝜌 𝑑𝑉

𝑅1

0

= ∫ 𝜌. 4𝜋𝑟2𝑑𝑟

𝑅1

0

=
4𝜌 𝜋 𝑅1

3

3
 

He comes : 

ɸ = 𝐸2. 𝑆 =
∑𝑞𝑖𝑛𝑡

𝜀0
⇒ 𝐸24𝜋𝑟2 =

𝜌4𝜋𝑅1
3

3𝜀0
 

𝐸2 =
𝜌𝑅1

3

3𝜀0𝑟2
 

c) 3rd case :   r >R 2  

Φ = E 3 (r) S G = E 3 (r) 4πr 2 . 

The internal charge of the Gaussian sphere is: 

∑𝑞𝑖𝑛𝑡 = 𝑞𝑅1
+ 𝑞𝑅2

=
4𝜌 𝜋 𝑅1

3

3
+ ∫ 𝜎 𝑑𝑆

𝑅2

0

 

 

R1 

R2 

O 
r 

M 

Gaussian 

sphere 

R1 
R2 

O r 
M 

Gaussian 

sphere 
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∑𝑞𝑖𝑛𝑡 =
4𝜌 𝜋 𝑅1

3

3
+ 𝜎 ∫ 8𝜋𝑟𝑑𝑟

𝑅2

0

=
4𝜌 𝜋 𝑅1

3

3
+ 4𝜋𝜎𝑅2

2 

Eventually : 

𝐸3(𝑟)4𝜋𝑟2  =
4𝜌 𝜋 𝑅1

3

3𝜀0
+

4𝜋𝜎𝑅2
2

𝜀0
 

𝐸3(𝑟) =
𝜌 𝑅1

3 + 3𝜎𝑅2
2

3 𝜀0 𝑟2
 

 

 

 

 

 

 

 

 

 

Exercise 8 

1)- The field created by an elementary charge dq is:  

𝑑�⃗⃗� =
1

4𝜋𝜀0

𝜆𝑑𝑙

𝑟2
�⃗⃗� 

 

 

 

 

 

 

 

 

For reasons of symmetry the total electric field is carried by ox, 

�⃗⃗�𝑡𝑜𝑡 = �⃗⃗�𝑥 

𝐸𝑡𝑜𝑡 = ∫𝑑𝐸𝑥 

 

Gaussian 

sphere 

 

R1 

R2 

O 
r 

M 

𝑥 

𝑀 

𝑑�⃗⃗� 

�⃗⃗� 

𝛼 

r 

𝑋 
O 

R 

𝑑𝑙 
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𝑑𝐸𝑥 =
1

4𝜋𝜀0

𝜆𝑑𝑙

𝑟2
cos 𝛼, 

We have  

cos 𝛼 =
𝑥

𝑟
=

𝑥

√𝑥2 + 𝑅2
 

𝐸𝑡𝑜𝑡 =
1

4𝜋𝜀0

𝜆𝑥

(𝑥2 + 𝑅2)
3

2⁄
∫ 𝑑𝑙

2𝜋𝑅

0

 

𝐸𝑡𝑜𝑡 =
𝜆𝑥𝑅

2𝜀0(𝑥2 + 𝑅2)
3

2⁄
. 

- potential  𝑽 

𝑑𝑉 =
1

4𝜋𝜀0

𝜆𝑑𝑙

𝑟
=     

𝑉 =
1

4𝜋𝜀0

𝜆𝑥

(𝑥2 + 𝑅2)
1

2⁄
∫ 𝑑𝑙

2𝜋𝑅

0

 

𝑉 =
𝜆𝑅

2𝜀0(𝑥2 + 𝑅2)
1

2⁄
. 

2)-We can deduce the potential by the relation 

�⃗⃗� = −𝑔𝑟𝑎𝑑⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗𝑉 

𝐸 = −
𝑑𝑉

𝑑𝑥
⇒ 𝑑𝑉 = −𝐸𝑑𝑥 

𝑉 = −
𝜆𝑅

2𝜀0
∫

𝑥

(𝑥2 + 𝑅2)
3

2⁄
𝑑𝑥 

𝑉 =
𝜆𝑅

2𝜀0

𝑥

(𝑥2 + 𝑅2)
1

2⁄
+ 𝑐 

V(∞) = 0 ⇒ c = 0 ⇒ V =
𝜆𝑅

2𝜀0

𝑥

(𝑥2 + 𝑅2)
1

2⁄
. 
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II.1. Classification of materials 

We have two types of materials: conductors and insulators  

a. Conductor materials 

In conductors, electrical charges are free to move and are distributed throughout the material. 

An electrical conductor therefore conducts electric current. 

b. Insulating materials (dielectrics) 

Conversely, an electrical insulator is a medium that does not conduct electric current, 

because it does not allow the passage of free electrons from one atom to another. 

II.2. Definition 

 A conductor is a body inside which charges can move (mobile charges) under the action 

of an electric field or force. 

 A conductor is said to be in electrostatic equilibrium if its charges inside are immobile, 

(the charges are not subject to any force). 

II.3. Properties of a conductor in electrostatic  

 

a- The electrostatic field inside a conductor in equilibrium is zero: 

 

Since the charges inside the conductor in equilibrium are immobile, therefore the force 

acting on the charges is zero, which means that the electric field inside the conductor is also 

zero.  

�⃗� = 𝑞�⃗⃗� = 0⃗⃗  ⇒ �⃗⃗⃗� = �⃗⃗⃗� 

b- The conductor in equilibrium constitutes an equipotential volume: 

 

Inside the driver �⃗⃗� = 0⃗⃗, and we also have: 

�⃗⃗� = −𝑔𝑟𝑎𝑑⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗𝑉 = 0⃗⃗  ⇒ 𝑽 = 𝒄𝒕𝒆 

We deduce that the electrostatic potential at any point of a conductor in equilibrium is 

constant, therefore the conductor in electrostatic equilibrium comprises an equipotential 

volume. 
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As a result, the outer surface of the conductor is an equipotential surface, which proves that 

the field is perpendicular to the surface of the conductor. 

𝑉𝐴 − 𝑉𝐵 = ∫ �⃗⃗�. 𝑑𝑙⃗⃗⃗⃗ = 0 ⇒ �⃗⃗� ⊥ 𝑑𝑙⃗⃗⃗⃗  

c- The conductor's charge is distributed over its surface:  

Inside the conductor �⃗⃗� = 0⃗⃗, according to Gauss' theorem the flow is therefore zero through 

any closed surface inside the conductor 

ɸ = ∯ �⃗⃗�
𝑆

. 𝑑𝑆 =
∑𝑄𝑖𝑛𝑡

𝜀0
= 0 ⇒ ∑𝑄𝑖𝑛𝑡 = 0 

∑𝑄𝑖𝑛𝑡 = 0⇒𝜌 = 0 

Since the number of protons is equal to the number of electrons, the total charge inside the 

conductor is zero. All free charges are distributed over the surface. 

 

 

 

 

 

 

 

 

 

 

 

Remark 

 

The same properties are valid for a hollow conductor. 

 

 

 

 

 

 

 

 

 

 

�⃗⃗⃗� = �⃗⃗⃗� 

V=cte 

∑𝑄𝑖𝑛𝑡 = 0 
�⃗⃗⃗� 

+ 

+ 

+ 

+ 
+ 

+ 

+ 

+ 

�⃗⃗⃗� 

�⃗⃗⃗� = �⃗⃗⃗� 

�⃗⃗⃗� = �⃗⃗⃗� 

V=cte 

V=cte 
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II.4. Field in the vicinity of a conductor in equilibrium: Coulomb's 

theorem

Let us calculate the electric field in the vicinity of the external surface of the conductor. By 

applying Gauss's theorem to a cylindrical Gaussian surface, one base of which is outside the 

surface (S 1 ) and the other base inside the conductor (q=0) (S2 ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ɸ = ∯ �⃗⃗�
𝑆1

. 𝑑𝑆1 + ∯ �⃗⃗�
𝑆2

. 𝑑𝑆2 + ∯ �⃗⃗�
𝑆𝑙𝑎𝑡

. 𝑑𝑆𝑙𝑎𝑡 = 𝐸𝑆 

ɸ = 𝐸𝑆  

- The flow through the interior base (S2 ) is zero (E=0) 

- The flow through the lateral surface (Slat ) is zero �⃗⃗� ⊥ 𝑑𝑆⃗⃗ ⃗⃗⃗ 

(S1 =S1 =S) 

Φ = 𝐸𝑆 =
∑𝑄𝑖

𝜀0
=

∬ 𝜎𝑑𝑆
𝑆

𝜀0
=

𝜎𝑆

𝜀0
 

𝑬 =
𝝈

𝜺𝟎
 

𝒅�⃗⃗⃗� 

�⃗⃗⃗� = �⃗⃗⃗� 

V=cte 

�⃗⃗⃗� 
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Remark 

We found the value of the electric field at a point close to the outer surface of the conductor, 

and the field inside is zero.  

On the surface of the conductor the field takes an average value: 

𝐸𝑚 =
𝐸𝑒𝑥𝑡 + 𝐸𝑖𝑛𝑡

2
=

𝜎
𝜀0

+ 0

2
=

𝜎

2𝜀0

 

𝐸𝑚 =
𝜎

2𝜀0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

II.4. Electrostatic pressure 

Electrostatic pressure is the force exerted per unit area. Charges on the surface of a conductor 

are subject to repulsive forces from other charges: 

F = 𝑑𝑞𝐸𝑚 = 𝜎𝑑𝑆.
𝜎

2𝜀0
=

𝜎2

2𝜀0
𝑑𝑆 

We can therefore calculate the electrostatic pressure: 

P =
𝑑𝐹

𝑑𝑆
=

𝜎2𝑑𝑆
2𝜀0

𝑑𝑆
 =

𝜎2

2𝜀0
 

P =
𝜎2

2𝜀0
 

 

𝐸 =
𝜎

𝜀0
 

𝐸 =
𝜎

2𝜀0
 

𝐸 = 0 

inside outside surface layer 
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II.5. Peak effect: Distribution of charges on a 

Near a tip, the electrostatic field is very intense. This means that the surface density of 

charges is very high in the vicinity of a tip. 

Consider two conducting spheres with respective radii R 1 and R2 (R1 > R2) carried to the 

same potential (connected by a conducting wire). The two spheres have uniform charge 

density σ1 and σ2. 

𝑉1 = 𝑉2 =
𝑘𝑞

1

𝑅1

=
𝑘𝑞2

𝑅2
⇒

𝑘σ1𝑆1

𝑅1
=

𝑘σ2𝑆2

𝑅2
⇒ σ1𝑅1 = σ2𝑅2 

σ1

σ2
=

𝑅2

𝑅1
 

So, the smaller one of the spheres will have a radius, the more its charge density will be high. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

II.6. Capacity of a driver isolated  

The electrostatic capacitance of a conductor at equilibrium is defined by

C =
𝑄

𝑉
 

where Q is the total electric charge of the conductor brought to potential V.  

The unit of capacitance is the Farad (symbol F). 

R2 
R1 

σ2 σ1 
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Example: 

Capacity of a spherical conductor (radius R) of charge Q. 

C =
𝑄

𝑉
 

At any point on the surface V =
𝑘𝑄

𝑅
 

C =
𝑄

𝑉
=

𝑄

𝑘𝑄
𝑅

= 4𝜋𝜀0𝑅 

- For the earth R = 6400 km, C=710 µ F ( The microfarad : 1 µ F=10 -6 F) 

 

Generalization 

We can generalize the notion of capacitance to a set of conductors. In the case of two 

conductors carrying two charges + Q and - Q, including the potential difference between 

them: 

U = V 1 - V 2, the capacitance of the system is: 

C =
𝑄

𝑉1 − 𝑉2
=

𝑄

𝑈
 

II.7. Internal energy of an isolated charged conductor 

Let Q be the charge of the conductor and C its capacitance and V its potential in the 

equilibrium state. Its internal energy is measured by the work required to charge the 

conductor either : 

Ep =
1

2
𝑄𝑉 =

1

2
𝐶𝑉2 =

1

2

𝑄2

𝐶
 

 

II.8. phenomena between charged conductors

II.8.1. Partial influence (Influence suffered by an insulated conductor) 

Consider two conductors A neutral (Q+ = Q- therefore Qtotal = 0) and B charged (Q + ). Let us 

approach body B from A. The latter creates an electric field EB in conductor A. The free 

electrons of conductor A will, under the action of EB, move in the opposite direction to EB. 

Conversely, positive charges will appear on the other side due to lack of electrons. We say 

that conductor A is influenced by B. 
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The influence phenomenon does not modify the total charge of an insulated conductor, but 

only modifies the distribution of this charge on its surface and therefore its potential. 

 

 

 

 

Special cases:  

We take the previous example of partial influence and connect conductor A to earth 

(ground), using a conductive wire; the earth and conductor A form a new conductor; the 

positive charges are then repelled towards the earth. The potential of this conductor is zero 

VA =0 and no more field lines leave it. 

 

 

 

 

 

 

 

 

 

 

II.8.2. Total influence 

We say that there is total influence if B completely surrounds A; all field lines starting from 

A arrive at B. 

We notice that the charge, which appears on the internal surface 

 of B, is equal and opposite to the charge of conductor A: 

QBint = - QA   

The charge that appears on the external surface of B is equal to 

 the charge of conductor A: 
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                                             QBext = QA 

                                           Q B = QBint + QBext = - QA + QA =0 

Special cases: 

1- B isolated and has an initial charge Q', then 

QB = QBint + QBext =- QA + (QA +Q') = Q' 

 

 

 

 

 

 

 

 

 

2- B connected to the ground 

Q B = QBint + QBext = - QA + 0 = - QA 

VB =0 and QBext = 0 because positive charges flow to earth 

 

 

 

 

 

 

 

+ 

+ 

+ 
+ 

+ 

+ 

+ 

+ 

+ + 

+ + 

+ 

+ 

A 

- 

- 

- 

- 

- 

- 

- 

B 

E⃗⃗⃗ = 0⃗⃗ 

V=0 

+ + + + 

+ 
+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

- 

- 

- 

- 

- 

- 

E⃗⃗⃗ 

- Q 

A 

Q 

Q’+Q 

- Q 

A 

Q 

0 
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II.8.3. Generalization: Effect of an electric field on a conductor 

If we place a conductor in an external electric field �⃗⃗�𝑒𝑥𝑡, the positive charges go in the same 

direction of the field and the negative charges go in the opposite direction (under the effect 

of the force �⃗�0 = 𝑞�⃗⃗�0) and there is the creation of 2 poles, one positive and another negative. 

This new distribution of charges forms a field 𝐸′⃗⃗⃗⃗ opposite the field �⃗⃗�𝑒𝑥𝑡, and this process 

continues until it becomes 𝐸 = 𝐸𝑒𝑥𝑡, the conductor is in polarized equilibrium. The charge 

on the conductor has not changed, but the charge distribution and potential have changed. 

 

 

 

 

 

 

 

 

 

 

 

II.8.4. system of n conductors 

a) capacity coefficients and influence coefficients 

We consider n conductors in electrostatic equilibrium. Each conductor i carries a charge Qi 

and a potential Vi. Charges and potentials are related by the equations: 

 

{
 
 

 
 

𝑄1 = 𝐶11𝑉1 + 𝐶12𝑉2 + ⋯ . . +𝐶1𝑛𝑉𝑛
𝑄2 = 𝐶21𝑉1 + 𝐶22𝑉2 + ⋯ . .+𝐶2𝑛𝑉𝑛
.                                                           
.                                                          

𝑄𝑛 = 𝐶𝑛1𝑉1 + 𝐶𝑛2𝑉2 + ⋯ . . +𝐶𝑛𝑛𝑉𝑛

  ⇒

(

 
 

𝑄1

𝑄2

.  

.  
𝑄𝑛)

 
 

=

(

 
 

𝐶11      𝐶12 … . . 𝐶1𝑛

𝐶21     𝐶22 … . . 𝐶2𝑛

.       
.         

𝐶𝑛1       𝐶𝑛2 … . . 𝐶𝑛𝑛)

 
 

.

(

 
 

𝑉1

𝑉2

.  

.  
𝑉𝑛)

 
 

 

 

𝐶𝑖𝑖: coefficient of conductor capacity i (𝐶𝑖𝑖 > 0). 

𝐶𝑖𝑗: coefficient of influence of the conductor i (𝐶𝑖𝑗 = 𝐶𝑗𝑖 < 0). 

Exp: 

2 conductive spheres in influence: 

at equilibrium we have 

{

𝑄1 = 𝐶11𝑉1 + 𝐶12𝑉2

𝑄2 = 𝐶21𝑉1 + 𝐶22𝑉2
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III.8.5. Corresponding Elements Theorem 

Consider two conductors A and B in electrostatic equilibrium and carrying surface charge 

densities σ A and σ B (V A > V B ), we bring the two conductors together, an electric field 

appears between these 2 conductors (from V A towards V B ), it modifies the distribution of 

charges on the surface of the two conductors. Consider a small closed contour C A located 

on the surface of (A) such that all the field lines resting on C A join B and draw a closed 

contour C B there . The set of these field lines constitutes a flux tube: Let a closed surface 

produced S = SL + S A + S B. According to Gauss' theorem on the closed surface: 

ɸ = ɸ
𝑆𝐴

+ ɸ
𝑆𝐵

+ ɸ
𝑆𝐿

= ∯ �⃗⃗�
𝑆𝐴

. 𝑑𝑆𝐴 + ∯ �⃗⃗�
𝑆𝐵

. 𝑑𝑆𝐵 + ∯ �⃗⃗�
𝑆𝐿

. 𝑑𝑆𝐿 =
∑𝑄𝑖

𝜀0
 

∯ �⃗⃗�
𝑆𝐴

. 𝑑𝑆𝐴 = 0: E is zero in conductor A 

∯ �⃗⃗�
𝑆𝐵

. 𝑑𝑆𝐵 = 0: E is zero in conductor B 

∯ �⃗⃗�
𝑆𝐿

. 𝑑𝑆𝐿 = 0:�⃗⃗�. 𝑑𝑆𝐿 = 0 

ɸ = 0 

So  ɸ = 0 =
∑𝑄𝑖

𝜀0
=

𝑞𝐴+𝑞𝐵

𝜀0
⇒ 𝑞𝐴 + 𝑞𝐵 = 0⇒𝑞𝐵 = −𝑞𝐴 

𝑞𝐵 = −𝑞𝐴  

Corresponding Elements Theorem: Faraday's Theorem: "The charges carried by the 

two corresponding surface elements facing each other are equal and of opposite 

signs." 

 

R2 
R1 

(Q1, V1) 
(Q2, V2) 

d 

(d >> R1, d >> R2) 
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II.9. Capacitor 

A capacitor is made up of 2 conductors in total influence separated by a vacuum and an 

insulator. These conductors are called plates of the capacitor. We call Q the charge of the 

capacitor (armature). Let V1 and V2 be the respective potentials of the internal and external 

armatures.  

The capacitance of the capacitor is 

C =
𝑄

𝑉1 − 𝑉2
 

A capacitor is used to store electrical energy, by storing charges on its armatures, we 

represent the capacitor by: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A B 
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II.9.1. Calculating the capacitance of a capacitor 

To calculate the capacitance of a capacitor you must follow the following steps: 

1-Calculate the field between the armatures (using the Gauss theorem) 

2-Deduce the potential difference between the conductors ( �⃗⃗� = −𝑔𝑟𝑎𝑑⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗𝑉) 

3-Calculate the ratio C=Q/(V 1 -V 2 ) 

 

II.9.2. Capacitor association in electric circuits  

a) Series capacitors  

Let n be capacitors of capacitances Ci connected in series. The difference of potential across 

each of the capacitors is therefore:  

 

 

 

 

 

 

 

 

𝑉1 =
𝑄1

𝐶1
  ,     𝑉2 =

𝑄2

𝐶2
  ....𝑉𝑛 =

𝑄𝑛

𝐶𝑛
 

𝑉𝐴𝐵 = 𝑉1 + 𝑉2 + ⋯+ 𝑉𝑛 

𝑉𝐴𝐵 =
𝑄

𝐶1
+

𝑄

𝐶2
+ ⋯ .+

𝑄

𝐶𝑛
 

The association then behaves like a “single equivalent capacitor” of capacitance Ceq 

𝑉𝐴𝐵 =
𝑄

𝐶𝑒𝑞
 

1

𝐶𝑒𝑞
=

1

𝐶1
+

1

𝐶2
+ ⋯+

1

𝐶𝑛
= ∑

1

𝐶𝑖

𝑛

1

 

1

𝐶𝑒𝑞
= ∑

1

𝐶𝑖

𝑛

1

 

𝐶1 𝐶2 𝐶𝑛 

A 𝐵 

𝑉1  𝑉𝑛  𝑉2  

𝑉𝐴𝐵  

A B 

𝑉𝐴𝐵  

𝑪𝒆𝒒 
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b) Parallel capacitors  

Let n capacitors of capacitances Ci be placed in parallel with the same voltage  

𝑉𝐴𝐵 = 𝑉1 = 𝑉2 = ⋯ = 𝑉𝑛 

The electric charge of each of them is given by:  

𝑄𝑖 = 𝐶𝑖𝑈 

 

 

 

 

 

 

𝑄 = ∑𝑄𝑖

𝑛

𝑖=1

= 𝑄1 + 𝑄2 + ⋯+ 𝑄𝑛 

𝑄 = ∑𝑄𝑖

𝑛

𝑖=1

= 𝐶1𝑉1 + 𝐶2𝑉2 + ⋯+ 𝐶𝑛𝑉𝑛 = ∑𝐶𝑖

𝑛

𝑖=1

𝑉𝐴𝐵 

The association then behaves like a “single equivalent capacitor” of capacitance Ceq 

𝑄 = 𝐶𝑒𝑞𝑉𝐴𝐵 

𝐶𝑒𝑞 = 𝐶1 + 𝐶2 + ⋯+ 𝐶𝑛 = ∑𝐶𝑖

𝑛

𝑖=1

 

𝐶𝑒𝑞 = ∑𝐶𝑖

𝑛

𝑖=1

 

 

II.9.3. Electrical energy stored by a capacitor  

A capacitor stores an amount of electrical energy equal to the work done to charge it, for 

example using a battery. Suppose that at a given moment, the charge already accumulated 

on the armature, i.e. q.  

Therefore, the potential difference between the armatures is worth V=q/C.  

The work required to pass an infinitesimal charge dq from the negative armature to the 

positive armature, via the battery is: 

𝑉1  𝑉2  𝑉𝑛  
𝐶1 𝐶2 𝐶𝑛 

A 

B 

𝑪𝒆𝒒 𝑉𝐴𝐵  

A 

B 
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𝑑𝑊 = 𝑉𝑑𝑞 =
𝑞

𝐶
𝑑𝑞 

The total work W, for charging an uncharged capacitor with a charge Q is obtained by 

integrating: 

 

 

 

 

𝑊 = ∫
𝑞

𝐶
𝑑𝑞

𝑄

0

=
1

2

𝑄2

𝐶
=

1

2
𝐶𝑉2  
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Exercises 
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Exercise 1 

Find the charge acquired by a conducting sphere S of radius R = 50cm when it is carried at a potential V = 200V. 

 

 

 

 

 

Exercise 2 

Consider a plane capacitor made up of two parallel conducting plates of area S, separated 

by a small distance e, charged with two surface charge densities (+σ) and (–σ). 

-Calculate the capacitance of this capacitor. (we assume that e << S ) 

 

 

 

 

 

 

 

 

 

 

Exercise 3 

The cylindrical capacitor consists of two coaxial conducting cylinders of radii R 1 and R 2 

(R1 < R2), the first carries a positive charge Q and the second carries a negative charge –Q.  

-Calculate the capacitance of this capacitor.  

 

 

 

 

 

 

 

 

+𝑄 

𝑅1 

𝑅2 

−𝑄 

Gauss surface 
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Exercise 4 

Consider a spherical capacitor made up of two concentric spheres of radius R1 and R2 (R1 < 

R2), in total influence. 

 -Calculate the capacitance of this capacitor.  
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Solution 
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Exercise 1 

 

 

 

 

 

 

 

 

 

 

 

 We have a conductive sphere S of radius R connected to a potential V = 200 V (fig.1). So S carries a potential 

V(R) = 200V. 

In order to be able to calculate the charge Q that this sphere S carries, we must first determine the relationship of 

its potential V 

We must first determine the relationship of its potential V 

According to Gauss's theorem, we have: 

ΦS = ∯ �⃗⃗�(𝑀)
𝑆

𝑑𝑆 ⃗⃗⃗ ⃗(𝑀) =
∑𝑄𝑖

𝜀0
 

ΦS = 𝐸𝑆𝐺 =
𝑄

𝜀0
 

Since the conductor is spherical, the Gauss surface SG is a sphere of radius r (fig.1)  

𝑆𝐺 = 4𝜋𝑟2 ⇒ 𝐸. 4𝜋𝑟2 =
𝑄

𝜀0
 

𝐸 =
𝑄

4𝜋𝑟2𝜀0
 

On the other hand, we have: 

�⃗⃗� = −𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗𝑉 ⇒ 𝐸 = −
𝑑𝑉

𝑑𝑟
⇒ ∫ 𝑑𝑉 = −∫ 𝐸. 𝑑𝑟

∞

𝑅

∞

𝑉

 

The potential at infinity is zero, V(∞)=0 

𝑄 = 4𝜋𝜀0𝑅𝑉  

N.A: Q = 11,1.10-9 C 

Gauss surface 
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Note:  

The capacity of a conductor is defined by the relation:  𝐶 =
𝑄

V
; in our case (a spherical conductor) the 

capacitance will take the relation:  𝐶 =
𝑄

V
= 4𝜋𝜀0𝑅 . We clearly notice that C only depends on the 

geometry of the conductor (its radius of curvature R). 

 

Exercise 1 

It is made up of two parallel planes in total influence, spaced by a thickness e, the first 

carries a positive density 𝜎and the second carries a negative density −𝜎.  

We assume that e is very small compared to the dimensions of the plates which allows us to 

consider them as “infinite”.  

1) 𝐸1
⃗⃗⃗⃗⃗  ⊥ on the plane and leaving the plane (positive charge) 

𝐸2
⃗⃗⃗⃗⃗  ⊥to the plane and entering the plane (negative charge) 

Outside the frames�⃗⃗�𝑡𝑜𝑡𝑎𝑙 = 𝐸1
⃗⃗⃗⃗⃗ + 𝐸2

⃗⃗⃗⃗⃗ = 0⃗⃗ 

Between the two frames, we have: .�⃗⃗�𝑡𝑜𝑡𝑎𝑙 = 𝐸1
⃗⃗⃗⃗⃗ + 𝐸2

⃗⃗⃗⃗⃗  

 

 

 

 

 

 

 

 

 

 

 

 

 

Gauss 's theorem 

  𝚽 = ∯ �⃗⃗⃗�.
𝑺

𝒅𝑺 ⃗⃗⃗ ⃗ =
∑𝑸𝒊𝒏𝒕

𝜺𝟎
. 

Let us take as Gaussian surface a cylinder with axis 

perpendicular to the plane (+). 

ɸ(𝐸1
⃗⃗⃗⃗⃗) = ɸ

𝑆1
(𝐸1
⃗⃗⃗⃗⃗) + ɸ

𝑆2
(𝐸1
⃗⃗⃗⃗⃗) + ɸ

𝑆3
(𝐸1
⃗⃗⃗⃗⃗) = ∯ 𝐸1

⃗⃗⃗⃗⃗
𝑆1

. 𝑑𝑆1 + ∯ 𝐸1
⃗⃗⃗⃗⃗

𝑆2

. 𝑑𝑆2 + ∯ 𝐸1
⃗⃗⃗⃗⃗

𝑆3

. 𝑑𝑆3 

 

+  +  +  +  +  +  +  +  +  +  

 -  -  -  -  -  -  -  -  - --   

x  

e  
𝐸1
⃗⃗⃗⃗⃗  𝐸2

⃗⃗⃗⃗⃗  

𝐸1
⃗⃗⃗⃗⃗  

𝐸1
⃗⃗⃗⃗⃗  𝐸2

⃗⃗⃗⃗⃗  

𝐸2
⃗⃗⃗⃗⃗  

𝐸𝑡
⃗⃗ ⃗⃗   

(−𝜎)  

𝜎  

V2  

V1  
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The field 𝐸1
⃗⃗⃗⃗⃗is perpendicular to 𝑑𝑆⃗⃗⃗⃗⃗

3⇒ ɸ
𝑆3

= 0 

  𝐸1
⃗⃗⃗⃗⃗  // d𝑆1 and   𝐸1

⃗⃗⃗⃗⃗  // d𝑆2   

ɸ(𝐸1
⃗⃗⃗⃗⃗) = ɸ

𝑆1
+ ɸ

𝑆2
= 𝐸1𝑆1 + 𝐸1𝑆2 = 2𝐸1𝑆1 = 2𝐸1𝑆   (𝑆1 = 𝑆2 = 𝑆) 

The charge contained in the Gaussian surface is 

∑𝑸𝒊𝒏𝒕 = ∬ 𝑑𝑞
𝑆

= 𝜎∬ 𝑑𝑆
𝑆

=  𝜎𝑆                                  

 

ɸ(𝐸1
⃗⃗⃗⃗⃗) = 2𝐸1𝑆 =    

𝜎𝑆

𝜀0
  ⇒      𝐸1 =

𝜎

2𝜀0
 

The same result for the (-) plane: 

𝐸2 =
𝜎

2𝜀0
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸1 + 𝐸2 =
𝜎

2𝜀0
+

𝜎

2𝜀0
⇒ 𝐸𝑡𝑜𝑡 = 𝐸 =

𝜎

𝜀0
 

2)�⃗⃗� = −𝑔𝑟𝑎𝑑⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗𝑉 ⇒ 𝐸 = −
𝑑𝑉

𝑑𝑥
⇒ ∫ 𝑑𝑉 = −∫ 𝐸. 𝑑𝑥

𝑒

0

𝑉2

𝑉1
 

dS⃗⃗⃗⃗⃗3 

E1
⃗⃗⃗⃗⃗ 

dS⃗⃗⃗⃗⃗1 

dS⃗⃗⃗⃗⃗2 

E1
⃗⃗⃗⃗⃗ 

𝜎 

𝑆 
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𝑉2−𝑉1 = −
𝜎

𝜀0
𝑒 ⇒𝑉1−𝑉2 =

𝜎𝑒

𝜀0
 

3)C =
𝑄

𝑉1−𝑉2
=

𝑄
𝜎𝑒

𝜀0

=
𝜎𝑆
𝜎𝑒

𝜀0

=
𝑆𝜀0

𝑒
= 𝐶  

We notice that the capacitance does not depend on the charge or the potential, it depends on 

the dimensions of the capacitor and the medium in which it is placed (here the vacuum 𝜀0) 

 

Exercise 2 

The cylindrical capacitor consists of two coaxial conducting cylinders of radii R 1 and R 2 

(R1 < R2 ), the first carries a positive charge Q and the second carries a negative charge –Q.  

1) By applying Gauss's theorem. Let us take a cylinder as a Gaussian surface. 

of height h and radius r (R 1 < r < R 2 ). By reason of symmetry, �⃗⃗� is radial and constant 

in the Gaussian surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ɸ(�⃗⃗�) = ɸ
𝑆1

(�⃗⃗�) + ɸ
𝑆2

(�⃗⃗�) + ɸ
𝑆3

(�⃗⃗�) = ∯ �⃗⃗�
𝑆1

. 𝑑𝑆1 + ∯ �⃗⃗�
𝑆2

. 𝑑𝑆2 + ∯ �⃗⃗�
𝑆3

. 𝑑𝑆3 

 

𝐝𝐒⃗⃗ ⃗⃗ ⃗
𝑳𝒂𝒕 

𝐝𝐒⃗⃗ ⃗⃗ ⃗
𝟏 

𝐝𝐒⃗⃗ ⃗⃗ ⃗
𝟐 

E⃗⃗⃗ 

+𝑄 

−𝑄 

𝑅1 

𝑅2 

𝑟 
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The field �⃗⃗� is perpendicular to 𝑆1  𝑒𝑡 𝑆2  ⇒ ɸ
𝑆1

=  ɸ
𝑆2

= 0 

 �⃗⃗� // dS⃗⃗3 = 𝑑𝑆𝐿𝑎𝑡 

ɸ(�⃗⃗�) = 𝐸𝑆3 = 𝐸2𝜋𝑟ℎ                  

The charge contained in the Gaussian surface is ∑𝑄𝑖𝑛𝑡= Q 

ɸ(�⃗⃗�) = 𝐸2𝜋𝑟ℎ =    
𝑄

𝜀0
  ⇒      𝐸 =

𝑄

𝜀02𝜋𝑟ℎ
             

 

2)�⃗⃗� = −𝑔𝑟𝑎𝑑⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗𝑉 ⇒ 𝐸 = −
𝑑𝑉

𝑑𝑟
⇒ ∫ 𝑑𝑉 = −∫ 𝐸. 𝑑𝑟

𝑅2

𝑅1

𝑉2

𝑉1
           

𝑉2−𝑉1 = −∫
𝑄

𝜀02𝜋𝑟ℎ
. 𝑑𝑟

𝑅2

𝑅1

= −
𝑄

𝜀02𝜋ℎ
𝑙𝑛𝑟|𝑅1

𝑅2 ⇒ 𝑉1−𝑉2 =
𝑄

𝜀02𝜋ℎ
𝑙𝑛

𝑅2

𝑅1
 

C =
𝑄

𝑉1 − 𝑉2
=

𝑄

𝑄
𝜀02𝜋ℎ 𝑙𝑛

𝑅2

𝑅1

=
𝜀02𝜋ℎ

𝑙𝑛
𝑅2
𝑅1

= 𝜀02𝜋ℎ. 𝑙𝑛
𝑅1

𝑅2
= 𝐶  

 

Exercise 3 

It is made up of two concentric spheres of radius R 1 and R 2 (R 1 < R 2), in total influence. 

1-1) By applying Gauss's Theorem, let us calculate the electrostatic field created by a sphere 

with center O and radius R 1 < r <R 2. 

-For reasons of symmetry, the vector �⃗⃗� is radial and has the same modulus on the Gaussian 

surface, the flow leaving this sphere is: 
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ɸ = ∯ E⃗⃗ . dS⃗ 
SG

= E. SG = E4πr2     ( E⃗⃗ //dS⃗ ) 

ɸ = E4πr2      

The charge contained in the Gaussian surface is 

∑𝑄𝑖𝑛𝑡 = 𝑄.                      

By applying Gauss's theorem: 

ɸ(�⃗⃗�) = 𝐸4𝜋𝑟2 =
∑𝑄𝑖𝑛𝑡

𝜀0
=

𝑄

𝜀0
.       

 

⇒ 𝐸 =
𝑄

4𝜋𝑟2𝜀0
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

        

1 − 2) �⃗⃗� = −𝑔𝑟𝑎𝑑⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗𝑉 ⇒ 𝐸 = −
𝑑𝑉

𝑑𝑟
⇒ ∫ 𝑑𝑉 = −∫ 𝐸. 𝑑𝑟

𝑅2

𝑅1

𝑉2

𝑉1
             

𝑉2−𝑉1 = −
𝑄

4𝜋𝜀0
(−

1

𝑅2
+

1

𝑅1
)⇒𝑉1−𝑉2 =

𝑄

4𝜋𝜀0
(

1

𝑅1
−

1

𝑅2
)               

𝑉1−𝑉2 =
𝑄

4𝜋𝜀0
(

1

𝑅1
−

1

𝑅2
)  

1-3)  𝐶 =
𝑄

𝑉1−𝑉2
=

4𝜋𝜀0𝑅1𝑅2

𝑅2−𝑅1
 

�⃗⃗⃗� 

𝒅�⃗⃗⃗� 

R1 

r �⃗⃗⃗� 

R2 

-Q 

Q 
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C =
4𝜋𝜀0𝑅1𝑅2

𝑅2 − 𝑅1
 

 

 

2) Calculation of the capacity C if R 2 tends towards R 1 

If 𝑅2 → 𝑅1 ⟹ {

𝑅2 − 𝑅1 ≈ 𝑒 ≪

𝑅1𝑅2 ≈ 𝑅2
  

⟹  C =
4𝜋𝜀0𝑅

2

𝑒
 

 

The surface of the sphere S = 4𝜋𝑅2  

𝐶 =
𝑆𝜀0

𝑒
 

Similar to that of a planar capacitor 
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III.1. Introduction 

Electrokinetics is the study of electrical charges in motion. 

Electrokinetics is the study of electric currents, i.e. the study of electrical charges moving in 

material media called conductors. In other words, it is the study of electrical circuits and 

networks. 

III.2. Electrical conductor 

A conductor, or electrical conductor, is a substance or material that allows electricity to flow 

through it. In a conductor, electrical charge carriers ( ), usually electrons, 

move easily when voltage is applied.  

Some examples of conductors of electricity are: Copper, Aluminium, Silver, Gold, Graphite, 

Platinum, Water, Human Body, … 

In some materials the electrons can wander about between the atoms, these electrons are 

called free electrons. In some materials, electrons can move between atoms (their movement 

is irregular), and these electrons are called free electrons. But if we now connect a battery to 

both ends of the wire, the electrons drift and their movement is in one direction.  

The more free electrons there are in a solid the better it will conduct electricity. 

 

 

 

 

 

III.3. Electric current 

Consider two charged conductors A and B at potentials VA and VB such that VA > VB. They 

are connected by a conductor wire to obtain a single conductor (A-wire-B) which does not 

have the same potential in all points: there is a potential difference dV between 2 points of the 

wire. This results in an electric field 𝐸 = −𝑑𝑉 𝑑𝑟⁄ ,  which makes the charges to move. These 

charges movement forms an electric current which flows from A to B. Therefore, an electric 

current is a flow of charged particles. It is characterized by intensity and direction. 
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III.3.1 Definition:  

An electric current is a movement of a group of electric charge carriers, generally electrons, 

within a conductive material. To have an electric current in a conductor, it would have to 

establish a difference of potential between the terminals of this conductor.

III.3.2. Properties of Electric Current 

a) Intensity  

The intensity of the electric current is given by the number of electric charges which cross a 

surface (section of conductive wire S) for a duration of time dt.  

𝐼 =
𝑑𝑞

𝑑𝑡
 

with: I(t) : current intensity; dq: the elementary electric charge; dt: the interval of time. 

b) Unit 

in the International System of Units (SI), the electric current is expressed in units of ampere 

symbol (A), which is equivalent to one coulomb per second. 

1Amper=1Coulomb/1second 

The ampere is an SI base unit and the electric current is a base quantity measured using a 

device called an ammeter. 

c) The conventional direction

By convention, the electric current always flows from the positive (+) terminal to the negative 

(−) terminal outside the generator. 

The electrons flow is from negative to positive terminal. Electrons are negatively charged and 

are therefore attracted to the positive terminal.  
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d) types of electric current 

There are two types of electric current known as alternating current (AC) and direct current 

(DC). The direct current can flow only in one direction, whereas the alternating direction 

flows in two directions. Direct current is rarely used as a primary energy source in industries. 

It is mostly used in low voltage applications such as charging batteries, aircraft applications, 

etc. Alternating current is used to operate appliances for both household and industrial and 

commercial use. 

III.3.3. Density of electric current 

Consider a number n of charges q, which move with a speed �⃑�, in a conductor of section dS 

and volume V. In a time dt the charges travel a distance 𝑑𝑙⃑⃑⃑⃑ = �⃑�. 𝑑𝑡, therefore the quantity of 

charge dQ contained in the volume dV is given by: 

dQ = n.q.dV 

We have : 𝑑𝑉 = 𝑑𝑙⃑⃑⃑⃑ . 𝑑𝑆⃑⃑ ⃑⃑⃑ 

𝑑𝑄 = 𝑛𝑞𝑑𝑙⃑⃑⃑⃑ . 𝑑𝑆⃑⃑ ⃑⃑⃑ = 𝑛𝑞�⃑�. 𝑑𝑡. 𝑑𝑆⃑⃑ ⃑⃑⃑ 

we pose:  𝐽 = 𝑛𝑞�⃑� 

So       𝑑𝑄 = 𝐽. 𝑑𝑆⃑⃑ ⃑⃑⃑. 𝑑𝑡 

 

 

 

 

 

 

 

I 

�⃑� 

𝑑𝑆 

𝑑𝑙⃑⃑⃑⃑ = �⃑�. 𝑑𝑡, 

https://byjus.com/physics/difference-between-ac-and-dc/
https://byjus.com/physics/difference-between-ac-and-dc/
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Definition:  

The density of the electric current 𝐽 is a vector quantity which equals the charge per unit of 

time across the unit of surface, it is expressed in A.m-2. 

In the case of a conductor composed of free electrons 

𝑞 = −𝑒 ⇒ 𝐽 = −𝑛𝑒�⃑�  ⇒ 𝐽 = 𝑛𝑒𝑣 

Therefore the current I flowing through the surface dS is given by: 

𝐼 =
𝑑𝑄

𝑑𝑡
=

𝐽. 𝑑𝑆⃑⃑ ⃑⃑⃑. 𝑑𝑡

𝑑𝑡
= 𝐽. 𝑑𝑆⃑⃑ ⃑⃑⃑ 

So I which crosses the entire section S is: 

𝐼 = ∬𝐽. 𝑑𝑆⃑⃑ ⃑⃑⃑ 

Therefore, the intensity of the current passing through the section S is equal to the flux of 

current density through S 

III.4. Ohm's law 

III.4.1. Macroscopic ohm's law 

Ohm’s law states that the voltage across a conductor is directly proportional to the current 

flowing through it, provided all physical conditions and temperatures remain constant. 

 V = 𝑅𝐼 

 

 

 

 

 

𝑉 : Volt (V)           

𝑖 : Ampere (A)           

𝑅: Ohms (Ω)                  

In the equation, the constant of proportionality, R, is called Resistance and has units of Ohms, 

with the symbol Ω.  

Resistance is opposition exerted by a body to the passage of a current. 

R 

I 

V 
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III.4.2. local ohm's law 

a) conductivity: 

Consider a cylindrical conductor of length l and section S, be subjected to a potential 

difference V 

 

 

 

 

 

the field �⃑⃑� :  

𝑉 = 𝑉1 − 𝑉2 = ∫ �⃑� . 𝑑𝑙⃑⃑  ⃑ = 𝐸. 𝑙 

V = 𝑅𝐼 = 𝐸. 𝑙 

We have:    I = 𝐽𝑆 ⇒ 𝑉 = 𝑅. 𝐽. 𝑆 = 𝐸. 𝑙 

⇒ 𝐽 =
𝐸. 𝑙

𝑅. 𝑆
 

We pose:   𝜎 =
𝑙

𝑅.𝑆
⇒ 𝐽 = 𝜎. 𝐸     and  ⇒ 𝐽 = 𝜎. �⃑⃑�      

𝜎: conductivity of the conductor, expressed in Ω-1m-1 

b) Resistivity: 

The inverse of 𝜎 is called the resistivity ρ:  

ρ =
1

𝜎
 

where ρ is a constant (for a given material at a given temperature) known as the resistivity 

( ) of the material. Some selected values for ρ are: 

ρCopper = 1.72 × 10−8 Ω ·m, ρAluminum = 2.82 × 10−8 Ω · m, ρCarbon = 3.5 × 10−5 Ω · m 

Relationship between Resistance and Resistivity  

The resistance of a piece of material depends on the type and shape of the material. If the 

piece has length L and cross-sectional area S, the resistance is: 

R = 𝜌
𝑙

𝑆
 

 

I 

�⃑� 

�⃑⃑⃑� 

𝑉1 
𝑉2 
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Relationship between Resistivity and conductivity  

Since conductivity is the measure of how easily electricity flows, electrical resistivity 

measures how much a material resists the flow of electricity. 

Conductivity and resistivity are inversely proportional to each other. When conductivity is 

low, resistivity is high. When resistivity is low, conductivity is high. The proportionality is as 

follows: 

ρ =
1

𝜎
 

where : 

 Resistivity is represented by ρ and is measured in Ohm-meters (Ω.m), 

 Conductivity is represented by σ and is measured in Siemens (1/Ω.m). 

c) Mobility 

In a conductor the electrons are subjected to the force Fe: 

𝐹𝑒 = 𝑒𝐸 = 𝑚𝑒𝑎 = 𝑚𝑒

𝑑𝑣

𝑑𝑡
⇒ 𝑑𝑣 =

𝐹𝑒 . 𝑑𝑡

𝑚𝑒
 

⇒ 𝑑𝑣 =
𝑒. 𝐸. 𝑑𝑡

𝑚𝑒
⇒ 𝑣 =

𝑒. 𝐸. 𝑡

𝑚𝑒
 

We pose :   𝜇 =
𝑒.𝑡

𝑚𝑒
⇒ 𝑣 = 𝜇. 𝐸      and    ⇒ �⃑� = 𝜇. �⃑⃑� 

𝜇 : mobility 

we also have: 

𝜎 =
𝐽

𝐸
=

𝑛𝑒𝑣

𝐸
= 𝑛𝑒𝜇 =

𝑛𝑒. 𝑒𝑡

𝐸.𝑚𝑒
=

𝑛𝑒2𝑡

𝐸.𝑚𝑒
 

⇒ 𝜇 =
𝜎

𝑛. 𝑒
 

n: number of electrons per m3. 

III.5. The Joule Effect and Electric Power  

The Joule effect phenomenon is defined as the effect of heat production during of the electric 

current flow in a conductor. So, a fraction of the electrical energy is transformed into calorific 

energy (energy dissipated in the form of heat).  
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As charge moves through the wires of an electric circuit, they lose electric potential energy. 

(When charge Δq moves through a potential difference V, it loses ΔqV of potential energy.) 

The power dissipated by this conductor is equal to: 

P =
∆𝑞. 𝑉

∆𝑡
 

that is: 

P = IV = RI2 =
𝑉2

𝑅
 

The electric power is measured in joules per second, or watts: 1 J/s = 1W.  

The energy goes into heating the resistor or the energy consumed by a resistor during time 

(Δt) is: 

E = P. Δt = R𝐼2. ∆𝑡 

 

III.6. Association of Resistors  

Fundamentally we have three types of resistance associations that we can find in electrical 

circuits: association type series, parallel and mixed. 

a. Series Association   

In a series circuit: the current is the same in each resistor 

 

 

 

 

 

 

𝑉𝐴𝐵 = 𝑉1 + 𝑉2 + ⋯+ 𝑉𝑛 

𝐼 = 𝐼1 = 𝐼2 = ⋯ = 𝐼𝑛 

𝑉𝐴𝐵 = 𝑅1𝐼 + 𝑅2𝐼 + ⋯+ 𝑅𝑛𝐼 = 𝑅𝑒𝑞𝐼 

𝑅𝑒𝑞 = 𝑅1 + 𝑅2 + ⋯+ 𝑅𝑛 = ∑𝑅𝑖

𝑛

𝑖=1

 

 

𝑅𝑒𝑞 = ∑𝑅𝑖

𝑛

𝑖=1

 

 

A B 
𝑉1 𝑉2 𝑉𝑛 

A B 
R𝑒𝑞  
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b. Parallel Association  

All resistances will be subjected to the same potential difference VAB . Therefore, the current 

that will circulate in each resistance will only depend on its ohmic value.

The total current flowing through the circuit is the sum of the currents in each circuit 

resistance.  

 

 

 

 

 

 

 

 

𝑉𝐴𝐵 = 𝑉1 = 𝑉2 = ⋯ = 𝑉𝑛 

𝐼 = ∑𝐼𝑖

𝑛

𝑖=1

= 𝐼1 + 𝐼2 + ⋯+ 𝐼𝑛 

 

𝐼 =
𝑉

𝑅1
+

𝑉

𝑅2
+ ⋯ .+

𝑉

𝑅𝑛
=

𝑉

𝑅𝑒𝑞
 

 

1

𝑅𝑒𝑞
=

1

𝑅1
+

1

𝑅2
+ ⋯+

1

𝑅𝑛
= ∑

1

𝑅𝑖

𝑛

1

 

1

𝑅𝑒𝑞
= ∑

1

𝑅𝑖

𝑛

1

 

 

III.7. Electrical circuits 

An electrical circuit is a set of electrical components such as: resistors, capacitors, and 

conductors  etc., carried by an electric current. 

So, the electrokinetics of an electric circuit consists of finding the intensity of the current and 

the voltage for each location in this circuit. 

𝐑𝒆𝒒 
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a. Circuit diagrams 

A circuit diagram uses circuit symbols to represent each component in the circuit. 

A circuit diagram shows how the components are connected. 

Use straight lines to show the wires and circuit symbols to represent each component.

  

 

Before we go into Kirchhoff's rules. we first define basic things in circuit analysis which will 

be used in applying Kirchhoff's rules. 

Node is a point common to at least three branches. 

Branch consists of one or more elements located between two nodes and through which the 

same current passes. 

Loop: It is a closed path in a circuit consisting of two or more branches. The starting point is 

the end. 

 

 

 

 

 

 

 

 

 

b. Generators  

An electrical circuit requires a power source to power it. So, it is essential to connect these 

circuits by a device called a generator (electromotive force) to ensure the transport of 

electrical charges. 

There are two categories of generators: 

Node 



Chapitre 3                                                                     Electrokinetics 

76 
 

 

1. Voltage generator  

In the case of an ideal voltage generator the electromotive force (emf) is equal to the potential 

difference between these terminals:  

𝑈𝐴𝐵 = 𝑉𝐴 − 𝑉𝐵 = 𝐸 

 

 

 

 

 

 

A real voltage generator is an ideal voltage generator E in series with a resistor 

𝑈𝐴𝐵 = 𝑉𝐴 − 𝑉𝐵 = 𝐸 − 𝑟𝐼 

 

r: is the internal resistance of the source 

 

 

 

 

 

 

2. Current generator  

An ideal current generator delivers a constant current independently of the potential 

difference between its terminals.  

 

A real current generator is an ideal current generator I0 in parallel with a resistance r. 

The current I supplied by the generator is: 

𝐼0 
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I = I0 – U/r. 

r: is the internal resistance of the generator 

 

 

 

 

III.8. Kirchhoff's laws  

The principle of conservation of energy and charge in electrical circuits is expressed by a set 

of rules called Kirchhoff's laws. 

1. Law of Nodes  

The law of nodes is known by the first Kirchhoff law: The sum of the intensities of the 

currents entering a node is equal to the sum of the intensities of the currents leaving it. 

. 

𝐼1 + 𝐼2 + 𝐼3 = 𝐼4 + 𝐼5 + 𝐼6 

 

 

 

 

 

 

 

 

 

In other words, the sum of the currents in a node equals zero 

∑ 𝐼𝑖
𝑛
𝑖=1 = 0 

𝐼1 + 𝐼2 + 𝐼3 − 𝐼4 − 𝐼5 − 𝐼6 = 0 
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2. The loops law  

This is the Kirchhoff’s second law in a loop of an electrical circuit. 

The algebraic sum of the potential drops (potential differences) of the loop elements is zero. 

 

∑ 𝑈𝑘

𝑛

𝑘=1

= 0 

 

Here, n is the total number of voltages measured 

 

𝑈𝑎𝑏 + 𝑈𝑏𝑐 + 𝑈𝑐𝑑 + 𝑈𝑑𝑎 = 0 

 

 

 

 

 

 

 

 

 

 

 

Applying Kirchhoff’s Laws 

By applying Kirchhoff’s rules, we generate equations that allow us to find the unknowns in 

circuits. The unknowns may be currents, voltages or resistances. 

1. When applying Kirchhoff’s first rule, the node (junction) rule, you must label the current in 

each branch and decide in what direction it is going.  

There is no risk here, if you choose the wrong direction, the current will be of the correct 

magnitude but negative. 

2. When applying Kirchhoff’s second rule, the loop rule, you must identify a closed loop and 

decide in which direction to go around it, clockwise or counterclockwise

E 

R1 

R2 

Uab 

Ubc 

Ucd 

I 

R3 

a b 

c d 

Uda 
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Again, there is no risk; going around the circuit in the opposite direction reverses the sign of 

every term in the equation, which is like multiplying both sides of the equation by –1. 

The following points will help you get the plus or minus signs right when applying the loop 

rule.  

 When a resistor is traversed in the same direction as the current, the 

change in potential (voltage) is –IR. 

 When a resistor is traversed in the direction opposite to the current, the 

change in potential is +IR 

 When an emf is traversed from – to + (the same direction it moves 

positive charge), the change in potential is +emf (+E).  

 When an emf is traversed from + to – (opposite to the direction it moves 

positive charge), the change in potential is –emf (-E).  

 The direction of the current is represented by an arrow placed on 

 a connection wire, and oriented according to the conventional  

direction of the electric current.

 

 

 

 

 

III.9. Thevenin’s theorem   

 A linear two-terminal (A and B) circuit consisting of a number of voltage sources and 

resistances can be replaced by an equivalent network having a single voltage source called 

Thevenin’s voltage (ETh) and a single series resistance called Thevenin’s resistance (RTh), 

where ETh is the open-circuit voltage at the terminals AB and RTh is the equivalent resistance 

as seen from the open terminals when the voltage sources are turned off (short circuit).

 

E 

R1 

R2 

V1 

V2 

I 

-E+V1+V2=0 

E 

R1 

R2 

V1 

V2 

I 

+E-V1-V2=0 
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Exercises 
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Exercise 1 

Using Kirchhoff's Circuit Laws, find the current flowing through each loop I1, I2, and the 

current I3 flowing in the resistor R3. 

 

 

 

 

 

 

 

 

Exercise 2 

Consider the circuit as shown (E=16V, R1=2Ω, R2=6Ω, R3=10Ω, RL=4Ω). Use Theremin’s 

theorem to determine the voltage (VL) and current (IL) across the load resistance RL. 

 

 

 

 

 

 

 

 

Exercise 3 

Use Thevemin’s theorem to determine the voltage (VAB) and current (IAB) across the 

resistance R2. 

E1=10V, E2=20V, R1=10 Ω, R2=40Ω, R3=20Ω 

 

 

 

 

 

 

 

E1= E2=20V 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R2 

R1 R3 

E1 E2 
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Solution 
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Exercise 1 

Step 1:  

The first and foremost step is to draw a closed loop to a circuit. Once done with it, draw the 

direction of the flow of current.  

Step 2: 

Defining our sign convention is very important 

Step 3:  

Using Kirchhoff’s first law, at B and A, we get: I1+I2=I3 

Step 4:  

By making use of the above convention and Kirchhoff’s Second Law, 

From Loop 1 we have:  

E1-V1-V3=0         E1=V1+V3 

E1=R1I1+R3I3      10=10I1+40I3        1=I1+4I3 

From Loop 2 we have:  

E2-V2-V3=0           E2=V2+V3 

20=R2I2+R3I3    0           20=20I2+40I3           1=I2+2I3 

By making use of Kirchhoff’s First law: 

I1+I2=I3 

Equation reduces as follows (from Loop 1): 

1=5I1+4I2 

Equation reduces as follows (from Loop 2):

1=2I1+3I2 

This results in the following Equation: 

I1=−1/3I2 

From last three equations we get, 

1=1/3I2+2I2 

I2=0.429A,          I1=0.143A,            I3=0.286A 
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Exercise 2 

For finding Thevenin's equivalent circuit, steps are as follows: 

To find RTh 

The load resistance RL is removed. The voltage source is shortened (short-circuited) as 

shown. The equivalent resistance across AB = Thevenin’s resistance RTh .  

𝑅𝑇ℎ = R3 + (R1//𝑅2) 

 

 

 

 

 

 

 

 

𝑅𝑇ℎ = 10 +
2 × 6

2 + 6
 

𝑅𝑇ℎ = 11.5𝛺  

 

To find ETh         

The load resistance RL is removed. 

The voltage across AB = Thevenin’s voltage ETh . 

 

we have:  

𝑉𝐴𝐵 − R3×0 − R2×I = 0 

𝐸𝑇ℎ = 𝑉𝐴𝐵 = R2×I 

with:  

𝐼 =
𝐸

𝑅1 + 𝑅2
= 2𝐴 

 

𝐸𝑇ℎ = 12𝑉 

Now, Thevenin's equivalent circuit is: 

For which : 

𝐼𝐿 =
𝐸𝑇ℎ

𝑅𝑇ℎ + 𝑅𝐿
=

12

11.5 + 4
 

RTh 

ETh 

IL 

R2 

R3 R1 

E 

I 

VAB 

R3 R1 

R2 
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𝐼𝐿 = 0.774𝐴 

and 

𝑉𝐿 = 𝐼𝐿 × 𝑅𝐿 = 0.774𝐴 × 4Ω 

𝑉𝐿 = 3.096V 

 

Exercise 3 

the equivalent resistance RTh: 

𝑅𝑇ℎ = 𝑅𝐴𝐵 =  R1//𝑅3 =
10 × 20

10 + 20
 

𝑅𝑇ℎ = 6.67Ω 

The voltage source ETh : 

 

We have  

𝐸2 − (R3 + R1) × I − E1 = 0 

𝐼 =
E2 − E1

R3 + R1
=

20 − 10

20 + 10
 

𝐼 = 0.33𝐴 

And  

 

 

𝐸2 − R3 × I − 𝑉𝐴𝐵 = 0 

𝑉𝐴𝐵 = 𝐸2 − R3 × I = 20 − 20 × 0.33 

𝑉𝐴𝐵 = 13.4𝑉 

𝐸𝑇ℎ = 13.4𝑉 

𝐼𝐴𝐵 = 𝐼2 =
𝐸𝑇ℎ

𝑅𝑇ℎ + 𝑅2
=

13.4

6.67 + 40
 

𝐼𝐴𝐵 = 𝐼2 =
13.4

6.67 + 40
 

I 

VAB 

I 

R3I 

ETh 

RTh 

R2 

I2 
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𝐼2 = 0.287𝐴 

𝑉𝐴𝐵 = 𝑅2 × 𝐼2 = 40 × 0.287 

𝑉𝐴𝐵 = 11.48𝑉  
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Hendrik Antoon Lorentz 

                                                          (18 July 1853 – 4 February 1928) was  

                                                        a Dutch physicist who shared the 1902  

                                                       Nobel Prize in Physics with Pieter  

                                                       Zeeman for the discovery and  

                                                       theoretical explanation of the Zeeman  

                                                       effect. He derived the Lorentz  

                                                       transformation of the special theory of  

                                                       relativity, as well as the Lorentz force, 

which describes the combined electric and magnetic forces acting on a 

charged particle in an electromagnetic field. He received many other 

honours and distinctions, including a term as chairman of the International 

Committee on Intellectual Cooperation, the forerunner of UNESCO, 

between 1925 and 1928. 

 

https://en.wikipedia.org/wiki/Dutch_people
https://en.wikipedia.org/wiki/Physicist
https://en.wikipedia.org/wiki/Nobel_Prize_in_Physics
https://en.wikipedia.org/wiki/Lorentz_force
https://en.wikipedia.org/wiki/Electromagnetic_field
https://en.wikipedia.org/wiki/International_Committee_on_Intellectual_Cooperation
https://en.wikipedia.org/wiki/International_Committee_on_Intellectual_Cooperation
https://en.wikipedia.org/wiki/UNESCO
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IV.1. Introduction 

The Greeks knew that certain stones attracted small pieces of iron, and as these stones came 

from Magnesia (in Turkey), it was called magnetism. These stones are actually natural 

magnets. Therefore, magnetism designates all the phenomena which take place inside and 

around magnetic materials. This magnetization can be natural or the result of an induction 

field. Researchers have noticed that the properties of a magnet are only manifested at its 

ends: the poles. These two poles, called the north pole and the south pole, are different. 

Experience shows that: Two poles of the same name repel each other while two poles of 

opposite names, attract 

 

 

 

 

 

 

 

 

 

 

IV.2. Definition

The magnetic field is a vector quantity, which we will designate by �⃗�   (we still say magnetic 

induction field). 

Compared to the electric field, a moving charge or set of charges creates a magnetic field in 

the region where they are located. This magnetic field acts on an external electric charge q 

with a force 𝐹𝐵
⃗⃗⃗⃗ . It is the same for an electric current, since by definition, it is a set of charges. 

The characteristics of the magnetic field: 

 The magnetic field vector is tangent to the field lines.  
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 The magnetic field lines leave the north pole of the magnet and enter through the 

south pole. 

 Unit of the magnetic induction field in the International System is Tesla (T). 

 

 

 

 

 

 

 

 

IV.3. Action of a magnetic field on the movement of an electric charge 

IV.3.1. Lorentz force 

A charge q, moving at speed 𝑣 , subjected to an electric field �⃗�  and magnetic field �⃗�  

experiences a force consisting of two parts: 

An electrical part, it is the Coulomb force:  𝐹𝑒⃗⃗  ⃗ = 𝑞. �⃗�  

A magnetic part, which is written:  𝐹𝑚⃗⃗ ⃗⃗  = 𝑞. 𝑣 ⋀ �⃗�  

The combination of these two forces constitutes the Lorentz force: 

𝐹 = 𝑞(�⃗� + 𝑣 ⋀�⃗� ) 

In the presence of the magnetic field alone (E= 0), the Lorentz force becomes: 

𝐹 = 𝑞𝑣 ⋀�⃗� = 𝑞. 𝑣. 𝐵. 𝑠𝑖𝑛𝜃. �⃗�  

Ѳ is the angle formed by 𝑣  𝑎𝑛𝑑 �⃗�  
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Properties of lorentz force 

 

 its module: 𝐹 = 𝑞. 𝑣. 𝐵. 𝑠𝑖𝑛𝜃. 

 its direction is perpendicular to the plane formed by 𝑣  𝑎𝑛𝑑 �⃗�  

 Its sense is: in the case of a positive charge, the vectors 𝐹 , 𝑣  𝑎𝑛𝑑 �⃗�   form a direct 

trihedron (right-hand rule). When the charge is negative the force changes direction. 

 

 

 

 

 

 

 

 

 

 

 

IV.4. action of a magnetic field on an electric current 

IV.4.1. Laplace force 

When a rectilinear conducting wire of length l, carrying a current I, is placed in a magnetic 

field B, it experiences a force: 

𝐹 = 𝐼. 𝑙  ⋀ �⃗�  

𝑙  is a vector of length l, parallel to the conductor and oriented in the direction of the current. 

𝐹  

𝜃 

𝑣  

�⃗�  
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The characteristics of the Laplace force are: 

 its module: 𝐹 = 𝑙. 𝐵. |𝐼. 𝑠𝑖𝑛𝜃| 

 its direction is perpendicular to the plane formed by 𝑙  𝑎𝑛𝑑 �⃗� . 

 Its sense is determined by the right-hand rule.  

 

 

 

 

  

 

 

 

 

 

 

IV.5. Magnetic field created by a current 

IV.5.1 Biot and Savart’s law 

The French physicists Biot and Savart found the expression for the magnetic field obtained 

during the Oersted experiment. 

A rectilinear conducting wire of infinite length, traversed by a current I, creates, at a point 

M in the space located at a distance r from the wire, a magnetic field including: 

- The direction is such that the field lines are circles centered on the wire. 

- The meaning is given by the rule of the “good man of Ampère”: this one, when he is 

traversed by I, from the feet to the head, sees in M the field to his left. 

- The module is:  𝐵 =
𝜇0

2𝜋

𝐼

𝑟
 

𝜇0 is the magnetic permeability of vacuum. 

In the SI system, 𝜇0 = 4𝜋. 10−7 henry per meter: H/m 
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In general:  

each current element I dl, creates in M an elementary field: 

 

𝑑�⃗� =
𝜇0

2𝜋

𝐼. 𝑑𝑙 ∧ �⃗� 

𝑟2
 

 

 

 

 

 

IV.6. Ampere's theorem 

Ampère's theorem is the "equivalent" of Gauss's theorem. It makes it possible to calculate 

the magnetic field created by a current distribution when it has “strong” symmetries. 

Statement of Ampère's theorem: 

We consider a certain number of wires carried by currents of intensities I1, I2, etc. Let (C) be 

an oriented closed curve entwining some of these currents and �⃗�  be the normal vector 

deduced from the right-hand rule. 

𝐶 = ∮ �⃗� . 𝑑𝑟 = 𝜇0 ∑𝐼𝑖
𝑖
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IV.7. Faraday's law 

In any closed circuit immersed in a magnetic field, an electromotive force of induction (e) is 

created equal to the derivative of the magnetic flux, through the circuit, with respect to time 

(that is to say equal to the speed of variation of the flow) with change of sign: 

𝒆 = −
𝒅∅

𝒅𝒕
 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV.8. Lenz's law 

This law allows the determination of the direction of the induced current 
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Statement 

“The direction of the induced current is such that its effects oppose the cause which 

gave rise to it”. 
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Exercises 
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Exercise 1 

A particle of mass 5.10-4 kg carries a charge of 2.5. 10-8 C. The particle is given an initial 

horizontal speed of 6.104 ms-1.  

-What is the magnitude and direction of the minimum magnetic field that will keep the 

particle on a horizontal trajectory by compensating for the effect of gravity? 
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Solution 
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Exercise 1 

We know that the magnetic force experienced by a charged particle moving with velocity v 

in a magnetic field B is given by: 

𝐹 = 𝑞𝑣 ⋀�⃗� = 𝑞. 𝑣. 𝐵. 𝑠𝑖𝑛𝜃. �⃗�  

Where q is the charge of the particle. 

such that its intensity is equal to: 

𝐹 = 𝑞. 𝑣. 𝐵. 𝑠𝑖𝑛𝜃 

With     𝜃 =  (𝑣  , �⃗�  )  = −𝜋 .  

To keep the particle on a horizontal trajectory, the magnetic force must exactly balance the 

gravitational force acting on the particle. The gravitational force is given by: 

𝐹𝑔 = 𝑚𝑔 

Where m is the mass of the particle and g is the acceleration due to gravity. 

For the particle to move horizontally, the magnetic force F must be equal in magnitude and 

opposite in direction to the gravitational force Fg. Thus, we have: 

𝑚𝑔 = 𝑞. 𝑣. 𝐵 

Solving for B, we get: 

𝐵 =
𝑚𝑔

𝑞. 𝑣
 

Given: 

  m=5.10×10−4 kg 

  q=2.5×10−8 

  v=6.104 m/s 

  g (acceleration due to gravity) is approximately 9.81 m/s² 

Substitute these values into the equation to find B: 

B=3.2792×10−2 T 

So, the magnitude of the minimum magnetic field required to keep the particle on a 

horizontal trajectory is approximately 3.2792×10−2 T. 
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As for direction, the magnetic field must be perpendicular to both the velocity of the particle 

and the gravitational force acting on it. Since the particle is moving horizontally, the 

magnetic field should be either upward or downward to counteract the downward 

gravitational force. 
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