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Farewond

This course “Electricity and Electromagnetism” or ‘“Physics 2” is
aimed at students in the core areas (first year) of science and technology
(ST), material sciences (SM), mathematics and computer science (Ml).

These courses introduce basic concepts of electricity and electromagnetism,
and study the interaction between static and moving charged particles.

This “physics 2” course is made up of four chapters consistent with the
programs for the second semester.

The first chapter gives the main notions of Electrostatics.

The second chapter is dedicated to the conductors.

The third chapter is devoted to the Electrokinetics

The last chapter concerns electromagnetisme.

To achieve a correct understanding of the lessons, we have included with
each chapter a set of exercises with the typical and detailed solution.

| express my sincere gratitude to all those who contributed their expertise to
the creation of this handout. May it guide you on your own journey through
the wonders of electricity and electromagnetism, illuminating new avenues of

understanding and inspiring boundless curiosity.

DRABLIA Samia
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Chapter 1

Electrostatics

Electrostatics: Coulomb’s Law
The MAN: Charles Augustin de Coulomb

He was born in 1736 in Angouléme,
France.

He received the majority of his higher
education at the Ecole du Genie at
Mezieres (sort of the French equivalent
of universities like Oxford, Harvard,
etc.) from which he graduated in 1761.

He then spent some time serving as a
military engineer in the West Indies and
other French outposts, until 1781 when
he was permanently stationed in Paris
and was able to devote more time to
scientific research. Between 1785-91 he
published seven memoirs (papers) on
physics.

Gauss

Johann Carl Friedrich Gauss (30 April
1777 — 23 February 1855) was a
German mathematician and scientist
who contributed significantly to many
fields, including number theory,
statistics, analysis, differential
geometry, geodesy, geophysics,
electrostatics, astronomy and optics.

Sometimes referred to as "the Prince of
Mathematicians", Gauss had a
remarkable influence in many fields of
mathematics and science and is ranked
as one of history's most influential
mathematicians.

He referred to mathematics as "the
queen of sciences".
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I.1. Introduction
Electrostatics is a part of electricity that focuses on phenomena created by fixed (immobile)

electrical charges. This branch studies the interactions between these charges.

1.2. Electrification experiments
Electrification represents a charge transfer phenomenon. There are three types of

electrification of an object: by friction, by contact and by influence.

1.2.1. Electrification by friction
We rub a plastic or glass ruler with wool and bring it close to the small pieces of paper, it

attracts it. Without friction, nothing happens, after friction the ruler will be electrified

(charged).

Plastic ruler & ‘ \
Q)
o

o
Small pieces of paper _‘J)() Q

Before rubbing After rubbing

1.2.2. Contact electrification
Contact electrification is the transfer of electrons from a charged body to another uncharged
body (electrically neutral), so the electrons move towards it and it has the same type of

charges and therefore repulsion occurs.

0 @

Before contact After contact

1.2.3. Electrification by influence
We approach a neutral rod to an electrified ball, without touching it. We notice that the ball
is attracted towards the rod, we see that it has been electrified by influence. When the rod is

moved away, the pendulum returns to its initial position

O
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1.3. The electrical charge

1.3.1. Definition of electrical charge

The atom is the smallest particle of a body that can exist. A body is made up of an assembly
of atoms. The atom consists of a nucleus around which electrons revolve. The nucleus is
made up of two particles called nucleons. These particles are protons and neutrons. The
number of protons in an atom is equal to the number of electrons.

The electrical charge is a scalar quantity, like mass, represents a fundamental property of
matter, which makes it possible to explain certain phenomena (electrostatics,
electromagnetism, etc.), it is denoted g and its unit in Sl is the Coulomb (C). There are two
types of electrical charges, positive and negative. Two charges of the same sign repel each

other and two charges of opposite signs attract each other.

1.3.2. The elementary charge

It is the smallest amount of charge e = 1.602176634x10 *° C, the electric charge of an:
electron: ge= - e = -1.602176634.10° C

proton: gp = + € = 1.602176634.10° C.

1.3.3. The point charge
Is an electric charge localized at a dimensionless point. Hence, the characteristic of a point
charge is: It takes up no space and acts uniformly on its surroundings

1.3.4. Conservation of electrical charge
In an isolated body the algebraic sum of the electric charges remains constant:

Qfinal = Qinitial

I.4. Conductive materials, insulating
From an electrical point of view, there are two main families of materials: conductors and

insulators.


https://fr.wikipedia.org/wiki/Point_(g%C3%A9om%C3%A9trie)
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1.4.1. Conductive materials

In conductors, electrical charges are free to move and are distributed throughout the material.
An electrical conductor therefore conducts electric current (iron, aluminum, salt water, etc.).
1.4.2. Insulating materials (dielectric)

Conversely, an electrical insulator is a medium that does not conduct electric current ,
because it does not allow the passage of free electrons from one atom to another (ebonite,

glass, porcelain, plastics, etc.) , the insulation is charged by friction (rubbing).

1.5. Coulomb's law
1.5.1. interaction between two point charges g:and gz
Consider two point charges g 1 and q 2 separated by r placed in a vacuum. The first exerts a

force on the second F,,, the second exerts a force on the first ;.

Coulomb's law allows us to determine the electrostatic force, which is written:

Fo=F; =—F3;; =K ) U=>Fe=F12=F21=KT
K = constante = — = 8,9875.10° Nm2C~2,
471'80
we will often use the value 9.10 °Nm 2C=2.
£,=8.8542.10 "2C 2/Nm ?is the permittivity.
F21 - ﬁ12 .
<_‘ _______________________ "i’_’ Repulsive force
q1>0 r qz2> 0
orqi<0 orq:<0
Fy F1z i .
Attractive force
o— — Q>
q:>0 r q:<0
orq:<0 orqg:>0
Note :

In a medium other than vacuum, o will be replaced by &= g0 &r where & represents the relative

permittivity, therefore the force is given by the following relation:

Fe __N9 i F, = lq1 1 1q.|
A1rE)E T2 A1rE)E T2



Chapter 1 Electrostatics

Example:
Calculate the force exerted by the charge g1 =6 10“C on a charge gz = -3 10 C separated

by the distance 9 mm.

Solution:
Fu .
u
‘ ----------------- <—'—> Attractive force
q:>0 r q:<0
= = 91 92 . lq1 | 1q2|
Fe=F12=K 1"2 (—u)=>Fe=F12=KT
lq1 |- 1921 |6.107%].|—3.107%| 6.107%.3.107*%
F,, = K—————=9.10° =9.10° =2.10" N
12 r2 (9.1073)2 81.10-°

F12 = 2 107 N

1.5.2. Principle of superposition
Assuming that there exist n immobile electric charges in a vacuum. The electrostatic force

exerted by the n charges on a charge q located at a point M is:

-

Fo=xk2y F=k%ily, . FE=k&ig
ri T2 ™
F(M)=F, +F, +E,

Fon) = k 285, 4 k24,4 4k ]
T'1 2 rn

n -
Up

— —
F, F::
qi
r M F,
’,’// q Fl
/” 4
- ’
q2 ,/ //
as /
Pae /fn
o ’
,
’
/
’
/
/7
@
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1.6. The electrostatic field

1.6.1. Definition

Coulomb's law can be written as follows

A point charge q located at O, creates at any point M in space (in a vacuum), an electrostatic

field E, given by the following relation:

E=K 12 u=>E=K iz
r r
i E
._, ____________________ O —p The electrostatic field directs the charge outwards

q>0 r M

i E NP

._> ______________ ——e The electrostatic field directs towards the charge

q<o0 r M

O The unit of E in Sl is Volt/meter (V/m)

0 E-= 5 If g' >0, E and F have the same direction and if q'<0, E and F are of

opposite directions.

o) u M F
@ oo ~——
q>0 r qg>0 F
i F m E
.—* ---------------- - @ >
q>0 r q <0

1.6.2. Electrostatic field created by a set of point charges
Consider n charges located at points Pi, the electrostatic field produced by these charges at

point M is the vector sum of all the fields due to each of the charges.

So we have:
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=1 q1—> =1 qZ—) =4 qu—)
E, =K—=1uy, E, = K—=u,, ..E,=K—
1 7"12 Uy 2 7”22 Uy n 72 Un
=1 ql—) qZ—) qn—)
EM)=K=u;+ K—=u,+...+K—
( ) r12 Uy T_Zz Uz Tnz Un

e
i=1
N
Ex E::
(1
@®-____ M -
rhn TTTe--—a_ EZ
T T
—‘_,— 1 —
,*’—’,,’ II’ El
q2 ”",—?2 r II
o !
1
1
II
On ]

1.6.3. Field lines

Electric field lines are an excellent way of visualizing electric fields. A field line is drawn
tangential to the net at a point. Thus at any point, the tangent to the electric field line matches
the direction of the electric field at that point. Secondly. In other words, if you see more

electric field lines in the vicinity of point A as compared to point B, then the electric field is

stronger at point A.

Properties of Electric Field Lines
o The field lines never intersect each other.
e The field lines are perpendicular to the surface of the charge.
The magnitude of charge and the number of field lines, both are proportional to each

other.
The start point of the field lines is at the positive charge and end at the negative

charge.
For the field lines to either start or end at infinity, a single charge must be used.
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/.
\

F E
case of a positive charge case of a negative charge
> §+ # A -
v E} \
M= S0 ‘ of
1/ T~
- +q \’q P
» L4 v L - -
Case of two opposite charges (dipole) Case of two positive charges

1.7. The electrostatic potential

The electrostatic potential is a scalar physical quantity which defines the electrical state of a
point in space. It corresponds to the electrostatic potential energy (measured in joules) of a
charged particle at this point divided by the charge (measured in coulomb) of the particle.
So to determine the expression of the potential it is necessary to calculate the potential

energy.
1.7.1. Interaction energy between two point charges

To introduce the notion of electrostatic potential, let us look at the interaction between two

electric charges g and Q. Acording to Coulomb’s law, the charge g experiences a force:

In mechanics, we know that a force F applied to an object that moves a elementary distance

di provides a work dW
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dw =F .di
Suppose a charge g moves in a space from a point A
at a point B in an electric field E created by Q.

At each position M, it experiences a force:

We call C = ff E .dl the circulation of vector E between A and B.

we have E = >
4TTEYT
R dl
W = qQ f .cosa
4me, r?
A

And we also have dr = dl.cosa

>W = =
dmtey ) 2 4me,
A

B
qQ (dr_ qQ —1]“
T 9

w19 (1 1)

C 4Ameg\ry Ty

We see that the work does not depend on the path taken by the particle between A and B. As
well as the circulation of the field E depends only on the initial and final positions. In
mechanics, the work is equal to the variation of the potential energy, and we found that the

work does not depend on the path followed, therefore it depends on the potential energy E,

measured in the initial and final positions A and B.

W=Ep(A)-Ep(B) = -AE = dW = —dE, = 2= [

4TE

T2

. d
quT:> qQ

Amey ) 12
st

AE, = E,(B) — E,(A) = —

Whenr - 0o=Ep, =0=>c=0

10
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SO E,=-2

4megr

We call the electric potential V created by the charge q

O The potential is expressed in Volt (V) (i.e. in J/C).

Remark:

The circulation of E from A to B is therefore equal to the difference between the values of

the potential at A and at B:

B
B K
¢ = J d=--1 8y —ve
T4
A
1.7.2. Relationship between field and electrostatic potential
Kq dr Kq Kq RN
V(r)—T:dV——Kq =_r_dr__r_dl cosa = —E.dl

In an O,x,y,z coordinate system:

E(g) and Ei(%)
E, dz

= E.dl = Exdx + E,dy + E,dz

5)/4 v av
dV = —dx+—dy +——dz

0x dy 0z
e _ v _ v _ v
by identification: E, = e E, = 3 et E, = 5y
therefore the vector of the field is written:
av., av_, aV- -
E=E «l+ EyJ+E, k=-— (a—l +@] +6_k) = —gradV
E= —gradV

The gradient operator in Cartesian coordinates is written:

i=2ii 90,9
grat =o' "oy "oz

We say the electric field E derives from potential V.

11
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1.7.3. Principle of superposition
Consider n fixed point charges gi,placed at points M; in a vacuum.
The electrical potential created by the whole of these charges at a point M is written:

VIM) =V +Vo+ -+, = kL gLy g
n ) Th
n n
= V(M) _zvi =2Kﬂ
n rl
i=1 i=1
(¢}
..___~ M
25 v
-~ 1
-7 1
q2 T 1
.” 2 n l’

1.7.4. Equipotential surfaces
The equipotential surface is the set of points in space having the same value of electric

potential. It is therefore defined by:
V(X,Y,z) =V o= Cste

O For any path dilocated on the equipotential surface, we have: ff E.di=0.

This shows that everything di on the equipotential surface is perpendicular to E.

The equipotential surfaces are therefore perpendicular to the field lines.

1.7.5. Work and potential energy of a moving charge
03 The work of the electrostatic force F, and the potential energy, when moving a charge

g from point A to point B in an electrostatic field E, are given by the following formulas:

W e (F)=q.(Va-Vs)

12
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V(A)-V(B) is the electrostatic potential difference between points A and B and is equal to:

w
_as_ Q (1 1
V(A) - V(B) - q - 4_7'[80 (T‘l 7’2>

Ep(A)-Ep(B):-AEp:WAB

Special case:
If a point charge g is placed at the point M where there is an electric field and potential

E(M)and V(M), it will have a potential energy E ,given by:

E () =aV(M)

1.8. Electric dipole
The electric dipole is a system made up of two equal charges and opposite signs, +q and —q
, Separated by a distance a . Every electric dipole is characterized by its dipole moment P

which is defined by:
P=q.d=>P=|ql.a q e'"‘a‘“"e+q

The vector dis directed from the negative charge ( -q ) to the positive charge (+q).

1.8.1. Electric potential produced by an electric dipole:

We will calculate the electric potential produced by the two charges (+q) and (-g), at the
point M located at the distance r1 from the charge (+q) and at the distance r» from the charge
(-). The distance a is very small compared to the distances ryand r».

The electrostatic potential V created in M by the two electric charges is equal to the sum of

the potentials created by each charge taken separately:

V(M) =V(q:) +V(g-)

1 (+q)
Via.) = 4rtey T4

B (—q)
Vig-) = 4itey T,

o) 1 (=49)
4mey T dmey 1,

VM) =V(q) +V(g) =

13
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-1

A
v

q (r;—11)
471'80 Ty

V(M) =

We have:

a Kr=r+r, = 2retnr, =~ r?

T, — T, = a.cosa

a<kra= 0,S0:(r,—r;) =acosf

q a.cosf Pcosd

VM) =V(r.0) = Ame, 12 Ameyr?

P=gq.a
Or,

- _,

LUy

1
VM) =V(r,0) =——
ey T

14
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1.8.2. Dipole Electrostatic Field

As V only depends on r and 6, we therefore calculate the components of the electric field in

polar coordinates. Let be the polar reference frame with center O and base vectors (i, ).

The electrostatic field vector E at point M is written in polar coordinates:

E)(M) = Erar + Eg'l_l)g

We also have E(M) = —gradV (M)

grad in polar coordinates is written:

(#)
\r 69/

gra

the radial Erand tangential Es components are therefore :

( ov 1 2Pcos@
E,=——= o e
J or 4me, 13

| 16V_ 1 Psind
 rodf 4Ame, 13

The module of the electric field vector is therefore

15
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E= /ETZ + Eg?

Either

1P .
— V4cos?6 + sin? 6
4mEY T

E =

1 P
—+/3c0s%20 + 1

Areg 13

1.8.3. Field lines equation:

The field line E is collinear with dl, so:

—

E\\ dl = E=cC.dl (c = cte)

. (E, ./ dr E dr rd0 E.d8 dr
E( )anddl( ):::C:—— = = —

Eg rd6o dl E, E_g Eg r
2KP cos 8
— 3 Ao  gr 2cos® dr dr 2 d(sin @)
KPsin 6 r sin @ T T sin @
3
dr d(sin @) ) 5 . r r
— =2 - = Inr = 2insinf + ¢ = n“sinf + c = In— =Cc>— =c
T sin @ sin 62 sin 62

The trajectory equation is

r = csin 6?2

Electric field lines Equipotential surface

16
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1.8.4. Potential energy of a dipole placed in a uniform external field Eg,

E, = E,(+q) + Ep(—q) = qVp + (—q)V4 = q(V — V,)

we know that : dV = —ET,.Zﬁ

Ve
=>jdV=—E—0.a ( m=&)
Va
=E,=q.(-E.a = —qd.E, = —-P.E,

Ey
0
e — o
A(-9) O p B(+)

D
t

p
0 —p.E, | stable equilibrium
+n 0
—2
g p.E, unstable equilibrium
Ep
unstable
unstable p.Eo
A 0 A ‘
— T S0
-3 -

2

stable -p.Eo

17
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1.9. Electric field created by a distribution of charges

A continuous charge distribution is used to describe the charge of a macroscopic object .
While the electric charge is an integer multiple of the unit of electric charge, it can be
considered continuous. We can define three types of charge density, depending on the shape
and dimensions of the object which creates the electric field:

O Linear charge density A: dE
It is defined as the charge density byunit of length.

This is the case with an electric wire.

A_ 1
dl —

[ Surface charge density o:
This is the charge density per unit area. M
It is found in a flat body; For example a disk.
_dq
ds
O Volume charge density p :

o

It is the charge density per unit volume. M dE
It is used when the object has three dimensions; =
Example: charged sphere.
dq
P=av

1.10. Gauss's theorem

Gauss' theorem allows us to quickly calculate the electric field Ecreated by symmetrical
charge distributions. First, we must define the notions of the Solid Angle and the flow of the
electric field through a surface.

1.10.1. Concept of solid angle

We saw in the previous study plane angles. But when it comes to spatial geometry we find

the angle solid.

=t \

18
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The solid angle is an "angle™ in space, consider a sphere with center O and radiusr.
We define the solid angle Q under which we see a surface (S), from a point O, contained in

a cone with vertex O.

dS. i dS.7n.i  dS.cosa
dQ = = =

R? R? R?
iy
= Ve
[ ,FH’FF F/i '|, "'\ i\'{_-_;-.‘?‘-
T 'ifg \ i
T \\J 43
Remark:

If 77 and u are parallel, then cos a =1, and therefore the solid angle is equal to:

ds S
dQ = ﬁ =>0= ﬁ
1.10.2. Concept of of the electric field through any surface

The flow of the field E (M)created at a pointM by a charge distribution Qacross a closed
surface (S) is defined by

g = # E(M) dS’ (M)
S
With d?elementary surface vector: dS = dS. #iand Aunit vector

1.10.3. Gauss's theorem

The field flux Eacross a closed surface created by a charge distribution is equal to the

algebraic sum of the charges present within that surface (S ¢) divided bye,

Y

i
&o

dg = # EM)dS (M) =
S

1.10.4. The relationship between solid angle and electric flux:

t

The electric field produced by a point charge
g at a distance from the load EastE = %

The flow through an elementary surface dS located at the

distance r from the charge q is:

19
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d)s=# Ed?z# K%dS.cosaz# Kq dQ
S s T s

*General calculation method:

- Find a closed surface passing through the point M where you want to calculate the field.
- Write the flow definition @5 = ¢, E dS’

- Apply Gauss' theorem after calculating the algebraic charge inside the surface.

20
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Exercises
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Exercise 1
We place respectively at points A, B and C the charges q 1=1.5102C, q2=-0.510 *C and
q3=103C. We give AC=1m and BC=0.5m.

- Calculate the force exerted on the charge ga.

Exercise 2

We place at the vertices of a square ABCD of dimension a=1cm the charges ga =2 uC, gs
=-4uC, qc=2uCand go=1puC.

-Calculate the field modulus at point O intersection of the diagonals.

Exercise 3

Consider a finished wire AB of length L and uniform positive linear charge A.

1- Calculate the field vector E and the potential V created by the fine wire AB at any point

M located at distance x from the wire.
2 - Deduce E and V when M is in the mediating plane of wire AB.

3- Deduce E when the wire AB is of infinite length.

Exercise 4

1°) a) Determination of the field EM created by the disk at point M of the axis OX, located
at a distance x from the center O of the disk.

b) Calculate the electric potential V created at point M.

2°) Let's check the relationship between the potential and the field: E= —gradV
3) Let us distinguish the field E when the radius of the disk R tends towards infinity.

Exercise 5

A wire, of infinite length, is uniformly charged by a positive linear density A.
1)-By application of Gauss's Theorem calculate the electrostatic field created by this

distribution at a point located at distance x from the wire.

Exercise 6
By using Gauss's theorem:

1- Calculate the electric field E created at a point M located outside an infinite plane (P) of

uniform surface charge density ¢ (c > 0).

2- Deduce the field E" created in M by an infinite plane (P”) perpendicular to (P) of uniform
charge density 2.

22



Chapter 1 Electrostatics

3- Calculate the field ET resulting at this point.

Exercise 7

Consider two concentric spheres of radii R1 and R2 (R1 < R2). The outer sphere of radius
R2 is charged with a surface charge density o constant and positive, as for the interior sphere
of radius R1 it is charged with a volume charge density p constant and positive.

Using Gauss's theorem, determine:

1- The electric field E(r) at any point in space.

2- The electric potential V(r) at any point in space.

Exercise 8

We consider a uniformly charged ring with center O, radius R and positive linear charge A.

1)-Calculate the field E,,, and the potential \ created at point M located on its axis OX such
that OM = x
2)-Find the potential V using the relationship between the field and the potential.

23
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Solution

24
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Exercise 1

qi1

>

ri=AC

ﬁC=ﬁ1+ﬁ2$|ﬁc|= ’F]_2+F22

F, = K‘“r# Repulsion force (q:>0 and g3 >0)
1

F, = K*2  Force of attraction (g2 <0 and gz >0)

91.51073.10

3
AN:F; =9.10 5 =135103 N
1

,0.51073.1073 ;
P, =9.10° —g=r—=1810°N

= |F| =/(13.5103) 2 + (18 103)2 = 22.5 103 N

|Fe| = 225103 N

Exercise 2

25
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-Field module

EO=EA+EB+EC+ED

EA=K%
Ep K%
Ec =K 05
ED_KOQII;Z

We have: g, = q. and gz = 4qp (in absolute value)
With: OA =0B= OC =0D =av/2/2
As the vectors are not straight, they must be projected on the axes (OX) and (OY)

Eo = Eox T+ Eoy]= Ep = ’ng + Edy

To simplify the calculations we choose the axes (OX) and (OY) coincident with the
diagonals of the square

Projection along the OX axis

Eox = —E4 + Ec = Eo = —K +K =0 (Ea=Ec)

dA dc
(avz/2)? (av2/2)?

Eox =0
Projection along the OY axis

s dp

K
Eoy = Ep +ED=Km+Km= —z @z +dp)

2K
Eoy 2 (g5 + ap)

2 2 2 2K
= Ep = |E5x + EGy = 0+Eoy=E0y=a_2(q3+qD)

=

- 2K .
E, = Eoy = ?(QB + ap)J}

2(4%x107%+1x107%) .
9 (1072)2 J=910]

E,=9.10

E, =9.10% V/m
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Chapter 1 Electrostatics

Exercise 3
1.a- We take an elementary length dlwhich carries an elementary charge dq = A.dLthis

charge creates an elementary field dEat point M, according to Coulomb's law

k.dq _, 1 Adl_ 1 Adl
u E =

dE =

Il
<

= — —_—
r2 Arey 12 Atrey T2
here r is the distance between the charge dqg and the point M.

Let's project the vector d Eonto the ox and oy axes.

4 AT

. , dE, = dE, ©
dE = dE, +dE, or{ iy *
dE, = dE,z
E = Exi)'l‘ Ey]_)
=E = /Exz +E,°
Projection on the ox axis
JE. — dE 1 Adl
x = cosa _47'[80 2 cosa
Projection on the oy axis
, 1 Adl .
dE, = dEsina = 2 — sina

TEY T
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Chapter 1 Electrostatics

The components dE,and dE,, are a function of three variables dl, a et r. Let's express them

according to of a single variable , o for example .

xda

l
tana =—=>l=xtana = dl = >
X cos? a

X
Andcosa=;:r=xcosa

Let us replace dl and r in the expressions of dE xand dE y:

y) R
dE, = cosada and dE, = sina da
4TTEGX 4mEGX
Calculation of E,:
aq 1 aq
Ex=dex= j cosada = sina
dregx J_g, 4rrenx —a,
= sina; + sina
¢ = ey (NG +sinay)
Calculation of E,, :
A @1 A %1
E =jdE =—j sinada = — cos a
y y
dmegx J_g, 4renx —a,
E, = Ccosa, — Cos
4 47T£0x( z 1)
’ 2 2
E= |E,S+E,
E = A J(sina; + sina;)? + (cosa, — cos ;)2 = 2 — 2(sina, sina; — cos @, cosa,)
4megx 4menx

A A (a1 + a3)
—_— —_— — — i 2 ——————
E = V2(1 = cos(a; + ay)) = - J4 sin

4rregx

2.4 (a1 +ay)
= sin
4megx 2

1.b-Calculation of potential :

kdq Adl Adl

dV = = =
r  Ameyr  4mey(x? + [2)1/2
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Chapter 1 Electrostatics

o P
B A (x2 + [2) /2 4meg

m@+ ﬂ+ﬂﬂz

V =

[n (L +Vx2+12) —In(x)| = A LV

4me, X

4,

2.a - Deduce E and V when M is in the mediating plane of wire AB:

To do this, simply take: o 1=a 2

L
2K A 2KA (3 KAL
= sina; = ==
X r 5 LZ
X .|x +Z
_ 2KAL
x V4x? + L2

Another method which consists of associating the elements d{ in pairs so that the
components normal to Oy of the corresponding fields compensate for each other (reasons of

symmetry with respect to Oy); only the components are added dE, = dE cos «

K
for a; = ay, Esz(sina1+sin(x1)=T(2 sinay)
L o _2KAg L
sinay =—= so Ey=— (—4x2+L2>
e_p _ ZKiL
Y oxVax?+ 12

2.b - Deduce the potential V created at point M which is located in the mediating plane

of wire AB:

Kd KAdt K Adt
We have dV = rq= =

r Vx2+6?

L

2 L
dt 3
=SV =K1 f—zKA.ln[l+\/lz +x2|°,
L VX2 + £ 2
2
oy KAI<L+VH+4ﬂ
= n
—L + VL% + 4x?
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Chapter 1 Electrostatics

3- Deduce E when the wire AB is of infinite length:

When the wire AB is of infinite length, this results in :a; = a, = 7T/Z

2KA . Tp+T 2KA =
E = sin( /2 /2) = sin—
2 2
2K2
E=
x

Exercise 4
1°) a) Determination of the field Eycreated by the disk at point M of the axis OX, located at

a distance x from the center O of the disk:
For reasons of symmetry with respect to the Ox axis, the component EMy:O, therefore the

field EM will only admit the component EMx, either :

YA

dEy, = dEy cosa
The elementary field dE),; due to an element of surface dS of charge dg = o dS, has the

expression:

Kdq_KodS
rz g2

dEM =
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Chapter 1 Electrostatics

We will therefore write :

ds
dEy, = Ko —; cosa

Or:dS= MNdt = ¢ db dt
X X

And cosa ===
r Vx2+£?

SO:dEMx=KO' £do dt X =Kax<( dao tadl >

x2+0% " \[x2 42 x2+02) /2
21 R
b, = o [ a0 [ igon [ L]
m, = Kox =Ko x2n |———
. 5 (x2+6) /2 Jx2 + 2 .
Ey =Ey =2nK 1 —x
n = Ew, = 2mko (1- o)

b) Calculate the electric potential V created at point M:

_Kdq KodS Kotdfdl

av =
r r Vx2 + 2

2T R
£det R
V=Kaf d@J—ZZnKa Vx2 + 2

: 5 Vx2 + 2 [ ]0

V = 2nKo (\/x2 + R? — x)

2°) Let's check the relationship between the potential and the field:E = —gradV

av 2x X
E, = — —=—2nKa(——1>=2nKU(1——)
M dx 2v/x2 + R? Vx2 + R2
E 2K (1 al )
=2nKo |1l - ——
M Vx?% + R2

We find the same result as that of question 1, the relationship E = — gradV is verified.

3) Let us distinguish the field E when the radius of the disk R tends towards infinity

When R - 00 = Ey = 2Ko (1 —5==) = 2nKo (1-0) = 21Ko

|Ey = 2nKo |

It is the field of an infinite plane uniformly charged at a surface density ¢ > 0
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Chapter 1 Electrostatics

Exercise 5

A wire, of infinite length, is uniformly charged by a positive linear density A.

1)-By application of Gauss's Theorem calculate the electrostatic field created by this
distribution at a point located at distance x from the wire.

1)- Let us take as a closed surface (Gaussian surface ) , a cylinder of radius x and length |
and axis the infinite wire.

For reasons of symmetry the field Eis radial (carried by ox).

The flux of the vector E leaving the closed surface is

$(E) = ¢¢ (E) + 65 (E) + ¢, (E).

S3
| s
g': ds;
X ': E
M

The field E is perpendicular to the normal at any point on both basis §1and §2 therefore
= ¢ (E) = ¢,(E) =0

Also, the field Eis parallel to the normal of the lateral surface 2§3

bs,(E) =@ E.dS;=E.S; = E2mxl
S3

2)-The total charge contained in the Gaussian surface is.
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Chapter 1 Electrostatics

szdqzzfdzzu

Al
E2nxl = —
=)

A
© 2mxe,

Gauss 's theorem

Exercise 6

1)-Let us take as a Gaussian surface a cylinder with an axis perpendicular to the plane. By
reason of symmetry the field Eis perpendicular to the plane (P)

The flux of the vector E leaving the Gaussian surface is

—

ds, )
k

—_—

ds,
—
S

NN\~ I

il

=

=1

as,

&(E) = ds,(E) + b5, (E) + ds, (E)

o(F) = F.d5, +3§€ E.d3, +# F.ds,
S1 S2 S3
The field Eis perpendicular to the normal of the side surface §3:> s, =0
On the other hand, we have everything from the two bases S;and S,thefield Eis parallel to

the normal so

&(F) = bs, + bs, = ES, + ES, = 2ES, = 2ES (S, =5, =S)

33



Chapter 1 Electrostatics

The charge contained in the Gaussian surface is
Q=Jf, dg=0 [, dS= oSwith§ =S, =S,
We apply Gauss' theorem:

d(E) = 2ES = 5
€o

g

- 250

2)-By analogy with question 1, the field E'created by the plane (P') is

E =

o
€o

The resulting field E is then E,,;q = E + E'

o \? o\2 V50 V5 o
Frot = JET T = J(_) (o) =82 g,

2¢, o 2 & 2 &

£ 50
tot 2 80
E I Etot
E!
p’ M
P
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Chapter 1 Electrostatics

Exercise 7
Given the symmetry of the problem, the field is radial.

% 1lstcase-: r<R1:
The flux @ leaving the Gaussian sphere is:
D=E1(r)Sc=E 1(r) 4ar ? (S ¢ =S causs)

The internal charge of the Gaussian sphere is:

(1) _ El.S _ZQint
€o
_pr
1 380
b)2nd case : = Ri1<r<R:
®=E2(r)Sc=E2(r) 4ar?
The internal charge of the Gaussian sphere is:
4p m Ry
int = dv = Anridr =
Z Qint ,[ p ,[ p.amrar 3 Gaussian
0 0 sphere
He comes :
T ine pATR}
=E,.S = = E, 4nr? =
¢ 2 £ 27T 3¢,
_ PRSP
27 3g,r2

c)3rdcase: r>R:
®=E3(r)Sc=E3(r) 4ar?.
The internal charge of the Gaussian sphere is:

Ry
4dpm R1

2 Qint = qr, T qr, = f

0
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Chapter 1 Electrostatics

R,
4 R3
qut = pn ! f 8mrdr = +41TJR§
0
Eventually :
4pm R? 4moR?
Es(r)4nr? = pgg Ly . 2
0 0
p R} + 30R3
E3 (r) = 3 80 rz
. - — ~
Gaussian P S M
sphere /
L,/
\
\
\
~ - - /
Exercise 8

1)- The field created by an elementary charge dq is:

1 Adl_

dE = ——
Atrey 12

dl

For reasons of symmetry the total electric field is carried by ox,

=

Etor = Ex

Etor = JdEx
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Chapter 1 Electrostatics

1 Adl

dE, = P, r—zcos a,
We have
X X
cosqa =— = ———
T x%+ R?
- 1 Ax jandl
tot — Ame, (xz N R2)3/2 o
AxR
Eior = 3/, [
2e9(x%2 4+ R? /2
- potential V
Qv = 1 Adl _
S 4mey T
B 47T€0 (xz + R2)1/2 0

AR
V=

—|
2e0(x2 + R? /2

2)-We can deduce the potential by the relation

E= —gradV
av
E=—-——=dV =—-Edx
dx
v AR X p
=—— | ——=—dx
2¢ (x2 + R2)3/2
AR X
V c

e
2¢ (x2 + Rz)l/z

AR X

V(@) =02c=02V=|-—— |
2& (x%2 + R? /2
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Chapter 2 Conductors

Michael Faraday

e 1791 - 1867

e British physicist and chemist

e Great experimental scientist

e Contributions to early
electricity include:

» Invention of motor,
generator, and transformer

» Electromagneticinduction
o Laws of electrolysis
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Chapter 2 Conductors

11.1. Classification of materials
We have two types of materials: conductors and insulators
a. Conductor materials
In conductors, electrical charges are free to move and are distributed throughout the material.
An electrical conductor therefore conducts electric current.
b. Insulating materials (dielectrics)
Conversely, an electrical insulator is a medium that does not conduct electric current,

because it does not allow the passage of free electrons from one atom to another.

11.2. Definition

++ A conductor is a body inside which charges can move (mobile charges) under the action
of an electric field or force.

++ A conductor is said to be in electrostatic equilibrium if its charges inside are immobile,

(the charges are not subject to any force).

11.3. Properties of a conductor in electrostatic

a- The electrostatic field inside a conductor in equilibrium is zero:

Since the charges inside the conductor in equilibrium are immobile, therefore the force
acting on the charges is zero, which means that the electric field inside the conductor is also

zero.
F=q=0=E=0

b- The conductor in equilibrium constitutes an equipotential volume:

Inside the driver E = 6, and we also have:
E= —gradV=6 =V =cte

We deduce that the electrostatic potential at any point of a conductor in equilibrium is
constant, therefore the conductor in electrostatic equilibrium comprises an equipotential

volume.
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Chapter 2 Conductors

As a result, the outer surface of the conductor is an equipotential surface, which proves that
the field is perpendicular to the surface of the conductor.

= —

c- The conductor’s charge is distributed over its surface:

Inside the conductor E = 0, according to Gauss' theorem the flow is therefore zero through

any closed surface inside the conductor

¢=# F.d§ =%:O:ZQW=O
S

€o

> Qe =0=p=0

Since the number of protons is equal to the number of electrons, the total charge inside the

conductor is zero. All free charges are distributed over the surface.

Remark

The same properties are valid for a hollow conductor.

V=cte
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Chapter 2 Conductors

I1.4. Field in the vicinity of a conductor in equilibrium: Coulomb’s
theorem
Let us calculate the electric field in the vicinity of the external surface of the conductor. By

applying Gauss's theorem to a cylindrical Gaussian surface, one base of which is outside the

surface (S 1) and the other base inside the conductor (q=0) (S:2)

B .d3, +j§€ B dS,, = ES
S

$ = E.d§1+#
S S lat

2
d=ES
- The flow through the interior base (S2) is zero (E=0)

- The flow through the lateral surface (S ) is zero E L dS
(Sl =S :S)
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Chapter 2 Conductors

Remark
We found the value of the electric field at a point close to the outer surface of the conductor,
and the field inside is zero.

On the surface of the conductor the field takes an average value:

210
_ Eext + Eint _ & _ g
m 2 2 2g,
o
m- 280
o
E=—
o
A Ny
T 2¢
inside i surface layer i outside

11.4. Electrostatic pressure
Electrostatic pressure is the force exerted per unit area. Charges on the surface of a conductor

are subject to repulsive forces from other charges:

2

F=dgE. =odS— =245
- qm_o_ .280_280

We can therefore calculate the electrostatic pressure:

o%dS
P_dF_ 2¢, _0‘2
S dS  dS 2
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Chapter 2 Conductors

11.5. Peak effect: Distribution of charges on a

Near a tip, the electrostatic field is very intense. This means that the surface density of
charges is very high in the vicinity of a tip.

Consider two conducting spheres with respective radii R 1and Rz (R1 > R») carried to the
same potential (connected by a conducting wire). The two spheres have uniform charge

density o1 and oo>.
kql qu k0151 k0-252
—_— = —1 =

V, =V, = =2>0,.R, =0,R

1 2 R, R, R, R, 01Ky = 01
o Ry
02_R1

So, the smaller one of the spheres will have a radius, the more its charge density will be high.

ol c2
+

+ * o+ T’/’- N
P

+ “‘-u\._\_\_\'!'\_\_\-‘tl + | | +
| e \

% .

N AN

11.6. Capacity of a driver isolated
The electrostatic capacitance of a conductor at equilibrium is defined by

c=2
vV

where Q is the total electric charge of the conductor brought to potential V.

The unit of capacitance is the Farad (symbol F).
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Example:

Capacity of a spherical conductor (radius R) of charge Q.

Q
C==
vV
. kQ
At any point on the surface V = Y
Q Q@
C= V = E = 47'[80R
R

- For the earth R = 6400 km, C=710 u F ( The microfarad : 1 p F=10 °F)

Generalization
We can generalize the notion of capacitance to a set of conductors. In the case of two
conductors carrying two charges + Q and - Q, including the potential difference between

them:
U =V 1-V, the capacitance of the system is:

0 _o
U

C= =
Vi =V,

11.7. Internal energy of an isolated charged conductor
Let Q be the charge of the conductor and C its capacitance and V its potential in the
equilibrium state. Its internal energy is measured by the work required to charge the

conductor either :

1 1 102
_ = —_(y2=_Xx_
Ep = > Qv > cv 5T
11.8. phenomena between charged conductors

11.8.1. Partial influence (Influence suffered by an insulated conductor)
Consider two conductors A neutral (Q+ = Q- therefore Qtar = 0) and B charged (Q +). Let us

approach body B from A. The latter creates an electric field Eg in conductor A. The free
electrons of conductor A will, under the action of Eg, move in the opposite direction to Eg.
Conversely, positive charges will appear on the other side due to lack of electrons. We say

that conductor A is influenced by B.
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The influence phenomenon does not modify the total charge of an insulated conductor, but

only modifies the distribution of this charge on its surface and therefore its potential.

Special cases:
We take the previous example of partial influence and connect conductor A to earth

(ground), using a conductive wire; the earth and conductor A form a new conductor; the
positive charges are then repelled towards the earth. The potential of this conductor is zero

Va =0 and no more field lines leave it.

11.8.2. Total influence
We say that there is total influence if B completely surrounds A; all field lines starting from
A arrive at B.
We notice that the charge, which appears on the internal surface
of B, is equal and opposite to the charge of conductor A:
Qsint= - Qa
The charge that appears on the external surface of B is equal to

the charge of conductor A:
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QBext = QA
Q 8= Qgint+ QBext= - Qa+ Qa=0

Special cases:

1- B isolated and has an initial charge Q', then

Q= Qgint+ Qpext=- Qa+ (Qa+Q") = Q'

Q'+Q

2- B connected to the ground

QB=0gint+ Qext=-Qa+0=-0Qa

Ve =0 and Qgext = 0 because positive charges flow to earth

0
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11.8.3. Generalization: Effect of an electric field on a conductor

If we place a conductor in an external electric field Eext, the positive charges go in the same

direction of the field and the negative charges go in the opposite direction (under the effect
of the force 130 = qEO) and there is the creation of 2 poles, one positive and another negative.
This new distribution of charges forms a field Fopposite the field Eext, and this process

continues until it becomes E = E,,;, the conductor is in polarized equilibrium. The charge

on the conductor has not changed, but the charge distribution and potential have changed.

EEXT
—_—

11.8.4. system of n conductors

a) capacity coefficients and influence coefficients
We consider n conductors in electrostatic equilibrium. Each conductor i carries a charge Q;

and a potential Vi. Charges and potentials are related by the equations:
(Q1="C11Vy +CoVo + -0 +C1 Wy \ /C11 Ci2 -----Cln\ /V1\
j Q2 = Cp1Vy + CooVy + -+ ..+ (3 Wy Cy1 sz e Cop Vs
LQn = CVy + CpaVo + - .+ Vg Qn Cn1 Cnz .- Cnn) kvn)

C;;: coefficient of conductor capacity i (C;; > 0).
C;;: coefficient of influence of the conductor i (C;; = Cj;; < 0).

Exp:
2 conductive spheres in influence:

at equilibrium we have
Q1 = C11Vh + Ci2V;

Q2 = C1V1 + (50,
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(Q2, V2)

—O

(d>>Ry,d>>Ry)

(Qu, V1)

111.8.5. Corresponding Elements Theorem

Consider two conductors A and B in electrostatic equilibrium and carrying surface charge

densities o aand o 8 (V o>V B), We bring the two conductors together, an electric field

appears between these 2 conductors (from V atowards V g), it modifies the distribution of

charges on the surface of the two conductors. Consider a small closed contour C a located

on the surface of (A) such that all the field lines resting on C A join B and draw a closed

contour C swere . The set of these field lines constitutes a flux tube: Let a closed surface

produced S =SL + S o+ S B. According to Gauss' theorem on the closed surface:

E.d§A+# E‘.d§3+# F.as, = 2%
Sp SL €o

b= b, + b5, + b5, = 4

Sa

-

Aﬁ.d 4 = 0: E is zero in conductor A

§=s

S

-

#SB E.dSg = 0: E is zero in conductor B

¢=0
So ¢ = :% qA:qB:>CIA+qB—0:>qB——CIA
0 0
dp = —qa

Corresponding Elements Theorem: Faraday's Theorem: *"The charges carried by the

two corresponding surface elements facing each other are equal and of opposite

signs."
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11.9. Capacitor

A capacitor is made up of 2 conductors in total influence separated by a vacuum and an
insulator. These conductors are called plates of the capacitor. We call Q the charge of the
capacitor (armature). Let V1 and V2 be the respective potentials of the internal and external
armatures.

The capacitance of the capacitor is

__ @
Vi =V,

A capacitor is used to store electrical energy, by storing charges on its armatures, we

C

represent the capacitor by:

Conductive
FParallel Plates

O+ /\\

Elecirical
Charge

F!
L

L

¥ + ¥+ + +

.T.

Dielectric

Voltage Vi

wooToNy

[
o
=
=
<M
o)
—_—
[
)
[
L
-_

llﬁJl\[ 114

|

Types of Capacitor
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11.9.1. Calculating the capacitance of a capacitor

To calculate the capacitance of a capacitor you must follow the following steps:

1-Calculate the field between the armatures (using the Gauss theorem)

2-Deduce the potential difference between the conductors ( E = — gradV)
3-Calculate the ratio C=Q/(V 1-V 2)

11.9.2. Capacitor association in electric circuits

a) Series capacitors

Let n be capacitors of capacitances Cjconnected in series. The difference of potential across

each of the capacitors is therefore:

G G, Cu
— - I
| i "
4 v, |4

VAB

VAB=V1+V2+'“+VTL

Q. 0 Q
V = — e [ER —_—
AB C1+C2+ +Cn

The association then behaves like a “single equivalent capacitor” of capacitance Cegq

Q
Vip = —
PR
1 G B
n
1_21
Ceq T i
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b) Parallel capacitors
Let n capacitors of capacitances Ci be placed in parallel with the same voltage

Vap=Vi =V, ==
The electric charge of each of them is given by:
Q;=GU
BMIIIIIII— B
‘:} VA¥ —t Ceq
V; V. V, | m—— T
1T C, ZT C, Cn
A —
A# ------- —
n
Q=) 0i=0+0,++0y
i=1
n n
Q= z Qi=CVi+ GV + -+ GV, = z Ci Vap
i=1 i=1

The association then behaves like a “single equivalent capacitor” of capacitance Ceq
Q= CquAB

n
Ceq:C]_‘l‘Cz‘l‘"“l‘Cn:zcl'

=1

Ceq = Ci

n
i=1

11.9.3. Electrical energy stored by a capacitor

A capacitor stores an amount of electrical energy equal to the work done to charge it, for
example using a battery. Suppose that at a given moment, the charge already accumulated
on the armature, i.e. g.

Therefore, the potential difference between the armatures is worth V=q/C.

The work required to pass an infinitesimal charge dq from the negative armature to the

positive armature, via the battery is:
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dW = vdgq =%dq

The total work W, for charging an uncharged capacitor with a charge Q is obtained by

integrating:

®q _1Q* 1

W=) ct=3¢=3%
+ ﬁ CAPACITOR
| + o+ |+ o+

Y| = :

V
BATTERY S—
=
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Exercises
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Exercise 1
Find the charge acquired by a conducting sphere S of radius R = 50cm when it is carried at a potential V = 200V.

i Gauss surface
V=200V |

— fig. 1

Exercise 2
Consider a plane capacitor made up of two parallel conducting plates of area S, separated

by a small distance e, charged with two surface charge densities (+o¢) and (o).

-Calculate the capacitance of this capacitor. (we assume thate << S)

i
The cylindrical capacitor consists of two coaxial conducting cylinders of radii R 1and R 2

(R1< Ry), the first carries a positive charge Q and the second carries a negative charge —Q.

Exercise 3

-Calculate the capacitance of this capacitor.

'

—~
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Exercise 4
Consider a spherical capacitor made up of two concentric spheres of radius Ryand Rz (R1 <
R2), in total influence.

-Calculate the capacitance of this capacitor.
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Solution
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Exercise 1

Gauss surface

V=200V
p— fig. 1

We have a conductive sphere S of radius R connected to a potential V =200 V (fig.1). So S carries a potential
V(R) = 200V.

In order to be able to calculate the charge Q that this sphere S carries, we must first determine the relationship of
its potential V

We must first determine the relationship of its potential V

According to Gauss's theorem, we have:

_ = - X0
s _#S B d5'() = =
(DS=ESG=§_O

Since the conductor is spherical, the Gauss surface Sc is a sphere of radius r (fig.1)

Se =4nr? = E. 4nr? = @
€o

Q

= 2
47TT EO

On the other hand, we have:

R _— av ®
E=—gradV:>E=——:>] de—J E.dr
dr v R

The potential at infinity is zero, V(»)=0

Q = 4meyRV

N.A: Q=11,1.10°C
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Note:
The capacity of a conductor is defined by the relation: C = %; in our case (a spherical conductor) the
capacitance will take the relation: C = % = 4meyR. We clearly notice that C only depends on the

geometry of the conductor (its radius of curvature R).

Exercise 1

It is made up of two parallel planes in total influence, spaced by a thickness e, the first
carries a positive density oand the second carries a negative density —a.

We assume that e is very small compared to the dimensions of the plates which allows us to
consider them as “infinite”.

1) E: 1 on the plane and leaving the plane (positive charge)

E_Z) 1to the plane and entering the plane (negative charge)

Outside the framesE;p;q; = E; + E; = 0

Between the two frames, we have: .E;y¢q = E; + E;

++++ A+
E,

P —
E, 1

Let us take as Gaussian surface a cylinder with axis

Gauss 's theorem

® = §f E.dS =2,

)

perpendicular to the plane (+).

E,.dS, + # E, .dS;
S

2 3

H(ED) = b, (B) + 9, (B) + 0, (B) = f Ei.dS,+
S1 S
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Chapter 2 Conductors

The field E, is perpendicular to dS;= g5, =0

Ey //dSyand Ey //dS,
$(Er) = §g + 65, = EsS1+ EsS; = 2E:5; = 2E,5 (S =5, =)
The charge contained in the Gaussian surface is

ZQint:ﬂS dq=affs dS = oS

F)=265= 2 > |g=2
¢ 1) — 19 = £ 1~ 280
The same result for the (-) plane:
E, = o
2= 280
ds,
IE?
=
ds;
I
N
NN\
Ey
@
ds,
o o o
Eiotar = E1 + E; =E+2_50=> Etor =E=g

—)_ —_— _ d_V V2 — e
2)E = —gradV = E = _dx:>fV1 dV = — [ E.dx
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Chapter 2 Conductors

We notice that the capacitance does not depend on the charge or the potential, it depends on

the dimensions of the capacitor and the medium in which it is placed (here the vacuum &)

Exercise 2

The cylindrical capacitor consists of two coaxial conducting cylinders of radii R 1and R »
(R1< R2), the first carries a positive charge Q and the second carries a negative charge —Q.
1) By applying Gauss's theorem. Let us take a cylinder as a Gaussian surface.

of height h and radius r (R 1<r < R 2). By reason of symmetry, E is radial and constant

in the Gaussian surface.

\ : \“-‘2;”
1! T
I‘L [ dsLat
|
i
R ! 7
1l : E
1 |
! |
: +Q
| |
R, : :
+ i
| |
| |
| | _Q
I - |
[ — -~y
~_ e = -

E.d§2+# B .ds,
S

2 3

#(E) = b (B) + b (B) + 4 (B) = §p F.aS, + #
Si S
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Chapter 2 Conductors

The field E is perpendicular to S, et S, = ¢51 = ¢Sz =0

E //dSs = dSya
#(E) = ES; = E2nrh

The charge contained in the Gaussian surface is ), Q;,,;= Q

¢(E) = E2nrh = SQ—O=> E=—2

go2mrh

2F = —gradv =E =-== [)?dv = — [*E.dr
V,—V, = _f: Eozirh.dr = —Eognh Inr|p? = V=V, = %Z%Zni—i
C= V1?V2 = ) an&: S;Z;h = 802nh.ln§—i= C
&2mh ™" Ry Ry
Exercise 3

It is made up of two concentric spheres of radius R 1and R 2 (R 1< R »), in total influence.
1-1) By applying Gauss's Theorem, let us calculate the electrostatic field created by a sphere
with center O and radius R 1< r <R ».

-For reasons of symmetry, the vector E is radial and has the same modulus on the Gaussian
surface, the flow leaving this sphere is:
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¢ = §p. E.dS = E.Sq = E4nr?  (E//dS)

¢ = E4nr?

The charge contained in the Gaussian surface is
2 Qint = Q.
By applying Gauss's theorem:

™\ _ _ZQin _ Q
$(E) = Ednr? = ==t = =,

0 €o

= 2
4rtreg,

o ] _ av Vv, _ R,
1—2)E——gradV:>E——;:>fV1 dV——fR1 E.dr

V-V = - (-4 )=V = (- )

47'[80 RZ R1 4-7'[80 R1 RZ

Vi = 2 (1 1)
"2 7 4ne, \R, R,

Q 4megR1R
1_3) C — — 0f1n12
Vi-V, Ry—R;
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Chapter 2 Conductors

C _ 4T[€0R1R2
N Rz - Rl

2) Calculation of the capacity C if R 2 tends towards R 1

R2 - Rl ~ e <<
IfR, > R, =
R.R, ~ R?
__ 4megR?

= C
e

The surface of the sphere S = 4mR?

Similar to that of a planar capacitor
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Chapitre 3 Electrokinetics

Gustav Robert Kirchhoff (1824-1887)

Born in Prussia, Germany. Studied with
Neumann and in 1841 published his famous
Kirchhoff’s laws. He extended Ohm’s
electrical theories. Later he studied spectra
from various elements. He worked with
Robert Bunsen and studied radiation spectrum
from the sun. He also worked on black body
radiation, which was very important in the
development of Quantum Theory. After

he was disabled in crutches and a wheelchair
he turned from experimental physics to
theoretical physics. He became Chair of
Mathematical physics in Berlin. He was
known as a masterful teacher with clarity
and rigor in his thinking and teaching.

Andre-Marie AMPER (Ampere) (22.01.1775 -
10.06.1836) Andre-Marie Amper is a French
physicist, mathematician and chemist. He
was born in Lyon in the family of a merchant.
In his father's beautiful library were works of
famous philosophers, scientists and writers.
Young André could sit there all day with a
book, so that he, who never attended school,
was able to acquire extensive and profound
knowledge
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Chapitre 3 Electrokinetics

I11.1. Introduction

Electrokinetics is the study of electrical charges in motion.

Electrokinetics is the study of electric currents, i.e. the study of electrical charges moving in
material media called conductors. In other words, it is the study of electrical circuits and
networks.

I11.2. Electrical conductor

A conductor, or electrical conductor, is a substance or material that allows electricity to flow
through it. In a conductor, electrical charge carriers ( ), usually electrons,

move easily when voltage is applied.

Some examples of conductors of electricity are: Copper, Aluminium, Silver, Gold, Graphite,

Platinum, Water, Human Body, ...

In some materials the electrons can wander about between the atoms, these electrons are
called free electrons. In some materials, electrons can move between atoms (their movement
is irregular), and these electrons are called free electrons. But if we now connect a battery to
both ends of the wire, the electrons drift and their movement is in one direction.

The more free electrons there are in a solid the better it will conduct electricity.

ff.%%“.”&%“ 0??????3??
0”00 '016:0/9%6°06 06969688499
ﬁbbuc oxgo%oo 00020000200

111.3. Electric current

Consider two charged conductors A and B at potentials Va and Vg such that Va > Vg. They
are connected by a conductor wire to obtain a single conductor (A-wire-B) which does not
have the same potential in all points: there is a potential difference dV between 2 points of the
wire. This results in an electric field E = —dV /dr, which makes the charges to move. These
charges movement forms an electric current which flows from A to B. Therefore, an electric

current is a flow of charged particles. It is characterized by intensity and direction.
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111.3.1 Definition:
An electric current is a movement of a group of electric charge carriers, generally electrons,
within a conductive material. To have an electric current in a conductor, it would have to

establish a difference of potential between the terminals of this conductor.

111.3.2. Properties of Electric Current

a) Intensity

The intensity of the electric current is given by the number of electric charges which cross a
surface (section of conductive wire S) for a duration of time dt.

dq
T dt
with: I(t) : current intensity; dq: the elementary electric charge; dt: the interval of time.
b) Unit

I

in the International System of Units (SI), the electric current is expressed in units of ampere
symbol (A), which is equivalent to one coulomb per second.

1Amper=1Coulomb/1second
The ampere is an Sl base unit and the electric current is a base quantity measured using a
device called an ammeter.

¢) The conventional direction

By convention, the electric current always flows from the positive (+) terminal to the negative

(—) terminal outside the generator.

The electrons flow is from negative to positive terminal. Electrons are negatively charged and

are therefore attracted to the positive terminal.
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K
1 &

Sens conventionnel du courant

E— Dipole

Sens de déplacement des ¢lectrons

d) types of electric current

There are two types of electric current known as alternating current (AC) and direct current

(DC). The direct current can flow only in one direction, whereas the alternating direction
flows in two directions. Direct current is rarely used as a primary energy source in industries.
It is mostly used in low voltage applications such as charging batteries, aircraft applications,
etc. Alternating current is used to operate appliances for both household and industrial and

commercial use.

111.3.3. Density of electric current

Consider a number n of charges g, which move with a speed v, in a conductor of section dS
and volume V. In a time dt the charges travel a distance dl = ©.dt, therefore the quantity of
charge dQ contained in the volume dV is given by:

dQ =n.q.dV

We have : dV = dl.dS

dQ = nqdl.dS = nqv.dt.dS

N

we pose: | = nqv

So dQ=].dS.dt

dl = v.dt,
5 @ ©om—
P — @ S
N G_
j >—06 o

A
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Definition:
The density of the electric current J is a vector quantity which equals the charge per unit of
time across the unit of surface, it is expressed in A.m.

In the case of a conductor composed of free electrons
g=—e=>]=—-nev =] =nev

Therefore the current | flowing through the surface dS is given by:

dQ J.dS.dt . _—
dt a9

So | which crosses the entire section S is:

I= f f J.ds
Therefore, the intensity of the current passing through the section S is equal to the flux of
current density through S

I11.4. Ohm's law

111.4.1. Macroscopic ohm's law
Ohm’s law states that the voltage across a conductor is directly proportional to the current

flowing through it, provided all physical conditions and temperatures remain constant.

V =RI
|
o—>—
v R

.—
V :Volt (V)
i : Ampere (A)
R: Ohms (Q)

In the equation, the constant of proportionality, R, is called Resistance and has units of Ohms,
with the symbol Q.

Resistance is opposition exerted by a body to the passage of a current.
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111.4.2. local ohm's law

a) conductivity:

Consider a cylindrical conductor of length | and section S, be subjected to a potential
difference V

A

the field E:
v:w_w=f§a=az
V=RI=E.I

Wehave: I=JS=>V =R.].S=E.Il
_E.
" R.S

=]
We pose: o =RLS=>] =¢.E and =] =0.E
o conductivity of the conductor, expressed in Q*m™
b) Resistivity:
The inverse of o is called the resistivity p:
1

P= o
where p is a constant (for a given material at a given temperature) known as the resistivity
( ) of the material. Some selected values for p are:
PCopper = 1.72 x 1078 Q ‘m, PAluminum = 2.82 x 1078 Q-m, Pcarbon = 3.5x 1075 Q- -m

Relationship between Resistance and Resistivity
The resistance of a piece of material depends on the type and shape of the material. If the

piece has length L and cross-sectional area S, the resistance is:

l
R=p§
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Relationship between Resistivity and conductivity

Since conductivity is the measure of how easily electricity flows, electrical resistivity
measures how much a material resists the flow of electricity.

Conductivity and resistivity are inversely proportional to each other. When conductivity is
low, resistivity is high. When resistivity is low, conductivity is high. The proportionality is as

follows:
1
P75

where :

o Resistivity is represented by p and is measured in Ohm-meters (Q.m),

e Conductivity is represented by ¢ and is measured in Siemens (1/Q.m).

¢) Mobility
In a conductor the electrons are subjected to the force Fe:
dv E,.dt
F, = eE =mea=meE:>dv= m,
e.E.dt e.E.t
=>dv = S>v=
e e

We pose : y=fn—'t:»v=y.E and =v=ukE
u : mobility
we also have:
] _nev __ne.et ne’t
°TETE "M TEm, T Em,
N . o
'u_n.e

n: number of electrons per m3.

I11.5. The Joule Effect and Electric Power

The Joule effect phenomenon is defined as the effect of heat production during of the electric
current flow in a conductor. So, a fraction of the electrical energy is transformed into calorific

energy (energy dissipated in the form of heat).
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As charge moves through the wires of an electric circuit, they lose electric potential energy.
(When charge Aq moves through a potential difference V, it loses AqV of potential energy.)
The power dissipated by this conductor is equal to:

_Aq.V

P=—"
At

that is:

VZ
P=IV=RI?=—
R

The electric power is measured in joules per second, or watts: 1 J/s = 1W.
The energy goes into heating the resistor or the energy consumed by a resistor during time
(At) 1s:

E = P.At = RI%. At

I111.6. Association of Resistors

Fundamentally we have three types of resistance associations that we can find in electrical
circuits: association type series, parallel and mixed.
a. Series Association

In a series circuit: the current is the same in each resistor

Ry Ry Ry

-0 1o
v, v,

A
Vi

VAB:V1+V2+.”+V‘H
I=11=12="‘=In
VAB :R11+R21+"'+Rn1 :Reql

n
Req:R1+R2+"’+Rn:ZRi

=1

Req = ZRI'

n
=1
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b. Parallel Association
All resistances will be subjected to the same potential difference Vag . Therefore, the current
that will circulate in each resistance will only depend on its ohmic value.
The total current flowing through the circuit is the sum of the currents in each circuit

resistance.

q

Ri1| |R2 Rn

=1
1—V+V+ +V—V
Rl R2 Rn Req

Req Rl RZ Rn Ri
n
1 Z 1
Req 4R

I11.7. Electrical circuits

An electrical circuit is a set of electrical components such as: resistors, capacitors, and
conductors etc., carried by an electric current.
So, the electrokinetics of an electric circuit consists of finding the intensity of the current and

the voltage for each location in this circuit.
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a. Circuit diagrams
A circuit diagram uses circuit symbols to represent each component in the circuit.
A circuit diagram shows how the components are connected.

Use straight lines to show the wires and circuit symbols to represent each component.

@ 1k Hifr ® 1 - =%

ammeter cell battery (2-cell) lamp resistor resistor (variable)
o~ o -0o—o -@-
switch (open)  switch (closed) voltmeter

Before we go into Kirchhoff's rules. we first define basic things in circuit analysis which will

be used in applying Kirchhoff's rules.

Node is a point common to at least three branches.

Branch consists of one or more elements located between two nodes and through which the
same current passes.

Loop: Itis a closed path in a circuit consisting of two or more branches. The starting point is
the end.

Node
en serie \l/
nceud R1 R2
33 51

" C) R4 R3
- 15 15
/ loop1 loop2 \
branch1 0003 branch3
oop

branch2

en parallele

b. Generators

An electrical circuit requires a power source to power it. So, it is essential to connect these
circuits by a device called a generator (electromotive force) to ensure the transport of
electrical charges.

There are two categories of generators:
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1. Voltage generator

In the case of an ideal voltage generator the electromotive force (emf) is equal to the potential
difference between these terminals:
UAB = VA - VB = E

I A

ET = (DI

B

A real voltage generator is an ideal voltage generator E in series with a resistor
UAB =VA—VB=E—TI

r: is the internal resistance of the source

2. Current generator

An ideal current generator delivers a constant current independently of the potential

difference between its terminals.

I

nouvelle

ancienne : 4
représentation

représentation

A real current generator is an ideal current generator lo in parallel with a resistance r.

The current | supplied by the generator is:
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I =1lo— Ul

r: is the internal resistance of the generator

111.8. Kirchhoff's laws

The principle of conservation of energy and charge in electrical circuits is expressed by a set
of rules called Kirchhoff's laws.

1. Law of Nodes-

The law of nodes is known by the first Kirchhoff law: The sum of the intensities of the

currents entering a node is equal to the sum of the intensities of the currents leaving it.

11+12+I3:I4+15+I6

In other words, the sum of the currents in a node equals zero
i=1li=0

Il+12+13_14_15_16=0
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2. The loops law

This is the Kirchhoff’s second law in a loop of an electrical circuit.

The algebraic sum of the potential drops (potential differences) of the loop elements is zero.

&
i1=
=
Il
(@]

Here, n is the total number of voltages measured

Uab+UbC+UCd+Uda =0

R1

—t—Yda ch RZ

Applying Kirchhoff’s Laws
By applying Kirchhoff’s rules, we generate equations that allow us to find the unknowns in

circuits. The unknowns may be currents, voltages or resistances.

When applying Kirchhoff’s first rule, the node (junction) rule, you must label the current in

each branch and decide in what direction it is going.

There is no risk here, if you choose the wrong direction, the current will be of the correct
magnitude but negative.

When applying Kirchhoff’s second rule, the loop rule, you must identify a closed loop and

decide in which direction to go around it, clockwise or counterclockwise

78



Chapitre 3 Electrokinetics

Again, there is no risk; going around the circuit in the opposite direction reverses the sign of

every term in the equation, which is like multiplying both sides of the equation by —1.

The following points will help you get the plus or minus signs right when applying the loop
rule.

When a resistor is traversed in the same direction as the current, the D-‘mgff oo
change in potential (voltage) is —IR. a g—lh b
When a resistor is traversed in the direction opposite to the current, the AVe ¥ - V. =—IR
change in potential is +IR A
When an emf is traversed from — to + (the same direction it moves i
positive charge), the change in potential is +emf (+E). ?_| ot

When an emf is traversed from + to — (opposite to the direction it moves g V“: S
positive charge), the change in potential is —emf (-E). ?—'| |—P
The direction of the current is represented by an arrow placed on ay=Hh-to=—
a connection wire, and oriented according to the conventional

direction of the electric current.

R1 Rl
o ] o ]
>—| I »>— |
V V
A 1 A 1
I I
1 oy R
T 0T “1
-E+V1+V,=0 +E-V1-V,=0

111.9. Thevenin’s theorem

A linear two-terminal (A and B) circuit consisting of a number of voltage sources and
resistances can be replaced by an equivalent network having a single voltage source called
Thevenin’s voltage (ETn) and a single series resistance called Thevenin’s resistance (Rn),
where Em is the open-circuit voltage at the terminals AB and R is the equivalent resistance

as seen from the open terminals when the voltage sources are turned off (short circuit).
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Exercise 1
Using Kirchhoff's Circuit Laws, find the current flowing through each loop 11, I2, and the

current I3 flowing in the resistor Ra.

E1= 1oy == —E,=20V

Exercise 2
Consider the circuit as shown (E=16V, R1=2Q, R2=6Q, R3=10Q, RL=4Q). Use Theremin’s

theorem to determine the voltage (V) and current (L) across the load resistance RL.

Exercise 3

Use Thevemin’s theorem to determine the voltage (Vas) and current (lag) across the
resistance R2.

E1=10V, E2=20V, R1=10 Q, R2=40Q, R3=20Q

R1 A Rs
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Exercise 1

Step 1:

The first and foremost step is to draw a closed loop to a circuit. Once done with it, draw the
direction of the flow of current.

Step 2:

Defining our sign convention is very important

Step 3:

Using Kirchhoff’s first law, at B and A, we get: l1+12=13

Step 4:

By making use of the above convention and Kirchhoff’s Second Law,
From Loop 1 we have:

Ei-V1-V3=0 = Ei=VitV3

Ei=Ril1+Rs3ls = 10=101:+4013 = 1=I1+4l3
From Loop 2 we have:
E>-V2-V3=0 = Ex=VotV;
20=R2l>+Rslz 0 = 20=201>+401z = 1=1+2I3
By making use of Kirchhoff’s First law:
li+12=13

Equation reduces as follows (from Loop 1):

1=511+41;

Equation reduces as follows (from Loop 2):

1=211+3l
This results in the following Equation:
li=—1/3I>
From last three equations we get,
1=1/31>+21,
1,=0.429A, 1:=0.143A, 13=0.286A
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Exercise 2

For finding Thevenin's equivalent circuit, steps are as follows:

To find Rtn

The load resistance Rp is removed. The voltage source is shortened (short-circuited) as

shown. The equivalent resistance across AB = Thevenin’s resistance Rn .

Ry = R3 + (R1//R2)

R1 R3
AAYAY NVN—A
§ Rz
B
Ry, =10+ 2x06
= 2+6
Rrp = 11.50
Tofind Eth
The load resistance R. is removed.
The voltage across AB = Thevenin’s voltage Et .
we have:
Vyg — R3%x0 —R2xI = 0 I R R3
—RAAN S VW—A
ETh = VAB = RZXI i=0
with: L E SRe Vag
I = £ =24
" R1+R2 =
Ep, =12V
Now, Thevenin's equivalent circuit is:
For which : ., Rm A
L _Em 12 L
LR +R, 115+4 T Ry
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I, = 0.7744

and

Vv, = 3.096V

Exercise 3

the equivalent resistance Rn:

Rrn = Ryg = R1 R3—10X20
Ry = 6.67Q

The voltage source Etn:
We have Re , Rs

! I—T—{ |

E2—-(R3+R1)XI—E1=0
— Ei /D B2
_E2-E1 20-10
T R3+R1 20+ 10 e
I =0.334
Ri Rs |

— =

And ]_T_{?T
— E1 3 ] P
T o
B
E2—-R3xI1—-V,;53=0
Vag =E2 —R3x1=20-20x0.33
VAB == 134V
Erp = 13.4V Rih |,

Lol = Er, 134 A
AB T2 T R+ R, 6.67+40

PR — 2
Lo, 134 Erh
4B T2 T 6.67 + 40 l

B
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VAB == RZ X 12 == 4’0 X 0287

I, = 0.2874

Vig = 11.48V
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Chapter 4 Electromagnetism

PIERRE SIMON LAPLACE (1749-1827)

HE FRENCH mathematician and

astronomer Pierre Simon Laplace
used complex mathematical techniques
to show that apparent irregularites in
the movements of the Moon and the
planets were in fact part of a very long,
regular cycle. This showed that the
Solar System is indeed stable, as predicted
by Newton’s laws of gravitation and
motion. Laplace made many valuable
contributions to mathematical analysis
in the course of this work.

Laplace’s contributions to physics,

particularly in the mathematical basis
of the subject, have had a lasting impact,
and his theory of the origin of the Solar
System, the so-called nebular hypothesis,
was accepted for many years.

Hendrik Antoon Lorentz

(18 July 1853 — 4 February 1928) was
a Dutch physicist who shared the 1902
Nobel Prize in Physics with Pieter
Zeeman for the discovery and
theoretical explanation of the Zeeman
effect. He derived the Lorentz
transformation of the special theory of
relativity, as well as the Lorentz force,

which describes the combined electric and magnetic forces acting on a

charged particle in an electromagnetic field. He received many other

honours and distinctions, including a term as chairman of the International

Committee on Intellectual Cooperation, the forerunner of UNESCO,
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Chapter 4 Electromagnetism

IV.1. Introduction

The Greeks knew that certain stones attracted small pieces of iron, and as these stones came
from Magnesia (in Turkey), it was called magnetism. These stones are actually natural
magnets. Therefore, magnetism designates all the phenomena which take place inside and
around magnetic materials. This magnetization can be natural or the result of an induction
field. Researchers have noticed that the properties of a magnet are only manifested at its

ends: the poles. These two poles, called the north pole and the south pole, are different.

Experience shows that: Two poles of the same name repel each other while two poles of

opposite names, attract

Attract

1VV.2. Definition

The magnetic field is a vector quantity, which we will designate by B (we still say magnetic
induction field).

Compared to the electric field, a moving charge or set of charges creates a magnetic field in
the region where they are located. This magnetic field acts on an external electric charge q
with a force Fg. It is the same for an electric current, since by definition, it is a set of charges.
The characteristics of the magnetic field:

O The magnetic field vector is tangent to the field lines.
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O The magnetic field lines leave the north pole of the magnet and enter through the

south pole.
O Unit of the magnetic induction field in the International System is Tesla (T).

Magnetic field lines

Magnetic field

Magnetic field
agnetic fie strength

direction

IVV.3. Action of a magnetic field on the movement of an electric charge
IVV.3.1. Lorentz force

A charge g, moving at speed ¥, subjected to an electric field E and magnetic field B

experiences a force consisting of two parts:
An electrical part, it is the Coulomb force: E = q.E
A magnetic part, which is written: E,, = q. %A B
The combination of these two forces constitutes the Lorentz force:
7 = q(F + AB)
In the presence of the magnetic field alone (E= 0), the Lorentz force becomes:

F = qBAB = q.v.B.sin.4

O is the angle formed by % and B
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ool

\ 4

<N

Properties of lorentz force

O its module: F = q.v.B.sinf.
3 its direction is perpendicular to the plane formed by v and B
O Its sense is: in the case of a positive charge, the vectors F,5and B form a direct

trihedron (right-hand rule). When the charge is negative the force changes direction.

IV.4. action of a magnetic field on an electric current
IV.4.1. Laplace force

When a rectilinear conducting wire of length I, carrying a current I, is placed in a magnetic

field B, it experiences a force:

-

F=ILIAB

[ is a vector of length I, parallel to the conductor and oriented in the direction of the current.
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The characteristics of the Laplace force are:
O its module: F = I.B.|I.sin@|

O its direction is perpendicular to the plane formed by land B.

O Its sense is determined by the right-hand rule.

IVV.5. Magnetic field created by a current

1V.5.1 Biot and Savart’s law

The French physicists Biot and Savart found the expression for the magnetic field obtained
during the Oersted experiment.

A rectilinear conducting wire of infinite length, traversed by a current I, creates, at a point
M in the space located at a distance r from the wire, a magnetic field including:

- The direction is such that the field lines are circles centered on the wire.

- The meaning is given by the rule of the “good man of Ampere”: this one, when he is

traversed by I, from the feet to the head, sees in M the field to his left.

1

- The module is; B = £2=
2T

Uo 1S the magnetic permeability of vacuum.

In the SI system, p, = 4. 1077 henry per meter: H/m
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In general:
each current element | dl, creates in M an elementary field:

. ppl.dlAT
dB = —
2w 712
—
art _,
71 —
Tt~ dB
I S~
M

IV.6. Ampere's theorem

Ampeére's theorem is the "equivalent” of Gauss's theorem. It makes it possible to calculate
the magnetic field created by a current distribution when it has “strong” symmetries.

Statement of Ampere's theorem:
We consider a certain number of wires carried by currents of intensities 11, Io, etc. Let (C) be

an oriented closed curve entwining some of these currents and n be the normal vector

deduced from the right-hand rule.

i
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IV.7. Faraday's law
In any closed circuit immersed in a magnetic field, an electromotive force of induction (e) is

created equal to the derivative of the magnetic flux, through the circuit, with respect to time

(that is to say equal to the speed of variation of the flow) with change of sign:

Direction of
movement

i

Direction of
movement

1V.8. Lenz's law
This law allows the determination of the direction of the induced current
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Statement

“The direction of the induced current is such that its effects oppose the cause which
gave rise to it”.

Movement against repulsion

—

N S N)

Movement against attraction
h

0
N S
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Exercise 1

A particle of mass 5.10* kg carries a charge of 2.5. 108 C. The particle is given an initial
horizontal speed of 6.10% ms™.
-What is the magnitude and direction of the minimum magnetic field that will keep the

particle on a horizontal trajectory by compensating for the effect of gravity?

97



Chapter 4

Electromagnetism

Solution

98



Chapter 4 Electromagnetism

Exercise 1
We know that the magnetic force experienced by a charged particle moving with velocity v
in a magnetic field B is given by:

F = gBAB = q.v.B.sind.4

Where q is the charge of the particle.
such that its intensity is equal to:

F =q.v.B.sinf

With 6= (#,B) =-m.
To keep the particle on a horizontal trajectory, the magnetic force must exactly balance the
gravitational force acting on the particle. The gravitational force is given by:

F, =mg

Where m is the mass of the particle and g is the acceleration due to gravity.
For the particle to move horizontally, the magnetic force F must be equal in magnitude and
opposite in direction to the gravitational force Fq. Thus, we have:

mg =q.v.B
Solving for B, we get:
m
g="9
q.v

Given:

[ m=5.10x10"*kg

[ g=2.5x10"%

[ v=6.10* m/s

[0 g (acceleration due to gravity) is approximately 9.81 m/s?

Substitute these values into the equation to find B:
B=3.2792x102T

So, the magnitude of the minimum magnetic field required to keep the particle on a
horizontal trajectory is approximately 3.2792x10 2 T.
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As for direction, the magnetic field must be perpendicular to both the velocity of the particle
and the gravitational force acting on it. Since the particle is moving horizontally, the

magnetic field should be either upward or downward to counteract the downward
gravitational force.
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