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Chapter 1 

Vector Calculus

Definition
A vector is represented graphyically by a line segment AB, 

where A is the chosen origin and B is the end point.

A

B

A vector is defined by:

- It’s direction A→ 𝐵.
-It’s Magnitude AB 

𝐴𝐵
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The Unit Vector 

the unit vector of  vector Ԧ𝐴 : 𝑈𝐴 = 
Ԧ𝐴

Ԧ𝐴

the vector 𝑈𝐴 is unitary when it’s magnitude 𝑈𝐴 = 1.

Vector addition 
Ԧ𝑆 = 𝑉1 + 𝑉2

𝑉1 = 𝑥1Ԧ𝑖 + 𝑦1Ԧ𝑗 ,      𝑉2= 𝑥2Ԧ𝑖 + 𝑦2Ԧ𝑗

Ԧ𝑆 = (𝑥1+𝑥2)Ԧ𝑖 + ( 𝑦1 + 𝑦2)𝑗
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❖Commutative :  Ԧ𝑆 = 𝑉1 + 𝑉2 = 𝑉2 + 𝑉1 .

❖Associative :     𝑉1 + 𝑉2 + 𝑉3 = 𝑉1 + 𝑉2 + 𝑉3 .

❖Distributive : (a+b).𝑉1 = a.𝑉1 + b.𝑉1 ; a.( 𝑉1+𝑉2) = a.𝑉1+a.𝑉2

Example: Ԧ𝐴 = −5 Ԧ𝑖 + 7Ԧ𝑗 + 6𝑘 ; 𝐵 = 6Ԧ𝑖 + 4Ԧ𝑗 + 3𝑘

calculate ( Ԧ𝐴+𝐵 )

Solution:

Ԧ𝐴+𝐵 = (-5+6) Ԧ𝑖 +(7+4) Ԧ𝑗 +(6+3) 𝑘

=1 Ԧ𝑖 +11 Ԧ𝑗 + 9 𝑘



Vector substraction

𝐷 = 𝑉1 − 𝑉2 = 𝑉1 + (−𝑉2)

𝐷 = 𝑉1 − 𝑉2

𝑉1 = 𝑥1Ԧ𝑖 + 𝑦1Ԧ𝑗 ,      𝑉2= 𝑥2Ԧ𝑖 + 𝑦2Ԧ𝑗

𝐷 = (𝑥1−𝑥2)Ԧ𝑖 + ( 𝑦1 − 𝑦2)𝑗

* 𝑉1 − 𝑉2 ≠ 𝑉2 − 𝑉1

Chapter 1 
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Example: Ԧ𝐴 = −5 Ԧ𝑖 + 7Ԧ𝑗 + 6𝑘 ; 𝐵 = 6Ԧ𝑖 + 4Ԧ𝑗 + 3𝑘

calculate ( Ԧ𝐴 − 𝐵 )

Solution:

Ԧ𝐴 − 𝐵 = (-5-6) Ԧ𝑖 +(7-4) Ԧ𝑗 +(6-3) 𝑘 =-11 Ԧ𝑖 +3 Ԧ𝑗 + 3 𝑘

Components of a vector 
1- Lineare reference

𝑂𝑀 = 𝑥Ԧ𝑖
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2- Orthogonal reference

Ԧ𝑖 and Ԧ𝑗 the unit vector respectively in the directions of two axes (ox) and (oy).

We can write:

𝑉𝑥 = 𝑉𝑥Ԧ𝑖

𝑉𝑦 = 𝑉𝑦 Ԧ𝑗 𝑉= 𝑉𝑥 + 𝑉𝑦
𝑉= 𝑉𝑥Ԧ𝑖 +𝑉𝑦 Ԧ𝑗

𝑉 = V cos𝛼Ԧ𝑖 + 𝑉𝑠𝑖𝑛𝛼Ԧ𝑗

𝑉 = V( cos𝛼 Ԧ𝑖 + 𝑠𝑖𝑛𝛼𝑗)

𝑉 = V 𝑢
𝑢 =  cos𝛼 Ԧ𝑖 + 𝑠𝑖𝑛𝛼Ԧ𝑗
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3- Orthonorme reference

In the reference R(o,Ԧ𝑖, Ԧ𝑗, 𝑘) (orthonormal base)

𝑉= 𝑉𝑥 + 𝑉𝑦+ 𝑉𝑧 → 𝑉= 𝑉𝑥Ԧ𝑖+𝑉𝑦 Ԧ𝑗 + 𝑉𝑧𝑘

cos 𝜃 =
𝑉𝑧

𝑟
→ 𝑉𝑧= r cos 𝜃

sin 𝜃 =
𝜌

𝑟
→ 𝜌 = r 𝑠𝑖𝑛 𝜃

cosφ = 
𝑉𝑥

𝜌
→ 𝑉𝑥= 𝜌 cos 𝜑 → 𝑉𝑥= r sinθ cos 𝜑

sinφ = 
𝑉𝑦

𝜌
→ 𝑉𝑦= 𝜌 𝑠𝑖𝑛 𝜑 → 𝑉𝑦= r sinθ𝑠𝑖𝑛𝜑

𝑉= r sinθ cos𝜑 Ԧ𝑖 +r sinθ𝑠𝑖𝑛𝜑Ԧ𝑗 + r cos 𝜃 𝑘

𝑉 = r 𝑢

𝑢 = sinθ cos 𝜑 Ԧ𝑖 +sinθ𝑠𝑖𝑛𝜑Ԧ𝑗 + cos 𝜃 𝑘



The magnitude of a vector 

we have a vector Ԧ𝐴 Ԧ𝐴 = 𝑥Ԧ𝑖 + 𝑦Ԧ𝑗 + 𝑧𝑘

the magnitude of a vector Ԧ𝐴 : Ԧ𝐴 = 𝑥2 + 𝑦2 + 𝑧2 ≥ 0

Example: calculate the magnitude of 𝑉1 and 𝑉2
𝑉1 = 3 Ԧ𝑖 − 4Ԧ𝑗 + 4𝑘

𝑉2 = 2 Ԧ𝑖 + 3Ԧ𝑗 − 4𝑘
Solution:

𝑉1= 𝑉1 = 32 + (−4)2+42 = 41

𝑉2= 𝑉2 = 22 + 32 + (−4)2 = 29

Chapter 1 
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Scalar product
1- Geometrical form: 

We have: 𝑉1 and   𝑉2

𝑉1. 𝑉2 = 𝑉1 . 𝑉2 . 𝑐𝑜𝑠𝜃

2- Analytical form: 

We have:      

𝑉1 = 𝑥1Ԧ𝑖 + 𝑦1Ԧ𝑗 + 𝑧1𝑘

𝑉2 = 𝑥2Ԧ𝑖 + 𝑦2Ԧ𝑗 + 𝑧2𝑘

𝑉1. 𝑉2 = 𝑥1𝑥2 + 𝑦1𝑦2 + 𝑧1𝑧2
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Scalar product
Example:

𝑉1 = 4Ԧ𝑖 + 5Ԧ𝑗 + 3𝑘 , 𝑉2 = −2Ԧ𝑖 + 6Ԧ𝑗

Calculate the scalar product  𝑉1. 𝑉2

Solution: 

𝑉1. 𝑉2 = 𝑥1𝑥2 + 𝑦1𝑦2 + 𝑧1𝑧2
𝑉1. 𝑉2 = (4×(-2))+( +5 × 6) + 3 × 0

𝑉1. 𝑉2 = 30.
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Properties of Scalar product

▪ 𝑉1. 𝑉2 = 𝑉1 . 𝑉2 . 𝑐𝑜𝑠𝜃 = 𝑉2 . 𝑉1 . cos(−𝜃)֜𝑉1. 𝑉2 = 𝑉2. 𝑉1
▪ 𝑉1. 𝑉2 + 𝑉3 = 𝑉1. 𝑉2 + 𝑉1. 𝑉3

▪ 𝑉1 ± 𝑉2
2
= 𝑉1

2 + 𝑉2
2 ± 2𝑉1𝑉2𝑐𝑜𝑠𝜃

▪ 𝑉1 ⊥ 𝑉2֜𝑉1. 𝑉2 = 0

Projecting a vector 

The projection of the vector 𝑉2 onto 𝑉1 is given by the following relation:

𝑝𝑟𝑜𝑗 𝑉2/𝑉1 = 𝑉2 . 𝑐𝑜𝑠𝜃
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Projecting a vector
Let’s have this figure here

Cos(𝜃) =
| 𝐾𝑣 |

||𝑊||
and  also Cos(𝜃) =

𝑊 . 𝑉

𝑊 .| 𝑉 |
(proven formula)

𝑊 . 𝑉

𝑊 .| 𝑉 |
= 
| 𝐾𝑣 |

||𝑊 ||
||Kv|| = 

𝑊 . 𝑉

| 𝑉 |

Kv = ||Kv||. i           and       i = 
𝑉

| 𝑉 |
( here V and Kv have the same unit vector)

Kv = 
𝑊 . 𝑉

| 𝑉 |
. 

𝑉

| 𝑉 |
= 
𝑊 .𝑉 .𝑉

||𝑉||2
proj(W ,V)  = 

𝑊 .𝑉 .𝑉

||𝑉||2

i
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Cross product

1- Geometrical form: 

The cross product of two vectors   𝑉1 and 𝑉2

Is another vector 𝑃 perpendicular to the plane which carries these two vectors.                                                                                                                     

𝑃 = 𝑉1⋀𝑉2 = 𝑉1 . 𝑉2 . 𝑠𝑖𝑛𝜃.𝑢

Where 𝑢 is the unit vector perpendecular to the plane formed by 𝑉1 and 𝑉2

𝑉1

𝜃

𝑉2

𝑃 = 𝑉1⋀𝑉2

𝒖
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Cross product

Properties of cross product:    

▪ The magnitude of cross product: 𝑃 = 𝑉1⋀𝑉2 = 𝑉1 . 𝑉2 . 𝑠𝑖𝑛𝜃

▪ Anticommutative : 𝑉1⋀𝑉2 = − 𝑉2⋀𝑉1
▪ Distributive : : 𝑉1⋀ 𝑉2 ± 𝑉3 = 𝑉1⋀𝑉2 ± 𝑉1⋀𝑉3
▪ 𝑉1 ∕∕ 𝑉2 then          𝑉1⋀𝑉2 = 0

▪ 𝑉1 ⫠ 𝑉2 then 𝑉1⋀𝑉2 = 𝑉1 . 𝑉2
▪ Ԧ𝑖 ⋀ 𝑖 = Ԧ𝑗 ⋀ 𝑗 = 𝑘 ⋀ 𝑘 = 0 and    Ԧ𝑖 ⋀ 𝑗 = 𝑘, Ԧ𝑗 ⋀ 𝑘 = Ԧ𝑖, 𝑘 ⋀ 𝑖 = Ԧ𝑗

2- Analytical form: 

we have    𝑉1

𝑥1
𝑦1
𝑧1

and 𝑉2

𝑥1
𝑦1
𝑧1

, with the matrix method 
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𝑉1 ∧ 𝑉2 =
𝑖 − Ԧ𝑗 𝑘
𝑥1 𝑦1 𝑧1
𝑥2 𝑦2 𝑧2

= 𝑦1𝑧2 − 𝑧1𝑦2 . Ԧ𝑖 − 𝑥1𝑧2 − 𝑧1𝑥2 . Ԧ𝑗 + 𝑥1𝑦2 − 𝑦1𝑥2 . 𝑘

Example: 

Ԧ𝐴 = Ԧ𝑖 + 5Ԧ𝑗 + 8𝑘 ; 𝐵 = 3Ԧ𝑖 + 2Ԧ𝑗 + 4𝑘

Calculate the vector product Ԧ𝐴 ∧ 𝐵

Ԧ𝐴 ∧ 𝐵 =
𝑖 − Ԧ𝑗 𝑘
1 5 8
3 2 4

=  (5 × 4 - 2× 8)Ԧ𝑖 -(1× 4 − 3 × 8) Ԧ𝑗 +(1× 2 − 3 × 5)𝑘

Ԧ𝐴 ∧ 𝐵 = 4𝑖 + 20Ԧ𝑗 − 13𝑘
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Magnitude of Cross product

The magnitude of the vector product of two vectors

Ԧ𝐴 and 𝐵 represents the surface of a constructed parallelogram on its two vectors:

S = h . | 𝐵 |                   

h = | Ԧ𝐴 |.sin 𝜃

S = | Ԧ𝐴 |.| 𝐵 |.sin 𝜃

S = | Ԧ𝐴 ⋀ 𝐵 |
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Mixed product

the mixed product of three vectors 𝑉1 ; 𝑉2 and 𝑉3 is the scalar quantity defined by:

𝑉1. 𝑉2 ∧ 𝑉3 =

𝑥1 − 𝑦1 𝑧1
𝑥2 𝑦2 𝑧2
𝑥3 𝑦3 𝑧3

= 𝑦2𝑧3 − 𝑧2𝑦3 𝑥1 − 𝑥2𝑧3 − 𝑧2𝑥3 𝑦1 + 𝑥2𝑦3 − 𝑦2𝑥3 𝑧1

▪ 𝑉1. 𝑉2 ∧ 𝑉3 = 𝑉3. 𝑉1 ∧ 𝑉2 = 𝑉2. 𝑉3 ∧ 𝑉1
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Double vector product

Double vector product of three vectors Ԧ𝐴 ; 𝐵 and Ԧ𝐶 is defined by a vector 𝐷:

𝐷 = Ԧ𝐴 ∧ 𝐵 ∧ Ԧ𝐶 = Ԧ𝐴. Ԧ𝐶 . 𝐵 − Ԧ𝐴. 𝐵 . Ԧ𝐶.

𝐷 = Ԧ𝐴 ∧ 𝐵 ∧ Ԧ𝐶 = − Ԧ𝐶. 𝐵 . Ԧ𝐴 + 𝐶. Ԧ𝐴 . 𝐵

Example: 

Ԧ𝑎 = 1Ԧ𝑖 + 1Ԧ𝑗 + 3𝑘 / 𝑏 = 2Ԧ𝑖 − 3Ԧ𝑗 + 1𝑘 / Ԧ𝑐 = 1Ԧ𝑖 − 1Ԧ𝑗 + 2𝑘

calculate the double vector product 𝐷 = Ԧ𝐴 ∧ 𝐵 ∧ Ԧ𝐶 ?

Solution: 

Ԧ𝐴. Ԧ𝐶 . 𝐵 =(1*1-1*1+3*2) . 𝐵 =6(2Ԧ𝑖 − 3Ԧ𝑗 + 1𝑘) = 12Ԧ𝑖 − 18Ԧ𝑗 + 6𝑘

Ԧ𝐴. 𝐵 . Ԧ𝐶 =(1*2-1*3+3*1). Ԧ𝐶 = 2(1Ԧ𝑖 − 1Ԧ𝑗 + 2𝑘) = 2Ԧ𝑖 − 2Ԧ𝑗 + 4𝑘

𝐷 = 12Ԧ𝑖 − 18Ԧ𝑗 + 6𝑘 - (2Ԧ𝑖 − 2Ԧ𝑗 + 4𝑘)  = 10Ԧ𝑖 − 16Ԧ𝑗 + 2𝑘
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Moment vector 𝑉 with respect to a point O :

The moment of a vector V1 which passes through point A, by contribution to a point O is

defined by the vector M such that:

ℳ Τ𝑉 𝑂 = 𝑂𝐴 ∧ 𝑉

Moment vector 𝑉 with respect to axis (∆):

ℳ Τ𝑉 ∆ = ℳ Τ𝑉 𝑂 = 𝑂𝐴 ∧ 𝑉 . 𝑢∆
𝑢∆: the unit vector de l’axis (∆).

A

B

𝑉

𝑢∆
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Derivative of a vector

Let a vector 𝑉 depend on time (t):

𝑉 𝑡 = 𝑥 𝑡 Ԧ𝑖 + 𝑦 𝑡 Ԧ𝑗 + 𝑧 𝑡 𝑘

The derivative of the vector 𝑉 with respect to time is defined as follows:

𝑑𝑉

𝑑𝑡
=
𝑑𝑥

𝑑𝑡
Ԧ𝑖 +

𝑑𝑦

𝑑𝑡
Ԧ𝑗 +

𝑑𝑧

𝑑𝑡
𝑘



▪
𝑑

𝑑𝑡
Ԧ𝐴 + 𝐵 =

𝑑 Ԧ𝐴

𝑑𝑡
+

𝑑𝐵

𝑑𝑡

▪
𝑑

𝑑𝑡
𝑓. Ԧ𝐴 =

𝑑𝑓

𝑑𝑡
+ 𝑓.

𝑑 Ԧ𝐴

𝑑𝑡

▪
𝑑

𝑑𝑡
Ԧ𝐴. 𝐵 =

𝑑 Ԧ𝐴

𝑑𝑡
. 𝐵 + 𝐴.

𝑑𝐵

𝑑𝑡

▪
𝑑

𝑑𝑡
Ԧ𝐴⋀𝐵 =

𝑑 Ԧ𝐴

𝑑𝑡
⋀𝐵 + 𝐴⋀

𝑑𝐵

𝑑𝑡

Chapter 1 
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Vector analysis

❑ Operator « nabla »

𝛻 =
𝜕

𝜕𝑥
Ԧ𝑖 +

𝜕

𝜕𝑦
Ԧ𝑗 +

𝜕

𝜕𝑧
𝑘

❑ Operator « gradient »

if  f (x,y,z) is a scalar function 

𝑔𝑟𝑎𝑑 𝑓 = 𝛻𝑓 =
𝜕𝑓

𝜕𝑥
Ԧ𝑖 +

𝜕𝑓

𝜕𝑦
Ԧ𝑗 +

𝜕𝑓

𝜕𝑧
𝑘

❑ Operator « divergence »

Let a vector 𝑉 = 𝑉𝑥Ԧ𝑖 + 𝑉𝑦 Ԧ𝑗 + 𝑉𝑧𝑘

𝑑𝑖𝑣𝑉 = 𝛻. 𝑉 =
𝜕𝑉𝑥
𝜕𝑥

+
𝜕𝑉𝑦

𝜕𝑦
+
𝜕𝑉𝑧
𝜕𝑧
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Vector analysis

❑ Operator « curl »

a vector function  𝑉 = 𝑉𝑥Ԧ𝑖 + 𝑉𝑦 Ԧ𝑗 + 𝑉𝑧𝑘

𝑟𝑜𝑡 𝑉 = 𝛻 ∧ 𝑉 =
𝜕𝑉𝑧
𝜕𝑦

−
𝜕𝑉𝑦
𝜕𝑧

𝑖 −
𝜕𝑉𝑧
𝜕𝑥

−
𝜕𝑉𝑥
𝜕𝑧

𝑗 +
𝜕𝑉𝑦
𝜕𝑥

−
𝜕𝑉𝑥
𝜕𝑦

𝑘

Explanation:

𝑟𝑜𝑡 𝑉 =

+𝑖 − 𝑗 + 𝑘
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝑉𝑥 𝑉𝑦 𝑉𝑧

= A+B+C
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Vector analysis

𝐴 =

+𝑖
𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝑉𝑦 𝑉𝑧

= 
𝜕𝑉𝑧

𝜕𝑦
−

𝜕𝑉𝑦

𝜕𝑧
𝑖

𝐵 =

−𝑗
𝜕

𝜕𝑥

𝜕

𝜕𝑧

𝑉𝑥 𝑉𝑧

= −
𝜕𝑉𝑧

𝜕𝑥
−

𝜕𝑉𝑥

𝜕𝑧
𝑗

𝐵 =

+𝑘
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝑉𝑥 𝑉𝑦

= 
𝜕𝑉𝑦

𝜕𝑥
−

𝜕𝑉𝑥

𝜕𝑦
𝑘
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Vector analysis

𝑐𝑢𝑟𝑙 𝑉 =

+𝑖 − 𝑗 + 𝑘
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝑉𝑥 𝑉𝑦 𝑉𝑧

= 
𝜕𝑉𝑧

𝜕𝑦
−

𝜕𝑉𝑦

𝜕𝑧
𝑖 −

𝜕𝑉𝑧

𝜕𝑥
−

𝜕𝑉𝑥

𝜕𝑧
𝑗 +

𝜕𝑉𝑦

𝜕𝑥
−

𝜕𝑉𝑥

𝜕𝑦
𝑘

Example: Calculate the curl of vector :

𝑉 =  2xy 𝑖 + 3y𝑧2 𝑗 + 9x𝑦3𝑘
Solution:

𝑐𝑢𝑟𝑙 𝑉 = (27x 𝑦2 - 6yz) 𝑖 - (9𝑦3 - 0) 𝑗 +(0 - 2x)𝑘

𝑐𝑢𝑟𝑙 𝑉 = (27x 𝑦2 - 6yz) 𝑖 - 9𝑦3𝑗 - 2x 𝑘
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Vector analysis

❑ Operator « laplacien »

the laplacien of a scalar function is given by the following

relation:               𝛻2. 𝑓 = 𝛻. 𝛻 𝑓 =
𝜕2𝑓

𝜕𝑥2
+

𝜕2𝑓

𝜕𝑦2
+

𝜕2𝑓

𝜕𝑧2

the laplacien of a vector function is given by the following

relation:               𝛻2. 𝑉 = 𝛻. 𝛻 𝑉 =
𝜕2𝑉𝑥

𝜕𝑥2
𝑖 +

𝜕2𝑉𝑦

𝜕𝑦2
Ԧ𝑗 +

𝜕2𝑉𝑧

𝜕𝑧2
𝑘
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