Course of Analysis I Chapter I: Properties of the set \mathbb{R}

Academic Year 2025-2026

Contents

1	Introduction	2
2	Common Number Sets	2
3	Intervals in $\mathbb R$	2
4	Upper Bound, Lower Bound, and Bounded Sets	2
5	Maximum and Minimum Element	3
6	Supremum and Infimum	4
7	Absolute Value7.1 Properties of Absolute Value7.2 Usual Distance on \mathbb{R}	5 5
8	Integer Part (Floor Function)	6
9	Exercicse	7

1 Introduction

In mathematics, the real numbers, denoted by \mathbb{R} , are all numbers that belong to either the set of rational numbers or the set of irrational numbers. The set \mathbb{R} is a totally ordered field and additionally satisfies the least upper bound property that underlies real analysis.

2 Common Number Sets

We recall the usual notations for number sets:

- \mathbb{N} is the set of natural numbers: $\{0, 1, 2, \ldots\}$.
- \mathbb{Z} is the set of integers: $\{\ldots, -2, -1, 0, 1, 2, \ldots\}$.
- \mathbb{Q} is the set of rational numbers, i.e. $\mathbb{Q} = \left\{ \frac{a}{b} \mid a \in \mathbb{Z}, b \in \mathbb{N} \setminus \{0\} \right\}$.
- \mathbb{R} denotes the set of real numbers, with the inclusions $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$.
- The set $\mathbb{R} \setminus \mathbb{Q}$ is called the set of irrational numbers.
- For each of these sets, adding the superscript * means we exclude zero from the set: \mathbb{N}^* , \mathbb{Z}^* , \mathbb{Q}^* , and \mathbb{R}^* .

3 Intervals in \mathbb{R}

Let a, b be two real numbers. We define the following sets, called intervals of \mathbb{R}

$$[a,b] = \{x \in \mathbb{R} : a \le x \le b\}, \quad [a,b[=\{x \in \mathbb{R} : a \le x < b\}] \\ [a,b] = \{x \in \mathbb{R} : a < x \le b\}, \quad]a,b[=\{x \in \mathbb{R} : a < x < b\}] \\ [a,+\infty[=\{x \in \mathbb{R} : a \le x\}, \quad]-\infty,b] = \{x \in \mathbb{R} : x \le b\} \\ [a,+\infty[=\{x \in \mathbb{R} : a \le x\}, \quad]-\infty,b[=\{x \in \mathbb{R} : x \le b\}] \\ [a,+\infty[=\{x \in \mathbb{R} : a \le x\}, \quad]-\infty,b[=\{x \in \mathbb{R} : x \le b\}] \\ [a,+\infty[=\{x \in \mathbb{R} : a \le x\}, \quad]-\infty,b[=\{x \in \mathbb{R} : x \le b\}] \\ [a,+\infty[=\{x \in \mathbb{R} : a \le x\}, \quad]-\infty,b[=\{x \in \mathbb{R} : x \le b\}] \\ [a,+\infty[=\{x \in \mathbb{R} : a \le x\}, \quad]-\infty,b[=\{x \in \mathbb{R} : x \le b\}] \\ [a,+\infty[=\{x \in \mathbb{R} : a \le x\}, \quad]-\infty,b[=\{x \in \mathbb{R} : x \le b\}] \\ [a,+\infty[=\{x \in \mathbb{R} : a \le x\}, \quad]-\infty,b[=\{x \in \mathbb{R} : x \le b\}] \\ [a,+\infty[=\{x \in \mathbb{R} : a \le x\}, \quad]-\infty,b[=\{x \in \mathbb{R} : x \le b\}] \\ [a,+\infty[=\{x \in \mathbb{R} : a \le x\}, \quad]-\infty,b[=\{x \in \mathbb{R} : x \le b\}] \\ [a,+\infty[=\{x \in \mathbb{R} : a \le x\}, \quad]-\infty,b[=\{x \in \mathbb{R} : x \le b\}] \\ [a,+\infty[=\{x \in \mathbb{R} : a \le x\}, \quad]-\infty,b[=\{x \in \mathbb{R} : x \le b\}] \\ [a,+\infty[=\{x \in \mathbb{R} : a \le x\}, \quad]-\infty,b[=\{x \in \mathbb{R} : x \le b\}] \\ [a,+\infty[=\{x \in \mathbb{R} : a \le x\}, \quad]-\infty,b[=\{x \in \mathbb{R} : x \le b\}] \\ [a,+\infty[=\{x \in \mathbb{R} : a \le x\}, \quad]-\infty,b[=\{x \in \mathbb{R} : x \le b\}] \\ [a,+\infty[=\{x \in \mathbb{R} : a \le x\}, \quad]-\infty,b[=\{x \in \mathbb{R} : x \le b\}] \\ [a,+\infty[=\{x \in \mathbb{R} : a \le x\}, \quad]-\infty,b[=\{x \in \mathbb{R} : x \le b\}] \\ [a,+\infty[=\{x \in \mathbb{R} : a \le x\}, \quad]-\infty,b[=\{x \in \mathbb{R} : x \le b\}] \\ [a,+\infty[=\{x \in \mathbb{R} : a \le x\}, \quad]-\infty,b[=\{x \in \mathbb{R} : x \le b\}] \\ [a,+\infty[=\{x \in \mathbb{R} : a \le x\}, \quad]-\infty,b[=\{x \in \mathbb{R} : x \le b\}]$$

4 Upper Bound, Lower Bound, and Bounded Sets

Definition 1. Let E be a non-empty subset of \mathbb{R}

1) An element $M \in \mathbb{R}$ is called an upper bound of the set E if and only if

$$\forall x \in E : x < M.$$

In this case, E is said to be upper bounded.

2) An element $m \in \mathbb{R}$ is called a lower bound of the set E if and only if

$$\forall x \in E : x > m$$
.

In this case, E is said to be lower bounded.

3) The set E is said to be bounded if it is both upper and lower bounded; that is,

$$\exists m, M \in \mathbb{R} : \forall x \in E, \quad m \le x \le M.$$

Example 1. Let

$$E =]1, 4[, A = [0, +\infty).$$

Determine (if they exist) the upper bounds and lower bounds of E and A. We have:

- Upper bounds of]1,4[are: $[4,+\infty[$.
- Lower bounds of]1,4[are:] $-\infty$, 1].
- There are no upper bounds of $[0, +\infty[$.
- Lower bounds of $[0, +\infty[$ are $]-\infty, 0]$.

5 Maximum and Minimum Element

Definition 2. Let E be a non-empty subset of \mathbb{R}

1) An element $a \in E$ is called the maximum of E if and only if

$$\forall x \in E : x \le a.$$

We write $\max E = a$.

2) An element $b \in E$ is called the minimum of E if and only if

$$\forall x \in E : b \le x.$$

We write $\min E = b$.

Example 2. Consider the sets: $A = [0, 1), B = \{-3, 2, 5, 8\}.$

- The maximum element of A does not exist.
- The minimum element of A is: $\min A = 0$.
- The maximum element of B is: $\max B = 8$.
- The minimum element of B is: $\min B = -3$.

6 Supremum and Infimum

Definition 3. Let E be a non-empty subset of \mathbb{R}

- 1) The supremum (least upper bound) of E is defined as the minimum of the set of upper bounds of E.
- 2) The infimum (greatest lower bound) of E is defined as the maximum of the set of lower bounds of E.

Theorem 1.3 (Supremum and Infimum Theorem)

- 1) Every non-empty and bounded above subset of \mathbb{R} admits a supremum.
- 2) Every non-empty and bounded below subset of \mathbb{R} admits an infimum.

Example 3. *Let* A = [-1, 1].

- The upper bounds of A are: $[1, +\infty)$.
- The lower bounds of A are: $(-\infty, -1]$.
- The supremum of A is: $\sup(A) = 1$.
- The infimum of A is: $\inf(A) = -1$.
- The greatest element of A is: max(A) = 1.
- The smallest element of A is: min(A) = -1.

non-empty subset of \mathbb{R} that is bounded below has an infimum.

- **Remark 1.** 1. If the maximum $\max A$ (respectively, minimum $\min A$) exists, then $\sup A = \max A$ (respectively, $\inf A = \min A$).
 - 2. If the supremum $\sup A$ (respectively, infimum $\inf A$) belongs to A, then $\max A = \sup A$ (respectively, $\min A = \inf A$).
 - 3. If the supremum $\sup A$ (respectively, infimum $\inf A$) does not belong to A, then the maximum $\max A$ (respectively, minimum $\min A$) does not exist.

Note: The supremum of a bounded above set A (respectively, the infimum of a bounded below set A) always exists but may not belong to A. On the other hand, the maximum of a bounded above set (respectively, the minimum of a bounded below set) may not exist.

Example 4. Let A =]-4, 6], a bounded subset of \mathbb{R} : We have the following properties:

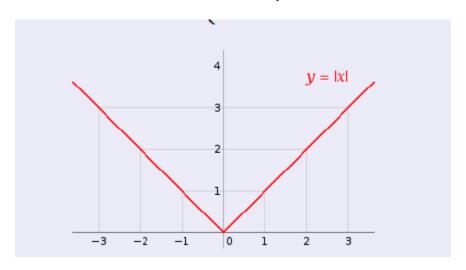
- The upper bounds of A are: $[6, +\infty[$.
- The lower bounds of A are: $]-\infty, -4]$.
- The maximum element of A is: max(A) = 6.

- The minimum element of A does not exist because $-4 \notin A$.
- The supremum of A is: $\sup(A) = 6$.
- The infimum of A is: $\inf(A) = -4$.

7 Absolute Value

Definition 4. The absolute value is a mapping from \mathbb{R} to the set of non-negative real numbers \mathbb{R}^+ , denoted by $|\cdot|$ and defined by:

$$|\cdot|: \mathbb{R} \to \mathbb{R}^+, \quad x \mapsto |x| = \begin{cases} x & \text{if } x \ge 0, \\ -x & \text{if } x < 0. \end{cases}$$



Example 5. We have:

$$|7| = 7, \quad |-3| = -(-3) = 3.$$

For any $x \in \mathbb{R}$,

$$|x-1| = \begin{cases} x-1 & \text{if } x \ge 1, \\ -(x-1) = -x+1 & \text{if } x < 1. \end{cases}$$

7.1 Properties of Absolute Value

- 1. $\forall x \in \mathbb{R} : |x| = \max\{-x, x\}.$
- $2. \ \forall x \in \mathbb{R} : |-x| = |x|.$
- 3. $\forall x \in \mathbb{R} : (|x| = 0) \iff (x = 0).$
- 4. $\forall x, y \in \mathbb{R} : |xy| = |x| \cdot |y|$.
- 5. $\forall x \in \mathbb{R}, \forall n \in \mathbb{N} : |x^n| = |x|^n$.

- 6. $\forall x, y \in \mathbb{R} : |x + y| \le |x| + |y|$ (First triangle inequality).
- 7. $\forall x, y \in \mathbb{R} : ||x| |y|| \le |x y|$ (Second triangle inequality).

7.2 Usual Distance on \mathbb{R}

Definition 5. The usual distance on \mathbb{R} is the function

$$d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}^+, \quad d(x, y) = |x - y|,$$

where d(x,y) is called the distance between x and y.

Properties:

- 1. $\forall x, y \in \mathbb{R} : (d(x, y) = 0 \iff x = y).$
- 2. $\forall x, y \in \mathbb{R} : d(x, y) = d(y, x)$.
- 3. $\forall x, y, z \in \mathbb{R} : d(x, z) \le d(x, y) + d(y, z)$.

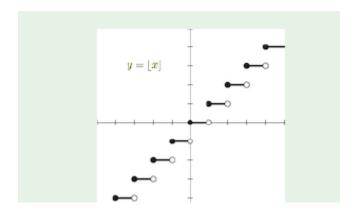
8 Integer Part (Floor Function)

Definition 6. For every real number $x \in \mathbb{R}$, there exists a unique integer $[x] \in \mathbb{Z}$ such that:

$$[x] \le x < [x] + 1.$$

The integer [x] is called the integer part or floor of the real number x, and is denoted also by E(x).

Example 6. 1) $\lfloor 3.640869 \rfloor = 3$, $\lfloor -3.640869 \rfloor = -4$.



2)
$$[1.5] = 1, [4] = 4, [3.7] = 3,$$

$$[-1.5] = -2, \quad [1.9] = 1, \quad [-3.7] = -4.$$

Properties

Let $x \in \mathbb{R}$. Then we have:

1.
$$[x] \le x < [x] + 1$$
.

2.
$$x - 1 < [x] \le x$$
.

3.
$$([x] = x) \iff (x \in \mathbb{Z}).$$

4.
$$\forall n \in \mathbb{Z} : \lfloor x + n \rfloor = n + \lfloor x \rfloor$$
.

5.
$$\forall x, y \in \mathbb{R}, [x] + [y] \le [x + y] \le [x] + [y] + 1,$$

6.
$$x \le y \implies [x] \le [y]$$
.

9 Exercicse

Exercice 1. Let E be the set defined by

$$E = \left\{ \frac{1}{x^2 + 1} \mid x \in]0, 1] \right\}.$$

Show that E is bounded.

We have:

$$x \in]0,1] \implies 0 < x < 1 \implies 0 < x^2 < 1 \implies 1 < 1 + x^2 < 2.$$

Therefore,

$$\frac{1}{2} \le \frac{1}{1+x^2} < 1.$$

Thus, for every $a \in E$, we have

$$\frac{1}{2} \le a < 1,$$

which shows that E is bounded. Moreover, we have:

- The upper bounds (majorants) of E are: $[1, +\infty[$.
- The lower bounds (minorants) of E are: $]-\infty, \frac{1}{2}]$.
- The supremum of E is: $\sup(E) = 1$.
- The infimum of E is: $\inf(E) = \frac{1}{2}$.
- ullet The greatest element of E does not exist.
- The smallest element of E is: $\min E = \frac{1}{2}$.