TABLE DES MATIÈRES

Introduction générale								
1	Me	thods	of mathematical reasoning					
	1.1	Mathe	ematical Logic					
		1.1.1	Assertions					
		1.1.2	Mathematical logical operators					
		1.1.3	Quantifiers					
	1.2	Reaso	nings					
		1.2.1	Direct reasoning					
		1.2.2	Reasoning by contraposition					
		1.2.3	Reasoning by the absurd					
		1.2.4	Reasoning by counter example					
		1.2.5	Reasoning by recurrence					

_Introduction générale

1.1 Mathematical Logic

1.1.1 Assertions

An assertion is a sentence that is either true or false, not both at the same time.

Exemple 1.1.1 (a) 2+2=4 is a true assertion.

(b) For every $z \in \mathbb{C}$ we have |z| = 1 is a false assertion.

1.1.2 Mathematical logical operators

If P is an assertion and Q is another assertion, we will define new assertions constructed from P and Q.

The logical operator and (\wedge)

The assertion $<<\!P$ et Q>> is true if P is true and Q is true. The assertion $<\!<\!P$ et Q>> is false otherwise. We summarize this in a truth table :

P	Q	$P \wedge Q$
T	Т	T
T	F	F
F	Т	F
F	F	F

(a) $(3+5=8) \land (3 \times 6 = 18)$ is a true assertion.

(b) $(2+2=4) \land (2 \times 3 = 7)$ is a false assertion.

The logical operator or (\vee)

The assertion $\langle P \text{ or } Q \rangle$ is true if one of the two assertions P or Q is true. The assertion $\langle P \text{ or } Q \rangle$ is false if both assertions P and Q are false. We repeat this in the truth table :

P	Q	$P \lor Q$
Т	T	Т
Т	F	Т
F	T	Т
F	F	F

Exemple 1.1.2 (a) (2+2 = 4 ∨ 3 × 2) = 6 is a true assertion.
(b) (2 = 4 ∨ 4 × 2 = 7) is a false assertion.

Negation $\overline{\mathbf{P}}$

The assertion $\overline{\mathbf{P}}$ is true if *P* is false, and false if *P* is true.

P	\overline{P}
T	F
F	T

Exemple 1.1.3 The negation of the assertion $3 \ge 0$ she is the assertion 3 < 0.

Implication \implies

The mathematical definition is as follows : The assertion (\overline{P} Or Q) is noted $\langle \langle P \implies Q \rangle \rangle$ Its truth table is therefore the following :

P	Q	$P \implies Q$
T	T	Т
T	F	F
F	Т	Т
F	F	Т

Exemple 1.1.4 $2 + 2 = 5 \Rightarrow \sqrt{2} = 2$ is true! Yes, if P is false then the assertion $P \Rightarrow Q$ is always true.

Equivalence \iff

Equivalence is defined by $(P \iff Q)$ is the assertion $(P \implies Q)$ and $(Q \implies P)$. We will say (P is equivalent to Q) or (P if and only if Q).

This assertion is true when P and Q are true or when P and Q are false.

The truth table is :

P	Q	$P \iff Q$
T	T	Т
T	F	F
F	T	F
F	F	Т

Exemple 1.1.5 For $x, x' \in \mathbb{R}$, Equivalence $x \cdot x' = 0 \iff x = 0$ or x' = 0 is true.

1.1.3 Quantifiers

The quantifier \forall : "for every "

The assertion

$$\forall x \in E, \ P(x)$$

is a true assertion when the assertions P(x) are true for all elements x of the

set E. We read : For all x in E, P(x) is true.

Exemple 1.1.6 (a) $\forall x \in \mathbb{R}, x^2 \ge 0$ is a true assertion.

(b) $\forall x \in \mathbb{R}, x^2 \ge 1$ is a false assertion.

The quantifier \exists : "there exists "

The assertion

$$\exists x \in E, P(x)$$

is a true assertion when we can find at least one element x of E for which P(x) is true.

We read : there exists x in E such that P(x) (be true).

Exemple 1.1.7 (a) $\exists x \in \mathbb{R}, x^2 \leq 0$ is true, for example x = 0. (b) $\exists x \in \mathbb{R}, x^2 < 0$ is false.

The negation of quantifiers

The negation of $(\forall x \in E, P(x))$ is $(\exists x \in E, \overline{P(x)})$. The negation of $(\exists x \in E, P(x))$ is $(\forall x \in E, \overline{P(x)})$.

1.2 Reasonings

1.2.1 Direct reasoning

We want to show that the assertion $P \Rightarrow Q$ is true. We assume that P is true and we show that then Q is true.

Exemple 1.2.1 Let $a, b \in \mathbb{R}$, Show that $a = b \Rightarrow \frac{a+b}{2} = b$. Let's take a = b, then $\frac{a}{2} = \frac{b}{2}$, so

$$\frac{a}{2} + \frac{b}{2} = \frac{b}{2} + \frac{b}{2}$$
$$\Rightarrow \frac{a+b}{2} = b$$

1.2.2 Reasoning by contraposition

Reasoning by contraposition is based on the following equivalence : The assertion $(P \Rightarrow Q)$ is equivalent to $(\overline{Q} \Rightarrow \overline{P})$

$$(P \Rightarrow Q) \Leftrightarrow (\overline{Q} \Rightarrow \overline{P})$$

Exemple 1.2.2 Let $x \in \mathbb{R}$. Show that

$$\underbrace{x \neq 2 \text{ and } x \neq -2}_{P} \Rightarrow \underbrace{x^2 \neq 4}_{Q}$$

Demonstration

By contraposition this is equivalent to

$$\underbrace{x^2 = 4}_{\overline{Q}} \Rightarrow \underbrace{x = 2 \text{ or } x = -2}_{\overline{P}}$$

Indeed, let's take $x^2 = 4$, then (x - 2)(x + 2) = 0, so x = 2 or x = -2.

Exemple 1.2.3 Let $n \in \mathbb{N}$. Show that if n^2 is even then n is even.

Demonstration

By contraposition, we assume that n is not **even**. We want to show that then n^2 is not even. As n is not even, it is **odd** and therefore there exists $k \in \mathbb{N}$ such that n = 2k + 1.

Then $n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2k' + 1$, with $k' = 2k^2 + 2k \in \mathbb{N}$. So n^2 is odd.

Conclusion : we have shown that if n is odd \Rightarrow n² is odd. By contraposition, this is equivalent to : If n² is even \Rightarrow n is even.

1.2.3 Reasoning by the absurd

The reasoning by the absurd to show $P \Rightarrow Q$, is based on the following principle : We suppose both that P is true and that Q is false and we search a contradiction. So if P is true then Q must be true and therefore $P \Rightarrow Q$ is true.

Exemple 1.2.4 Let a; b > 0. Show that if $\frac{a}{1+b} = \frac{b}{1+a} \Rightarrow a = b$. Demonstration

We reason with the absurd assuming that $\frac{a}{1+b} = \frac{b}{1+a}$ et $a \neq b$. This leads to

$$\begin{pmatrix} \frac{a}{1+b} = \frac{b}{1+a} \end{pmatrix} \Leftrightarrow a(1+a) = b(1+b) \\ \Leftrightarrow a^2 - b^2 = -(a-b) \\ \Leftrightarrow (a-b)(a+b) = -(a-b)$$

As $a \neq b$ then $a - b \neq 0$ and therefore dividing by a - b we obtain

$$a + b = -1$$

The sum of two positive numbers cannot be negative. We get a contradiction. So we conclude

If
$$\frac{a}{1+b} = \frac{b}{1+a}$$
 then $a \neq b$.

1.2.4 Reasoning by counter example

If we want to show that an assertion of the type $(\forall x \in E, P(x))$ is true then for each x of E we must show that P(x) is true. On the other hand, to show that this assertion is false then it is enough to find $x \in E$ such that P(x) is false.

Exemple 1.2.5 Show that the following statement is false

$$\forall x \in \mathbb{R}, x^2 - 1 > 1.$$

A counter example is $x = 0 \in \mathbb{R}$, because $(0)^2 - 1 > 1$ is false.

1.2.5 Reasoning by recurrence

The principle of recurrence allows us to show that an assertion P(n), depending on n, is true for all $n \in \mathbb{N}$.

The recurrence demonstration is done in two steps :

- i) We prove P(0) is true.
- ii) We assume $n \ge 0$ given with P(n) true, and we then demonstrate that the assertion P(n+1) is true.

Finally, in the conclusion, we recall that by the principle of recurrence P(n) is true for all $n \in \mathbb{N}$.

Exemple 1.2.6 Show that for all $n \in \mathbb{N} : 2^n > n$.

Demonstration

Let us note :

$$P(n): 2^n > n$$
, for all $n \in \mathbb{N}$.

We will demonstrate by recurrence that P(n) is true for all $n \in \mathbb{N}$.

i) For n = 0 we have $2^0 = 1 > 0$, so P(0) is true.

- ii) Let $n \in \mathbb{N}$, suppose P(n) is true. We will show that P(n+1) is true.
 - $2^{n+1} = 2^n + 2^n$ $\geq n+2^n, \text{ because by } P(n) \text{ we know that } 2^n > n;$ $\geq n+1, \text{ because } 2^n \geq 1.$

So P(n+1) is true.