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CHAPITRE 1

Methods of mathematical reasoning

1.1 Mathematical Logic

1.1.1 Assertions

An assertion is a sentence that is either true or false, not both at the same

time.

Exemple 1.1.1 (a) 2 + 2 = 4 is a true assertion.

(b) For every z 2 C we have jzj = 1 is a false assertion.

1.1.2 Mathematical logical operators

If P is an assertion and Q is another assertion, we will de�ne new assertions

constructed from P and Q.

The logical operator and (^)

The assertion ��P et Q�� is true if P is true and Q is true.
The assertion ��P et Q�� is false otherwise.
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1.1. Mathematical Logic

We summarize this in a truth table :

P Q P ^Q
T T T

T F F

F T F

F F F

(a) (3 + 5 = 8) ^ (3� 6 = 18) is a true assertion.

(b) (2 + 2 = 4) ^ (2� 3 = 7) is a false assertion.

The logical operator or (_)

The assertion ��P or Q�� is true if one of the two assertions P or Q is true.
The assertion ��P or Q�� is false if both assertions P and Q are false.
We repeat this in the truth table :

P Q P _Q
T T T

T F T

F T T

F F F

Exemple 1.1.2 (a) (2 + 2 = 4 _ 3� 2) = 6 is a true assertion.

(b) (2 = 4 _ 4� 2 = 7) is a false assertion.

Negation P

The assertion P is true if P is false, and false if P is true.

P P

T F

F T

Exemple 1.1.3 The negation of the assertion 3 > 0 she is the assertion 3 < 0:

3



1.1. Mathematical Logic

Implication =)

The mathematical de�nition is as follows :

The assertion (P Or Q) is noted ��P =) Q��

Its truth table is therefore the following :

P Q P =) Q

T T T

T F F

F T T

F F T

Exemple 1.1.4 2 + 2 = 5 )
p
2 = 2 is true ! Yes, if P is false then the assertion P ) Q is

always true.

Equivalence ()

Equivalence is de�ned by (P () Q) is the assertion (P =) Q) and (Q =) P ).

We will say (P is equivalent to Q) or (P if and only if Q).
This assertion is true when P and Q are true or when P and Q are false.

The truth table is :
P Q P () Q

T T T

T F F

F T F

F F T

Exemple 1.1.5 For x; x
0 2 R; Equivalence x � x0 = 0 () x = 0 or x

0
= 0 is true.

1.1.3 Quanti�ers

The quanti�er 8 : "for every "

The assertion

8x 2 E; P (x)

is a true assertion when the assertions P (x) are true for all elements x of the
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1.2. Reasonings

set E.

We read : For all x in E, P (x) is true.

Exemple 1.1.6 (a) 8 x 2 R; x2 � 0 is a true assertion.

(b) 8 x 2 R; x2 � 1 is a false assertion.

The quanti�er 9 : "there exists "

The assertion

9x 2 E;P (x)

is a true assertion when we can �nd at least one element x of E for which

P (x) is true.

We read : there exists x in E such that P (x) (be true).

Exemple 1.1.7 (a) 9 x 2 R; x2 � 0 is true, for example x = 0.

(b) 9 x 2 R; x2 < 0 is false.

The negation of quanti�ers

The negation of (8x 2 E;P (x)) is (9x 2 E;P (x)).
The negation of (9x 2 E;P (x)) is (8x 2 E;P (x)).

1.2 Reasonings

1.2.1 Direct reasoning

We want to show that the assertion P ) Q is true. We assume that P is true and we show

that then Q is true.

Exemple 1.2.1 Let a; b 2 R; Show that a = b) a+b
2 = b:

Let�s take a = b; then a
2 =

b
2 ; so

a

2
+
b

2
=

b

2
+
b

2

) a+ b

2
= b:
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1.2. Reasonings

1.2.2 Reasoning by contraposition

Reasoning by contraposition is based on the following equivalence :

The assertion (P ) Q) is equivalent to (Q) P )

(P ) Q), (Q) P )

Exemple 1.2.2 Let x 2 R. Show that

x 6= 2 and x 6= �2| {z }
P

) x2 6= 4| {z }
Q

Demonstration
By contraposition this is equivalent to

x2 = 4| {z }
Q

) x = 2 or x = �2| {z }
P

Indeed, let�s take x2 = 4, then (x� 2)(x+ 2) = 0; so x = 2 or x = �2.

Exemple 1.2.3 Let n 2 N. Show that if n2 is even then n is even.
Demonstration
By contraposition, we assume that n is not even. We want to show that then n2 is not even.
As n is not even, it is odd and therefore there exists k 2 N such that n = 2k + 1:
Then n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2k0 + 1; with k0 = 2k2 + 2k 2 N: So n2 is odd.
Conclusion : we have shown that if n is odd) n2 is odd. By contraposition, this is equivalent

to : If n2 is even ) n is even.

1.2.3 Reasoning by the absurd

The reasoning by the absurd to show P ) Q, is based on the following principle :

We suppose both that P is true and that Q is false and we search a contradiction.

So if P is true then Q must be true and therefore P ) Q is true.

Exemple 1.2.4 Let a; b > 0. Show that if a
1+b =

b
1+a ) a = b:

Demonstration
We reason with the absurd assuming that a

1+b =
b

1+a et a 6= b:
This leads to �

a

1 + b
=

b

1 + a

�
, a(1 + a) = b(1 + b)

, a2 � b2 = �(a� b)

, (a� b)(a+ b) = �(a� b):
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1.2. Reasonings

As a 6= b then a� b 6= 0 and therefore dividing by a� b we obtain

a+ b = �1

The sum of two positive numbers cannot be negative. We get a contradiction. So we conclude

If
a

1 + b
=

b

1 + a
then a 6= b:

1.2.4 Reasoning by counter example

If we want to show that an assertion of the type (8x 2 E;P (x)) is true then for each x of E
we must show that P (x) is true. On the other hand, to show that this assertion is false then it

is enough to �nd x 2 E such that P (x) is false.

Exemple 1.2.5 Show that the following statement is false

8x 2 R; x2 � 1 > 1:

A counter example is x = 0 2 R; because (0)2 � 1 > 1 is false.

1.2.5 Reasoning by recurrence

The principle of recurrence allows us to show that an assertion P (n), depending on n, is true

for all n 2 N.
The recurrence demonstration is done in two steps :

i) We prove P (0) is true.

ii) We assume n � 0 given with P (n) true, and we then demonstrate that the assertion P (n+1)
is true.

Finally, in the conclusion, we recall that by the principle of recurrence P (n) is true for all

n 2 N.

Exemple 1.2.6 Show that for all n 2 N : 2n > n:
Demonstration
Let us note :

P (n) : 2n > n; for all n 2 N:

We will demonstrate by recurrence that P (n) is true for all n 2 N.

i) For n = 0 we have 20 = 1 > 0, so P (0) is true.
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1.2. Reasonings

ii) Let n 2 N, suppose P (n) is true. We will show that P (n+ 1) is true.

2n+1 = 2n + 2n

� n+ 2n; because by P (n) we know that 2n > n;

� n+ 1; because 2n � 1:

So P (n+ 1) is true.
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