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Introduction générale



CHAPITRE 1

Methods of mathematical reasoning

1.1 Mathematical Logic

1.1.1 Assertions

An assertion is a sentence that is either true or false, not both at the same

time.

Exemple 1.1.1 (a) 2+ 2 =4 is a true assertion.

(b) For every z € C we have |z| =1 is a false assertion.

1.1.2 Mathematical logical operators
If P is an assertion and (@ is another assertion, we will define new assertions
constructed from P and Q.

The logical operator and (A)

The assertion <<P et @>> is true if P is true and @ is true.

The assertion <<P et @>> is false otherwise.
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We summarize this in a truth table :
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(a) (3+5=8)A(3x6=18) is a true assertion.
(b) (2+2=4)A(2x3=7) is a false assertion.

The logical operator or (V)

The assertion <<P or ()>> is true if one of the two assertions P or @ is true.
The assertion <<P or @)>> is false if both assertions P and @ are false.
We repeat this in the truth table :
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Exemple 1.1.2 (a) (2+2=4V3x2) =06 is a true assertion.
(b) (2=4V4x2=7) is a false assertion.

Negation P

The assertion P is true if P is false, and false if P is true.
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Exemple 1.1.3 The negation of the assertion 3 > 0 she is the assertion 3 < 0.



1.1. Mathematical Logic

Implication —

The mathematical definition is as follows :
The assertion (P Or Q) is noted <<P == @Q>>
Its truth table is therefore the following :

= Q

SN el | MR anl | as)
TSRO

[Ple P
[ S
[r]r [F
I
Lrlr ]

|
|
|
|
|

Exemple 1.1.4 2 +2 =5 = /2 = 2 is true! Yes, if P is false then the assertion P = Q is

always true.

Equivalence <=

Equivalence is defined by (P <= @) is the assertion (P = Q) and (@ = P).
We will say (P is equivalent to @) or (P if and only if Q).

This assertion is true when P and () are true or when P and @ are false.

The truth table is :

P = Q
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Exemple 1.1.5 For x,x/ € R, Equivalence x - 2 =0 < z=0o0rz =0 is true.

1.1.3 Quantifiers
The quantifier V : "for every "

The assertion

Ve € E, P(x)
is a true assertion when the assertions P(z) are true for all elements x of the
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set E.
We read : For all z in E, P(z) is true.

Exemple 1.1.6 (a) Vx € R,22 >0 is a true assertion.

(b) Vx € R,2? > 1 is a false assertion.

The quantifier 3 : "there exists "

The assertion
dxr € E, P(x)

is a true assertion when we can find at least one element x of E for which
P(z) is true.
We read : there exists z in E such that P(x) (be true).

Exemple 1.1.7 (a) 32 € R, 22 <0 is true, for example x = 0.
(b) Iz e R, 22 <0 is false.

The negation of quantifiers

The negation of (Vz € E, P(x)) is (3z € E, P(x)).
The negation of (3z € E, P(x)) is (Vz € E, P(x)).

1.2 Reasonings

1.2.1 Direct reasoning

We want to show that the assertion P = @ is true. We assume that P is true and we show

that then @ is true.

Exemple 1.2.1 Let a,b € R, Show that a = b = “7“’ =b.

Let’s take a = b, then § = g, S0
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1.2.2 Reasoning by contraposition

Reasoning by contraposition is based on the following equivalence :
The assertion (P = Q) is equivalent to (Q = P)

(P=Q)= (Q=P)
Exemple 1.2.2 Let x € R. Show that

r#2and r# -2=>1>#4
——
P Q

Demonstration

By contraposition this is equivalent to

P=4d=x=20rx=-2
P

Indeed, let’s take x® = 4, then (x —2)(z +2) =0, sox =2 or x = —2.

Exemple 1.2.3 Let n € N. Show that if n? is even then n is even.
Demonstration
By contraposition, we assume that n is not even. We want to show that then n? is not even.
As n is not even, it is odd and therefore there exists k € N such that n = 2k + 1.
Then n? = (2k + 1) = 4k + 4k + 1 = 2k’ + 1, with k' = 2k* + 2k € N. So n? is odd.
Conclusion : we have shown that if n is odd = n? is odd. By contraposition, this is equivalent
to : If n? is even = n is even.

1.2.3 Reasoning by the absurd

The reasoning by the absurd to show P = @, is based on the following principle :
We suppose both that P is true and that @ is false and we search a contradiction.
So if P is true then @ must be true and therefore P = @ is true.

Exemple 1.2.4 Let a;b > 0. Show that if 155 = b= a=0.
Demonstration

We reason with the absurd assuming that 55 = ?ba et a £ b.
This leads to

a b
<1+b_1+a> < a(l4+a)=0(1+Db)
s a?—bv=—(a—0b)

& (a—0b)(a+b)=—(a—0D).
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As a # b then a — b # 0 and therefore dividing by a — b we obtain
a+b=-1

The sum of two positive numbers cannot be negative. We get a contradiction. So we conclude

a b
I = —— th b.
fl—l—b 1+a en a7

1.2.4 Reasoning by counter example

If we want to show that an assertion of the type (Vo € E, P(x)) is true then for each = of E
we must show that P(x) is true. On the other hand, to show that this assertion is false then it

is enough to find x € F such that P(z) is false.
Exemple 1.2.5 Show that the following statement is false
Ve e R, 22 —1> 1.

A counter example is x = 0 € R, because (0)2 — 1 > 1 is false.

1.2.5 Reasoning by recurrence

The principle of recurrence allows us to show that an assertion P(n), depending on n, is true
for all n € N.

The recurrence demonstration is done in two steps :
i) We prove P(0) is true.
ii) We assume n > 0 given with P(n) true, and we then demonstrate that the assertion P(n+1)

is true.

Finally, in the conclusion, we recall that by the principle of recurrence P(n) is true for all
n € N.

Exemple 1.2.6 Show that for alln € N: 2™ > n.
Demonstration

Let us note :
P(n):2" >n, forall n€N.

We will demonstrate by recurrence that P(n) is true for all n € N.

i) For n =0 we have 2° =1 >0, so P(0) is true.
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ii) Let n € N, suppose P(n) is true. We will show that P(n+ 1) is true.

2n+1 — 2n + 2TL
> n+2", because by P(n) we know that 2" > n;
> n-+1, because 2™ > 1.

So P(n+ 1) is true.
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