Course of Maths I Chapter II: Sets, Relations and applications

Academic Year 2024-2025

Contents

1	1.1	Theory Inclusion, union, intersection, complement Cartesian Product		
2	Order Relation, Equivalence Relation			
	2.1	Binary Relations	3	
	2.2	Equivalence Relation	4	
	2.3	Order Relation	5	
3		plications	5	
	3.1	Definition of an application	5	
	3.2	Restriction and extension of an application	6	
	3.3	Direct Image, Inverse Image	6	
	3.4	Injective, surjective, bijective application	7	

1 Set Theory

Definition 1. A set is a collection of elements. Among the sets, one particular set is the empty set, denoted by \emptyset .

Let E be a set, we write $x \in E$ if x is an element of E, and $x \notin E$ otherwise.

Example 1. We have $\{0,1\}$, $\{red, black\}$, and $\{0,1,2,...\} = \mathbb{N}$ are sets. Thus $0 \in \{0,1\}$ and $2 \notin \{0,1\}$.

1.1 Inclusion, union, intersection, complement

Definition 2 (Inclusion). A set E is included in a set F, if every element of E is also an element of F, and we write $E \subset F$. In other words:

$$\forall x, x \in E \implies x \in F$$

We then say that E is a subset of F or a part of F.

Example 2. We have $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$.

Definition 3 (Equality). Two sets E and F are equal if and only if each is included in the other, that is:

 $E = F \iff E \subset F \text{ and } F \subset E$

Example 3. If $E = \mathbb{R}$, we have

$$A = \{x \in \mathbb{R} : |x - 1| \le 1\} = \{x \in \mathbb{R} : -1 \le x - 1 \le 1\} = \{x \in \mathbb{R} : 0 \le x \le 2\} = [0, 2]$$

Definition 4 (The power set of E). Let E be a set, we form a set called the power set of E, denoted by $\mathcal{P}(E)$, which is characterized by the following relation:

$$\mathcal{P}(E) = \{A : A \subseteq E\}$$

Example 4. If $E = \{1, 2, 3\}$, then

$$\mathcal{P}(E) = \{ \emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\} \},\$$

so $\{1\} \in \mathcal{P}(E)$ and $E \in \mathcal{P}(E)$.

Definition 5 (Complement). Let E be a set, the complement of $A \subseteq E$, denoted by $C_E A$ or A^c , is the set of elements of E that do not belong to A, that is:

$$C_E A = \{ x \in E : x \notin A \}$$

Definition 6 (Union and intersection). The union of two sets A and B, denoted by $A \cup B$, is the set formed by the elements x that belong to A or belong to B, that is:

$$A \cup B = \{x \in E : x \in A \text{ or } x \in B\}$$

The intersection of two sets A and B, denoted by $A \cap B$, is the set formed by the elements x that belong to A and belong to B, that is:

$$A \cap B = \{ x \in E : x \in A \text{ and } x \in B \}$$

Example 5. If $A = \{1, 2, 3\}$ and $B = \{2, 3, 4, 5\}$, then $A \cup B = \{1, 2, 3, 4, 5\}$ and $A \cap B = \{2, 3\}$.

Definition 7 (Difference and symmetric difference). Let *E* be a set, the difference of *A* and *B*, denoted by $A \setminus B$, is the set formed by the elements *x* that belong to *A* and do not belong to *B*, that is:

$$A \setminus B = \{ x \in A : x \notin B \}$$

The symmetric difference of A and B, denoted by $A \triangle B$, is the set formed by the elements x that belong to $A \cup B$ and do not belong to $A \cap B$, that is:

$$A \triangle B = (A \cup B) \setminus (A \cap B)$$

Example 6. If $E = \mathbb{R}$, A = [0, 1], and $B =]0, +\infty[$, then

$$A \setminus B = \{0\}, \quad B \setminus A =]1, +\infty[, \quad and \quad A \triangle B = \{0\} \cup]1, +\infty[$$

1.2 Cartesian Product

Definition 8. The Cartesian product of two sets E and F, denoted by $E \times F$, is the set of pairs (x, y) where $x \in E$ and $y \in F$.

$$E \times F = \{(x, y) : x \in E \text{ and } y \in F\}$$

Example 7. If $E = \{1, 2\}$ and $F = \{3, 5\}$, then

$$E \times F = \{(1,3), (1,5), (2,3), (2,5)\}$$
$$F \times E = \{(3,1), (3,2), (5,1), (5,2)\} \neq E \times F$$

2 Order Relation, Equivalence Relation

2.1 Binary Relations

Definition 9. A binary relation on a set E is any assertion between two objects, which can be either verified or not, denoted by xRy, and read as "x is related to y".

Example 8. In \mathbb{R} , we define the relation R by:

$$x\mathcal{R}y \quad \Leftrightarrow \quad x-y \ge 0$$

Definition 10. Let \mathcal{R} be a binary relation on a set E. For all $x, y, z \in E$, we say that \mathcal{R} is:

1. **Reflexive**, if every element is related to itself, that is,

$$x\mathcal{R}x \quad \forall x \in E$$

2. Symmetric, if for all $x, y \in E$, if x is related to y, then y is related to x, that is,

$$x\mathcal{R}y \Rightarrow y\mathcal{R}x \quad \forall x, y \in E$$

3. **Transitive**, if for all $x, y, z \in E$, if x is related to y and y is related to z, then x is related to z, that is,

$$(x\mathcal{R}y \land y\mathcal{R}z) \Rightarrow x\mathcal{R}z \quad \forall x, y, z \in E$$

4. Anti-symmetric, if two elements are related to each other, then they are equal, that is,

$$(x\mathcal{R}y \land y\mathcal{R}x) \Rightarrow x = y \quad \forall x, y \in E$$

2.2 Equivalence Relation

Definition 11. A binary relation \mathcal{R} on E is an equivalence relation if it is both reflexive, symmetric, and transitive.

Definition 12. Let \mathcal{R} be an equivalence relation on E. The equivalence class of $x \in E$ is defined as the set of elements in E that are related to x by \mathcal{R} , denoted by \overline{x} or cl(x) or $\mathcal{C}(x)$:

$$\mathcal{C}(x) = \{ y \in E : y\mathcal{R}x \}$$

The equivalence class C(x) is non-empty because \mathcal{R} is reflexive and thus contains at least x. We denote by

$$E/\mathcal{R} = \{\mathcal{C}(x) : x \in E\}$$

the set of equivalence classes of E under the relation \mathcal{R} .

Example 9. In \mathbb{R} , we define the relation \mathcal{R} by:

$$x\mathcal{R}y \iff x-y \in \mathbb{Z}.$$

This relation is indeed an equivalence relation. Indeed,

- For $x \in \mathbb{R}$: $x\mathcal{R}x \iff 0 \in \mathbb{Z}$, and since $0 \in \mathbb{Z}$, then $x\mathcal{R}x$; $\forall x \in \mathbb{R}$, so R is a reflexive relation.
- For $x, y \in \mathbb{R}$, we have

$$(x\mathcal{R}y) \iff (x-y\in\mathbb{Z}) \iff (y-x\in\mathbb{Z}) \implies y\mathcal{R}x,$$

thus \mathcal{R} is a symmetric relation.

• For $x, y, z \in \mathbb{R}$, we have

$$(x\mathcal{R}y \land y\mathcal{R}z) \implies (x - y \in \mathbb{Z} \land y - z \in \mathbb{Z}) \implies (x - y + y - z \in \mathbb{Z}) \implies (x - z \in \mathbb{Z}) \implies (x\mathcal{R}z),$$

thus \mathcal{R} is a transitive relation.

Thus, the set of equivalence classes $\mathcal{C}(x)$ is given by

$$\mathcal{C}(x) = \{ y \in \mathbb{R} : y - x \in \mathbb{Z} \}$$

= $\{ y \in \mathbb{R} : y \in x + \mathbb{Z} \}$
= $\{ y \in \mathbb{R} : y = k + x \text{ for } k \in \mathbb{Z} \}$
= $\{ k + x : k \in \mathbb{Z} \}.$

If $x \in \mathbb{Z}$, then we have $\mathcal{C}(x) = \mathbb{Z}$.

2.3 Order Relation

Definition 13. A binary relation \mathcal{R} on E is called an order relation if it is antisymmetric, transitive, and reflexive.

3 Applications

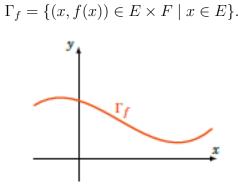
3.1 Definition of an application

Definition 14. Let E and F be given sets. An application from E to F is any correspondence f between the elements of E and those of F that associates to each element of E exactly one element of F. We write:

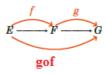
$$f: E \to F$$
$$x \mapsto f(x)$$

• Equality: two applications $f, g: E \longrightarrow F$ are equal if and only if $\forall x \in E, f(x) = g(x)$. We then note f = g.

• Graph of $f: E \longrightarrow F$ is



• Composition: Let $f: E \longrightarrow F$ and $g: F \longrightarrow G$, then $g \circ f: E \longrightarrow G$ is the application defined by $g \circ f(x) = g(f(x))$.



• Identity: Let E be a set. We call the identity application, denoted $Id : E \to E$, the function that satisfies

$$\operatorname{Id}(x) = x, \quad \forall x \in E.$$

Example 10. Let $f : \mathbb{R} \to \mathbb{R}^+$ and $g : \mathbb{R}^+ \to [1, +\infty[$ defined by:

$$f(x) = x^2 \quad \forall x \in \mathbb{R}^+$$

and

$$g(x) = 2x + 1 \quad \forall x \in \mathbb{R}^+$$

Then the composition $g \circ f : \mathbb{R} \to [1, +\infty[$ is given by

$$(g \circ f)(x) = g(f(x)) = g(x^2) = 2x^2 + 1 \quad \forall x \in \mathbb{R}.$$

Example 11. f and g are two applications defined by:

Then $g \circ f :]0, +\infty[\longrightarrow \mathbb{R} \text{ check for all } x \in]0, +\infty[:$

$$g \circ f(x) = g(f(x)) = g(\frac{1}{x}) = \frac{\frac{1}{x}-1}{\frac{1}{x}+1} = \frac{1-x}{1+x} = -g(x)$$

3.2 Restriction and extension of an application

Definition 15. Let $A \subset E$ and $f : E \to F$ be an application. The restriction of f to A, denoted $f|_A : E \to F$, is defined by

$$f|_A(x) = f(x), \quad for \ all \ x \in A$$

Definition 16. Let $E \subset G$ and $f : E \to F$ be an application. The extension of f to G is any function g from G to F whose restriction to E is f.

Example 12. Given the application

$$f: \mathbb{R}^*_+ \to \mathbb{R}, \quad x \mapsto \ln x_y$$

we have

$$g: \mathbb{R}^* \to \mathbb{R}, \quad x \mapsto \ln |x|,$$

and

 $h: \mathbb{R}^* \to \mathbb{R}, \quad x \mapsto \ln(2|x| - x).$

These are two different extensions of f to \mathbb{R} .

3.3 Direct Image, Inverse Image

Let E, F be two sets. Definition 17. Let $A \subset E$ and $f : E \to F$. The direct image of A by f is the set

$$f(A) = \{f(x) : x \in A\} \subset F.$$

Example 13. Let $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = 2x + 1, $\forall x \in \mathbb{R}$. If A = [0, 1], then

$$f([0,1]) = \{f(x) : x \in [0,1]\} = \{2x+1 : x \in [0,1]\}.$$

We have

$$x \in [0,1] \implies 0 \le x \le 1 \implies 1 \le 2x + 1 \le 3,$$

thus f([0,1]) = [1,3].

Definition 18. Let $B \subset F$ and $f : E \to F$. The inverse image of B by f is the set

$$f^{-1}(B) = \{x \in E : f(x) \in B\} \subset E$$

Example 14. Let f be the function defined by $f(x) = x^2$ from $\mathbb{R} \to \mathbb{R}^+$. Then

$$f^{-1}([0,1]) = \{x \in \mathbb{R} : 0 \le x^2 \le 1\} = \{x \in \mathbb{R} : 0 \le |x| \le 1\} = [-1,1].$$

Let g be defined by $g(x) = \sin(\pi x)$ from $\mathbb{R} \to \mathbb{R}$. Then

$$g^{-1}(\{0\}) = \{x \in \mathbb{R} : \sin(\pi x) = 0\} = \{x : x = k, \ k \in \mathbb{Z}\} = \mathbb{Z}.$$

Proposition 1. Let E and F be two arbitrary sets and let $f : E \to F$ be an application. For all $A, B \subset E$, the following properties hold:

- 1. $f(A \cap B) \subset f(A) \cap f(B)$.
- 2. $f(A \cup B) = f(A) \cup f(B).$

3.4 Injective, surjective, bijective application

Let E, F two sets and $f : E \longrightarrow F$ an application. **Definition 19.** An application f is injective if for all $x_1, x_2 \in E$, whenever $f(x_1) = f(x_2)$, then $x_1 = x_2$. In other words:

$$\forall x_1, x_2 \in E, \quad f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$

Definition 20. An application f is surjective if for all $y \in F$, there exists an $x \in E$ such that y = f(x). In other words:

$$\forall y \in F, \exists x \in E \quad (y = f(x))$$

Example 15. 1. We consider the application $f : \mathbb{R} \longrightarrow \mathbb{R}$ defined by:

 $\forall x \in \mathbb{R}: \quad f(x) = 2x + 1.$

Is f injective? • Let $x_1, x_2 \in \mathbb{R}$ such that $f(x_1) = f(x_2)$. $f(x_1) = f(x_2) \Longrightarrow 2x_1 + 1 = 2x_2 + 1 \Longrightarrow 2x_1 = 2x_2 \Longrightarrow x_1 = x_2$, then f is injective.

2. Using the same example. Is f surjective?. Let y ∈ ℝ, let's try to solve the equation y = f(x). y = f(x) ⇔ y = 2x + 1 ⇔ y - 1 = 2x ⇔ x = (y-1)/2. Is clear that the expression (y-1)/2 is defined for every real y, then f is surjective.

Definition 21. An application f is bijective if it is both injective and surjective. This is equivalent to: for all $y \in F$, there exists a unique $x \in E$ such that y = f(x). In other words:

$$\forall y \in F, \quad \exists! \ x \in E \quad y = f(x)$$

Proposition 2. Let E and F be sets and let $f : E \to F$ be an application.

1. The application f is bijective if and only if there exists an application $g: F \to E$ such that

 $f \circ g = Id_F$ and $g \circ f = Id_E$.

2. If f is bijective, then the application g is unique and is also bijective. The application g is called the inverse bijection (or the inverse application) of f and is denoted by f^{-1} . Moreover, we have $(f^{-1})^{-1} = f$.

Remark 1. • $f \circ g = Id_F$ can be reformulated as

$$\forall y \in F, \quad f(g(y)) = y.$$

• While $g \circ f = Id_E$ can be expressed as:

$$\forall x \in E, \quad g(f(x)) = x.$$

For example, the application f : R →]0, +∞[defined by f(x) = exp(x) is bijective, and its inverse bijection is g :]0, +∞[→ R defined by g(y) = ln(y). We have

 $\exp(\ln(y)) = y, \quad \forall y \in]0, +\infty[\quad and \quad \ln(\exp(x)) = x, \quad \forall x \in \mathbb{R}.$

Proposition 3. Let $f: E \to F$ and $g: F \to G$ be bijective applications. The composition $g \circ f$ is bijective, and its inverse bijection is given by

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}.$$