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1 Set Theory

Definition 1. A set is a collection of elements. Among the sets, one particular set is the empty
set, denoted by ∅.
Let E be a set, we write x ∈ E if x is an element of E, and x /∈ E otherwise.

Example 1. We have {0, 1}, {red, black}, and {0, 1, 2, . . . } = N are sets. Thus 0 ∈ {0, 1} and
2 /∈ {0, 1}.

1.1 Inclusion, union, intersection, complement

Definition 2 (Inclusion). A set E is included in a set F , if every element of E is also an element
of F , and we write E ⊂ F . In other words:

∀x, x ∈ E =⇒ x ∈ F
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We then say that E is a subset of F or a part of F .

Example 2. We have N ⊂ Z ⊂ Q ⊂ R.

Definition 3 (Equality). Two sets E and F are equal if and only if each is included in the other,
that is:

E = F ⇐⇒ E ⊂ F and F ⊂ E

Example 3. If E = R, we have

A = {x ∈ R : |x− 1| ≤ 1} = {x ∈ R : −1 ≤ x− 1 ≤ 1} = {x ∈ R : 0 ≤ x ≤ 2} = [0, 2]

Definition 4 (The power set of E). Let E be a set, we form a set called the power set of E,
denoted by P(E), which is characterized by the following relation:

P(E) = {A : A ⊆ E}

Example 4. If E = {1, 2, 3}, then

P(E) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}},

so {1} ∈ P(E) and E ∈ P(E).

Definition 5 (Complement). Let E be a set, the complement of A ⊆ E, denoted by CEA or Ac,
is the set of elements of E that do not belong to A, that is:

CEA = {x ∈ E : x /∈ A}

Definition 6 (Union and intersection). The union of two sets A and B, denoted by A∪B, is the
set formed by the elements x that belong to A or belong to B, that is:

A ∪B = {x ∈ E : x ∈ A or x ∈ B}

The intersection of two sets A and B, denoted by A ∩B, is the set formed by the elements x that
belong to A and belong to B, that is:

A ∩B = {x ∈ E : x ∈ A and x ∈ B}

Example 5. If A = {1, 2, 3} and B = {2, 3, 4, 5}, then A∪B = {1, 2, 3, 4, 5} and A∩B = {2, 3}.

Definition 7 (Difference and symmetric difference). Let E be a set, the difference of A and B,
denoted by A \ B, is the set formed by the elements x that belong to A and do not belong to B,
that is:

A \B = {x ∈ A : x /∈ B}
The symmetric difference of A and B, denoted by A△B, is the set formed by the elements x that
belong to A ∪B and do not belong to A ∩B, that is:

A△B = (A ∪B) \ (A ∩B)

Example 6. If E = R, A = [0, 1], and B =]0,+∞[, then

A \B = {0}, B \ A =]1,+∞[, and A△B = {0}∪]1,+∞[
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1.2 Cartesian Product

Definition 8. The Cartesian product of two sets E and F , denoted by E × F , is the set of pairs
(x, y) where x ∈ E and y ∈ F .

E × F = {(x, y) : x ∈ E and y ∈ F}

Example 7. If E = {1, 2} and F = {3, 5}, then

E × F = {(1, 3), (1, 5), (2, 3), (2, 5)}

F × E = {(3, 1), (3, 2), (5, 1), (5, 2)} ≠ E × F

2 Order Relation, Equivalence Relation

2.1 Binary Relations

Definition 9. A binary relation on a set E is any assertion between two objects, which can be
either verified or not, denoted by xRy, and read as ”x is related to y”.

Example 8. In R, we define the relation R by:

xRy ⇔ x− y ≥ 0

Definition 10. Let R be a binary relation on a set E. For all x, y, z ∈ E, we say that R is:

1. Reflexive, if every element is related to itself, that is,

xRx ∀x ∈ E

2. Symmetric, if for all x, y ∈ E, if x is related to y, then y is related to x, that is,

xRy ⇒ yRx ∀x, y ∈ E

3. Transitive, if for all x, y, z ∈ E, if x is related to y and y is related to z, then x is related
to z, that is,

(xRy ∧ yRz) ⇒ xRz ∀x, y, z ∈ E

4. Anti-symmetric, if two elements are related to each other, then they are equal, that is,

(xRy ∧ yRx) ⇒ x = y ∀x, y ∈ E
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2.2 Equivalence Relation

Definition 11. A binary relation R on E is an equivalence relation if it is both reflexive, sym-
metric, and transitive.

Definition 12. Let R be an equivalence relation on E. The equivalence class of x ∈ E is defined
as the set of elements in E that are related to x by R, denoted by x or cl(x) or C(x):

C(x) = {y ∈ E : yRx}.

The equivalence class C(x) is non-empty because R is reflexive and thus contains at least x. We
denote by

E/R = {C(x) : x ∈ E}

the set of equivalence classes of E under the relation R.

Example 9. In R, we define the relation R by:

xRy ⇐⇒ x− y ∈ Z.

This relation is indeed an equivalence relation. Indeed,

• For x ∈ R: xRx ⇐⇒ 0 ∈ Z, and since 0 ∈ Z, then xRx; ∀x ∈ R, so R is a reflexive
relation.

• For x, y ∈ R, we have

(xRy) ⇐⇒ (x− y ∈ Z) ⇐⇒ (y − x ∈ Z) =⇒ yRx,

thus R is a symmetric relation.

• For x, y, z ∈ R, we have

(xRy ∧ yRz) =⇒ (x− y ∈ Z ∧ y − z ∈ Z)
=⇒ (x− y + y − z ∈ Z)
=⇒ (x− z ∈ Z) =⇒ (xRz),

thus R is a transitive relation.

Thus, the set of equivalence classes C(x) is given by

C(x) = {y ∈ R : y − x ∈ Z}
= {y ∈ R : y ∈ x+ Z}
= {y ∈ R : y = k + x for k ∈ Z}
= {k + x : k ∈ Z}.

If x ∈ Z, then we have C(x) = Z.
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2.3 Order Relation

Definition 13. A binary relation R on E is called an order relation if it is antisymmetric, tran-
sitive, and reflexive.

3 Applications

3.1 Definition of an application

Definition 14. Let E and F be given sets. An application from E to F is any correspondence f
between the elements of E and those of F that associates to each element of E exactly one element
of F . We write:

f : E → F

x 7→ f(x)

• Equality: two applications f, g : E −→ F are equal if and only if ∀x ∈ E, f(x) = g(x). We then
note f = g.
• Graph of f :E −→ F is

Γf = {(x, f(x)) ∈ E × F | x ∈ E}.

• Composition: Let f : E −→ F and g : F −→ G, then g ◦f : E −→ G is the application defined
by g ◦ f(x) = g(f(x)).

• Identity: Let E be a set. We call the identity application, denoted Id : E → E, the function
that satisfies

Id(x) = x, ∀x ∈ E.

Example 10. Let f : R → R+ and g : R+ → [1,+∞[ defined by:

f(x) = x2 ∀x ∈ R+
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and
g(x) = 2x+ 1 ∀x ∈ R+.

Then the composition g ◦ f : R → [1,+∞[ is given by

(g ◦ f)(x) = g(f(x)) = g(x2) = 2x2 + 1 ∀x ∈ R.

Example 11. f and g are two applications defined by:

f : ]0,+∞[ → ]0,+∞[
x 7→ 1

x

g : ]0,+∞[ → R
x 7→ x−1

x+1

Then g ◦ f :]0,+∞[−→ R check for all x ∈]0,+∞[:

g ◦ f(x) = g(f(x)) = g( 1
x
) =

1
x
−1

1
x
+1

= 1−x
1+x

= −g(x)

3.2 Restriction and extension of an application

Definition 15. Let A ⊂ E and f : E → F be an application. The restriction of f to A, denoted
f |A : E → F , is defined by

f |A(x) = f(x), for all x ∈ A.

Definition 16. Let E ⊂ G and f : E → F be an application. The extension of f to G is any
function g from G to F whose restriction to E is f .

Example 12. Given the application

f : R∗
+ → R, x 7→ lnx,

we have
g : R∗ → R, x 7→ ln |x|,

and
h : R∗ → R, x 7→ ln(2|x| − x).

These are two different extensions of f to R.

3.3 Direct Image, Inverse Image

Let E,F be two sets.
Definition 17. Let A ⊂ E and f : E → F . The direct image of A by f is the set

f(A) = {f(x) : x ∈ A} ⊂ F.

Example 13. Let f : R → R defined by f(x) = 2x+ 1, ∀x ∈ R. If A = [0, 1], then

f([0, 1]) = {f(x) : x ∈ [0, 1]} = {2x+ 1 : x ∈ [0, 1]}.

We have
x ∈ [0, 1] =⇒ 0 ≤ x ≤ 1 =⇒ 1 ≤ 2x+ 1 ≤ 3,

thus f([0, 1]) = [1, 3].
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Definition 18. Let B ⊂ F and f : E → F . The inverse image of B by f is the set

f−1(B) = {x ∈ E : f(x) ∈ B} ⊂ E.

Example 14. Let f be the function defined by f(x) = x2 from R → R+. Then

f−1([0, 1]) = {x ∈ R : 0 ≤ x2 ≤ 1} = {x ∈ R : 0 ≤ |x| ≤ 1} = [−1, 1].

Let g be defined by g(x) = sin(πx) from R → R. Then

g−1({0}) = {x ∈ R : sin(πx) = 0} = {x : x = k, k ∈ Z} = Z.

Proposition 1. Let E and F be two arbitrary sets and let f : E → F be an application. For all
A,B ⊂ E, the following properties hold:

1. f(A ∩B) ⊂ f(A) ∩ f(B).

2. f(A ∪B) = f(A) ∪ f(B).

3.4 Injective, surjective, bijective application

Let E,F two sets and f : E −→ F an application.
Definition 19. An application f is injective if for all x1, x2 ∈ E, whenever
f(x1) = f(x2), then x1 = x2. In other words:

∀x1, x2 ∈ E, f(x1) = f(x2) ⇒ x1 = x2

Definition 20. An application f is surjective if for all y ∈ F , there exists an x ∈ E such that
y = f(x). In other words:

∀y ∈ F, ∃x ∈ E (y = f(x))

Example 15. 1. We consider the application f : R −→ R defined by:

∀x ∈ R : f(x) = 2x+ 1.

Is f injective?
• Let x1, x2 ∈ R such that f(x1) = f(x2).
f(x1) = f(x2) =⇒ 2x1 + 1 = 2x2 + 1 =⇒ 2x1 = 2x2 =⇒ x1 = x2,
then f is injective.

2. Using the same example. Is f surjective?.
Let y ∈ R, let’s try to solve the equation y = f(x).

y = f(x) ⇐⇒ y = 2x+ 1 ⇐⇒ y − 1 = 2x ⇐⇒ x =
y − 1

2
.

Is clear that the expression
y − 1

2
is defined for every real y, then f is surjective.

Definition 21. An application f is bijective if it is both injective and surjective. This is equivalent
to: for all y ∈ F , there exists a unique x ∈ E such that y = f(x). In other words:

∀y ∈ F, ∃! x ∈ E y = f(x)
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Proposition 2. Let E and F be sets and let f : E → F be an application.

1. The application f is bijective if and only if there exists an application g : F → E such that

f ◦ g = IdF and g ◦ f = IdE.

2. If f is bijective, then the application g is unique and is also bijective. The application g is
called the inverse bijection (or the inverse application) of f and is denoted by f−1. Moreover,
we have (f−1)−1 = f .

Remark 1. • f ◦ g = IdF can be reformulated as

∀y ∈ F, f(g(y)) = y.

• While g ◦ f = IdE can be expressed as:

∀x ∈ E, g(f(x)) = x.

• For example, the application f : R →]0,+∞[ defined by f(x) = exp(x) is bijective, and its
inverse bijection is g :]0,+∞[→ R defined by g(y) = ln(y). We have

exp(ln(y)) = y, ∀y ∈]0,+∞[ and ln(exp(x)) = x, ∀x ∈ R.

Proposition 3. Let f : E → F and g : F → G be bijective applications. The composition g ◦ f is
bijective, and its inverse bijection is given by

(g ◦ f)−1 = f−1 ◦ g−1.
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