Course of Maths1 Chapter III: Real functions of a real variable

Lecturers: Djellali F, Merzoug I, Feddaoui A, Touati F, Zemmouri A

Academic Year 2024-2025

Contents

1	Concepts of function								
	1.1	Definitions	2						
	1.2	Operations on functions	3						
	1.3	Bounded functions	3						
	1.4	Increasing and decreasing functions	4						
	1.5	Parity and periodicity	5						
2	Lim	its	6						
	2.1	Limit at a point	6						
	2.2	Limit at infinity	7						
		2.2.1 Right-hand and Left-hand Limits	8						
3	Uni	queness of the limit	8						
4	Continuity at a point 10								
	4.1	Definitions	10						
	$4.1 \\ 4.2$	Definitions	$10\\12$						
	$4.1 \\ 4.2 \\ 4.3$	Definitions Extension by continuity Intermediate Value Theorem	10 12 13						
5	4.14.24.3Der	Definitions	10 12 13 13						
5	 4.1 4.2 4.3 Der 5.1 	Definitions	10 12 13 13 13						
5	 4.1 4.2 4.3 Der 5.1 5.2 	Definitions Extension by continuity Extension by continuity Intermediate Value Theorem Intermediate ivative Derivative at a point Derivative of common functions Intermediate	10 12 13 13 13 13 15						
5	 4.1 4.2 4.3 Der 5.1 5.2 5.3 	Definitions	10 12 13 13 13 15 16						

5.5	Mean Value Theorem				•			•	•	•	17
5.6	Increasing Function and Derivative .							•	•	•	17

1 Concepts of function

1.1 Definitions

Definition 1. A real-valued function of a real variable is a mapping $f : U \longrightarrow \mathbb{R}$ where U is a subset of \mathbb{R} .

In general, U is an interval or a union of intervals. U is called the domain of definition of the function f.

Example 1. The inverse function:

$$f:] - \infty, 0[\cup]0, + \infty[\longrightarrow \mathbb{R}$$
$$x \longmapsto \frac{1}{x}$$

The graph of a function $f: U \longrightarrow \mathbb{R}$ is the subset Γ_f of \mathbb{R}^2 defined by

$$\Gamma_f = \{ (x, f(x)) \mid x \in U \}$$

The graph of a function (on the left), the example of the graph of $x \mapsto \frac{1}{x}$ (on the right).

1.2 Operations on functions

Let $f: U \longrightarrow \mathbb{R}$ and $g: U \longrightarrow \mathbb{R}$ be two functions defined on the same subset U of \mathbb{R} . We can then define the following functions:

- The sum of f and g is the function $f + g : U \longrightarrow \mathbb{R}$ defined by (f + g)(x) = f(x) + g(x) for all $x \in U$.
- The product of f and g is the function $f \times g : U \longrightarrow \mathbb{R}$ defined by $(f \times g)(x) = f(x) \times g(x)$ for all $x \in U$.
- The multiplication by a scalar $\lambda \in \mathbb{R}$ of f is the function $\lambda \cdot f : U \longrightarrow \mathbb{R}$ defined by $(\lambda \cdot f)(x) = \lambda \cdot f(x)$ for all $x \in U$.

1.3 Bounded functions

Definition 2. Let $f: U \longrightarrow \mathbb{R}$ and $g: U \longrightarrow \mathbb{R}$ two functions, then:

- $f \ge g$ if $\forall x \in U$; $f(x) \ge g(x)$;
- $f \ge 0$ if $\forall x \in U$; $f(x) \ge 0$;
- f > 0 if $\forall x \in U$; f(x) > 0;
- f is said to be constant on U if $\exists a \in \mathbb{R}, \forall x \in U, f(x) = a$;
- f is said to be zero on U if $\forall x \in U, f(x) = 0$.

Definition 3. Let $f: U \longrightarrow \mathbb{R}$ be a function. We say that:

- f is bounded from above on U if $\exists M \in \mathbb{R}, \forall x \in U, f(x) \leq M$;
- f is bounded from below on U if $\exists m \in \mathbb{R}, \forall x \in U, f(x) \ge m$;
- f is bounded on U if it is both upper bounded and lower bounded on U, that is, if $\exists M \in \mathbb{R}, \forall x \in U, | f(x) | \leq M.$

Here is the graph of a bounded function (bounded from below by m and from above by M).

1.4 Increasing and decreasing functions

Definition 4. Let $f: U \longrightarrow \mathbb{R}$ be a function. We say that:

- f is increasing on U if $\forall a, b \in U, a \leq b \Rightarrow f(a) \leq f(b);$
- f is strictly increasing on U if $\forall a, b \in U, a < b \Rightarrow f(a) < f(b)$;
- f is decreasing on U if $\forall a, b \in U, a \leq b \Rightarrow f(a) \geq f(b)$;
- f is strictly decreasing on U if $\forall a, b \in U, a < b \Rightarrow f(a) > f(b)$;
- f is monotone (resp. strictly monotone) on U if f is increasing or decreasing (resp. strictly increasing or strictly decreasing) on U.

Here is the graph of a strictly increasing function.

Example 2. • The square root function $\begin{cases} [0, \infty[\longrightarrow \mathbb{R} \\ x \longmapsto \sqrt{x} \end{cases} & \text{is strictly increasing.} \end{cases}$

• The absolute value function $\begin{cases} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto \mid x \mid \end{cases}$ is neither increasing nor decreasing. However, the function $\begin{cases} [0, \infty[\longrightarrow \mathbb{R} \\ x \longmapsto \mid x \mid] \end{cases}$ is strictly increasing.

1.5 Parity and periodicity

Definition 5. Let I be an interval on \mathbb{R} symmetric with respect to 0 (that is, of the form]-a, a[or [-a, a] or \mathbb{R}). Let $f: I \longrightarrow \mathbb{R}$ be a function defined on this interval. We say that:

- f is even if $\forall x \in I$, f(-x) = f(x).
- f is odd if $\forall x \in I$, f(-x) = -f(x).

Graphical interpretation:

- f is even if and only if its graph is symmetric with respect to the y-axis (left figure).
- f is odd if and only if its graph is symmetric with respect to the origin (right figure).

Example 3. The function $\cos : \mathbb{R} \longrightarrow \mathbb{R}$ is even. The function $\sin : \mathbb{R} \longrightarrow \mathbb{R}$ is odd. **Definition 6.** Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be a function and T a real number, T > 0. The function f is said to be periodic with period T if $\forall x \in \mathbb{R}$, f(x+T) = f(x).

Example 4. The sine and cosine functions are 2π -periodic. The tangent function is π -periodic.

2 Limits

2.1 Limit at a point

Let $f : I \longrightarrow \mathbb{R}$ be a function defined on an interval I of \mathbb{R} . Let $x_0 \in \mathbb{R}$ be a point in I or an endpoint of I.

Definition 7. Let $\ell \in \mathbb{R}$. It is said that f has a limit ℓ at x_0 if

 $\forall \varepsilon > 0, \ \exists \delta > 0, \ \forall x \in I \quad | \ x - x_0 | < \delta \Longrightarrow | \ f(x) - \ell | < \varepsilon$

It is also said that f(x) tends to ℓ as x approaches x_0 . We denote this as $\lim_{x \to x_0} f(x) = \ell$ or $\lim_{x_0} f(x) = \ell$

Definition 8. • It is said that f has a limit of $+\infty$ at x_0 if

 $\forall A > 0, \ \exists \delta > 0, \ \forall x \in I \quad |x - x_0| < \delta \Longrightarrow f(x) > A.$

We then denote $\lim_{x \to x_0} f(x) = +\infty$.

• It is said that f has a limit of $-\infty$ at x_0 if

$$\forall A > 0, \ \exists \delta > 0, \ \forall x \in I \quad | \ x - x_0 | < \delta \Longrightarrow f(x) < -A.$$

We then denote $\lim_{x \to x_0} f(x) = -\infty$.

Limit at infinity $\mathbf{2.2}$

Let $f: I \longrightarrow \mathbb{R}$ be a function defined on an interval of the form $I =]a, +\infty[$.

Definition 9. • Let $\ell \in \mathbb{R}$. It is said that f has a limit ℓ at $+\infty$ if $\forall \varepsilon > 0, \ \exists B > 0, \ \forall x \in I \quad x > B \Longrightarrow \mid f(x) - \ell \mid < \varepsilon$

We then denote $\lim_{x \to +\infty} f(x) = \ell$ or $\lim_{+\infty} f = \ell$.

• It is said that f has a limit $+\infty$ at $+\infty$ if

$$\forall A > 0, \ \exists B > 0, \ \forall x \in I \quad x > B \Longrightarrow f(x) > A$$

We then denote $\lim_{x \to +\infty} f(x) = +\infty$.

In the same way, we would define the limit at $-\infty$ for functions defined on intervals of the type $] - \infty, a[$.

Example 5. We have the following classical limits for all $n \ge 1$:

- $\lim_{x \to +\infty} x^n = +\infty$, and $\lim_{x \to -\infty} x^n = \begin{cases} +\infty & \text{if } n \text{ is even} \\ -\infty & \text{if } n \text{ is odd} \end{cases}$ $\lim_{x \to +\infty} \frac{1}{x^n} = 0$, and $\lim_{x \to -\infty} \frac{1}{x^n} = 0$.

2.2.1 Right-hand and Left-hand Limits

Let f be a function defined on a set of the form $]a, x_0[\cup]x_0, b[$.

- **Definition 10.** We call the right-hand limit at x_0 of f the limit of the function $f_{|x_0,b|}$ at x_0 , and it is denoted as $\lim_{x_0^+} f$.
 - We similarly define the left-hand limit at x_0 of f as the limit of the function $f_{|a,x_0|}$ at x_0 , and it is denoted as $\lim_{x_0^-} f$.
 - We also denote $\lim_{x \to x_0} f(x)$ for the right-hand limit and $\lim_{x \to x_0} f(x)$ for the left-hand limit.

3 Uniqueness of the limit

Proposition 1. If a function has a limit, then that limit is unique.

Proposition 2.

$$\lim_{x \to x_0} f(x) = \ell \quad \Longleftrightarrow \lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x) = \ell$$

Example 6.

$$\begin{aligned} f: \mathbb{R} &\longrightarrow \mathbb{R} \\ x &\longmapsto \begin{cases} 2x+3 & if \quad x \geq 0 \\ 4x+5 & if \quad x < 0 \end{cases} \end{aligned}$$

We have

 $\lim_{\substack{x \to 0 \\ >}} f(x) = 3 \text{ and } \lim_{\substack{x \to 0 \\ <}} f(x) = 5. \text{ In this case, it is said that } f \text{ does not have a limit } at 0.$

Let there be two functions f and g. We assume that x_0 is a real number, or that $x_0 = \pm \infty$

Proposition 3. If $\lim_{x_0} f = \ell \in \mathbb{R}$ and $\lim_{x_0} g = \ell' \in \mathbb{R}$, then:

- $\lim_{x_0} (\lambda \cdot f) = \lambda \cdot \ell \text{ for all } \lambda \in \mathbb{R}$
- $\lim_{x_0} (f+g) = \ell + \ell'$
- $\lim_{x_0} (f \times g) = \ell \times \ell'$
- If $\ell \neq 0$, then $\lim_{x_0} \frac{1}{f} = \frac{1}{\ell}$ Moreover, if $\lim_{x_0} f = +\infty$ (or $-\infty$), then $\lim_{x_0} \frac{1}{f} = 0$.
- If h is a bounded function and $\lim_{x_0} f = 0$, then $\lim_{x_0} (h \cdot f) = 0$

Proposition 4 (Composition of Limits).

$$\text{If } \lim_{x_0} \ f = \ell \ \text{ and } \lim_{\ell} \ g = \ell', \quad \text{then } \lim_{x_0} \ g \circ f = \ell'$$

Proposition 5. • If $f \leq g$ and if $\lim_{x_0} f = \ell \in \mathbb{R}$ and $\lim_{x_0} g = \ell' \in \mathbb{R}$, then $\ell \leq \ell'$.

- If $f \leq g$ and if $\lim_{x_0} f = +\infty$, then $\lim_{x_0} g = +\infty$.
- Sandwich Theorem (Squeeze Theorem)

If $f \leq g \leq h$ and $\lim_{x_0} f = \lim_{x_0} h = \ell \in \mathbb{R}$, then g has a limit at x_0 and $\lim_{x_0} g = \ell$.

Proposition 6. 1. $\lim_{x \to 0} (1+x)^{\frac{1}{x}} = (1)^{\infty} \stackrel{I.F}{=} e$

2. $\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^x = (1)^{\infty} \stackrel{I.F}{=} e$

Proof. 1. $(1+x)^{\frac{1}{x}} = \exp\left(\frac{1}{x}\ln(1+x)\right)$ and we have :

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = \lim_{x \to 0} \frac{\ln(1+x) - \ln(1)}{x - 0} = (\ln(1+x))'_{x=0} = \left(\frac{1}{1+x}\right)_{x=0} = 1,$$

then,
$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = \exp(1) = e.$$

2. The second is proven in the same way.

Example 7. 1. $\lim_{x \to 0} (1 + \sin x)^{\frac{1}{x}}$.

2. $\lim_{x \to +\infty} \left(\frac{x+4}{x-6}\right)^x.$

Solution:

1.

$$(1+\sin x)^{\frac{1}{x}} = (1+\sin x)^{\frac{1}{x}\cdot\frac{\sin x}{\sin x}} = \left(\underbrace{(1+\sin x)^{\frac{1}{\sin x}}}_{e}\right)^{\frac{\sin x}{x}} \xrightarrow[x\to 0]{} e^{\frac{\sin x}{x}} = e^{\frac{\sin x}{x}}$$

2.

$$\left(\frac{x+4}{x-6}\right)^x = \left(\frac{x-6+6+4}{x-6}\right)^x = \left(1+\frac{1}{\frac{x-6}{10}}\right)^{x\cdot\frac{x-6}{10}\cdot\frac{10}{x-6}}$$
$$= \left(\left(1+\frac{1}{\frac{x-6}{10}}\right)^{\frac{x-6}{10}}\right)^{\frac{10x}{x-6}} \longrightarrow e^{\frac{10x}{x-6}} = e^{10}$$

4 Continuity at a point

4.1 Definitions

Let *I* be an interval in \mathbb{R} , and $f: I \longrightarrow \mathbb{R}$ be a function. **Definition 11.** • It is said that f is continuous at a point $x_0 \in I$ if

$$\forall \varepsilon > 0, \ \exists \delta > 0, \ \forall x \in I \quad |x - x_0| < \delta \Longrightarrow |f(x) - f(x_0)| < \varepsilon$$

That is,

$$\lim_{x \longrightarrow x_0} f(x) = f(x_0)$$

• We say that f is continuous on I if f is continuous at every point in I.

$$\lim_{\substack{x \to x_0 \\ >}} f(x) = f(x_0)$$

• We say that f is left-continuous at point $x_0 \in I$ if

$$\lim_{\substack{x \to x_0 \\ <}} f(x) = f(x_0)$$

Example 8.

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto \begin{cases} 2x+1 & if \quad x > 1\\ 3 & if \quad x = 1\\ 4x+5 & if \quad x < 1 \end{cases}$$

We have

 $\lim_{x \to 1} f(x) = 3 = f(1) \text{ and } \lim_{x \to 1} f(x) = 9 \neq f(1). \text{ In this case, it is said that } f \text{ does not have a limit at } 1.$

f is right-continuous at 1 but is not left-continuous at 1, so f is not continuous at 1.

Example 9. The following functions are continuous:

- The functions "square root" $x \mapsto \sqrt{x}$ and \ln are continuous on $]0, +\infty[$.
- The functions sin, cos, exp and absolute value $x \mapsto |x|$ are continuous on \mathbb{R} .

Proposition 7. Let $f, g : I \longrightarrow \mathbb{R}$ be two functions continuous at a point $x_0 \in I$. Then

- $\lambda \cdot f$ is continuous at x_0 (for all $\lambda \in \mathbb{R}$),
- f + g is continuous at x_0 ,
- $f \times g$ is continuous at x_0 ,
- If $f(x_0) \neq 0$, then $\frac{1}{f}$ is continuous at x_0 .

Proposition 8. Let $f : I \longrightarrow \mathbb{R}$ and $g : J \longrightarrow \mathbb{R}$ be two functions such that $f(I) \subset J$. If f is continuous at a point $x_0 \in I$, and g is continuous at $f(x_0)$, then $g \circ f$ is continuous at x_0 .

4.2 Extension by continuity

Definition 13. Let I be an interval, x_0 a point in I, and $f : I \setminus \{x_0\} \longrightarrow \mathbb{R}$ a function.

- It is said that f is extendable by continuity at x_0 if f has a finite limit at x_0 . We then denote the limit as $\lim_{x \to x_0} f(x) = \ell$.
- We then define the function $\tilde{f}: I \longrightarrow \mathbb{R}$ by setting for all $x \in I$.

$$\tilde{f}(x) = \begin{cases} f(x) & \text{if } x \neq x_0\\ \ell & \text{if } x = x_0. \end{cases}$$

Then \tilde{f} is continuous at x_0 , and it is called the continuity extension of f at x_0

Example 10. The function

$$f(x) = x \sin\left(\frac{1}{x}\right)$$

is defined and continuous on \mathbb{R}^* . Moreover, for all $x \in \mathbb{R}$, we have

$$|f(x)| = \left|x\sin\left(\frac{1}{x}\right)\right| \le |x|$$

So, $\lim_{x\to 0} f(x) = 0$. The continuous extension of f at point 0 is therefore the function \tilde{f} defined by

$$\tilde{f}(x) = \begin{cases} x \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

4.3 Intermediate Value Theorem

Theorem 1. Let f be a continuous function on the interval [a, b]

For every real number k between f(a) and f(b), there exists $c \in [a, b]$ such that f(c) = k.

Here is the most commonly used version of the Intermediate Value Theorem. **Theorem 2.** Let f be a continuous function on the interval [a, b]

If $f(a) \cdot f(b) < 0$, then there exists $c \in]a, b[$ such that f(c) = 0.

5 Derivative

5.1 Derivative at a point

Let I be an open interval in \mathbb{R} , and let $f: I \longrightarrow \mathbb{R}$ be a function. Let x_0 be in I.

Definition 14. f is differentiable at x_0 if the rate of change $\frac{f(x)-f(x_0)}{x-x_0}$ has a finite limit as x approaches x_0 . The limit is then called the derived number of f at x_0 and is denoted as $f'(x_0)$. Thus

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$

Remark 1. Another representation of the derivative is as follows:

f is differentiable at x_0 if and only if $\lim_{h \to 0} \frac{f(x_0+h) - f(x_0)}{h}$ exists and is finite.

Definition 15. f is differentiable on I if f is differentiable at every point $x_0 \in I$. The function $x \mapsto f'(x)$ is the derivative function of f, it is denoted as f' or $\frac{df}{dr}$.

Example 11. The function defined by $f(x) = x^2$ is differentiable at every point $x_0 \in \mathbb{R}$. Indeed

$$\frac{f(x) - f(x_0)}{x - x_0} = \frac{x^2 - x_0^2}{x - x_0} = \frac{(x - x_0)(x + x_0)}{x - x_0} = x + x_0 \underset{x \to x_0}{\longrightarrow} 2x_0.$$

It has even been shown that the derived number of f at x_0 is $2x_0$, in other words: f'(x) = 2x.

Definition 16. • f is right-differentiable at x_0 , if $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'_r(x_0)$.

- f is left-differentiable at x_0 , if $\lim_{\substack{x \to x_0 \\ <x_0}} \frac{f(x) f(x_0)}{x x_0} = f'_l(x_0)$.
- f is differentiable at $x_0 \iff f$ is right-differentiable and left-differentiable at x_0 and $f'(x_0) = f'_r(x_0) = f'_l(x_0)$.

Proposition 9. Let I be an open interval, $x_0 \in I$, and let $f : I \longrightarrow \mathbb{R}$ be a function.

- If f is differentiable at x_0 , then f is continuous at x_0 .
- If f is differentiable on I, then f is continuous on I.

Remark 2. The converse is false: for example, the absolute value function is continuous at 0 but is not differentiable at 0.

Indeed, the rate of change of f(x) = |x| at $x_0 = 0$, satisfies:

$$\frac{f(x) - f(0)}{x - 0} = \frac{|x|}{x} = \begin{cases} +1 & \text{if } x > 0\\ -1 & \text{if } x < 0 \end{cases}$$

There is indeed a right-hand limit $(f'_r(0) = +1)$ and a left-hand limit $(f'_l(0) = -1)$, but they are not equal: there is no limit at 0. Therefore, f is not differentiable at x = 0. This can also be seen in the graph; there is a half-tangent on the right and a half-tangent on the left, but they have different directions.

Proposition 10. Let $f, g: I \longrightarrow \mathbb{R}$ be two differentiable functions on I. Then

- (f+g)' = f' + g'
- $(\lambda f)' = \lambda f'$ where λ is a fixed real number

•
$$(f \times g)' = f'g + fg'$$

•
$$\left(\frac{1}{f}\right)' = -\frac{f'}{f^2}$$
 (if $f \neq 0$)

•
$$\left(\frac{f}{g}\right)' = \frac{gf' - fg'}{g^2}$$
 (if $g \neq 0$)

5.2 Derivative of common functions

u represents a function $x \mapsto u(x)$

			Function	Derivative
Function	Derivative		<i>n</i>	$matumna n-1$ ($m \in \mathbb{Z}$)
x^n	nx^{n-1} $(n \in \mathbb{Z})$			$\begin{array}{ccc} nu \ u & (n \in \mathbb{Z}) \end{array}$
1	1		<u>1</u>	$-\frac{u'}{2}$
\overline{x}	$-\overline{x^2}$			<u> </u>
\sqrt{x}	$\frac{1}{2\sqrt{x}}$		\sqrt{u}	$\frac{u}{2\sqrt{u}}$
x^{lpha}	$\alpha x^{\alpha - 1} (\alpha \in \mathbb{R})$		u^{lpha}	$\alpha u' u^{\alpha - 1} (\alpha \in \mathbb{R})$
e^x	e^x		e^u	$u'e^u$
$\ln x$	$\frac{1}{x}$		$\ln u$	$\frac{u'}{u}$
$\cos x$	$-\sin x$		$\cos u$	$-u'\sin u$
$\sin x$	$\cos x$		$\sin u$	$u' \cos u$
$\tan x$	$1 + \tan^2 x = \frac{1}{\cos^2 x}$		$\tan u$	$u'(1 + \tan^2 u) = \frac{u'}{\cos^2 u}$

5.3 Composition

Proposition 11. If f is differentiable at x_0 and g is differentiable at $f(x_0)$, then $g \circ f$ is differentiable at x_0 with derivative:

$$(g \circ f)'(x_0) = g'(f(x_0)) \cdot f'(x_0)$$

5.4 Rolle's Theorem

Theorem 3 (Rolle's Theorem). Let $f : [a, b] \longrightarrow \mathbb{R}$ such that

- f is continuous on [a, b],
- f is differentiable on]a, b[,

•
$$f(a) = f(b)$$
.

Then, there exists $c \in]a, b[$ such that f'(c) = 0.

There exists at least one point on the graph of f where the tangent is horizontal.

5.5 Mean Value Theorem

Theorem 4 (Mean Value Theorem). Let $f : [a, b] \longrightarrow \mathbb{R}$ be a function that is continuous on [a, b] and differentiable on]a, b[. Then, there exists $c \in]a, b[$ such that

$$f(b) - f(a) = f(c)(b - a)$$

5.6 Increasing Function and Derivative

Corollary 1. Let $f : [a,b] \longrightarrow \mathbb{R}$ be a function that is continuous on [a,b] and differentiable on]a,b[.

- 1. $\forall x \in]a, b[f'(x) \ge 0 \iff f \text{ is increasing};$
- 2. $\forall x \in]a, b[f'(x) \le 0 \iff f \text{ is decreasing};$
- 3. $\forall x \in]a, b[f'(x) = 0 \iff f \text{ is constant};$
- 4. $\forall x \in]a, b[f'(x) > 0 \implies f \text{ is strictly increasing};$
- 5. $\forall x \in]a, b[f'(x) < 0 \implies f \text{ is strictly decreasing.}$

Corollary 2 (L'Hôpital's Rule). Let $f, g : I \longrightarrow \mathbb{R}$ be two differentiable functions, and let $x_0 \in I$. We assume that

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0 \ (or \ \infty)$$

If
$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = \ell \ (\in \mathbb{R})$$
 then $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \ell.$

- Example 12. Calculate the limit at 1 of $\frac{\ln(x^2+x-1)}{\ln(x)}$. We verify that: $f(x) = \ln(x^2+x-1)$, $\lim_{x \to 1} f(x) = 0$, $f'(x) = \frac{2x+1}{x^2+x-1}$,
 - $f(x) = \ln(x), \quad \lim_{x \to 1} g(x) = 0, \quad g'(x) = \frac{1}{x},$

$$\frac{f'(x)}{g'(x)} = \frac{2x+1}{x^2+x-1} \times x = \frac{2x^2+x}{x^2+x-1} \xrightarrow[x \to 1]{3}.$$

Therefore

$$\frac{f(x)}{g(x)} \xrightarrow[x \to 1]{} 3.$$